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Rozdziat 1

Wprowadzenie

Zawod aktuariusza jest jednym z najstarszych w $wiecie finansoéw. Historia tego za-
wodu rozpoczyna si¢ w potowie dziewietnastego wieku wraz z ubezpieczeniami na
zycie i az do lat sze$é¢dziesiatych dwudziestego wieku matematyczne metody aktu-
ariusza zwiazane byly z wycena kontraktow ubezpieczeniowych, tworzeniem tablic
przezycia na podstawie danych statystycznych oraz z wyliczniem rezerw pienieznych
firmy. W latach szes¢dziesiatych rozpoczeto stosowanie matematycznych metod do
stworzenia teorii ryzyka na uzytek ubezpieczen majatkowych i osobowych. Punk-
tem wyjscia byt standardowy ztozony proces Poissona, ktérego pomyst pochodzi
od Filipa Lundberga z 1903 roku, a ktéry matematycznie zostal opracowany przez
Haralda Cramera w latach trzydziestych. Do lat dziewieédziesiatych byt on rozwi-
jany na rézne sposoby. Proces Poissona zostal zastapiony przez proces odnowy oraz
przez proces Coxa, nastepnie uzyto procesow Markowa kawatkami deterministycz-
nych, wreszcie wprowadzono losowe otoczenie pozwalajace na modelowanie losowych
zmian w intensywnosci zgtoszen szkod i wielkosci szkod. Pojawia sie wiele ksiazek
z teorii ryzyka, na pryktad Bowers et al., Buhlman, Daykin, Pentakainen i Peso-
nen, Embrechts, Kluppelberg i Mikosch, Gerber, Panjer i Willmot, Rolski et al.,
Assmussen. Jednym z najbardziej matematycznie interesujacych zagadnien w teorii
ryzyka jest zagadnienie ruiny, gdzie czasy pierwszego przekroczenia wysokiego po-
ziomu rezerwy kapitatowej sa w centrum uwagi. Stare i nowe rezultaty na tym polu
moga by¢ wyttumaczone przez teorie martyngatow i uzyte do pokazania nieréwnosci
Lundberga dla bardzo ogélnych modeli dowodzac, iz dla matych szkéd prawdopo-
dobienstwo ruiny dazy do zera wykladniczo szybko wraz z rezerwa poczatkowa.
Specjalna teoria pojawia sie dla szkdéd potencjalnie duzych. Warunkowe twierdze-
nia graniczne pozwalaja zrozumie¢ trajektorie prowadzace do ruiny. Interesujacy
rozkwit metod matematycznych w latach dziewie¢dziesiatych dokonal sie gléwnie
z dwoch przyczyn: wzrostu szkoéd zwiazanych z katastrofami oraz z gwattownego
rozwoju rynkéw finansowych.
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Wielkie katastrofy i szkody lat siedemdziesiatych i osiemdziesiatych spowodowaty
przekroczenia rezerw na rynku ubezpieczen pierwotnych i wtérnych. Szybko rosnacy
rynek finansowy w tym czasie poszukiwal nowych mozliwosci inwestycyjnych row-
niez w zakresie przyjmowania zaktadéw w zakresie naturalnych katastrof takich jak
trzesienia ziemi i huragany. Czestos¢ wystepowania i rozmiary wielkich szkod stwo-
rzylty potrzebe wprowadzenia wyszukanych modeli statystycznych do badania pro-
cesu szkod. Teoria wartosci ekstremalnych dostarcza niezbednych matematycznych
narzedzi do wprowadzenia nowych metod. Pojawiaja sie ksiazki w zakresie teorii
wartosci ekstremalnych w kontekscie problematyki ubezpieczeniowej, na przyktad
Embrechts et al., Reiss and Thomas.

W latach osiemdziesiatych banki inwestycyjne dostrzegaja, iz zabezpieczanie sie
przed ryzykiem finansowym nie jest wystarczajace ze wzgledu na dodatkowe ry-
zyka rynkowe. Tak zwany traktat z Bazylei z roku 1988 z poprawkami z lat 1994-
1996, wprowadza tradycyjne metody ubezpieczeniowe budowania rezerw do sfery
ryzyka bankowego. Rezerwy musza by¢ tworzone na pokrycie tzw. earning at risk,
to znaczy roznicy miedzy wartoscia $rednia a kwantylem jednoprocentowym roz-
ktadu zysku/straty (profit/loss). Wyznaczenie tak malego kwantyla wymaga bar-
dzo specjalnych metod statystycznych. Metody aktuarialne stosowane sa réwniez
do modelowania ryzyka kredytowego. Portfele kredytowe sa poréwnywalne z portfe-
lami ryzyk ubezpieczeniowych. Przyszty rozwéj metod ubezpieczeniowych zwiazany
jest z powstawaniem ztozonych rynkéw ubezpieczeniowych, firmy ubezpieczeniowe
oczekuja elastycznych rozwiazan zapewniajacych pomoc w catosciowym podejsciu
do zarzadzania ryzykiem.

Catkiem naturalnie na tym tle wprowadzane sa metody pochodzace z teorii stocha-
stycznej optymalizacji. Wiele zmiennych kontrolnych takich jak wielkos¢ reasekura-
cji, dywidendy, inwestycje sa badane tacznie w sposéb dynamiczny prowadzac do
rownan Hamiltona-Jakobiego-Bellmana, rozwiazywanych numerycznie.

Po tym krétkim nakresleniu historii rozwoju metod matematycznych w ubezpiecze-
niach wracamy do podstawowego modelu. Pomyslmy o konkretnej sytuacji. Przegladajac
wszystkie polisy ubezpieczeniowe, zakupione w jednej firmie ubezpieczeniowej, ktore
ubezpieczaja skutki pozaru mieszkan w pewnej dzielnicy duzego miasta, najprawdo-
podobniej natkniemy si¢ na poréwnywalna wartos¢ ubezpieczanych doébr oraz mo-
zemy przyjac, iz szanse na pozar w poszczegdlnych budynkach sa podobne. Taki
zbiér polis tworzy jednorodny portfel ubezpieczeniowy. Wigkszos$¢ firm ubezpie-
czeniowych uzywa tego rodzaju portfeli jako podstawowych cegietek swej dziatalno-
Sci. Cegietki takie, odpowiednio utozone, tworza wieksze bloki dziatalnosci takie jak
ubezpieczenia od ognia, ubezpieczenia ruchu drogowego, ubezpieczenia przed kra-
dziezami, ubezpieczenia majatkowe itd. Blok ubezpieczen od ognia zawiera wtedy
wiele portfeli rézniacych sie rodzajami ryzyka, na przyktad dla: wolno stojacych
doméw, domow szeregowych, budynkéow wielomieszkaniowych, sklepow, marketéw



itd., ktére wymagaja osobnego okreslenia ryzyka ubezpieczeniowego dla kazdego
rodzaju i wyliczenia innej sktadki ubezpieczeniowej, cho¢by z tego tylko powodu, iz
rozmiar szkody w poszczegolnych portfelach moze by¢ nieporéwnywalny. W dalszym
ciagu skupia¢ bedziemy nasza uwage na analizie pojedynczych portfeli, ktore skta-
dac sie beda z wielu elementéw natury losowej lub deterministycznej. Podstawowym
parametrem portfela jest czasokres w ktorym ubezpieczone ryzyka moga generowad
szkody. Zwykle dane odnoszace sie do danego portfela obejmuja okres jedengo roku.
Kluczowym parametrem jest rezerwa poczatkowa (kapital poczatkowy), wyznaczany
na poczatku czasokresu w celu pokrycia kosztéw wynikajacych ze zgtoszonych szkod
w portfelu. Same zgloszenia wyznaczone sa przez chwile zgtoszen Ty < Tp < T3 < ...,
przy czym wygodnie jest przyjac¢ iz Ty = 0 < T}. Liczbe zgloszen do chwili ¢ > 0 defi-
niujemy przez N (t) = max{n : T,, < t}. Kazde zgloszenie zwiazane jest z wielkoscia
zgtaszanej szkody oznaczanej przez X,, , dla n—tego zgloszenia. Przy tych oznacze-
niach catkowita warto$é szkoéd zgtoszonych do chwili ¢ réwna sie S(t) = Zi]i(f) X;.
(Przyjmujemy S(t) = 0, gdy N(¢) = 0). Oznaczmy przez H(t) warto$¢ sktadek
zebranych w portfelu do chwili ¢. Zwykle przyjmujemy, ze H(t) = ct, dla pewnej
statej wartosci ¢ > 0. Wtedy rezerwa kapitatu w portfelu, przy zatozeniu, ze kapitat
poczatkowy wynosi u, wyraza sie wzorem R(t) = u + H(t) — S(t). Zaktadajac, ze
momenty zgtoszen oraz wielkosci szkod sa zmiennymi losowymi, mozemy interpreto-
waé kolekcje zmiennych (R(t),t > 0) jako proces stochastyczny. (Jest to tak zwany
proces ryzyka). Badanie procesu ryzyka jest centralnym zagadnieniem tak zwanej
teorii ryzyka, ktora z kolei stanowi niewatpliwie jadro matematyki ubezpieczeniowe;j
poswieconej ubezpieczeniom majatkowym i osobowym.

Nakreslimy teraz blizej zestawy zalozen przyjmowanych o zmiennych losowych tego
modelu, ktore umozliwiaja doktadniejsza analize portfeli.

Rozpoczniemy od podania detali dotyczacych ciagu zgloszen. O zmiennych loso-
wych T, T, ...mozna przyja¢ wiele réznych zatozen. W pewnych szczegdlnych przy-
padkach uzytecznym i odpowiednim zalozeniem jest to, iz ciag ten tworzy pro-
ces odnowy, tzn. ciag zmiennych losowych odstepéw miedzy zgloszeniami W, =
T, —T,_1,i = 1,2, ..., jest ciagiem niezaleznych zmiennych losowych o jednakowych
rozktadach. Taki proces zgloszen jest elementem sktadowym modelu Sparre An-
dersena, ktory bedzie opisany detalicznie p6zniej. Klasycznym przyktadem procesu
odnowy jest proces Poissona, w ktorym odstepy miedzy zgtoszeniami maja roz-
ktad wyktadniczy. Poniewaz rozktad wyktadniczy jako jedyny ma wtasno$é braku
pamieci, proces Poissona ma wiele strukturalnych wtasnosci odrézniajacych go od
innych proceséw. (Wtlasno$é braku pamieci rozktadu wyktadniczego jest zdefinio-
wana przez réownos¢ P(W > z+y | W > y) = P(W > z), dla 2,y > 0 lub
réwnowaznie P(W > x +y) = P(W > x)P(W > y)). Na przyktad, dla procesu

Poissona P(N(t) = k) = e~ (’\,:!)k,k: =0,1,..., gdzie 0 < A = (EW)~!, przy tym,

EN(t) = At = VarN(t). Ponadto liczby zgloszen w roztacznych przedziatach cza-
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sowych w procesie Poissona tworza kolekcje niezaleznych zmiennych losowych.

W praktyce aktuarialnej zauwazono juz dawno, iz stosunek wartosci oczekiwanej
do wariancji w procesach zgloszeni (N(t),t > 0) bardzo czesto nie jest réwny je-
den (tak jest w procesie Poissona). Mozna to wyttumaczy¢ tym, ze indywidualne
szkody w portfelu sa zgtaszane zgodnie z procesem Poissona o pewnej wartosci
Sredniej, lecz warto$é¢ srednia ilosci indywidualnych zgtoszen moze by¢ rézna dla
kazdej z polis w portfelu. Takie zatozenie prowadzi do procesu zgtoszen dla ktorego
P(N(t) = k) = [;Pe ™™ (A,:!)de()\), gdzie F' jest pewna dystrybuanta okreslajaca
rozklad parametru A w zbiorze mozliwych wartosci w danym portfelu (zaktadamy
zawsze, ze A > 0). Wygodnie jest przyjaé, ze istnieje zmienna losowa A okreslajaca
losowa warto$¢ parametru A, spetniajaca P(A < A\) = F()). Zakladamy przy tym,
ze A\ jest zmienna losowa niezalezna od indywidualnych proceséw Poissona. Proces
(N(t),t > 0) spelniajacy te zatozenia jest tak zwanym mieszanym Procesem Po-
issona. Szczegdlny przypadek, gdy A ma rozkltad gamma, odpowiada tak zwanemu
procesowi Polya.

Inna uzyteczna klasa proceséow zgtoszen jest wyznaczona zwiazkiem rekurencyjnym
postaci P(N(t) = k) = (a + 2)P(N(t) = k — 1),dla k = 1,2,... oraz pewnych
statych a, b (by¢ moze zaleznych jedynie od t). Rozktad geometryczny, dwumianowy
i Poissona znajduja sie w tej klasie, przy odpowiedniej specyfikacji stalych a,b.
Dla takich proceséw Panjer pokazal uzyteczna rekurencje pozwalajaca wyznaczy¢
rozktad catkowitej wartosci szkdod w portfelu.

Wspomniana wcze$niej wtasnosé procesu Poissona, iz liczby zgloszen w roztacznych
przedziatach czasowych tworza kolekcje niezaleznych zmiennych losowych stanowi
punkt wyjscia do teorii proceséw o niezaleznych przyrostach. Procesy zgtoszen posia-
dajace te wlasnosé sa procesami, dla ktérych P(N(t) = k) = 32, e_)‘t%p}gi, gdzie
pi! oznacza i—krotny splot funkcji prawdopodobieristwa (pg, k = 0, 1,...). Oznacza
to, ze liczbe zgloszen mozna zapisaé w postaci N(t) = SEKOY: odzie (K(t),t > 0)
jest Procesem Poissona niezaleznym od ciggu zmiennych (Y;,i = 1,2, ...), ktore sa z
kolei wzajemnie niezalezne o jednakowym rozktadzie (pg, k = 0,1, ...) Takie procesy

sa ztozonymi procesami Poissona.

Podstawowym zatozeniem o wielkosciach zgtaszanych szkéd w portfelu jest to, iz
tworza one ciag X1, Xo, ... niezaleznych zmiennych losowych o jednakowych rozkta-
dach. W zasadzie kazda dystrybuanta skoncentrowana na [0,00) moze byé¢ uzyta
do okreslenia rozktadu wielkosci szkod, jednakze czesto odréznia sie dystrubuanty
o lekkich i ciezkich ogonach. Dystrybuanty o lekkich ogonach sa asymptotycznie
rownowazne rozktadowi wyktadniczemu. Dystrybuanty o cigzkich ogonach stuza do
modelowania szkod, ktore moga osiaga¢ wartosci relatywnie bardzo duze z istotnymi
prawdopodobienistwami (tak jak sie zdarza w przypadku portfeli ubezpieczen od po-
zaréw). Typowym rozkladem ciezkoogonowym uzywanym w praktyce jest rozklad
Pareto.



Latwo wyobrazié sobie sytuacje, w ktorych proces zgtoszen (N(t),t > 0) i ciag wiel-
kosci zgtaszanych szkéd (X,,n = 1,2, ...) sa zalezne, jak na przyktad w przypadku
szkéd wynikajacych z wypadkow drogowych, kiedy to intensywnosé zgloszen jak
rowniez rozmiar szkod zaleza od warunkéw drogowych zwiazanych z pora roku.
Obliczenie rozktadu catkowitej wartosci szkod jest w tym przypadku mozliwe je-
dynie w bardzo specjalnych przypadkach. Dlatego przyjmuje sie bardzo czesto, ze
(N(t),t > 0) oraz (X,,n = 1,2,...) sa niezalezne. Nawet przy tym zalozeniu wyli-
czenie rozktadu S(t) nie jest tatwym zadaniem. Podstawowym wzorem w tym przy-
padku jest P(S(t) < x) = 2, P(N(t) = 4)F¥(x), gdzie Fx(z) = P(X; < z).
Jak widzimy potrzebne sa sploty F3', dla ktorych proste wzory sa znane jedynie
w nielicznych przypadkach. Z tego powodu musimy zdaé sie czesto na aproksyma-
cje. W przypadku, gdy liczba zgloszen jest duza a rozklady maja skonczone wa-
riancje mozna bedzie zastosowaé Centralne Twierdzenie Graniczne (CTG) i wtedy
P(S(t)<z)~ @(%) Aproksymacja tego rodzaju jest bardzo niedoktadna,
gdy tylko niewielka ilo$é¢ szk6d wyznacza wartosé catego portfela (tak jak w przy-
padku szkéd o ciezkich ogonach). Wyznaczenie dobrych aproksymacji w takich przy-
padkach jest bardzo trudne.

UzyliSmy oznaczenia H(t) dla oznaczenia wielkosci sktadek zebranych w portfelu
do chwili ¢t. Zwykle sktadki pobierane sa raz do roku od indywidualnych posiadaczy
polis, jednakze wygodniej jest zatozyc, iz naptyw sktadek odbywa sie jednorodnie
w ciagu calego roku. Wyznaczenie wielkosci H (t) jest jedna z niewielu rzeczy na
jakie moze wpltynac¢ ubezpieczajacy i musi by¢ dokonane w taki sposob, aby pokry¢
zobowiazania w portfelu wynikajace ze zgtaszanych szkoéd. Z drugiej strony zawy-
zanie wysokosci sktadek jest ograniczane konkurencja na rynku ubezpieczen. Naj-
bardziej popularng forma sktadki jest H(t) = (1 4+ 60)EN(t)EX, dla pewnej stalej 0
odzwierciedlajacej narzut gwarantujacy bezpieczenistwo dzialania (safety loading).
Taki sposob naliczania sktadki nie odzwieciedla losowej zmiennosci portfela, dlatego
alternatywnie uzywa sie wzoréw uwzgledniajacych wariancje sktadowych zmiennych
losowych. Jeszcze innym aspektem w trakcie naliczania sktadek jest fakt, ze nie
wszyscy indywidualni posiadacze polis w danym portfelu powinni ptaci¢ sktadki w
tej samej wysokosci oraz sktadki powinny zaleze¢ od historii indywidualnej polisy.

Rezerwa kapitatu R(t) = u + H(t) — S(t) przybiera szczegdlnie prosta postac,
gdy przyjmiemy iz parametr czasu przebiega zbior liczb naturalnych. Oznaczajac
wtedy przez H, sktadki zebrane w n jednostkach czasu oraz przez .S, sumaryczne
szkody zgtoszone w n jednostkach czasu otrzymujemy rezerwe w n tej chwili R, =
u+ H, — S, (przyjmujemy Sy = 0, Hy = 0). Przy dodatkowym zalozeniu, ze przyro-
sty H, — H,_, oraz S,, — S,,_1 sa wzajemnie niezalezne dla n = 2, 3, ..., otrzymujemy
ciag (R,,n =0,1,2,...) zwany bladzeniem losowym (random walk). Ogélnie trajek-
torie przebiegu w czasie wartoéci R(t) obrazuja zachowanie sie losowego procesu, w
ktérym trend dodatni reprezentuje H(t),a trend ujemny S(t). Przedmiotem inten-
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sywnych badan teoretycznych jest tak zwane prawdopodobienstwo ruiny w procesie
(R(t),t > 0). Jesli przez 7 = inf{t > 0 : R(t) < 0} oznaczymy pierwsza chwile,
gdy rezerwa przyjmie wartos¢ ujemng (tak zwana chwila ruiny), to prawdopodo-
biefistwem ruiny jest ¥(u) = P(T < 00). W przypadku, gdy wielkosci szkod maja
rozklad lekkoogonowy, mozna podaé aproksymacje i ograniczenia na 1(u) (beda to
wzory oparte o funkcje wyktadnicza). W przypadku ciezkich ogonéw aproksymacje
istnieja dla tak zwanych rozktadéw podwykladniczych (subexponential).

Ostatnim zagadnieniem omoéwionym w tym wprowadzeniu bedzie reasekuracja.
Reasekuracja jest podstawowa aktywnoscia ubezpieczycieli. Firmy ubezpieczeniowe
podpisuja kontrakty reasekuracyjne w celu zmniejszenia szansy na odpowiedzialnos¢
za szkody tak duze, ze moglyby zagrozi¢ wyptacalnosci firmy. Taka sytuacja moze
nastapic¢ na przyktad w sytuacji, gdy zgtoszone zostana szkody o nadzwyczaj duzej
wielkosci lub gdy ilos¢ zgloszen skumuluje sie tworzac nadzwyczaj duze skupiska lub
gdy nastapia nadzwyczajne zmiany w trakcie zbierania sktadek (niespodziewana in-
flacja, nagly wzrost kosztéw dziatania itp.). Reasekuracja zwieksza mozliwosci firmy
ubezpieczeniowe]j i jej elastycznos¢ pozwalajac na oferowanie szerszego zakresu ustug
ubezpieczeniowych. Wigkszosé ze stosowanych kontraktéw reasekuracyjnych miesci
sie w nastepujacym zbiorze mozliwosci. Niech Z(t) = S(t)— D(t) oznacza czesé szkod
podlegajacych reasekuracji, gdzie D(t) oznacza wielko$¢ wlasnej odpowiedzialnosci
firmy (deductible). Oczywiscie, firma ubezpieczeniowa za przekazanie odpowiedzial-
nosci za Z(t) musi czesé zebranych sktadek przekazaé firmie reasekuracyjnej. Ta z
kolei moze postapi¢ podobnie rozpoczynajac caly tancuch reasekuracyjny. Rease-
kuracja proporcjonalna odpowiada sytuacji, gdy Z(t) = aS(t), dla pewnej stalej
a € (0,1). Reasekuracja excess-loss wynika z zasady Z(t) = YO (X; — d)y, gdzie
d jest dodatnim poziomem retencji oraz z;, = max(0, z). Oznacza to, iz do reaseku-
racji przekazywane sa sumaryczne nadwyzki indywidualnych szkéd ponad poziom
retencji d. Taki kontrakt, przy duzej ilosci zgtoszen prowadzi do duzych kosztow ad-
ministracyjnych. Reasekuracja stop-loss wyznaczona jest przez Z(t) = (S(t) — D),
dla poziomu retencji D wyznaczonego dla catego portfela. Taka reasekuracja zabez-
piecza przed nadzwyczaj duza iloscia niewielkich szkod. Istnieja liczne inne sposby
reasekuracji oraz ich kombinacje, jednakze ze wzgladu na ich zlozono$¢ nie sa po-
wszechnie akceptowane.



Rozdzialt 3

Prawdopodobienstwo ruiny: czas
dyskretny

Rozwazmy nastepujacy proces:

R,=u+cen—5, n=0,1,..., (3.0.1)

gdzie u > 0 jest kapitatem poczatkowym towarzystwa ubezpieczeniowego, c - sktadka
otrzymana w ciagu jednego okresu, a S,, = Wy +---+W,, - sumg szkoéd wyptaconych
do chwili n. Zmienne losowe (W;);>1 sa wyplatami w i-tym okresie. Proces (R,,)n>1
nazywamy procesem nadwyzki ubezpieczyciela lub procesem ryzyka.

Interesowaé nas bedzie zmienna losowa 1" postaci
T = min{n : R, < 0},
(zmienna ta nazywana jest momentem technicznej ruiny), jak réwniez
b(u) = P(T < o),

czyli prawdopodobienstwo ruiny, jezeli kapitatl poczatkowy wynosit u.

3.1 Proces ryzyka jako blgdzenie losowe-
prawdopodobienstwo ruiny

Ciag R, mozemy zapisa¢ jako bladzenie losowe startujace z poziomu u

R,=u+(c—Wi)+ -+ (c=W,),

11
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oraz

Y(u) = P(U{R;: < 0})

i>1
= P(U{Si — ci > u})

i>1
= P(max(S; —ci:i>1) > u).

Prawdopodobienstwo ruiny jest wiec rowne prawdopodobienstwu, ze maksymalna
wartos¢ pewnego btadzenia losowego przekroczy poziom u. Oznaczmy to maksimum
przez

M = max((), Wl — C, (Wl - C) + (WQ — C), .. .),
gdzie btadzenie losowe ma przyrosty postaci W; — ¢, stad

W(u) = P(M > u).

Powstaje pytanie, kiedy btadzenie losowe osiaga skonczone maksimum? Intuicja
wskazuje na bladzenia, ktore dryfuja "do dotu”i w zwiazku z tym osiagaja skon-
czony putap "do géry”. Rzeczywiscie zachodzi

Lemat 3.1.1 P(M <o0) =1 E[W; —¢ <0.

Dowaéd. 7 mocnego prawa wielkich liczb

n (W, —
Piim === gy gy =1,
n—00 n
stad, jesli E[W,; — ¢] < 0, to P(lim,, o, > 1(W; — ¢) = —c0) = 1, czyli trajektorie
btadzenia z prawdopodobienstwem 1 daza do —oo osiggajac w zwiazku z tym M <
0o. 7 drugiej strony, jesli M < oo, to lim,_ . # <0, czyli E[W; — ] < 0.
Poniewaz w symetrycznym btadzeniu losowym trajektorie z prawdopodobienstwem
1 powracaja do punktu wyjscia nieskonczenie wiele razy, warunek M < oo nie moze
zachodzi¢ z prawdopodobienstwem 1, stad E [IW; — ¢] = 0 jest wykluczone. Oznacza

to, ze M < oo z prawdopodobienstwem 1 pociaga E [W; — ¢] < 0. O

Okazuje sie, ze rozkltad maksimum M nie zmieni sie jesli dodamy jeden extra przyrost
do M i wyréwnamy do zera.

Lemat 3.1.2 Rozklad zmiennej M jest taki sam jak zmiennej max(0, M +(W —c)),
gdzie W jest zmienng niezalezng od calego blgdzenia {W;—c,i > 1}, ale posiadajgcg
rozktad rowny rozktadow: W;, piszqc krotko

M=*M+W —c),.
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Dowaod. Mozemy M zapisa¢ w postaci
M = max(0,W; —c+ L),
gdzie
L =max(0,Wy —c¢, Wa —¢c)+ (W3 —c¢),(Wa —¢c)+ (W3 —¢)+ (Wy—¢),...).

Jedli teraz w powyzszych wzorach zastapimy cigg Wy, Wy, Wi, ... ciggiem W, Wy, W, .. .,
to rozktad uzyskanych zmiennych nie zmieni si¢, bo wyjsciowy i nowy ciag sa o tym
samym rozktadzie. To znaczy, ze rozklad M jest taki sam jak rozktad max(0, W —
c+max(0,W) —c,(Wo—c)+(Ws—¢),...)) = (W —c+ M),. O

Uzywajac powyzszy lemat uzyskujemy rozktad M w jezyku funkcji tworzacych w
przypadku ¢ = 1.

Twierdzenie 3.1.3 Zaldzmy, ze W; € N majq funkcje tworzacg Py . Jesli E[W;] <
1 to zmienna M ma funkcje tworzacg

__1-E[W]
Pl = TR wW By
gdzie
1 Py, (t)
R AI =D

Dowdd. Liczymy funkcje tworzaca

Py(t) =B [tM] = B [tMW-04]
_E {t (M+W-1) +[{M+W—1>0}} +E [t(M+W—1)+[{M+W_1<O}}
=P(M+W =0)
+PMAW —-1=0)+P(M+W —-1=1)t+PM+W —-1=2)t"+--.

JHM+W:m+mM+W:mmm»

P
P

1 1
P

(- )P(M 4+ W =0)
a t— Pw(t)
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Przechodzac z t — 1 w powyzszej rownosci otrzymujemy

P(M +W =0)
1-EW]

co daje P(M + W =0) = 1 — E [W]. Ostatecznie wiec

(1-EW)HA -1
Py(t)—t

Py(t) =

co po przeksztatceniu mozemy zapisac jako

1 —E[W]

Pul®) = TR ) P

Funkcja tworzgca Pj;, odpowiada zmiennej losowej o rozktadzie

HW=M:H§%M,

ktory nazywamy rozkladem resztowym rozkladu zmiennej W.

Zmienna M ma rozktad zlozony geometryczny CGeo(p = 1 —E[W], Fy;,). Tak wiec
widzimy, ze prawdopodobienstwo ruiny, przy wprowadzonych zalozeniach,
jest rowne ogonowi dystrybuanty zmiennej losowej o ztozonym rozktladzie
geometrycznym. Okaze sie, ze taka struktura jest rowniez prawdziwa w modelu z
czasem cigglym.

3.1.1 Wspodlczynnik dopasowania

Zatézmy, ze zmienne losowe (W;);>1 maja ten sam rozklad i funkcje tworzaca mo-
menty My (t) oraz E[W] < c. Definiujemy wspolczynnik dopasowania R(W,c)
jako dodatnie rozwigzanie réwnania My, _.(r) = 1, co jest rbwnowazne

exp(—cr) My (r) = 1. (3.1.1)

Zauwazmy, ze

M
dr

d2

gﬁMWAﬂ:E“W—@%W“ﬂ>O
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Co wiecej
d
oMy (r) =E (W =)W= =E[W] - ¢ <0
r
i My _.(0) = 1. Oznacza to, ze funkcja My _.(r) maleje w otoczeniu 0 i jest wypukta,

co daje istnienie wspotczynnika dopasowania.

Przyktad 3.1.4 Zalézmy, ze W ~ N(p,0?). Wtedy My (r) = exp(ur + or?/2)
i stad R(N(u,0?),c) = W Jezeli sktadka za jeden okres naliczana jest wedlug

zasady wartosci oczekiwanej, to ¢ = (1 + 0)E[W], a stad R(N (i, 0?), ¢) = 2.

o2

U

Zauwazmy, ze zalozenie o normalnosci zmiennej losowej W ma sens tylko wtedy,
gdy do tacznych wyplat stosujemy aproksymacje normalna (szkody nie moga by¢
ujemne).

Przyktad 3.1.5 Zaltézmy, ze W przyjmuje dwie wartosci: P(W =a) = p=1—
P(W =b). Wtedy My (r) = pexp(ra)+ (1 —p) exp(rb). Wspdlezynnik dopasowania
wylicza si¢ wiec ze wzoru

exp(er) = pexp(ra) + (1 — p) exp(rd)

Jezelia=2,b=0,p< %, ¢ = 1 powyzsze réwnanie staje si¢ rownaniem kwadrato-

wym i otrzymujemy R(W,c¢) = —log (ﬁ).

O

Powyzszy przyklad pokazuje, ze rozwiazanie réwnania (3.1.1) rzadko da si¢ przed-
stawi¢ w postaci jawnej. Wspotczynnik R mozna jednak przyblizy¢ stosujac podobne
rozumowanie jak w przypadku aproksymacji Edgewortha. Rozwijajac log My, (1) w
szereg Taylora i uwzgledniajac dwa (trzy) pierwsze sktadniki dostajemy réwnanie
(3.1.1) w nastepujacej postaci:

rE[W] + ;T2Var (W] —ecr =0,
(rE[W] + ;TQVar (W] + ér3E (W —E[W])?,] —er =0), (3.1.2)

co w pierwszym przypadku daje przyblizony wspotczynnik dopasowania

2(c — E[W])

R(W,c) ~ Var W]

(3.1.3)
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Dla W bedacego rozktadem zlozonym W = S | X; dostajemy wiec

N N 2(c— E[N]E[X])
RO X)) ™ B s (] + (B Var ]

=1

Przyktad 3.1.6 Zalézmy, ze c = (1 +0)E[W]| = (1 +0)E[N]E [X].

1. Jezeli W ~ C'Poi()\, Fx), to

. 20 [X]
R(CPoi(\, Fx),c) =~ Bx7
2. Jezeli W ~ C'Bin(n,p, Fx), to
20E [ X]

R(CB'”L(T%p; FX)v C)

~ Var [X] + ¢(E[X])>

3. Jezeli W ~ CBin~(r,p, Fx), to

20E [X]
E[X?]+ (E[X])2(1/p—1)

R(CBin(r,p, Fx), ) ~

Zauwazmy, ze jezeli p — 1 to wspotezynnik dopasowania R(C'Bin™(r, p, Fx), ¢)
jest réwny analogicznej wielkosci dla rozkladu CPoi(\, Fx). Nie jest to za-
skakujacy, gdyz rozktad Poissona mozna w tym przypadku traktowacé jako
graniczny dla rozktadu ujemnego dwumianowego.

g

Podobnie jak w przypadku rozwiniecia Edgewortha wzér (3.1.3) daje zte przyblizenie
jezeli zmienna W ma duza sko$nose.

3.1.2 Prawdopodobienstwo ruiny - lekkie ogony
Twierdzenie 3.1.7 Zaléimy, Ze w procesie ryzyka (3.0.1)

o zmienne losowe (W;);>1 sq¢ niezalezne i o tym samym rozkladzie,

o funkcja tworzgca momenty My (t) istnieje i jest skoniczona,
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o E[W] <ec.
Wtedy dla R := R(W,¢)

1
E [exp(—RRp|T < o0)]

¥(u) = exp(—Ru) (3.1.4)

Dowdd: Zauwazmy najpierw, ze ciag (R,),>1 ma przyrosty niezalezn, tzn. zmienne
losowe R,, — Ry, R, — Ry, Rn; — Ry, ... sa niezalezne dla dowolnych 0 < n; <
ng < ---. Poza tym dla dowolnych n > ¢ mamy z niezaleznosci

Elexp(=R(R, — Ri))] = Efexp(=R(c = Wip1) —--- = R(c = Wy))] =
=E[exp(—R(c—=W))]" " =1

i w szczegolnosci dla ¢ = 0 mamy

E [exp(—R(R,)] = exp(—Ru). (3.1.5)

exp(—Ru) = E[exp(—RR,,)]
= Z:E lexp(—RR,|T =14)] P(T = i) + E [exp(—RR,|T > n)] P(T > n)

= zn:E lexp(—RR; — R(R, — R)|T =1)] P(T =1)
Z—:]IE lexp(—RR,|T > n)| P(T > n)
= zn:E lexp(—RR;|T =i)] P(T =1i) + E [exp(—RR,|T > n)|] P(T > n).
i=1
Teraz, ostatni sktadnik w powyzszym rownaniu dazy do 0 przy n — oo, a stad
exp(—Ru) = iE lexp(—RR;|T =i)] P(T = i) = Elexp(—RUr|T < 0)].
i=1
O

Przyktad 3.1.8 (cd. Przyktadu 4.5.1 za =11b=0) Zauwazmy, ze Ry = —1 z
prawdopodobienstwem 1. Stad

() = exp(— R(u + 1)) = (p> |
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g

Wyliczenie wartosci znajdujacej sie w mianowniku (3.1.4) jest zazwyczaj trudne i
mozliwe jedynie tylko w kilku przypadkach. Z Twierdzenia 3.1.7 otrzymujemy jednak
gorne oszacowanie na prawdopodobienstwo ruiny: Nieré6wno$¢é Cramera

Y(u) < exp(—Ru). (3.1.6)




Rozdziat 4

*Prawdopodobienstwo ruiny: czas
ciagly

Podobnie do dyskretnego procesu ryzyka (3.0.1) rozwaza si¢ model w czasie ciaglym:

N(t)
Rt)=u+c—> X,
i=1

gdzie (X;);>1 sa niezaleznymi zmiennymi losowymi o tym samym rozkladzie, a
(N(t),t > 0) jest procesem opisujacym ilos¢ szkdéd zgloszonych do chwili ¢. Jezli
wiec szkody zglaszane sa w losowych chwilach 0 =Ty <77 < ---, to

N(t) :==max{n: T, <t} => I«
n=1

zajmiemy sie najpierw wlasnosciami procesu (N(t),t > 0).

4.1 Proces zgloszen - teoria odnowy

Jesi U; = T; — T, dla ¢ = 1,2,... sa niezaleznymi zmiennymi losowymi o jed-
nakowych rozkladach, to proces (N(t),t > 0) jest procesem odnowy. Zachodza
podstawowe zwigzki zdarzen opisujacych ten proces.

o {N(t) =0} ={T1 >t}
o {N(t) =k} = {T} <t < Ty},
o {N(t) >k} ={T} < t},

19
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o {N(t) <k} ={T > t}.

Stad P(N(t) = 0) = 1 — Fy(t), oraz P(N(t) > k) = EF3*(t), gdzie Fy jest dystrybu-
anta odstepow U;.

Twierdzenie 4.1.1 Jesli E[U;] > 0, to

NO 1
Plim == =gm) =

Dowod: Korzystajac z podstawowych zaleznosci, mamy

N(t) S N(t)+1 N(t)

z mocnego prawa wielkich liczb otrzymujemy z prawdopodobienstwem 1

lim 1% — B[1],

n—oo n

stad teza, gdyz z prawdopodobienistwem 1, lim; ., N(t) = oc.

O
Wielko$¢ N (t) mozna postrzegaé jako efekt sumaryczny wielu zmiennych losowych,
gdy t ro$nie do co. Nalezy wiec oczekiwad, ze zachodzi twierdzenie graniczne podobne
do CTG. Rzeczywiscie:
Twierdzenie 4.1.2 Jesli 0 < Var [U;] < oo, to

N(t) —t/EU]

y(Var U]t/ (B [U])?)

P(

< I) —7t—o00 CD(J]),

gdzie ® oznacza dystrybuante standardowego rozktadu normalnego.

Dowdd:
N(t) —t/E[U]

P <x)=P(N(t) < zy/(Var [Ut/(E[UN) + t/E[U
(\ﬂVar[U]t/(E[U])?’) )= P(N(1) ﬂ [U1t/(EU])°) +t/E[U])

:P(

:P(

T o ovar(nt/ B0 /B 41 > ©)
Ui +-+Ux — KE[U] _ t— KE[U]

> ,
V(K Var [U]) V(K Var [U])
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gdzie K = [z\/(Var[U] ¢/(E[U])*) + t/E [U]] + 1. Poniewa

t — KE[U]
oo — &,
(K Var [U])
z CTG dla ciagu (U;) i réwnosci 1 — ®(—x) = ®(x), otrzymujemy teze. O

Wartosé oczekiwana liczby zgloszen do chwili ¢ nazywamy funkcja odnowy i ozna-
czamy

H(t):=E[N(@)], t > 0.

Otrzymujemy natychmiast z podstawowych zalezno$ci miedzy zdarzeniami
H(t) = Y52, P(N(t) > k) = S P(N(t) > k+1) =

iP(TkH <t) = iFék(t)- (4.1.1)

k=0

7 twierdzenia 4.1.1 wiemy, ze z prawdopodobienstwem 1 usredniona w czasie liczba
zgltoszen jest zbiezna do odwrotnosci wartosci oczekiwanej odstepéw miedzy zgto-
szeniami. Mozna sie spodziewaé, ze warto$¢ oczekiwana liczby zgloszen usredniona
w czasie bedzie zbiezna do tej samej granicy. Rzeczywiscie tak jest, ale wymaga to
technicznie dodatkowej uwagi, poniewaz zbieznos¢ z prawdopodobienstwem 1 ciagu
zmiennych losowych nie implikuje - ogdlnie rzecz biorac - zbieznosci wartosci ocze-
kiwanych tego ciggu.

Twierdzenie 4.1.3 Jesli E[U;] < oo, to
H(t) 1

lim — % = ——

Dowdd: 7 lematu Fatou otrzymujemy

1 N(t H(t
Wystarczy wiec pokazaé, ze
. H(t) 1
lim su < ==
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W tym celu pokazemy najpierw te nieréwnos¢ dla obcietych odstepéw
UK :=min(K,U,), K >0,n€N.
Ze wzgledu na obciecie mamy
Hi(t H5 (¢
lim sup ®) < lim sup t< >,

t—o0 t—o00

gdzie HX jest funkcjg odnowy dla obcietych odstepéw. Aby oszacowaé¢ wartosé
HX(t), pokazemy, ze

HK(t) LloE {NK(t) N 1} _ E [Ulﬂ--..—l—UNK(t)_H]‘

E[UF]
Rzeczywiscie
E[U1+: -+ Uyrer| = [fj UK Iicnaysny
= ZE (U Taavre ]
= ZE (UK rx <t}]
= Z E US| P(TS, <t)
=E|Uf] Z )+ 1> 1)

=0

K
=E|Uf]E [ ]
gdzie korzystaliémy z niezaleznosci T, od UX. Otrzymujemy wiec oszacowanie

I HE(t) <l E [Ul +oe Tt UNK(t)H}
1msup ———— & l1msu .

Poniewaz E [U1 +ot UNK(t)H] <t + K mamy

. H(t) . HE(t) t+ K 1
1 W 20« _ .
TP T SRR T P YE[UF] T E[UK]

Przechodzac z K — oo otrzymujemy

y H(t) _ 1
msup —x ——=-
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Funkcja odnowy spehia rownanie catkowe (Fredholma)

H(t) = Fy(t) + H = Fy(t), t > 0, (4.1.2)

gdzie tutaj operacja splotu * jest zdefiniowana na (0, 00) dla dowolnych funkeji f, g
ograniczonych na przedziatach zwartych o wahaniu ograniczonym, tzn.

¢
Frgt)= [ £t =pdg(t)
Przypomnijmy, ze f*(t) = I(,0)(t). Rzeczywidcie
Fy(t)+ H* Fy(t) = Fy(t) + B2 @) + F2() + ... = H(),

z réwnania (4.1.1).

Okazuje sie, ze rozwazanie rownan tego typu jest bardzo owocne w kontekscie ba-
dania procesu ryzyka. Zachodzi nastepujacy ogolny lemat.

Lemat 4.1.4 Niech F' bedzie byc¢ moze utomng dystrybuantq nieujemnej zmiennej
losowej, tzn. F(0) = 0, F jest niemalejgca i prawostronnie ciggla oraz F(oo) < 1.
Jesli dla pewnej funkcji z(t) > 0, ograniczonej na przedziatach zwartych zachodzi
rownanie

Z(t) = 2(t) + Z * F(t),

to rozwigzaniem tego rownania jest
Z(t)y =2+ H(t), Ht) =Y F™(¢).
n=0

Dowod: Niech
k
Zi(t) =z x (O F™ (1),
n=0
wtedy
Ziw1(t) = 2(t) + Z x F(1).

Przy zalozeniu z > 0 mamy monotonicznosé¢ ciagu Zy(t), wiec przechodzac z k — oo
W powyzszej réwnosci otrzymujemy teze. O



24 ROZDZIAE 4. *PRAWDOPODOBIENSTWO RUINY: CZAS CIAGLY

Przyktad 4.1.5 Niech F' := Fy, o gestosci F, = fy. Niech z := fy;. Wtedy Z(t) =
H'(t), tzn, zachodzi

H'(t) = fult) + H' = Fy(1).

Wynika to natychmiast ze wzoru (f *xg) = f'xg = f x ¢, dla dowolnych rézniczko-
walnych splatanych funkcji f, g.

Przyktad 4.1.6 Niech F' := ¢G, dla ¢ € (0,1) i wtasciwej dystrybuanty G. Niech
z(t) =1 — g = p. Mamy wiec réwnanie

Z =p+ ZxqG.

Wtedy Z jest dystrybuanta ztozonego rozkladu geometrycznego CGeo(p, G), tzn.

Z2(6) = Y- p"G (1),

n=0

i

Wilasnosci asymptotyczne rozwiazan Z(t) tego typu réwnan sa zalezne od catko-
walnosci funkeji z(t). Kluczowym twierdzeniem odnowy jest fakt o istnieniu
granicy rozwiazania rownania typu odnowy.

Twierdzenie 4.1.7 Jesli z > 0 jest nierosngcg 1 catkowalng oraz F' jest wia$ciwg
dystrybuantq cigglq, to rozwigzanie rownania z lematu 4.1.4 ma granice

_ [ z(z)de
fim Z) = 1 pnag

Twierdzenie to mozna uogélni¢ na funkcje bezposrednio catkowalne w sensie Rie-
manna.
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4.2 Prawdopodobienstwo ruiny: proces zgtoszen
Poissona

Méwimy, ze (N(t),t > 0) jest procesem Poissona z parametrem A jesli ten proces
ma nastepujace wlasnosci:

e Dlaty <t; <--- <ty przyrosty N(t1) — N(to), N(t2) — N(t1),...,N(tx) —
N(tx—1) sa niezaleznymi zmiennymi losowymi o rozktadach Poissona

(At —tia))™

m)!

e dlah >0, P(N(h)=1) = A+ o(h) oraz P(N(h) > 1) = o(h);

e Odstepy miedzy zgloszeniami sa niezalezne i maja rozktad wyktadniczy: P(T;—
T, 1 <z)=1—exp(—Ax),i> 1.

Niech (N(t),t > 0) bedzie wigc procesem Poissona z parametrem A. Ponadto, niech
(X;)i>1 bedzie ciagiem dodatnich, niezaleznych zmiennych losowych o tej samej dys-
trybuancie Fx(z) = P(X; < z), niezaleznym od procesu (N(t),t > 0). Niech
fx = F%. Prawdopodobienstwem ruiny przy kapitale poczatkowym u jest

Y(u) = P(T < o0), T:=1inf(t > 0: R(t) <0).

Mozemy, wiec rGwnowaznie napisac

=1

N(t)
Y(u) =P (Z X; —ct >u dla pewnego t > O) :

Wygodnie jest wprowadzi¢ zmienna M = sup(t > 0 : Zi]i(f) X; — ct), bo wtedy,
analogicznie do modelu w czasie dyskretnym, mozemy napisac

P(u) = P(M > u).

Zauwazmy, ze ruina moze nastapi¢ jedynie w chwili jednego ze zgtoszen, stad supre-
mum M wystarczy bada¢ w chwilach zgloszen:

M = sup(0, Xy — cUy, (X1 — cUy) + (Xg — cUs), . ..).

Wida¢, z musimy zatozy¢
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<1, (4.2.1)

gdzie E [X]| = E [X;] < co. W przeciwnym razie, M nie bedzie skoniczona zmienng lo-
sowa i ¥/(u) = 1 dla kazdego u > 0. Przy tym warunku, E [0 X;| = E[N(1)] E[X,] =
ME [X], stad (4.2.1) oznacza, ze skladka ¢ zebrana w jednostce czasu jest wieksza
niz srednia warto$¢ wyptaconych szkod.

Okazuje sie, ze funkcja ¢ oraz funkcja ¢ := 1 — 1 spelniaja pewne réwnania typu
odnowy, z ktorych bedziemy mogli wywnioskowaé ich podstawowe wtasnosci.

Lemat 4.2.1 Jesli ¢ € (0,1), to

$(u) = p + g * Fx(u),

gdzie Fy(u) = ﬁ Il —Fx(x)dz, p=1—q.

Zanim podamy dowod tego faktu, zauwazmy, ze rownanie w tym lemacie ma postac
taka jak w przyktadzie 4.1.6, a stad natychmiast widzimy, ze ¥ jako rozwigzanie ma
postaé

Twierdzenie 4.2.2 (wzér Pollaczka-Chinczyna)

Przy zatozeniu, ze q = /\ET[X] < 1 mamy

Bw) = paE3(0),

n=0

Czyli prawdopodobiefistwo nie zajécia ruiny ¥ (u) jest jako funkcja kapitatu poczat-
kowego u dystrybuanta (zmiennej M) ztozonego rozktadu geometrycznego CGeo(p, Fx).
Jest to sytuacja analogiczna do modelu w czasie dyskretnym, ale tutaj nie zakta-
damy, ze mamy w btadzeniu losowym, dla ktérego szukamy maksimum, do czynienia

ze zmiennymi o wartosciach naturalnych.
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Dowod: lematu 4.2.1.

(u) = P(R(t),t > 0) = P(S(t) < u+ct,t >0)
=P(S(Ty) <u+cT,St)—S(Th) <u+ct—S(T),t >T)
=P(Xy<u+c,Sz+T)—S(T) <u+c(z+Ty) — X1,z >0)

_/ / P(X, <u+clh,S(z+T) — S(T1) <
u+tc(z+T1) — X1,z > 01Xy = 2,1y = y)dFx(x)\exp(—A\y)dy
= /OOO /OOO Ipcuyeyy (@, y)P(S(z+y) = S(y) <u+cz+cy —x,2>0)
dFx () A exp(—Ay)dy
- / /u+cy ) <u4cy—ax+cz,z>0)dFx(x)\exp(—Ay)dy

— /0 /Ou+cy @/_) (u+ cy — z)dFx(x)\exp(—Ay)dy

_A /uoo /Oszﬁ(s — z)dFx(x) exp(—A

C

S—U

)ds,

c
gdzie ostatnia réwnos¢ zachodzi po podstawieniu u + cy := s.

Przypomnijmy regute rézniczkowania catki oznaczonej. Dla

() = [ 5L s)ds 4l bl () — S alu) (o)

Rézniczkujac wzgledem u otrzymujemy

Y (u) = 2[/;0 CZL(/OS D(s — 2)dFx () exp(—A"—2))ds—
/Ou V(u — z)dFx(z)]
- é /OO /S U(s — x)dFx () exp(—A\"— u)ds_

A - 2075
= 20() ~ [ 9u - )Py

Calkujac po zmiennej u w zakresie od 0 do ¢ mamy

90) ~ 9(0) =2 [60) ~ [ 9l — 2)aFx (@)]du
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Aby wyliczy¢
t u
/ / (u — x)dFx(z)du,
0 Jo
podstawiamy s := u — x i calkujemy przez czesci otrzymujac
t ru oo pt—x _
/ / Bu — x)dFx (z)du = / / D(s)dsdFx (x)
0 Jo o Jo

o)

= [[yds = [Tt~ 2)(1 - Fx(a))de,

0

czyli

_ _ At

90— 9(0) = = [ dludu-

A /tw(s)ds 42 0°° Dt — 2)(1 — Fy(2))dz
Gdy t — oo \
1=(0) = = [7(1 = Fx(e))dz = B[],
co daje \ \
9(0) = (1= ZE[X]) + “E[X] 6« Fx (1

7Z réwnania dla 1 natychmiast otrzymujemy réwnanie dla 1.

Lemat 4.2.3 Funkcja prawdopodobienstwa ruiny 1 speinia nastepujge réwnanie
typu odnowy:

Y(u) = q(1 = Fx(u)) + g * Fx(u), (4.2.2)

Przyktad 4.2.4 Gdy wielkosci szkoéd X; maja rozktad wyktadniczy Exp(1/E[X]),
to Fx jest znowu dystrybuanta wyktadnicza Exp(1/E[X]) i wtedy ¢ jest dystry-
buanta CGeo(p, Exp(1/E[X]), wiemy z (?77?), ze jest to dystrybuanta wykladnicza
wymieszana z atomem w zerze, dokladniej, dla p =1 — AE [X] /¢
¥(u) =p +q(1 — exp(—pu/E[X])),
¥(u) = gexp(—pu/E[X]).

Wprowadzajac narzut (security loading) ¢ > 0 poprzez réwnosé

¢c=(1+9)AE[X],
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otrzymujemy alternatywng postac

- 9 1 0
v = g T T EmRa e )
1 ¥
v = R a Y

Rozklady lekkoogonowe- model Cramera-Lundberga

W modelu z czasem ciggltym przydatny bedzie réwniez wspotezynnik dopasowania,
zdefiniowany jednak inaczej niz w modelu z czasem dyskretnym. Dodatnie rozwia-
zanie roéwnania
Mx() = Sra 1,
A
nazywamy wspolczynnikiem dopasowania w modelu ciagtym i oznaczamy R =

R(X, A, c).

Przyktad 4.2.5 Dla X ~ Ezp(1/E[X]), réwnanie definiujace przyjmuje postaé

= Sr+1
—_— = 7
I1-E[X]r A ’

co prowadzi do

R(Ezp(1/E[X]), A, c) = p/E[X],
dla p = (1 — AE[X] /¢). W jezyku narzutu otrzymujemy

R(Exp(1/E[X]),\,¢) = E[X]E,M

O

Poréwnujac wzory na R = R(Exzp(1/E[X]), \, ¢) z wzorami na prawdopodobienstwo
ruiny dla szkéd o rozktadach wyktadniczych z poprzedniego przyktadu widaé, ze
mozemy napisa¢ krétko, w jezyku wspotezynnika dopasowania, ze w tym przypadku

Y(u) = (1 - E[X] R) exp(—Ru).
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Widzimy, z tych wzorow, ze prawdopodobienstwo ruiny w przypadku szkoéd o roz-
ktadach wyktadniczych zalezy od wielkosci narzutu i wartosci sredniej szkody. Praw-
dopodobienstwo ruiny nie zmieni si¢ w takim modelu przy jednoczesnym proporcjo-
nalnym zwigkszeniu intensywnosci nadchodzenia szkéd i intensywnosci pobierania
sktadek.

Dla rozktadow innych niz wyktadniczy, wyliczenie prawdopodobienstwa ruiny jest
ktopotliwe. Dla rozktadéw lekkoogonowych mozna jednakze wyznaczy¢ jego granice
przy u — oo.

Twierdzenie 4.2.6 Jesli istnieje skonczony wspdlczynnik dopasowania dla rozkiadu
szkod w modelu ciggtym R = R(X, A\, ¢), oraz M (R) < oo, to

. =N p
lim (u) exp(Ru) = M (B (Vo) =1

gdzie p=1— A\E[X] /c.

Dla duzych wartosci kapitatu poczatkowego mozna prawdopodobienstwo ruiny przy-
blizy¢ nastepujaco:
5 p
u) ~ exp(—Ru = .
(u) ~ exp( )M((R)(A/C)_1

Dowdd: Wychodzac od réwnania

Y(u) = q(1 — ﬁx(u)) + qi x ﬁx(u),

mnozymy je obustronnie przez exp(R), otrzymujac

W(u) exp(Ru) = q(1 — Fx(u)) exp(Ru)
+ " — ) exp(R(u — z)) dz,

czyli traktujac jako gestos¢ dystrybuanty powiedzmy F', oraz
przyjmujac Z(u) = ¥ (u) exp(Ru), z(u) = q(1 — Fx (u)) exp(Ru), widzimy, ze jest to
rownanie typu odnowy

Z(u) = z(u) + Z * F(u). (4.2.3)
Z twierdzenia 4.1.7 otrzymujemy wiec

Jiny () exp( ) = I X BRI
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Pozostaje wyliczy¢ wartosci catek pojawiajacych sie w granicy,

/OO q(1 — Fx(u)) exp(Ru)du = p/R,

0
o0 My (R)(M/c) — 1
1—F<I)dI: X(R)(~/C)
0 R
co wynika natychmiast z catkownia przez czesci. 0

)

Dla dowolnych wartosci © mozna poda¢ ograniczenie gérne i ograniczenie dolne na
W (u) jesli zatozymy lekkoogonowosé rozktadu wielkosei szkod.

Twierdzenie 4.2.7 Jesli istnieje skonczony wspdlczynnik dopasowania dla rozkiadu
szkéd w modelu cigglym R = R(X, A, ¢) < oo, to

a_ exp(—Ru) < (u) < a; exp(—Ru),

gdzie
2(x
ap =sup ————,
PN F(a)
)
=BT Ry

dla funkcji z i F' zdefiniowanych w réwnaniu (4.2.3).

4.3 Prawdopodobienstwo ruiny dla rozktadéw fa-
zowych

Przypomnijmy , Ze zmienna losowa ma rozktad fazowy PH(p, Q,n), jezeli F(x) =
P(X > x) = pexp(Qu)e, gdzie p = (p1, ..., pn) jest wektorem liczb nieujemnych
sumujacych sia do 1, Q jest macierza n x n, w ktérej poza przekatna sa liczby
dodatnie, a na przekatnej sa wartosci ujemne takie, ze suma w wierszach macie-
rzy jest mniejsza lub réwna zero, e = (1,...,1), exp(Q) oznacza tzw. eksponens
macierzowy, exp(Q) := I+ Q + Q?*/2 + ... + Q"/n! + ...., gdzie I jest macierza
jednostkowa.

Dla rozkltadu fazowego dystrybuanta resztowa F jest tez fazowa i ma reprezentacje:
PH(r,Q,n), gdzier = —pQ~'/E [X] i E[X] wylicza si¢ ze wzoru

E[X] = -n!Q'e.

Jezeli teraz dla zadanego ciagu szkod (X;)i»1 o dystrybuancie fazowej Fy, rozwa-
zymy ciag (Y;);>1 o dystrybuancie resztowej Fx, to ztozony rozktad geometryczny
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ST Y jest znowu fazowy z parametrami (pr, Q+torp, n), gdzie to = —Qe. Funkcja
1) ma wiec postac

¥(u) = prexp ((Q + torp)z)e. (4.3.1)

Przyktad 4.3.1 Rozklad wyktadniczego Exp(u) jest fazowy z parametrami p = 1,
Q = [-1/u], n = 1. Wtedy r = 1 i rozktad resztowy jest tez wykladniczy. Wyli-

czajac ¥(u) ze wzoru (4.3.1) dostajemy ¥ (u) = pexp(—z/(1 — p)/p).

U

W ogélnym przypadku rozktadéw fazowych, dla zadanych wartosci x powyzszy wzor
wyliczamy numerycznie.

Przyklad 4.3.2 Niech p = (1/4,1/8,1/8,1/4) i

-1 0 0 0
Q=14 o a0
0O 0 0 -4
Wtedy
Fx(z) = 1/4exp(—z) + 1/8 exp(—2z) + 1/8 exp(—3x) + 1/4 exp(—4x)
jest mieszanka rozktadow wyktadniczych. Rozktad resztowy dany jest wzorem

Fx(z) = 3/5exp(—x) + 3/20 exp(—2x) + 1/10 exp(—3z) + 3/20 exp(—4x).

Funkcja v nie ma juz tak tadnej postaci, mozna ja jednak tatwo wyrysowaé¢ lub
poda¢é konkretne wartosci. Na przyktad «(10) = 0.095 .

'Plik ruina-ciagla-1.mws
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Rysunek 4.3.1:
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Rezerwa kapitalu Rezerwa kapitalu
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Rysunek 4.4.1: Trajektorie procesu ryzyka

4.4 Prawdopodobienstwo ruiny dla rozkladéw ciezkoog

Ze wzoru (4.3.1) wynika, ze w przypadku rozktadéw fazowych funkcja prawdopodo-
bienstwa ruiny maleje wyktadniczo. Podobnie wyglada to w przypadku wszystkich
rozktadow, dla ktorych istnieje wspotczynnik dopasowania, zdefinowany w Rozdziale
3.1.1. Przypomnijmy jednak, ze dla rozktadow ciezkoogonowych nie istnieje funkcja
tworzaca momenty, nie istnieje wiec wspotezynnik dopasowania. W takich przypad-
kach jesteSsmy w stanie jednak otrzymac¢ asymptotyke prawdopodobienstwa ruiny.

Przed podaniem twierdzenia, przyjrzyjmy sie najpierw trajektoriom procesu ryzyka
dla dwoch modeli.

Lewy rysunek przedstawia proces ryzyka, gdzie szkody maja rozktad wyktadniczy,
prawy rysunek - szkody Pareto z o = 2, a wiec z nieskonczona wariancja. Widzimy
ogoblna tendencje 'do goéry’, co jest zagwarantowane przez p < 1. Na lewym rysunku
trajektorie maja lokalnie tendencje w dot poprzez nagromadzenie matych szkod, na
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prawym - poprzez jedna duza szkode?.

Jak nalezy sie wiec spodziewaé, funkcja prawdopodobienstwa ruiny dla szkéd ciezkoogonowych
bedzie zachowywala si¢ inaczej niz dla fazowych. W nastepujacym twierdzeniu uzy-
jemy klase rozktadéw S*, wprowadzona w Rozdziale 5.3.1.

Twierdzenie 4.4.1 Jezeli F € S*, to

) _ p
e=oo Fo(u)  1—p

Dowdd: Podamy najpierw bez dowodu dwa lematy techniczne.

Lemat 4.4.2 Jezeli F, € S, to dla kazdego ¢ > 0 istnieje D > 0 takie, ze dla
kazdego n > 2,

WV
o

= <D(1+¢e)", x (4.4.1)

Lemat 4.4.3 Niech G(u) = 3% pr H*"(u), (pn) jest rozkiadem prawdopodobieri-
stwa, H € S. Jezeli Y77 g pn(1 +€)" < 0o dla pewnego € > 0, to

Gu) &

Ze wzoru (?77) dostajemy
)= (- p) > P (zm— > a:) — (1) > )
n=0 i=1 n=0
Polézmy p,, = p™ 1 wezmy e > 0 tak, by p(1 +¢) < 1. Stad >0°  pa(l + &)™ < 0.

7 faktu, ze F € §* mamy F, € §, a wec korzystajac z Lematu 4.4.2, istnieje D > 0
takie, ze (4.4.1) jest prawdziwe. Z Lematu 4.4.3 mamy

o (u) o~ PP
Jggofe(u)—(l—p)%np —(1—p)(1_p>2—1_p-

2Plik ruina-ciagla-2.mws
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4.5 Funkcje Copula

Biezacy rozdzial jest oparty gtéwnie na publikacji T. Schmidt’a [35] oraz R.Nelsena
[31]. Przedstawione ponizej funkcje copula zostana w kolejnych rozdziatach wyko-
rzystane do opisu struktury zaleznosci w modelach z zaleznymi roszczeniami lub
odstepami czasowymi.

4.5.1 Definicja i wlasnosci funkcji copula

Definicja 4.5.1 Niech d > 2. Funkcja C: R* — R nazywana jest funkcja copula,
gdy jest d-wymiarowq dystrybuantg o jednowymiarowych, brzeqowych rozkladach jed-
nostajnych na (0,1).

Twierdzenie 4.5.2 (Sklar)
Dla d wymiarowej dystrybuanty o cigglych dystrybuantach brzegowych Fy, ..., Fy ist-
nieje wyznaczona jednoznacznie funkcja copula C taka, Ze:

F(xy,...,xq) = C(Fi(x1), ..., Fa(xa)) (4.5.1)

Odwrotnie, dla danej funkcji copula C @ dystrybuant brzegowych Fi, ..., Fy wzor
(4.5.1) definiuje d-wymiarowq dystrybuante F.

Podstawowe wtasnosci funkcji Copula C(u) = C(uy, ..., uq) to:
1) C: R4 — [0,1], jest rosnaca po wspoirzednych
2) Rozklad brzegowy w; otrzymuje si¢ przez podstawienie u; = 1 dla wszystkich
J#i

C(l,...,l,ui,l,...,l) =U;, U; € [O, 1]
3) Dla a; < b; prawdopodobiefistwo P(U; € [a1,b1], ..., Uy € |aq, b)) jest nieujemne,
co prowadzi do nieréwnosci:

2 2
Z Z (—1)Zl+"'+mC(U1,i1, "'7ud,id) >0,
i1=1 tg=1

gdzie u;; = a; oraz ujs = b;.

7 drugiej strony kazda funkcja C : [0,1]9— > [0, 1], ktéra spetnia powyzsze wlasno-
Sci jest funkcja copula. Ponadto, majac d-wymiarowa funkcje copula C'(uy, ..., ug),
C(1,uy, ..., uq_1) jest rowniez funkcja copula.
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Hoeffding i Frechet niezaleznie dowiedli, ze funkcja copula zawsze lezy pomiedzy
okreslonymi granicami. Powodem tego jest istnienie skrajnych przypadkéw zalezno-
Sci. Pierwszy przypadek takiej skrajnej zaleznosci to doskonata dodatnia zaleznosé
zmiennych (comonotonic). Wéwczas funkcje copula podaje wzor:

Cluy, ..., ug) = min(uy, ..., ug).
W przypadku niezaleznych zmiennych losowych funkcja copula to:
C(Ury .oy Ug) = Uy * ... - Ug. (4.5.2)

Bezposrednio z twierdzenia Sklar’a otrzymujemy, ze zmienne losowe sa niezalezne
wtedy 1 tylko wtedy, gdy ich funkcja copula, to opisana wzorem (4.5.2), funkcja co-
pula niezalezno$ci.

Jednakze, niezaleznos¢ jest tylko etapem pos$rednim od doskonatej dodatniej zalez-
nosci do doskonatej ujemnej zaleznosci (countermonotonic), dla ktérej funkcje copula
dla dwoch zmiennych losowych, tj. w przypadku U; = 1 — Us, przedstawia wzor:

C(uy,us) = max{u; + uy — 1,0} (4.5.3)

W catej ogdélnosci, nie istnieje taka funkcja copula dla trzech zmiennych, poniewaz
rownos¢ U; = 1 — U, naklada pewne ograniczenia na zmienna losowa Us tzn. jesli
U3 =1—-U,, toUs = Uy, ajesli U3 = 1—Uy, to Us = Us. Z drugiej strony, nawet jesli
taka funkcja copula nie istnieje to wynikajace z niej ograniczenia nadal obowigzuja,
mianowicie:

Twierdzenie 4.5.3 (ograniczenia Frechet-Hoeffding)
Rozwazmy funkcje copula C(uy, ..., uq). Wtedy:

d
max{ Y _ u; +1—d,0} < C(uy,...,uq) < min{u, ..., ug}. (4.5.4)
i1=1
W analogiczny sposéb, w jaki funkcja copula wiaze dystrybuante taczna z jej dys-
trybuantami brzegowymi, mozna opisa¢ zwigzek pomiedzy funkcjami przezycia:

F(x1, ..., zq) = C(Fy(x1), ..., Fa(q)) (4.5.5)

gdzie F(xy,...,14) to taczna funkcja przezycia opisana wzorem:

F(zy,...,xq) = P(Xq1 > 21, ..., Xg > 24)

natomiast F(z;), dla i = 1,...,d, to funkcje brzegowe:

Fy(x;) = F(—o0, ..., 2, ..., —00)
Funkcja C réwniez jest funkcjg copula, zwana funkcjg copula przezycia (ang. survival
copula). Funkcje C' i C' wiaze réwnosé:

~

C’(ul, ...,ud) =UL + ... +Ug — 1+ 0(1 — ULy .ery 1-— ud). (456)
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4.5.2 Funkcje copula Archimedesa

Bardzo wazng klasg koput sa, tak zwane, koputy Archimedesa. Charakteryzuja sie
one duza réznorodnoscig oraz tatwoscia, z jakg moga by¢ konstruowane.

Definicja 4.5.4 Niech ¢ : [0,1] — [0,00) bedzie ciggla, Scisle malejacq funkcjg
takq, ze p(1) = 0. Funkcjg pseudo-odwrotng do ¢ jest funkcja =Y, zdefiniowana
wzorem:

Punkcja =Y jest ciggla i nierosngca na przedziale [0, 00], oraz Scisle malejgca na
przedziale [0, 0(0)]. Poza tym, o= (p(u)) = u na przedziale [0,1], oraz:

01 ={ L) oo i

©(0), ¢(0) <t < oo,

= min(t, ¢(0)).

W koricu, jesli o(0) = oo, to pl=1 = =1

Celem prezentacji kolejnego lematu wprowadzamy definicje funkcji catkowicie mo-
notonicznych:

Definicja 4.5.5 Funkcja f jest catkowicie monotoniczna na przedziale J, jezeli jest
na tym przedziale ciggla i posiada pochodne f wszystkich rzedow spetniajgce nie-
rownosc:

(=D)" ™) =0, (4.5.8)

dla kazdego A\ nalezgcego do wnetrza przedziatu J oraz n=0,1,2,... .

Lemat 4.5.1 Niech ¢ : [0,1] — [0,00) bedzie cigglq, Scisle malejgcq funkcjq takaq,
ze (1) = 0 oraz niech =Y bedzie funkcjq pseudo-odwrotng do o zdefiniowang przez
(4.5.7). Funkcja C :[0,1]% — [0, 1] postaci:

C(u) = 1 (2: w(ui)> (4.5.9)

jest funkcjg copula wtedy i tylko wtedy, gdy funkcja o= jest catkowicie monoto-
niczna na przedziale [0, 00).
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Konsekwencja (4.5.8) jest, ze jedli =1 jest funkcja calkowicie monotoniczng oraz
¢~ (c) = 0 dla skoficzonego ¢ > 0, wtedy ™! jest tozsamogciowo réwna 0. Zatem
funkcja ¢!~ musi by¢ dodatnia na przedziale [0, 00), co z kolei oznacza, ze zachodzi
réwnoéé o=t = =1

Funkcje copula postaci (4.5.9) sa nazywane funkcjami copula Archimedesa. Nato-
miast funkcja ¢ jest zwana generatorem funkcji copula.

Przyktad 4.5.1 Funkcja Copula Gumbell’a jest szczegblna funkcja Archimedesa,
uzyskang dla generatora o(t) = (—1Int)?:

C(;Gumbel(uh o ug) = exp[—((=Inuy)’ + ... + (= In Ud)e)l/e] (4.5.10)

gdzie 0 € [1,00). Dla 6§ = 1 otrzymujemy funkcje copula niezaleznosci. Natomiast
dla § — oo szukana funkcja jest zbiezna do funkcji copula doskonale dodatnio zalez-
nej, tak wiec funkcja Copula Gumbel’a jest funkcja copula albo niezaleznosci, albo
doskonatej dodatniej zaleznodci.

Zgodnie z wzorem (4.5.6) funkcja copula przezycia w tym przypadku to:

A

Clug, .y ug) = ug + ... +ug — 1+ exp[—((—=In(1 —uy))? 4+ ... + (= In(1 — ug))")¥9).

Przyktad 4.5.2 Funkcja Claytona réwniez nalezy do rodzin funkcji copula Archi-
medesa, otrzymujemy ja przez podstawienie p(t) = (t=% —1)/6:

Collton (uy, .. ug) = (maz{uy ™% + ... +ug® —1,0})71/° (4.5.11)

gdzie 6 € (0,00). Dla § — 0, otrzymujemy funkcje copula niezaleznosci, a dla § — oo
copula Clayton’a zmierza do funkcji copula doskonale dodatnio skorelowanej. Dla
0 = —1 otrzymujemy ograniczenie z dotu Frechet-Hoeffding’a. Podsumowujac, tak
jak funkcja copula Gumbel’a, copula Clayton’a interpoluje wérod struktur zaleznosci
takich jak: niezaleznos¢ oraz doskonata dodatnia zaleznosc.

Funkcja copula przezycia wyliczona dla omawianego przyktadu z wzoru (4.5.6) to:

~

Cluy, yug) =ur 4 . Fug— 14+ (mazf{(1—u) P+ .+ (1 —uy)? = 1,017
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4.6 Model zrandomizowany

Rozwazmy teraz klasyczny model ryzyka (??) z wyktadniczymi wielko$ciami rosz-
czen, dla ktorych, dla kazdego n, spetniona jest réwnosé:

P(X1 > 21,0, Xy > 2,0 = 0) = [] e, (4.6.1)

k=1

gdzie © to dodatnia zmienna losowa. Wyliczajac rozktad brzegowy Xj okazuje sie,
ze nie jest on wyktadniczy, a wielkosci roszczen sg zalezne. Pokazmy to na przykta-
dzie.

Przyklad 4.6.1 Wezmy dwuwymiarowy wektor losowy X = (X, X5) oraz zmienna
losowa © o rozktadzie

1

1
Fo(0) = 3 1j1,00)(0) + 3 112,00)(0)

Z wczesniejszych rozwazan mamy rownosc:

n

P(X1 > 21, Xy > 2|0 =0) = H e 0m = g70(z1ta2)
k=1

P(X) > 21, Xo > @) = / exp0@1+22) 4 Frg (9)
0
Liczymy rozktad brzegowy X;. Najprosciej bedzie skorzysta¢ z rozktadu tacznego
wykluczajac z niego wpltyw zmiennej X5, co osiggniemy przez podstawienie xo = 0:

o0

1 1
P(X;>x1,Xy>0)=P(X; >x) = / exp V@1+0) dFg(0) = 5 exp ™ +§ exp 21
0
Analogicznie dla Xs:
7 —0(0+x2) 1 —x 1 —2z
P(Xl > O,XQ > (L’g) = P(X2 > (L’g) = / exp 2 dF@(@) = ieXp 2 +§ exp 2

0

Sprawdzamy niezaleznos¢:

1 1 1 1
P(X; > z1)P(Xy > x9) = (5 exp " +3 exp‘z“’“)(i exp 2 +§ exp 2?) =

lexp—m—m ‘I’} eXp—xl—QacQ _}_1 eXp—2x1—x2 _’_1 eXp_2x1_2m2
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T 1 1
P(X1 > 21, Xs > 25) = / exp !T12) 4 Fg (0) = 5 OXP T exp
0
lloczyn brzegowych rozktadéw i rozktad taczny sa rézne, co Swiadczy o tym, ze
zmienne X; i X5 nie sa niezalezne. Rozklady brzegowe nie sg wyktadnicze, ale sa
mieszankami rozktadéw wyktadniczych.

Kolejnym krokiem jest przedstawienie wzoru na prawdopodobienstwo ruiny dla mo-
delu z zaleznymi ryzykami. W tym celu przypomne wzér na prawdopodobienstwo
ruiny (??) w klasycznym modelu z wykladniczymi wielkodciami roszczen Exp(6),
ktéry zostal wyprowadzony w przyktadzie (1.1):

Yy(u) = mm{g\cexp{—(@ — Z)U}’ 1},u > 0. (4.6.2)

Wowezas, po uwzglednieniu zmiennej 6, prawdopodobienstwo ruiny dla modelu za-
leznosci dane jest wzorem:

b(u) = / bo(u)dFo(8). (4.6.3)
0
Dla 0 < 6y = %, ztamany jest wspomniany warunek zysku netto, méwiacy, ze

sktadka ¢ zebrana w jednostce czasu musi by¢ wigksza niz $rednia wyptaconych
szkéd. Oznacza to, ze dla 8 < 0y = % pojawienie sie ruiny jest pewne tzn. ¥y(u) = 1,
dla wszystkich v > 0, dlatego wzoér ogdlny na prawdopodobienstwo ruiny mozna
zastapi¢ przez:

() = Fo(Bo) + [ bo(u)dFe(6). (4.6.4)

0o

Bezposrednig konsekwencja jest:

Jim () = Fo(0o) (1.65)
co jest dodatnie, gdy zmienna losowa © ma dodatnia mase prawdopodobienstwa na
poziomie 0 = % lub ponizej.

Twierdzenie 4.6.1 Model ryzyka z zaleznymi wielkoSciami szkod, spetniajgcy row-
nanie (4.6.1), mozna opisaé za pomocqg wektora szkéd (X1, Xo, ...) o calkowicie mo-
notonicznych brzegowych rozktadach roszczen zmiennych Xy, Xs, ... takiego, zZe od-
powiednie funkcje copula przezycia sq funkcjami Archimedesa z generatorem ¢ =
(L(Fo))™!, gdzie L(Fo) oznacza transformate Laplace-Stieltjesa Fo, a potega (-1)
funkcje odwrotng.



42 ROZDZIAE 4. *PRAWDOPODOBIENSTWO RUINY: CZAS CIAGLY

Dowdéd: Powotujac sie na wzér (4.6.1), taczny rozktad Xi, .., X,, mozemy zapisaé
jako:
P(Xy > 1,0y X > ) = [ €005 4Fg (0) = £(Fo) (@1 + .+ @), (4.6.6)
0

Na podstawie twierdzenia Sklara (tw. 2.2) oraz wzoru dla kopul przezycia (4.5.5), dla
kazdej wielowymiarowej dystrybuanty z rozkladami brzegowymi [, ..., F;, istnieje
koputa przezycia C' taka, ze:

P(Xy > x1,... X, > x,) = C(Fx, (1), ..., Fx, (2))

gdzie Fx(z;) = 1 — Fx(z;) to ogon dystrybuanty rozktadu brzegowego X;. W oma-
wianym przyktadzie X;, ¢ = 1,...,n maja takie same rozktady. Jesli koputa jest
funkcja Archimedesa z generatorem ¢ wtedy powyzszy wzor mozemy wyrazi¢ jako:
C(Fx(x1), .., Fx(aa)) = o7 (o(Fx (1)) + - + 9(Fx(z2))), gdzie

F() = / et dFg(0) = L(Fo)(x:), i=1l.n, (4.6.7)

co doktadnie pasuje do (4.6.6), gdy generator p(t) = (L(Fg)) '(t). Zauwazmy, ze
v jako odwrotna tranformata Laplace’a dystrybuanty jest funkcja ciagta, Scisle ma-
lejaca z [0,1] do [0, 00], dla ktérej ¢(0) = 0o i ¢(1) = 01 ¢! jest calkowicie mo-
notoniczna, wiec zgodnie z lematem 4.5.1 funkcja copula Archimedesa jest dobrze
okreslona dla kazdego n. Z réwnosci (4.6.7) widzimy, ze zmienne losowe X; musza
by¢ catkowicie monotoniczne.

Uwaga

Powyzsza zmiane konstrukeji mozna zobrazowaé jako pobieranie probek 6 z © we-
dhug Fo, a nastepnie poprowadzenie trajektorii dla niezaleznego modelu ryzyka z
parametrem 6. Tak, wiec zalezno$é¢ zostaje wprowadzana poprzez realizacje modelu
dla wszystkich mozliwych wartosci #. Odpowiednio, otrzymana zalezno$é¢ bedzie tym
silniejsza im bardziej dytrybuanta © bedzie rozrzucona. Taka zmiana w budowie
modelu jest tylko narzedziem do okreslenia wzoru na prawdopodobienstwo ruiny,
natomiast nie jest konieczna do stworzenia modelu zaleznosci. Kolejno mozna row-
nowaznie pojs¢ w dwie strony: dla kazdego modelu ryzyka z catkowicie monotonicz-
nymi wielkoSciami roszczen - zmiennymi losowymi X;, oraz dla dodatniej zmiennej
losowej © zachodzi réwnosé (4.6.7). Wowcezas wzér (4.6.2) odnosi sie do struktury
zalezno$ci opisanej za pomoca koputy Archimedesa z generatorem ¢ = (L(Fg))™t.
Alternatywnie mozna zaczaé¢ od okreslenia koputy Archimedesa przez jej generator,
wowcezas powyzsze rownania dadza rozktad brzegowy, dla ktorego jawny wzér (4.6.2)
zachodzi.

Ponizej znajduje sie kilka szczegétowych przyktadow modeli zaleznych.
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4.7 Przyktady modeli z zaleznymi wielkosciami
roszczen

4.7.1 Roszczenia o rozkladzie Pareto z funkcjg Copula Clay-
tona

Rozwazmy model zrandomizowany z wykladniczymi wielkoSciami roszczeni (4.6.1)
oraz z parametrem O o rozktadzie Gamma(a, 3) z gestoscia:

fo(8) = Fﬁ(;)G‘”e”, 0> 0

Otrzymany wowczas rozktad taczny wielkosci roszezen to:

o

P(X1 > 2, Xp > 1) = / 6_9(“*“”")1? 62 Le=Pqp,
, ()

co wynika bezposrednio z:
P(Xy > &,y .y X > 1,0 = 0) = ¢ 00 totan),

Na podstawie twierdzenia (3.1) strukture zaleznosci rozwazanego modelu mozna
przedstawi¢ za pomocg rozktadéw brzegowych oraz funkcji copula przezycia Archi-

medesa z generatorem:
p(t) = (L(Fe)) ' (t)

W tym celu obliczamy rozktad brzegowy wielkosci roszczen Xj, zgodnie ze wzorem
(4.6.7):

FX(.CE) = 6—9xf®(9)d9 — 6—0wrﬁ(a ga— 1 —Bede _ (ﬁ)a‘

o3
o3

b{ a:+[3 0a1—9m+ﬁdg_($)a:(l+%)—a’ x>0

(aH‘ﬁ Ho— l

Wyrazenie pod catky “F 0(z+5) jest gestoécia zmiennej 6 z rozktadem Gamma

z parametrami « oraz x —1— B, co na przedziale (0, 00) catkuje sie do 1.

Otrzymany rozktad brzegowy Xj dla k = 1,...,n to rozklad Pareto(a, 3). Majac
dany rozklad brzegowy, na podstawie wzoru (4.6.7) z dowodu twierdzenia (3.1),
mozna obliczy¢ generator funkcji copula Archimedesa:

o(t) = (L(Fo))™'(t) = (Fx) ' (t) =t~/ — 1.



44 ROZDZIAE 4. *PRAWDOPODOBIENSTWO RUINY: CZAS CIAGLY

Koputa Archimedesa z takim generatorem ¢, opisana w przyktadzie (2.2), jest ko-
pulg Claytona z parametrem «. Z réwnosci (4.6.4) wynika dla tego modelu, ze:

B

g ey,
I(a)

¥ (u) = Fo(0) +/ e

Na poczatek obliczymy Fg(6y) poprzez oszacowanie ogonu dystrybunty zmiennej ©
w punkcie 0y i wykorzystanie prawdopodobienstwa przeciwnego :

o0 o0 t = 360
o L 5 L
Fo(by) = | =——0"tedo = —— [ (80)* e do = [ dt = ﬁd@]
o 9{”0‘) F(%{ Lit = d
17 a—1_—t 7, _ ['(a, 50)
F(a)ﬁe/ot e dt_il“(a)
Czyli:
F (0 ) —1— F(avﬁQO)
elbo) = 7“&)

o0
gdzie I'(a, z) = [ w* e ¥dw jest niekompletng funkcja Gamma.

Pozostaje obliczy¢ druga czesé tj. catke ze wzoru na prawdopodobienstwo ruiny,

pamietajac z wezesniejszych rozwazan, ze 6 = 2:
) 690“5
,(9 a—1 ,gg _ 0 / a—1pa—2 79u+ﬁ _
/ ~e r )9 6 = 3e1g )do —
) t = 6(5 + u)
eoeeguﬁa / 9 s
(0(6 + u))*2e 0tBgg = dt = (B+u)dl | =
a—2
I(a)(u+ 5) e ﬂ+u dt = do
Ooc™ 5 7° 2 0 U (oDl =1, (8+u)by)
27t dt = e 3(1 + =)~V :
Lla)(u+ B>t o oe AL ﬂ> ()

Ostateczny wzor na prawdopodobienstwo ruiny dla danego przyktadu to:

F(O‘v590> ) (a— 1)F(a _ 17 (ﬁ + u>60)
() I'(a) .

W szczegdlnosci, z (4.6.5) wynika:

Y(w =1~ Buc®"3(1 +

g

. _, T
Jim p(u) =1 ()

(4.7.1)
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Wreszcie dla kapitalu poczatkowego u=0 otrzymujemy prosty wzor:

Warto podjaé¢ prébe poréwnania wynikow wzoru na prawdopodobienstwo ruiny dla
modelu niezaleznego i dla modelu z zaleznymi ryzykami. Dlatego w celu poréwna-
nia, dla obu przypadkéw zatéozmy A\ = ¢ = 1 oraz, ze wartosci oczekiwane wielkos¢
roszczen beda réwne. Rozktad brzegowy w niezaleznym modelu to zwykty rozktad
wyktadniczy z wartosci oczekiwang E[X] = 1/6. Z kolei rozklad brzegowy wielkosci
roszczen w modelu zaleznym to rozklad Pareto(a, 3). Wartos¢ oczekiwana zmienne;

z rozkladu Pareto(a, B) to E[X]| = z—fl Tak, wigc szukana réwnosé to: 3 = S—ﬂ
Dodatkowe ograniczenia narzuca warunek sktadki netto, tj. E[X]| < £, czyli przy

oméwionych zaltozeniach: E[X] < 1. Dla modelu niezaleznego warunek jest spel-
niony, gdy € > 1, a dla zaleznego, gdy 3 < C“T_l Po rozwazeniu ograniczen mozna
zaproponowa¢ odpowiednie parametry np.: 0 =2, a =3, f = %

Kolejno zostang obliczone wzory na prawdopodobienstwo ruiny dla modelu nieza-
leznego i z zaleznosciami.

Prawdopodobienstwo ruiny w modelu niezaleznym:

1
W(u) = min{jexp{—u}, 1}
Prawdopodobienstwo ruiny w modelu z zaleznymi wielkosciami roszczen:

ri,s 1
T(3) +e §(1+3u)

72F(27 % + u)
I'(3)

P(u) =1 -
Wyniki obliczen potrzebnych do ostatecznego wzoru, wykonane w Matlabie:
['(3)= [ z%c%dx =2
0

['(3,1/3) = Ofo rle tdy = Re /P
1/3

[(2,1/3 +u) = (4/3 + u)e~/3+wW

Prowadzi to do ostatecznego wzoru na prawdopodobienstwo ruiny w modelu zalez-
nym:
25 2t
w)y=1-"e V34 3 713
Ylu) 18 6(1 + 3u)?
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Prawdopodobienstwa ruiny

=
m

g B 7 g 9 10
Kapitat poczatkowy

Z wykresu odczytujemy, ze prawdopodobienstwo ruiny dla modelu niezaleznego jest
z poczatku duzo wyzsze niz prawdopodobienstwo ruiny w modelu z zaleznymi ryzy-
kami, ale réwniez szybciej maleje. Dla u > 4 prawdopodobienstwo ruiny dla modelu
niezaleznego jest juz mniejsze. Przyktadowo oblicze prawodpodobienstwa ruiny obu
modeli dla u=0 oraz dla u=bh:

Model niezalezny:
1
$(0) = min{3, 1} = 0,5

1
P(5) = min{ﬁexp{—5}, 1} =05-¢e°~0,0035

Model zalezny:

25 4 21
0)=1-"e B4 —eB=1_-"¢ 30,2
¥(0) 8¢ T R° 18°¢ ’
25 145
B)=1— e /B4 3 = 3 450,0077
v(o) 18° 6(1+ 15)2° ’

Dla zerowego kapitatu poczatkowego prawdopodobienstwo ruiny w modelu niezalez-
nym jest duzo wigksze, ale dla u = 5 jest juz nieznacznie mniejsze niz w modelu z
zaleznymi ryzykami. Ponizej zostal umieszczony wykres funkcji copula przezycia dla
obu modeli, zgodnie z ustalonymi parametrami, dla dwéch zmiennych X i Y:
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model niezalezny

4.7.2 Roszczenia o rozkltadzie Weibull’a z funkcjg Copula
Gumbel’a

Rozwazmy kolejny model zaleznosci. Tym razem zmienna losowa © pochodzi z roz-
ktadu stabilnego (1/2) (zwanego réwniez rozkladem Levy’ego) z gestoscia:

« —a?
fe(0) = W M 0>0

Otrzymany wowczas rozklad taczny wielkosci roszezen to:
[e.9]
_ « 2
P(X1 > X1, ., Xy > xn) — 0/ e 0@t tan) = —a?/40 5p

Analogicznie do poprzedniego przyktadu zostanie obliczony rozktad brzegowy F ()
i generator funkcji copula, aby nastepnie skorzystac z twierdzenia 3.1. W celu otrzy-
mania rozktadu brzegowego zmiennej X, nalezy wykluczy¢ z rozktadu tacznego
wpltyw pozostalych zmiennych przez podstawienie Xy = ... = X,, = 0:
Fx(x) = / e % fo(0)dh = exp{—az'/?}, x>0.

0

Uzyskany rozklad brzegowy to rozktad Weibull’a z parametrem ksztaltu 1/2. Po-
niewaz L(Fg)(s) = Fo(s) = e~®V*, to otrzymany generator o(t), jako funkcja od-
wrotna ogona dystrybuanty brzegowego rozktadu wielkosci roszczen, ma wartosé
(L(Fo)) ' (t) = (—Int)? (dla wszystkich wartosci ). Zgodnie z definicja dana ko-
puta Archimedesa jest koputa Gumbel’a (przykltad 2.2), ktéra opisuje wzor:

d

1/2
Co ™ (Fy (21), ..., Fy(zq)) = exp [— (Z(—ln(l — 6_(1\/:67))2) ] )

=1
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Nalezy pamictac, ze rozktad brzegowy roszczen zmienia si¢ w zaleznosci od wyboru
a, natomiast koputa pozostaje niezmieniona. Z réwnosci (4.6.5) otrzymujemy:

Y(u) = Fo(\c) + / 0)\6_9“6’\0/“ e/,
C

A e

2V o3

co mozna tez wyrazi¢ za pomocg funkcji btedu

Erfe(z) =1 — Erf(z \/_/ e dw = 20(—2v/2)

jako:

_ @ A _—a?c/AN(_ _ 2a (ca—2+/uX)? /4ch .
p(u) Erfc(Q\/)\—/c) + —5ce ( v +e (1+ av/u)

Erfe(\/Juh/c— 2\;‘/\_/0)+€(ca+2\/m)2/4c,\(_1+a\/ﬂ)ErfC(\/M+ 2\7%))

Dla z > 0: Erfc(z) =T(1/2,2%)/y/m. Dla u=0 otrzymujemy:

$(0) = Erfe( M et 2\ g @

2\/7 04\/_ ca? 2\/)\7/0)

lim ¢ (u) = Erfe(

umee 2\/\c
Jesli Fg(a) = 0 dlaa > 0 (tzn. nie ma zadnej masy prawdopodobiefistwa w okolicach
0), otrzymany rozklad brzegowy wielkosci roszczen jest lekkoogonowy. Oznacza to,
ze ogon dystrybuanty da sie ograniczy¢ przez pewng funkcje wyktadnicza.

oraz

Tak jak w poprzednim przyktadzie sprobujmy poréwnaé¢ model niezalezny z mode-
lem z zaleznymi ryzykami (tym razem © ma rozktad stabilny (1/2)). Zaktadamy
A = ¢ = 1 oraz, ze wartosci oczekiwane wielkos¢ roszczefl w modelach beda réwne.
Wartos$¢ oczekiwana zmiennej z rozktadu Weibulla to: 2 , czyli szukamy parametrow
spetiajacych réwnosé: % = 2. Dodatkowo, srednia szkoda musi by¢ mniejsza od
sktadki tj.: E[X] < § = 1. Parametry speliajace wszystkie podane warunki to np.:
0 = 2, a = 2. Kolejno zostang obliczone wzory na prawdopodobienstwo ruiny dla

modelu niezaleznego i z zalezno$ciami.

Prawdopodobienstwo ruiny w modelu niezaleznym:

¥(w) = min{gerp{—u}, 1)
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Prawdopodobienstwo ruiny w modelu z zaleznymi wielkosciami roszczen:
¥(u) = Erfe(1) + je (== + eV (1 + 2V/u)
Erfe(yu—1) + eV’ (=1 4+ 2 /u)Erfe(v/u+ 1))

Kolejno zostaly poréwnane prawdopodobienstwa ruiny dla kilku wybranych wartosci
kapitatu poczatkowego:

Prawdopodobienstwo ruiny
Kapital poczatkowy Model niezalezny  Model zalezny
0 05 03712
1 0,184 02492
3 0,0249 02039
5 0.0034 0192188
0.4
0.45 4
— model niezalezny
0.4+ — rmodel zalezny i
035
=
£ 03p
w
g
= 0251
=
o
= ET
=
&
£ 015
01r
.05
a

0 1 2 3 4 3 B 7 g 9 10
Kapitat poczatkowy

Tak, jak w poprzednim przyktadzie, dla zerowego kapitatu poczatkowego prawdo-
podobienstwo ruiny w modelu niezaleznym jest wicksze, ale réwniez szybciej maleje.
Juz dla u=1 prawdopodobienstwo ruiny w modelu niezaleznym jest mniejsze niz w
modelu z zaleznymi ryzykami.
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4.7.3 Odstepy miedzy roszczeniami o rozkladzie Pareto z
funkcjg Copula Claytona

Rozwazmy model, gdzie parametr A ma rozktad Gamma(a, 3) z gestoscia:

Ja(A) = I@;Aalem, A > 0.

Wzér na rozktad brzegowy odstepéw czasowych jest analogiczny do (4.6.7):

o0

Fr(t) :/e-Ath(A)dA: (1+t/8), t>0.

Natomiast ich strukture zaleznosci, zgodnie z twierdzeniem (?7), opisuje funkcja
copula Claytona z generatorem:

o(t) =tV —1.

Jedli rozwazamy szczegllny przypadek, gdy wielko$ci roszczen maja rozktad wyktad-

niczy z parametrem % (tym razem ustalonym), to otrzymujemy wzor (?7?):
Ua() = min{EX erp{ (5 — 2l 1}, w0 (172
u) = min —exp{— (== — —)u u > 0. .
A N p EX C ) )

. : , . .
Zgodnie ze wzorem (?7?) oraz warunkiem zysku netto z wartodcia progowa A\ = #%

otrzymujemy ostateczny wzér na prawdopodobienstwo ruiny:

gre s

vlu) = BX D(a+ 1, px(ef - u))) Do £5)

(ﬁ_u/c)_l_a (O./ - F(O&)

W szczegdlnosci dla u=0 mamy:

$(0) = EX (a _Tla+, ,5?()) Tl )

Be INE) I'(a)
i Y
Jim ¢ (u) = P(F(’ (f)X)

W tym przypadku réwniez podejmiemy probe porownania wynikéw z modelem nie-
zaleznym. Dla obu modeli przyjmujemy ﬁ = %, ¢ = 1. Zaktadam réwniez, ze
wartosci oczekiwane odstepéw czasowych w modelu zaleznym i niezaleznym beda

rowne tj.: % = Of“—_ﬁl oraz nie zostanie zlamany warunek zysku netto tzn.: A < &5 = 3.
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Parametry, ktére spetniaja wszystkie powyzsze warunki tonp.: A =2, a =3, = %
Ponizej przedstawiam wzory na prawdopodobienstwo ruiny dla modelu zaleznego i
niezaleznego, obliczone dla wybranych parametrow:

Prawdopodobienstwo ruiny w modelu niezaleznym:
.2
U(u) = min{Sexp{—u}, 1}

Prawdopodobienstwo ruiny w modelu z zaleznymi odstepami czasowymi:

(%)3673 1 - (4,1 — 3u) I'(3,1)
3 (3~ (3‘ () )* r)

(u) =
Potrzebne obliczenia zostaly wykonane w Matlabie:

I'3,1) = Ofox2e*‘”dx = He !
1

['(4,1—3u) = (f 2de~%dr = e~ (173 ((1 — 3u)® + 3(1 — 3u)? + 6(1 — 3u) + 6)
1-3u

Ostateczny wzor dla modelu zaleznego to:

e v e—(1-3u)
Y(u) = o (; —u)? (3 -— (1 —3u)® +3(1 — 3u)* + 6(1 — 3u) + 6)) + 25@

Wzory zostaty naniesione na wykres.

Paorownanie modeli; niezaleznego i z zaleznymi odstepami czasowymi
T T T

=
w
T

=
]
T

]
-
T

=
om

— dla modely niezaleznego

— dls modelu T zaleznosciami |

Prawdopodobienstwo ruiny
o] o]
o in

=
[
T

=
[N
T

0.1F

1 1 1 1 L L L L
0 1 2 3 4 5 B 7 8 9 10
Kapital poczatkowy

Otrzymane prawdopodobienstwo ruiny w modelu z zaleznosciami, dla kazdego u > 0,
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jest duzo wyzsze niz w modelu niezaleznym. Ponizej oblicze prawdopodobienstwa
ruiny w obu modelach dla przyktadowych wartosci u:

Model niezalezny:

¥(0) = min{?), 1} =2=0.()

2
(b)) = min{gexp{—5}, 1} == -e®=a0,0045

Model zalezny:

¥(5) = (3(*7_5)) (3= "7 ((1 =35 +3(1-3-5)+6(1—3-5)+6)) +
= =~ 0,9304

4.7.4 QOdstepy miedzy roszczeniami o rozkladzie Weibulla z
funkcjg Copula Gumbel’a

Rozwazmy model, w ktérym zmienna losowa A (nasz czynnik ”frailty” ) ma rozktad
stabilny (1/2) z gestoscia:

Wtedy, analogicznie do przyktadu (4.2), otrzymany rozktad brzegowy odstepow cza-
sowych T}, to:

o

Fr(t) = / e MfA(N)dA = exp{—at?},  t>0

0

Oznacza to, ze odstepy czasowe maja rozktad Weibulla z parametrem ksztatu réw-
nym 1/2, natomiast ich struktura zaleznosci, na podstawie twierdzenia (?7), jest
opisana funkcja copula Gumbela tj. funkcja copula z rodziny copul Archimedesa
z generatorem ¢(t) = (—Int)%. Prawdopodobienistwo ruiny, dla tego modelu, na
podstawie wzoru (?7) to:

aie~tVu/c—ud a -/ i/ u/ca «a :
w(U) :M(_l_’_Erf (m—l UQ) +€2 / ETfC (2\/@%—2\/@))—%

Brfc(55)
(4.7.4)
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gdzie 1 = /—1. Mozna wykazaé, ze otrzymana czes¢ urojona z prawej strony réwna-

nia (4.7.4) jest réwna zero, co oznacza, ze wyrazenie jest w istocie liczba rzeczywista.
Dla u=0 otrzymujemy:

o? a a >
_ o —a* /4ch
P(0) = (1 200) Erfe <2\/£> + 7C

dla duzych u: lim,—th(u) = Er fe(355).-

W celu poréwnania prawdopodobienstwa ruiny opisywanego modelu z modelem

niezaleznym, nalezy ustali¢ parametry A, «, EX, c. Przy czym, wartosci ocze-

kiwane odstepow czasowych w obu modelach powinny by¢ réwne, tj.: % = %

oraz musi by¢ spetniony warunek zysku netto tj.: A < 5%. Wybrane wartosci to:

A=a=2, ﬁ = 3, ¢ = 1. Ponizej przedstawiam wzory, dla obu modeli, dla wybra-

nych parametrow:
Model niezalezny:
() = min{2eap{—u}, 1}
¥(0) = min{3exp{0},1} = § =0, (6)
limy—ootp(u) =0
Model zalezny:
ie—i2Vu—3u - /U :
Y(u) = % (—1 + Erf (% —1 3u> + 2V 2By fe (% + Z\/3U>) +
2
Brfe(57s)
¥(0) = (1-2) Erfe(d5) + F=e 7% ~ 0,6042
limy_oot(u) = Erfc(%) ~ 0,4122

Dla v = 0 prawdopodobienstwo ruiny w modelu niezaleznym jest wieksze, jednak
wraz ze wzrostem u, dazy ono do 0. Natomiast dolna granica prawdopodobienstwa
ruiny w modelu zaleznym to w przyblizeniu 0,4122, co oznacza, ze dla duzych u,
prawdopodobienstwo ruiny w tym modelu jest wigksze niz w niezaleznym.

Uwaga

Dla ciezko-ogonowych rozktadéw odstepéw czasowych miedzy roszczeniami zwykte
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techniki, takie jak tancuchy Markowa nie dziataja, a w literaturze nie jest dostepny
zaden jawny wzér na prawdopodobienstwo ruiny. W konsekwencji, wzory (4.7.3) i
(4.7.4) moga by¢ pierwszymi przyktadami jawnych wzoréw na prawdopodobienstwo
ruiny dla identycznych, ciezkoogonowych rozktadéw odstepéw czasowych miedzy
roszczeniami, z zaleznosciami opisanymi odpowiednio przez funkcje copula Claytona
i Gumbela.

4.8 Dalsze rozszerzenia metody mieszania

Pomyst mieszania przedstawiony w obecnej pracy moze by¢ kontynuowany na rézne
sposoby. Oto kilka z nich:

Przyktad 4.8.1 Jednym ze sposobow jest jednoczesne mieszanie odstepoéw czaso-
wych miedzy roszczeniami oraz wielkosci roszczen, niezaleznie od siebie. Prowadzi
to w obu przypadkach do funkcji copula Archimedesa. Prawdopodobienstwo ruiny
wyraza sie wowczas wzorem:

_ 7 7 Yo (W) dFo(0)dFy(N)

gdzie 1,n)(u) to warunkowe prawdopodobienstwo ruiny dla © =6 i A = A. Jawny
wzOr na g (u), zawsze doprowadzi nas do otrzymania jawnego wzoru na (u)
w modelach odnowy z zaleznymi zaréwno odstepami czasowymi jak i wielkosciami
roszczen.

Przyklad 4.8.2 Istnieje réwniez mozliwo$¢ wprowadzenia zalezno$ci Archimedesa
pomiedzy wielkosci roszczen, a odstepy czasowe, w tym samym czasie wprowadza-
jac zaleznosci pomiedzy odstepami czasowymi i zalezno$¢ pomiedzy wielkosciami
roszczen. Sposobem na to jest comotonic mixing, gdzie realizacja A jest funkcja
deterministyczng realizacji § w postaci:

AO) = Fy ' (Fo(0)).

Prawdopodobienstwo ruiny w takim modelu jest opisane wzorem:
w) = [ oo (W)dFo(6),
0

gdzie 1,5y (u) to warunkowe prawdopodobiefistwo ruiny dla © = 0 i A = .
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Przyktad 4.8.3 Odwotujac sie do podrozdziatu (4.1), w celu uzyskania wzoru na
prawdopodobienstwo ruiny dla pewnych, catkowicie monotonicznych rozktadéw brze-
gowych roszczen, konieczne byto ustalenie ich struktury zaleznosci. W rzeczywistosci
istnieje sposob, aby zmieni¢ strukture zaleznosci, pozostawiajac jednocze$nie asymp-
totyczny ogon rozktadu brzegowego roszczenia niezmieniony i nadal otrzymywac
jawne wzory.Niech proces nadwyzki bedzie opisany wzorem:

N() N'(t)
Rit)=u+c—> Xp— > Y
k=1 =1

gdzie sa dwa niezalezne procesy Poisson’a: N'(t) z intensywnoscia A’ generujacy nie-
zalezne roszczenia Y1, Ya, ... o rozktadzie wyktadniczym Exp(v), gdzie v jest ustalong
stata. Z kolei proces N(t) z intensywnoscia A generuje strumien zaleznych roszczen
X1, Xo, ..., tak jak w (4.6.1), gdzie © jest dodatnig zmienna losowa. Jesli rozktad
zmiennej O jest np. taki jak w podrozdziale (4.1) lub w podrozdziale (4.2), to zalezne
roszczenia X, Xo, ... 83 ciezkoogonowe. Rownowaznie mozemy przedstawi¢ powstaty

proces ryzyka jako:
N”(t)

Rit)=u+ct— > Z,
k=1
gdzie N”(t) jest procesem Poisson’a o intensywnosci A + X oraz brzegowe rozktady
wielkosci roszcezen Z1, Zs, ... sa wyrazone jako:

B A s N
TN C A+ n e

Oznacza to, ze rozktad wielkosci roszczen jest mieszanka dwoch rozktadéw wyktadni-
czych, ale wymieszany jest po wartos¢iach parametru 6. Brzegowy rozktad X, X, ...
okresla zachowanie ogona, jesli jest on ciezkoogonowy. Poniewaz dla ustalonego 6,
prawdopodobiefistwo ruiny 1, (u) w klasycznym modelu ryzyka z rozktadem wielko-
Sci roszezen z rownania (4.8.1) ma jawna forme jako wazona suma dwdch wykltadni-
czych wyrazen, po raz kolejny otrzymywany jest jawny wzor na prawdopodobienstwo
ruiny na mocy (4.6.3). Nalezy pamietaé, ze mieszanie strumienia zaleznych roszczen
Xi, Xa, ... z niezaleznymi (w tym przypadku wyktadniczymi) roszczeniami zredukuje
zaleznosci. W szczegolnosci, jesli tau Kendall’a dwoch dowolnych roszezen X;, X
wynosi 79, to wartos¢ tau Kendall’a dla dwéch dowolnych roszczen Z;, Z; w nowym
modelu wynosi 7 = (ﬁ)zm, poniewaz jedyny sposéb na dodatnig korelacje pomie-
dzy losowo wybranych wielkosciami roszczen jest wybra¢ dwa roszczenia pochodzace
z procesu N (t) i poniewaz prawdopodobiefistwo, ze roszczenie wygenerowane przez
N"(t) pochodzi z N(t) jest réwne ﬁ W ten sposob okresliliémy metode, w ktore;
zaleznosci pomiedzy wielkosciami roszczen powinny zostaé ostabione, zachowanie
brzegowego ogona powinno zosta¢ takie jak opisane w procesie N(t), a przez od-
powiednie wybranie parametru A, mozna wygenerowaé jawne wzory dla modeli dla

fz(z)

2> 0. (4.8.1)
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kazdej wartosci 71 pomiedzy 01 79. Nalezy pamieta¢, ze odbywa sie to kosztem utraty
jawnego typu zaleznosci Archimedesa, ktéry byt dostepny dla X' = 0. Zamiast tego,
ogon ltacznej dystrybuanty zmiennych 73, Z,, ... otrzymano w nastepujacy sposob:
kazdy z zaistniatych roszczen Z; jest typu X; z prawdopodobienstwem ﬁ oraz
typu Y; w pozostatych przypadkach. Wowczas taczna dystrybuanta jest odpowied-
nig mieszanky niezaleznych typow Y; oraz struktury zaleznosci Archimedesa typow
Xi-

W caltkowicie analogiczny sposéb mozna zmienia¢ strukture zaleznosé pomiedzy od-
stepami czasowymi, w dalszym ciggu otrzymujac jawne wzory na prawdopodobien-
stwa ruiny.

Uwaga

Model ryzyka otrzymany w powyzszym przyktadzie obejmuje dwa rodzaje roszczen:
niezalezne, lekko-ogonowe roszczenia oraz zalezne, cigzko-ogonowe (na odpowiednich
zalozeniach dla #). W zakresie praktycznej interpretacji, moze to rzeczywiscie opi-
sywac realng sytuacje portfela: zaleznos¢ pomiedzy ciezko-ogonowymi wielkosciami
roszczen moze pochodzi¢ z niepewnosci parametrow, lub z innych zrodet korelacji
jak ryzyko $rodowiskowe, zmiany klimatu lub ryzyko prawne. Rzeczywiscie, wiele
modeli wewnetrznych dla Solvency II wspotpracuje z regularnie zmieniajacymi sie
losowymi stratami agregowanymi przez kopute przezycia Claytona.

Uwaga

Analizujac przyktad (4.8.3), staje sie oczywista mozliwosé wygenerowania wiele wie-
cej przyktadéw jawnych wzoréw dla modeli ryzyka z zaleznoscia przez zastapienie
dystrybuanty rozktadu wyktadniczego bardziej ogdlng dystrybuanta dla ktérej wzor
na 1p(u) jest jawnie okreslony. Otrzymana struktura zaleznosci oraz brzegowe roz-
ktady wielkosci roszczen beda wynikiem oddzialywania pomiedzy tym wyborem, a
rozktadem zmiennej © (analogicznie do réwnania (4.6.1).



Rozdziat 5

Techniki statystyczne dla
rozkladow ciagtych

W rozdziale tym zajmiemy sie opisem rozktadow ciagltych, ktére stuza do modelo-
wania wielko$ci szkdd oraz metodami statystycznymi pozwalajacymi zidentyfikowac
owe rozktady na podstawie zgromadzonych danych.

Najpopularniejsze rozktady ciaglte uzywane w matematyce ubezpieczeniowej (nie
tylko w kontekscie wielkosci szkdd) to:

e rozktad normalny N (u,o?)
e rozktady fazowe, m.in.
- rozktad wyktadniczy Exp()\);
- rozktad Gamma I'(«, 3);
e rozklad logarytmiczno-normalny LN (u,0);
e rozklad Pareto Par(a,c);

e rozklad Weibulla

Rozktady fazowe omoéwilismy krotko w Rozdziale ??. Podstawowe wiadomosci o roz-
ktadach normalnym, wyktadniczym, Gamma, czy logarytmiczno-normalnym, wraz z
estymacja parametrow, mozna znalez¢ w Dodatku. Tutaj zajmiemy si¢ gtownie roz-
ktadami Pareto i ich modyfikacjami, szczegdlnie w kontekscie dosé skomplikowane;j
estymacji parametru «.

Na poczatek omoéwimy pewne techniki statystyczne stuzace do dopasowanie rozktadu
do danych.

o7
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5.1 Dopasowanie rozkladu do danych

Bedziemy stosowali nastepujace funkcje do oceny dopasowania modelu empirycznego
do wybranego modelu teoretycznego:
e Dystrybuanta empiryczna F,(z) = 1#{i = 1,....n : X; < 2}. Wielkos¢ ta

T n

bedzie przyblizata prawdziwy rozktad szkod;

e Empiryczna funkcja kwantylowa @n(p) = X/ jezeli p € (%, ﬂ, gdzie
T < ... < X sa uporzadkowanymi wielkosciami szkod. Wielkos¢ ta bedzie
przyblizala prawdziwa funkcje kwantylowa Q(p) = F~1(p);

e Empiryczna funkcja nadwyzki e; (u) = W Wielkos¢ ta
=1 K

bedzie przyblizata prawdziwa $rednia funkcje nadwyzki.

5.1.1 Dystrybuanta empiryczna

Z tzw. twierdzenia Kolmogorowa-Smirnowa mamy sup,¢ (o ) |E,(x) — F(x)] — 0,
n — o0o. Tak wiec przy duzej liczbie obserwacji dystrybuanta empiryczna przybliza
prawdziwy rozktad szkody F'.

Przyktad 5.1.1 Rysunki ponizej otrzymane zostaly w sposob nastepujacy. Wyge-

nerowano n = 100 liczb X, ..., X, z rozkladu o ggstosci f(x) = Aexp(—A(x — 1)),

x > 1. Jest to po prostu przesuniety o 1 rozkladem wyktadniczym (chodzi o to,

by rozklad wyktadniczy i Pareto mialy te same nosniki). Bierzemy A = 1. Dla tak

wylosowanych liczb tworzymy dystrybuante empiryczna E,. Do dystrybuanty em-

pirycznej dopasowujemy najpierw rozklad wyktadniczy, a potem Pareto. Poniewaz
1

E [X1] = 5 +1, wigc metoda momentéw A = % Na jednym rysunku (lewy)
i=1"""

przedstawiamy dystrybuante empiryczna F,, i przesuniety rozktad wyktadniczy o

gestosci Aexp(—A(z — 1)). Dopasowanie jest dobre. Sprébujemy teraz dopasowac
rozktad Pareto. Estymujemy a = w, i wyrysowujemy F;, wspolnie z rozktadem

Par(a, 1). Dopasowanie nie jest dobre. *

Leiagle-1.mws
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Dopasowanie Exp Dopasowanie Par
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5.1.2 Wykres kwantylowy (Q-Q plot)

Idea wykresu kwantylowego jest nastepujaca: wybierzmy rozktad F. Nanosimy na
jednym ukladzie wspohrzednych pary punktéw postaci (Q(p), Qn(p)), p € (0,1).
Najbardziej typowym wyborem punktow p jest %, %, ey ”T’l, 1. Wtedy @n(%) = X/.
7 pewnych przyczyn technicznych wybiera sie n}H, nil, e er}, - Pary punktow
beda mialy wiec wspoétrzedne: (kwantyl teoretyczny, kwantyl prébkowy). Jezeli te-
raz utworzona wykres bedzie w przyblizeniu linia prosta, bedzie to oznaczalo, ze
kwantyle probkowe sa bliskie kwantylom teoretycznym, a wiec nasze dane pasuja do

wybranego przez nas modelu teoretycznego.

Przyktad 5.1.2 Wykladniczy wykres kwantylowy: Dla rozktadu wyktadni-
czego Exp(A\) mamy: F(z) =1 —exp(—Az), Q(p) = —5 log(1 — p). Wykres kwanty-
lowy bedzie miat wige postac: {(—log(1l — -5), X;),i = 1...,n}. W przypadku, gdy
otrzymalismy wykres w przyblizeniu liniowy, to ma sens dopasowanie "najlepsze;j”
funkcji liniowej y = ax metoda najmniejszych kwadratéw. Wspotezynnik nachylenia

a ma wtedy postaé

i X gi

a=
n 2
i=14;

Y



60ROZDZIAE 5. TECHNIKI STATYSTYCZNE DLA ROZKEADOW CIAGEYCH

%

n+1

gdzie ¢; = —log(1 — —%), i jest oszacowaniem parametru 1/\.

Weibullowski wykres kwantylowy: Dla rozktadu Weibull(\,r) mamy: F(z) =

1/r
1 —exp(—Az"), Q(p) = (—% log(1 — p)) " Jub alternatywnie log Q(p) = Llog(5) +
%10g(— log(1 — p)). Wykres kwantylowy bedzie mial wiec postaé: {(log(—log(1 —
7)), log(X7)),i =1...,n}. W przypadku, gdy otrzymalismy wykres w przyblizeniu
liniowy, to nachylenie prostej stanowi aproksymacje parametru 1/r, natomiast mi-

nimalna warto$¢ na osi x przybliza log(1/\)/r.

Log-normalny wykres kwantylowy: Niech ® oznacza dystrybuante standardo-
wego rozktadu normalnego. Lognormalny wykres kwantylowy jest postaci {®~( ), log(X;))
1...,n}. Nachylenie krzywej daje aproksymacje dla o, a minimalna warto$¢ na osi

poziomej przybliza wartos¢ p.

Wykres kwantylowy Pareto: Dla rozktadu Par(a) mamy: Q(p) = (1—p)~"/*—1
lub alternatywnie log Q(p) = —é log(1 — p). Rysunek kwantylowy bedzie mial wiegc
postaé: {(—log(1 —+17),log(X)),i = 1...,n}. W przypadku, gdy otrzymalismy wy-
kres w przyblizeniu liniowy, to nachylenie prostej stanowi aproksymacje parametru

1/a.

Nastepnie, do wygenerowanych liczb z rozktadu wyktadniczego, stosujemy Weibul-
lowski wykres kwantylowy, log-normalny wykres kwantylowy, wykres kwantylowy
Pareto. Zaden wykres nie jest 'linia prosta’.

Na podstawie Q-Q plots odrzucimy na pewno rozktad Pareto, raczej tez odrzucimy

rozktad log-normalny, nie bedziemy jednak w stanie odrzuci¢ "hipotezy’ o tym, ze
rozklad jest Weibulla.?

g

Przyklad 5.1.3 Do wygenerowanych liczb z rozktadu Pareto, stosujemy Weibul-
lowski wykres kwantylowy, log-normalny wykres kwantylowy, wykres kwantylowy
Pareto. Tylko ostatni rysunek jest ’linia prosta’.?
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Rysunek 5.1.1: Wyktadniczy wykres kwantylowy dla 100 danych z rozktadéw Ezp(2) i Par(1.1,1). Lewy
wykres pokazuje dobre dopasowanie do rozktadu wykltadniczego, podczas gdy prawy wykres pokazuje, ze dane

zostaly z rozktadu ’ciezszego’ niz wyktadniczy.

Weibull Q-Q Plot

Lognormal Q-Q Plot

Pareto Q-Q Plot
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Weibull Q-Q Plot Lognormal Q-Q Plot Pareto Q-Q Plot

5.1.3 Srednia funkcja nadwyzki

Innym sposobem diagnostyki jest tzw. srednia funkcja nadwyzki (mean excess func-
tion))

er(u) =E[X —ulX > u].

Funkcja ta jednoznacznie wyznacza dystrybuante. Bezposrednio z definicji otrzymu-
Jemy

E[(X —u)I(X > u)]

ep(u) =

P(X > u)
= Fs)ds _ BIX —u),]
F(u) P(X >u)

przy zatozeniu, ze E [X] < co. W praktyce estymujemy ta funkcje prébkowa funkcja
nadwyzki ep (u). Funkcje ep (u) rysuje si¢ w punktach v = X7, przyjmuje ona
wtedy postac ep (X7 ;) = +30, X; 1 — X4, k = 1,..,n — 1. Dla rozkladu
wykladniczego Exzp(A\) mamy ep(u) = +. W przypadku, gdy dane pochodza z roz-
ktadu ciezszego niz wyktadniczy, to funkcja nadwyzki jest rosnaca, w przeciwnym

razie jest malejaca.



63

5.1. DOPASOWANIE ROZKt.ADU DO DANYCH
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Rysunek 5.1.2: Funkcja nadwyzki dla 300 danych z rozkladéw Ezp(3) i Par(3,1).



64ROZDZIAE 5. TECHNIKI STATYSTYCZNE DLA ROZKEADOW CIAGEYCH

5.2 Rozklad Pareto

Nazwa tej klasy rozkladow wzigta sie od nazwiska Vilfredo Pareto (1897), szwaj-
carskiego ekonomisty, ktéry bogactwo w populacji opisywal za pomoca M = Ax~?,
gdzie M jest iloscia os6b, ktére maja dochéd wigkszy niz z. Jezeli F(z) = P(X >
x) = *z~ x > ¢, to méwimy, ze zmienna losowa X ma rozktad Pareto Par(«,c).
Jezeli ¢ = 1 to bedziemy pisali Par(a). Gestosé zadana jest wzorem f(z) = c*z =@+,

x > c. Rozklad taki ma srednia

cx

E[X] = . (5.2.1)

Aby powyzsza tozsamosé miata sens, musimy zatozyé o > 1.

Rozktad Pareto jest tzw. rozkladem cigezkoogonowym. W szczegdlnosci, dla
a > k nie istnieje k-ty moment.

Dla proby Xy, ..., X, zroktadu Par(«, ¢) estymujemy parametry za pomoca metody
najwiekszej wiarogodnosci. Jezeli L(«, ¢, xy, ..., x,) = [T f(z;), to

log L(ev, ¢; X1, ..., Xp) = nlog (o) + naloge — (e + 1) > log X;.
i=1

Szukamy maksimum (wzgledem « i ¢) funkcji L. Rézniczkujac wzgledem « i ¢ oraz
przyréwnujac do zera, dostajemy uktad rownan

n

¢ S lea(X)e) (522)
0 = O‘Zlfj(uxi/c)—l, (5.2.3)

=1

ktory nalezy rozwiazaé¢ numerycznie.

Jezeli chcemy uchroni¢ sie od procedur numerycznych mozemy postapi¢ w nastepujacy
sposob. Parametr o estymujemy za pomoca wzoru (5.2.2), a nastepnie wstawiamy
estymator ¢ jako

¢ =min(Xy,..., X,). (5.2.4)

2Plik ciagle-2a.mws
3Plik ciagle-2b.mws
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Postepowanie takie jest uzasadnione, gdyz musimy mie¢ ¢ < min(Xy,...,X,) i w
celu maksymalizacji funkcji wiarogodnosei ktadziemy (5.2.4). Nalezy dodaé, ze tak
otrzymany estymator dla c jest obciazony: E[¢] = " # c. Rzeczywiscie, liczac
rozktad minimum dostajemy

P(min(Xy,...,X,) >z) = P(X > 2)" = "2,

a wiec rozktad Pareto Par(na,c) (patrz (5.2.1)).

Jezeli chcemy uchroni¢ sie od procedur numerycznych lub dysponujemy tylko ob-
serwacjami przekraczajacymi poziom u mozemy postapi¢ jeszcze w inny sposob:
Jezeli X ~ Par(a, o), to rozktad warunkowy X|X > u jest tez Pareto, nie zalezy
od o i jego dystrybuanta ma posta¢ 1 — u®x~%, czyli Par(a,u). Oznaczajac przez
Y;,i =1,...,n, realizacje zmiennej losowej Y o powyzszym rozktadzie warunkowym,
funkcja wiarogodnosci ma postaé

InL(e; V1,...,Y,) = nlog (a) + nalogu — (a+1) > logV..
i=1

Rézniczkujac wzgledem « i przyréownujac do zera dostajemy
n

O S g (Vi) (5:2:5)

Jezeli nasze dane dotycza nie tych obserwacji, ktore sa wieksze od u, ale k najwiekszych
obserwacji, to

k
Q= , (5.2.6)
5:1 10g<X:;+1—i/X;:—k)

gdzie X7 < X5 < --- X7, W dalszej czgsci bedziemy nazywali estymator zadany
wzorem (5.2.5) estymatorem Hilla typu I, a w drugim przypadku estymatorem Hilla
typu II.

Parametr o mozna wyestymowacé z zaleznosci 6 = u/a. Jezeli estymacje oparte sa
na k najwickszych obserwacjach, to o estymujemy z warunku

5.2.1 *Rozklady typu Pareto

Moéwimy, ze L jest funkcja wolno zmieniajaca sie, jezeli lim, . i((tf)) = 1dla

kazdego t > 0. Typowe przyklady to L(z) = 1, L(z) = logz, L(z) = loglog z.
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Rozktady, dla ktérych F(z) = z7°L(z), L jest funkcja wolno zmieniajaca sie¢ w
nieskonczonoéci, nazywamy rozkladami typu Pareto. W klasie tej znajduja sie
m.in. oméwione wezesniej rozktady Pareto oraz rozktady Burra, log-Gamma, log-
logistyczny.

_ A

Przyktad 5.2.1 Rozklad Burra ma ogon F(z) = <ﬁfgﬂ> , a,v, A, x > 0. Roz-

ktad o gestosci

§*(logz)*~a~#*
() ’

gdzie @ > 0 nazywamy rozkladem log-Gamma. Rozktad o ogonie F(x) = (1 +
Bxr)~* a > 1, §,x >, nazywamy rozkladem log-logistycznym.

fz) =

x> 1,

0

Wyktadnik a charakteryzuje tempo zbieznosci ogona do 0 i bedziemy go nazywali
indeksem Pareto.

Zauwazmy delikatna réznie pomiedzy rozktadami Pareto a typu Pareto. Z uwagi na
obecnos$é¢ funkcji L mamy jedynie informacje o asymptotycznym zachowaniu ogona
F(x) = x=“L(z). Funkcja L jest zazwyczaj nieznana i niemzliwa do wyestymowa-
nia. Powoduje to problemy zwiazane z estymacja parametru «, w przeciwienstwie
do zwyktego rozktadu Pareto.

Parametr @ mozna estymowa¢ w sposob nastepujacy: Niech v = i Wtedy za esty-
mator v ktadziemy

Zlog mei1) — log(X) ), E=1,...,n.

Otrzymujemy wtedy zbior tzw. estymatoréw Hilla.

Problem, ktory si¢ pojawia, to wybor wartosci k = ko, dla ktérej bedziemy rozwa-
zali estymator Hilla Hy,,. Procedura wyboru bedzie oparta na wlasnosciach wykresu
kwantylowego, ktory zostat opisany w Rozdziale 5.1.2. Wykres kwantylowy Pareto
jest postaci {(— log( n+1) log(X})),i =1,...,n}. Jezeli dopasowanie do rozktadu
Pareto jest dobre, to wykres kwantylowy jest w przyblizeniu liniowy i jego nachylenie
mozna traktowac¢ jako estymator parametru . Estymator Hilla H, kon jest oszacowa-
niem nachylenia wykresu na prawo od punktu (— log(k“) log(X*_,)). Optymalna
warto$¢ Kop (a tym samym vop := Hj,,, »n) Wyznaczymy na podstawie linii regre—
sji ly, ..., l,—1 przechodzacych przez punkty, odpowiednio, (— log(kH) log( X} 1)),
k= 1,...,n — 1 i majacych nachylenie, odpowiednio, Hj , tak, aby sredm bl@d
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kwadratowy dopasowania prostej l,,, do punktéw {(—log(;47),log(X}:_;,1)),7 =
1,..., kop} na prawo od (— log(Fezthy Tog (X

)) byt minimalny. Réwnanie I, ma

n+1 nfkopt
postac
k41
y=1log X, .+ Hyn, <x + log <n+1>> . (5.2.7)

Liczac sredni blad kwadratowy MSE(k) dostajemy

1 . . j
MSE(K) :k}:(bg}%ﬁﬂ)—ngmk—fﬁm(—bg(n+1)+bg<n

Wartos¢ optymalna k., wyznaczamy z warunku

MSE(kop) = mkin MSE(k).

Poniewaz estymator Hilla jest asymptotycznie normalny, otrzymujemy przedziat uf-
nosci na poziomie p dla indeksu Pareto:

P)/opt ’Yopt
T | (5.2.8)
\ kopt \ kopt
Wykres kwantylowy stuzy takze do estymacji kwantyli. Ktadac w (5.2.7) z k = kopt
oraz * = — log p mozemy traktowa¢ y jako estymator log Q(1 — p) lub exp(y) jako
estymator (1 — p), oznaczmy go przez G, .

(/70_;9157 ’7;;21%) =

k+1
log q,,, = log X* H .1 — .
08 4n.p og X, + k, Og((n+1)p>

Daje to

b1\ e
Gy = X5 | ——— , 9.2.9
q P n—k ((n+ 1)p> ( )

gdzie @, jest kwantylem rzedu p opartym na prébce n elementowej. Uzywajac
przedziatu ufnosci dla ~,,+ dostajemy analogiczne oszacowanie dla @, ,:

- +
kol \ T k1 \7
* —_— * —_— . 2.1
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Estymator Hilla
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Podobnie jak wyzej dokonujemy estymacji P(X > x):

—1/Hp
RALY (o . (5.2.11)
n+1 X7 g

Przyklad 5.2.2 *Wygenerowano 100 liczb z rozkltadu Par(1.5,1). Mamy wtedy
v = 1/a = 0.66. Przedstawimy najpierw wykres dla estymatora Hilla:

Wyliczamy wartosci MSE(k) dla k =1,...,n. Z rysunku odczytujemy, ze k,, jest
pomiedzy 90 a 100. Wyliczajac: kop: = 95.
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MSE dlaindeksu Hilla
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Przedzial ufnosci dla kwantyli

701

601

50+

401

301

201

Wartos¢ Hy,,,n = Yopt = 0.5867 daje optymalny wybor dla estymatora parametru
7v. Ze wzoru (5.2.8) dostajemy dla p = 0.05: [0.48,0.73], a wiec prawdziwa wartosé
0.66 nalezzy do przedziatu ufnosci.

Dalej, ze wzoréw (5.2.9), (5.2.10) dostajemy kwantyle wraz z przedzialem ufnosci:

Nastepnie estymujemy wartosci P(X > x) za pomoca wzoru (5.2.11) (kétka) i
P(X > z) = 2~ “r(linia ciagta). Wartosci te pokrywaja sie.

4ciagle-4.mws
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Dopasowanie ogona
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Pojawiaja sie¢ dwa naturalne pytania:

1. Czy warto stosowac¢ skomplikowana procedure otrzymywania estymatora Hilla
zamiast np. uzywaé¢ metode momentow?

2. Jezeli pozytywnie odpowiemy na poprzednie pytanie, to po co estymowaé war-

tosci P(X > wu) za pomoca wzoru (5.2.11) zamiast od razu z P(X > z) =
x T Yort?

W przypadku pierwszego pytania odpowiedz otrzymamy w rozdziale poswigconym
ciezkim ogonom. Estymatory MM sa obarczone duzym btedem. Po drugie estyma-
tory MM stosuja sie w przypadku rozktadu Pareto P(X > z) = 272, a nie rozktadu
typu Pareto P(X > x) = z7“L(x) z nieznang funkcja L. Powyzsza uwaga daje tez
odpowiedz na drugie pytanie. Nie wiemy, czy nasze dane pochodza z rozktadu Pa-
reto czy z rozkladu typu Pareto i przyjecia zalozenia, ze L(x) = 1 moze prowadzié
do znacznych btedéw.

Przyktad 5.2.3 *Wygenerowano 100 liczb z rozkladu o dystrybuancie 1—z =1/ In(exp(1)x*
z), * > 1 oraz z o dystrybuancie 1 — z7'%/In(exp(1) * z), > 1. W kazdym przy-
padku policzylismy estymator Hilla, odpowiednio lewy i rawy rysunek.

Estymator zachowuje si¢ zle dla a = 1.5. Wyttumaczenie moze by¢ nastepujace.
Funkcja In(exp(1) * ) powoduje szybsze malenie ogona. W efekcie estymator ma
tendencje do pokazywania wigkszej wartosci niz prawdziwe «, czyli mniejsze warto-
Sci niz prawdziwe y. W przypadku o = 100 ogon maleje na tyle szybko, ze dodatkowy
efekt jest niezauwazalny.

Sciagle-5.mws
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Estymator Hilla Estymator Hilla
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5.3 Rozklady z ciezkimi ogonami

W praktyce stosuje sie czesto metode momentow, tzn. estymuje sie parametry mo-
delu na bazie momentéw prébkowych, np.

1 n
0= — Xz
= ;
Rozwazmy probe X, ..., X, z rozkladu Par(a, 1) i zalézmy na moment, ze wiemy

iz X = max{Xy,..., X, } < d. Obliczamy

E[a|X:<d = E[X,<d,... X,<d
12

=1
= BIXi|X:<d,..., X, <d
= BXi|X: <d]

a 1—(1+d)~b
a—1 1—(14d)—~
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. . . , . . 1 . . . .
Poniewaz prawdziwa srednia wynosi —, wigc btad wzgledny jaki popetniamy esty-
mujac $rednia za pomoca i Wynosi:

y. PG <d-3h  —a(l+d) -1+
o L B 1—(1+d)=

a—1

Niech teraz p € (0,1) i wybierzmy d takie, ze P(X} < d) = p, tzn. chcemy aby
z (duzym) prawdopodobiefistwem p nie popetniaé¢ bledu zaktadajac, ze X < d.
Wtedy

PX; <d)=(1—-(1+d)™)" =p,
a stad

(1—p)t/e—(1—p'n
pl/n ’

b:=—«

Biorac standardowe wartosci p = 0.99 i p = 0.95 oraz prébe o liczebnosci n = 100
dostajemy dla réznych parametrow a:

W szcezegdlnosei, jezeli a = 1.5 1 p = 0.95 to btad wynosi —12%. Jesli wiec praw-
dziwy parametr wynosi 1.5, to nasza estymacja dla $redniej jest az o 12% za niska
'w 95 na 100 przypadkach’.

Powyzsze rozwazania pokazuja, ze uzywanie Sredniej probkowej jako estymatora
sredniej jest bardzo niebezpieczne w przypadku rozktadu Pareto i ogdlniej, w przy-
padku rozktadéw ciezkoogonowych.

Dla nieujemnych zmiennych losowych i dla rozkltadéw skoncentrowanych na pot-
prostej dodatniej istnieje wiele sposobow wyrazenia intuicji: zmienna X przyjmuje
"duze” wartosci z "istotnym” prawdopodobienstwem.

Definicja 5.3.1 Niech F(0) = 0. Zmienna losowa X ~ F ma ciezki ogon, jesli jej
funkcja tworzgca momenty

M(s)=E [eSX} = /Oo e**dF(z) = o0

—00

dla wszystkich s > 0.

Uwaga 5.3.2 Dla rozkladu F' z cigzkim ogonem lim, .o, e5*F(x) = co dla wszyst-
kich s > 0.
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Blad wzgledny n=100
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t
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Rysunek 9.3.1: Blad wzgledny dla n = 100 oraz p = 0.95 (linia kropkowana) ip= 0.99 (linia ciagta)
6
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5.3.1 Klasy podwyktladnicze

Rozktady podwyktadnicze sa specjalna klasa rozktadéw o ciezkich ogonach. Tego
typu rozktady czesto stosuje sie w modelach ubezpieczeniowych do modelowania
wielkosci szkod po pozarach, huraganach lub powodziach.

Definicja 5.3.3 Rozklad F' na (0,00) nazywamy podwykladniczym jesli
1 — F*Q
lim (z)

—_— =2
z—o0 1 — F(x)

Klase podwyktadniczych rozktadéw oznaczamy przez S.

Niech (X;);>1 beda niezaleznymi dodatnimi zmiennymi losowymi z tym samym roz-
ktadem F' takim, ze F'(x) < 1 dla wszystkich > 0. Oznaczmy przez

—=5nk

Frx)=1-F"(x)=P(X1+...+ X, > 2)
ogon n-tego splotu F.

Twierdzenie 5.3.4 Warunek F € § jest rownowazny kaidemu z nastepujgcych
warunkow:

a) lim, .o % =n dla pewnego n > 2,

: P(X1+..4+Xn>x)
b) lim, .o P(maxl(Xl ..... X,)>7)

=1 dla pewnego n > 2.
Jezeli F' jest rozktadem podwyktadniczym, to funkcja tworzaca momenty nie istnieje.

Definicja 5.3.5 Niech F' bedzie rozktadem na (0, 00) takim, ze F(x) < 1 dla wszyst-
kich x > 0. Mowimy, ze F' € S*, jesli F' ma skonczong srednig p > 0 1

o —y)
1 ——F(y)dy = 2u.
R (y)dy = 2p
Twierdzenie 5.3.6 Jesli F € S*, wtedy F € S i F € S, gdzie
~ 1 r=
F(z) = f/ F(u)du
wJo

jest rozkladem resztowym.

Powyzsze twierdzenia ma ogromne znaczenia dla wyliczania prawdopodobienstwa
ruiny dla rozktadéw ciezkoogonowych (Rozdzial 5.3).

Przyktad 5.3.7 Typowe przyklady rozktadéw z klasy S* to Wei(r,c), 0 < r < 1,
¢ > 0; Par(a,c), « > 1; LN(u,0?).



Rozdzial 6

Dodatek

6.1 Funkcje specjalne

e Funkcja Gamma

[(x) = /oo t"te7tdt, x> 0.
0
Zachodzi: I'(x + 1) = 2I'(x).

e Niekompletna funkcja Gamma
[(x,a) :/ t"le7tdt, x> 0.
e Funkcja Beta

1
B(a,b) :z/ t N1 — )" Lt
0

Zachodzi: B(a,b) = Fr(?jﬂf;)

6.2 Parametry i funkcje rozktadow

Niech X bedzie zmienna losowa. Ze zmiennymi losowymi bedziemy utozsamiali
nastepujace funkcje:

e Dystrybuanta

77
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Funkcja przezycia (ogon rozkladu)

F(z):=1— F(x);

Gestosé

Funkcja tworzaca momenty

M(t) = Mx(t) = Elexp(tX)]:

Funkcja tworzaca kumulanty

C(t) = Cxc(t) = log My (2).

Funkcja tworzaca prawdopodobienstwa

P(t) = Px(t) = B [tX] = Mx(logt).

Oznaczmy teraz p(X) = E [X’“}, mi(X) = E [(X - E[X])’“} W przypadku, gdy
wiadomo o jaka zmienna losowa chodzi piszemy my, i ux. Parametr u; nazywany jest

k-tym momentem zwyklym, my - k-tym momentem centralnym. W szczegdl-

nosci pig =: p jest srednig, a my jest wariancja. Parametr 3 := 535 jest nazywamy
my

sko$noscia, a v4 := 4 — 3 kurtoza. lloraz v, := % nazywamy indeksem dys-
2

persji, a 7, = @ wspolczynnikiem zmiennoSci.
Drugi i trzeci moment centralny mozna wyrazi¢ za pomoca momentéw zwyktych:
Var[X] = E[(X —E[X])?| =E |X?| - (E[X)),
E[(X -EB[X)*| = E[X]-3BE[X]E[X?] +2(B[X)"

Zachodza nastepujace wzory pozwalajace wyliczaé momenty za pomoca funkcji
tworzacych:

M®(0) = E [X*],

CY(0)=E[X], CP(0)=Var[x], CP(0)=E|[(X-E[X])].

Tak wiec pochodne funkcji tworzacej momenty pozwalaja wylicza¢ momenty cen-
tralne, podczas gdy funkcji tworzacej C'x zwane sa kumulantami.



6.3. ESTYMACJA MOMENTOW 79
6.3 Estymacja momentéow

Najpopularniejsza metoda estymacji parametréow pg i my jest metoda momentow.
Zasada jest nastepujaca: estymujemy ‘'momenty teoretyczne’ za pomoca odpowied-
nich momentéw probkowych dla danych X, ..., X I tak

2

R ; ; 0 =2
Ml:EZXiZZX; E [fin] = 1, Vaf[ﬂl]Z?
=1
i 1 ¢ >
iy = —— 3 (X; —u)?  pu znane,
k=1 i=1
N 1 u o\ 2 2 : A mo 2m§
iy = == 3 (Xi=X)? =% nieznane; B [mo] = my;  Var[i] = .

6.4 Rozktady dyskretne

6.4.1 Rozklad dwumianowy Bin(n,p)
Jezeli
P(X _ m) _ <n>pmqn—m7
m

gdziep € (0,1),g=1-—p,m=0,1,...,n, to X ma rozklad dwumianowy Bin(n, p).
Mamy

Pt) E[X] Var[X] m 7% 7 Ya
(g+p)" np  mpq g YL nlE 34 1ok
Rozwazmy teraz probe Xi,..., X ~ Bin(n;,p), gdzie ¥F , n; = n jest znane. Pa-

rametr p rozktadu estymujemy w sposob nastepujacy:

k
2zt Xi
n Y

t
=2 )
|

b,

1
pq—.
n

=
]

=
I
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6.4.2 Rozklad Poissona Poi())

Jezeli

gdzie A >0, m =1,2,3,..., to X ma rozklad Poissona Poi(}\).

P(t) EX] Var[X] % % % n
1 1 1

Dla préby Xi,..., X, ~ Poi()),

- f—l; X
E[A = A
Var P\} = 2

6.4.3 Rozklad ujemny dwumianowy Bin™(r,p)

Jezeli
r+m-—1\
P(X =m) = ( )p q",
m
re Ry, m=0,1,..., tzn. X ma rozklad ujemny dwumianowy Bin~(r,p).
P(t) E[X] Var[X] m 12 7 Ya
r»\ g rq 1 1 lig p*+6g
(l—qt) p p? P T4 TG 3+ rq

Jezeli r € N, to dostajemy rozktad Pascala, jezeli r = 1 - rozklad geometryczny
Geo(p). Jezeli X ma rozktad Geo(p) to zmienna losowa M o rozkltadzie warunkowym
takim jak X pod warunkiem X > 0 ma przesuniety rozktad geometryczny z P(M =
n) = pq", n € {1,2,...}. Oba rozklady geometryczne réznia sie srednia, wariancje
sa takie same. Inaczej: M ma rozktad postaci Geo(p) * 0.

Na podstawie préby X7, ..., X ~ Poi()), estymacja wyglada nastepujaco:
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1. r znane:
. r—1
b= s Xk — U
EP\} = p

2. T 1 p nieznane:

L 5PX
- _ 57 _
=< 1

p

- 3

6.5 Rozklady ciagte

6.5.1 Rozklad normalny
Gestoéé zmiennej losowej X o rozkladzie normalnym ze érednia p i wariancja o jest
postaci

b(z) = ﬂl_m exp(—(x — 1) /20%).

Piszemy wtedy X ~ N(u,0?). Jezeli u = 01 0> = 1 to méwimy o standardowym
rozktadzie normalnym.

Parametry:
M) E[X] Var[X] n Yo M Y
e#””, U o? %,/L#O eu#0 0 0
Majac dane X7, ..., X, parametry p i o estymujemy metoda momentow.

6.5.2 Rozklad odwrotny normalny IG(u,o?)

Niech X ma gestos¢ zadana wzorem

el 5 52+)

gdzie p € R, 0 >0, x € R, tzn. X ma rozktad odwrotny normalny IG(u,c?).

Parametry:
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M(t) E[X] Var[X] m 7% 13 n

=
=
ars
[ON]
Qs

151
o

Dla proby X, ..., X ~ IG(p,0?)

k

6.5.3 Rozklad logarytmiczno-normalny LN (u, o)

Niech X ma gestos¢ zadana wzorem
1 —(logx — p)?
r)=———exp|—————|, >0, pneR, c>0.
f(x) o) P ( 52 I

Wtedy X ma rozklad logarytmiczno-normalny LN (i, o).

M) E[X] Var [X] T Y Y3 Y4

, ehtzo’ (302 — 1) e2uto’ (e"2 + 2) e —1 €7 +2e7 +3¢7 —3

Jedli Y jest N(p,0),to X =e¥ ~ LN (p,0).
Dla proby X, ..., X ~ LN(u,0?)

Mw

ﬂ = OgXi7

1
k-
a-:J

6.5.4 Rozklad wykladniczy Ezxp(\)

(log X; —

e ||
IIMw

Niech X ma gesto$¢ zadana wzorem

fx(z) = Xe ™",
gdzie x > 0, A > 0, tzn. X ma rozklad wykladniczy Fxp(\).

Parametry:
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M(t) E[X] VarlX] 71 7% 73 ™

Dla proby Xy, ..., Xx ~ Exp()),

6.5.5 Rozklad Gamma Gamma(a, [3)

Niech X ma gesto$¢ zadana wzorem

Fxly) = 2 gemtese

a>0,0>0,z>0, tzn. X ma rozktad Gamma Gamma(a, [3).

M(t) E[X] Var[X] m % 13 %

ﬁa
(B—t)”

a

52

1
Ja

e
I

Jezeli X ~T'(1,0), to X ~ Exp([).

Dla proby Xy, ..., X ~ I'(e, 5),
()
g L (X = X))

- X
g = A sk oy X2
k—1 Zi:l( v )

Q)
I

6.5.6 Rozklad Weibulla Wei(r, c)

Niech X ma gestosé zadana wzorem

f(z) = rea™ ! exp(—ca"), x>0,

83

gdzie 0 < r jest parametrem ksztaltu, ¢ > 0 jest parametrem skali. Wtedy X ma

rozktad Weibulla Wei(r, c).
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M(t) E[X] Var [X] Y Y3 M

2

ORI OR (R RN
Jesli X jest Wei(l,c), to X ~ Exp(c).

Dla préby Xi,..., X, ~ Wei(r,c) parametry c i r estymujemy rozwiazuja uktad
rownan:

Y X =1
P (eX] —1)log X; =1

6.5.7 Rozklad Pareto Par(q,c)

Niech X ma gesto$¢ zadana wzorem

Q

f@)=(S)E), oz

cC I

gdzie a > 0, a ¢ > 0 jest parametrem skali. Wtedy X ma rozktad Pareto Par(a,c) .

M(2) E[X] Var [X] % V3 V4

nie istnieje  ¢=%5, a >1 A—F— a>2 gatl je=2 o > 3
a— a—3 o
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Spis rysunkow

4.3.1

4.4.1 Trajektorie procesu ryzyka

5.1.1 Wyktadniczy wykres kwantylowy dla 100 danych z rozkltadéw Exp(2) i Par(1.1,1). Lewy wykres
pokazuje dobre dopasowanie do rozktadu wyktadniczego, podczas gdy prawy wykres pokazuje,

ze dane zostaly z rozkladu ’ciezszego’ niz wyktadniczy.
9.1.2 Funkcja nadwyzki dla 300 danych z rozkladéw Ezp(3) i Par(3,1).

5.3.1 Blad wzgledny dla 7 = 100 oraz p = 0.95 (linia kropkowana) i P = 0.99 (linia ciggla)
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