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Rozdział 1

Wprowadzenie

Zawód aktuariusza jest jednym z najstarszych w świecie finansów. Historia tego za-
wodu rozpoczyna si ↪e w połowie dziewietnastego wieku wraz z ubezpieczeniami na
życie i aż do lat sześćdziesi ↪atych dwudziestego wieku matematyczne metody aktu-
ariusza zwi ↪azane były z wycen ↪a kontraktów ubezpieczeniowych, tworzeniem tablic
przeżycia na podstawie danych statystycznych oraz z wyliczniem rezerw pieni ↪eżnych
firmy. W latach sześćdziesi ↪atych rozpocz ↪eto stosowanie matematycznych metod do
stworzenia teorii ryzyka na użytek ubezpieczeń maj ↪atkowych i osobowych. Punk-
tem wyjścia był standardowy złożony proces Poissona, którego pomysł pochodzi
od Filipa Lundberga z 1903 roku, a który matematycznie został opracowany przez
Haralda Cramera w latach trzydziestych. Do lat dziewi ↪ećdziesi ↪atych był on rozwi-
jany na różne sposoby. Proces Poissona został zast ↪apiony przez proces odnowy oraz
przez proces Coxa, nast ↪epnie użyto procesów Markowa kawałkami deterministycz-
nych, wreszcie wprowadzono losowe otoczenie pozwalaj ↪ace na modelowanie losowych
zmian w intensywności zgłoszeń szkód i wielkości szkód. Pojawia si ↪e wiele ksi ↪ażek
z teorii ryzyka, na prykład Bowers et al., Buhlman, Daykin, Pentakainen i Peso-
nen, Embrechts, Kluppelberg i Mikosch, Gerber, Panjer i Willmot, Rolski et al.,
Assmussen. Jednym z najbardziej matematycznie interesuj ↪acych zagadnień w teorii
ryzyka jest zagadnienie ruiny, gdzie czasy pierwszego przekroczenia wysokiego po-
ziomu rezerwy kapitałowej s ↪a w centrum uwagi. Stare i nowe rezultaty na tym polu
mog ↪a być wytłumaczone przez teori ↪e martyngałów i użyte do pokazania nierówności
Lundberga dla bardzo ogólnych modeli dowodz ↪ac, iż dla małych szkód prawdopo-
dobieństwo ruiny d ↪aży do zera wykładniczo szybko wraz z rezerw ↪a pocz ↪atkow ↪a.
Specjalna teoria pojawia si ↪e dla szkód potencjalnie dużych. Warunkowe twierdze-
nia graniczne pozwalaj ↪a zrozumieć trajektorie prowadz ↪ace do ruiny. Interesuj ↪acy
rozkwit metod matematycznych w latach dziewi ↪ećdziesi ↪atych dokonał si ↪e głównie
z dwóch przyczyn: wzrostu szkód zwi ↪azanych z katastrofami oraz z gwałtownego
rozwoju rynków finansowych.
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6 ROZDZIAŁ 1. WPROWADZENIE

Wielkie katastrofy i szkody lat siedemdziesi ↪atych i osiemdziesi ↪atych spowodowały
przekroczenia rezerw na rynku ubezpieczeń pierwotnych i wtórnych. Szybko rosn ↪acy
rynek finansowy w tym czasie poszukiwał nowych możliwości inwestycyjnych rów-
nież w zakresie przyjmowania zakładów w zakresie naturalnych katastrof takich jak
trz ↪esienia ziemi i huragany. Cz ↪estość wyst ↪epowania i rozmiary wielkich szkód stwo-
rzyły potrzeb ↪e wprowadzenia wyszukanych modeli statystycznych do badania pro-
cesu szkód. Teoria wartości ekstremalnych dostarcza niezb ↪ednych matematycznych
narz ↪edzi do wprowadzenia nowych metod. Pojawiaj ↪a si ↪e ksi ↪ażki w zakresie teorii
wartości ekstremalnych w kontekście problematyki ubezpieczeniowej, na przykład
Embrechts et al., Reiss and Thomas.

W latach osiemdziesi ↪atych banki inwestycyjne dostrzegaj ↪a, iż zabezpieczanie si ↪e
przed ryzykiem finansowym nie jest wystarczaj ↪ace ze wzgl ↪edu na dodatkowe ry-
zyka rynkowe. Tak zwany traktat z Bazylei z roku 1988 z poprawkami z lat 1994-
1996, wprowadza tradycyjne metody ubezpieczeniowe budowania rezerw do sfery
ryzyka bankowego. Rezerwy musz ↪a być tworzone na pokrycie tzw. earning at risk,
to znaczy różnicy mi ↪edzy wartości ↪a średni ↪a a kwantylem jednoprocentowym roz-
kładu zysku/straty (profit/loss). Wyznaczenie tak małego kwantyla wymaga bar-
dzo specjalnych metod statystycznych. Metody aktuarialne stosowane s ↪a również
do modelowania ryzyka kredytowego. Portfele kredytowe s ↪a porównywalne z portfe-
lami ryzyk ubezpieczeniowych. Przyszły rozwój metod ubezpieczeniowych zwi ↪azany
jest z powstawaniem złożonych rynków ubezpieczeniowych, firmy ubezpieczeniowe
oczekuj ↪a elastycznych rozwi ↪azań zapewniaj ↪acych pomoc w całościowym podejściu
do zarz ↪adzania ryzykiem.

Całkiem naturalnie na tym tle wprowadzane s ↪a metody pochodz ↪ace z teorii stocha-
stycznej optymalizacji. Wiele zmiennych kontrolnych takich jak wielkość reasekura-
cji, dywidendy, inwestycje s ↪a badane ł ↪acznie w sposób dynamiczny prowadz ↪ac do
równań Hamiltona-Jakobiego-Bellmana, rozwi ↪azywanych numerycznie.

Po tym krótkim nakreśleniu historii rozwoju metod matematycznych w ubezpiecze-
niach wracamy do podstawowego modelu. Pomyślmy o konkretnej sytuacji. Przegla̧daja̧c
wszystkie polisy ubezpieczeniowe, zakupione w jednej firmie ubezpieczeniowej, które
ubezpieczaja̧ skutki pożaru mieszkań w pewnej dzielnicy dużego miasta, najprawdo-
podobniej natkniemy siȩ na porównywalna̧ wartość ubezpieczanych dóbr oraz mo-
żemy przyja̧ć, iż szanse na pożar w poszczególnych budynkach sa̧ podobne. Taki
zbiór polis tworzy jednorodny portfel ubezpieczeniowy. Wiȩkszość firm ubezpie-
czeniowych używa tego rodzaju portfeli jako podstawowych cegiełek swej działalno-
ści. Cegiełki takie, odpowiednio ułożone, tworza̧ wiȩksze bloki działalności takie jak
ubezpieczenia od ognia, ubezpieczenia ruchu drogowego, ubezpieczenia przed kra-
dzieżami, ubezpieczenia maja̧tkowe itd. Blok ubezpieczeń od ognia zawiera wtedy
wiele portfeli różnia̧cych siȩ rodzajami ryzyka, na przykład dla: wolno stoja̧cych
domów, domów szeregowych, budynków wielomieszkaniowych, sklepów, marketów
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itd., które wymagaja̧ osobnego określenia ryzyka ubezpieczeniowego dla każdego
rodzaju i wyliczenia innej składki ubezpieczeniowej, choćby z tego tylko powodu, iż
rozmiar szkody w poszczególnych portfelach może być nieporównywalny. W dalszym
cia̧gu skupiać bȩdziemy nasza̧ uwagȩ na analizie pojedynczych portfeli, które skła-
dać siȩ bȩda̧ z wielu elementów natury losowej lub deterministycznej. Podstawowym
parametrem portfela jest czasokres w którym ubezpieczone ryzyka moga̧ generować
szkody. Zwykle dane odnosza̧ce siȩ do danego portfela obejmuja̧ okres jedengo roku.
Kluczowym parametrem jest rezerwa pocza̧tkowa (kapitał pocza̧tkowy), wyznaczany
na pocza̧tku czasokresu w celu pokrycia kosztów wynikaja̧cych ze zgłoszonych szkód
w portfelu. Same zgłoszenia wyznaczone sa̧ przez chwile zgłoszeń T1 < T2 < T3 < ...,
przy czym wygodnie jest przyja̧ć iż T0 = 0 < T1. Liczbȩ zgłoszeń do chwili t > 0 defi-
niujemy przez N(t) = max{n : Tn ¬ t}. Każde zgłoszenie zwia̧zane jest z wielkościa̧
zgłaszanej szkody oznaczanej przez Xn , dla n−tego zgłoszenia. Przy tych oznacze-
niach całkowita wartość szkód zgłoszonych do chwili t równa siȩ S(t) =

∑N(t)
i=1 Xi.

(Przyjmujemy S(t) = 0, gdy N(t) = 0). Oznaczmy przez H(t) wartość składek
zebranych w portfelu do chwili t. Zwykle przyjmujemy, że H(t) = ct, dla pewnej
stałej wartości c > 0. Wtedy rezerwa kapitału w portfelu, przy założeniu, że kapitał
pocza̧tkowy wynosi u, wyraża siȩ wzorem R(t) = u + H(t) − S(t). Zakładaja̧c, że
momenty zgłoszeń oraz wielkości szkód sa̧ zmiennymi losowymi, możemy interpreto-
wać kolekcjȩ zmiennych (R(t), t > 0) jako proces stochastyczny. (Jest to tak zwany
proces ryzyka). Badanie procesu ryzyka jest centralnym zagadnieniem tak zwanej
teorii ryzyka, która z kolei stanowi niewa̧tpliwie ja̧dro matematyki ubezpieczeniowej
poświȩconej ubezpieczeniom majatkowym i osobowym.

Nakreślimy teraz bliżej zestawy założeń przyjmowanych o zmiennych losowych tego
modelu, które umożliwiaja̧ dokładniejsza̧ analizȩ portfeli.

Rozpoczniemy od podania detali dotycza̧cych cia̧gu zgłoszeń. O zmiennych loso-
wych T1, T2, ...można przyja̧ć wiele różnych założeń. W pewnych szczególnych przy-
padkach użytecznym i odpowiednim założeniem jest to, iż cia̧g ten tworzy pro-
ces odnowy, tzn. cia̧g zmiennych losowych odstȩpów miȩdzy zgłoszeniami Wi =
Ti − Ti−1, i = 1, 2, ..., jest cia̧giem niezależnych zmiennych losowych o jednakowych
rozkładach. Taki proces zgłoszeń jest elementem składowym modelu Sparre An-
dersena, który bȩdzie opisany detalicznie później. Klasycznym przykładem procesu
odnowy jest proces Poissona, w którym odstȩpy miȩdzy zgłoszeniami maja̧ roz-
kład wykładniczy. Ponieważ rozkład wykładniczy jako jedyny ma własność braku
pamiȩci, proces Poissona ma wiele strukturalnych własności odróżniaja̧cych go od
innych procesów. (Własność braku pamiȩci rozkładu wykładniczego jest zdefinio-
wana przez równość P (W > x + y | W > y) = P (W > x), dla x, y > 0 lub
równoważnie P (W > x + y) = P (W > x)P (W > y)). Na przykład, dla procesu
Poissona P (N(t) = k) = e−λt (λt)k

k! , k = 0, 1, ..., gdzie 0 < λ = (EW )−1, przy tym,
EN(t) = λt = V arN(t). Ponadto liczby zgłoszeń w rozła̧cznych przedziałach cza-
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sowych w procesie Poissona tworza̧ kolekcjȩ niezależnych zmiennych losowych.

W praktyce aktuarialnej zauważono już dawno, iż stosunek wartości oczekiwanej
do wariancji w procesach zgłoszeń (N(t), t > 0) bardzo czȩsto nie jest równy je-
den (tak jest w procesie Poissona). Można to wytłumaczyć tym, że indywidualne
szkody w portfelu sa̧ zgłaszane zgodnie z procesem Poissona o pewnej wartości
średniej, lecz wartość średnia ilości indywidualnych zgłoszeń może być różna dla
każdej z polis w portfelu. Takie założenie prowadzi do procesu zgłoszeń dla którego
P (N(t) = k) =

∫∞
0 e−λt (λt)k

k! dF (λ), gdzie F jest pewna̧ dystrybuanta̧ określaja̧ca̧
rozkład parametru λ w zbiorze możliwych wartości w danym portfelu (zakładamy
zawsze, że λ > 0). Wygodnie jest przyja̧ć, że istnieje zmienna losowa Λ określajaca
losowa̧ wartość parametru λ, spełniaja̧ca P (Λ ¬ λ) = F (λ). Zakładamy przy tym,
że Λ jest zmienna̧ losowa̧ niezależna̧ od indywidualnych procesów Poissona. Proces
(N(t), t > 0) spełniaja̧cy te założenia jest tak zwanym mieszanym Procesem Po-
issona. Szczególny przypadek, gdy Λ ma rozkład gamma, odpowiada tak zwanemu
procesowi Polya.

Inna użyteczna klasa procesów zgłoszeń jest wyznaczona zwia̧zkiem rekurencyjnym
postaci P (N(t) = k) = (a + b

k
)P (N(t) = k − 1),dla k = 1, 2, ... oraz pewnych

stałych a, b (być może zależnych jedynie od t). Rozkład geometryczny, dwumianowy
i Poissona znajduja̧ siȩ w tej klasie, przy odpowiedniej specyfikacji stałych a, b.
Dla takich procesów Panjer pokazał użyteczna̧ rekurencjȩ pozwalaja̧ca̧ wyznaczyć
rozkład całkowitej wartości szkód w portfelu.

Wspomniana wcześniej własność procesu Poissona, iż liczby zgłoszeń w rozła̧cznych
przedziałach czasowych tworza̧ kolekcjȩ niezależnych zmiennych losowych stanowi
punkt wyjścia do teorii procesów o niezależnych przyrostach. Procesy zgłoszeń posia-
daja̧ce tȩ własność sa̧ procesami, dla których P (N(t) = k) =

∑∞
i=0 e

−λt (λt)i

i! p
∗i
k , gdzie

p∗ik oznacza i−krotny splot funkcji prawdopodobieństwa (pk, k = 0, 1, ...). Oznacza
to, że liczbȩ zgłoszeń można zapisać w postaci N(t) =

∑K(t)
i=1 Yi, gdzie (K(t), t > 0)

jest Procesem Poissona niezależnym od cia̧gu zmiennych (Yi, i = 1, 2, ...), które sa̧ z
kolei wzajemnie niezależne o jednakowym rozkładzie (pk, k = 0, 1, ...) Takie procesy
sa̧ złożonymi procesami Poissona.

Podstawowym założeniem o wielkościach zgłaszanych szkód w portfelu jest to, iż
tworza̧ one cia̧g X1, X2, ... niezależnych zmiennych losowych o jednakowych rozkła-
dach. W zasadzie każda dystrybuanta skoncentrowana na [0,∞) może być użyta
do określenia rozkładu wielkości szkód, jednakże czȩsto odróżnia siȩ dystrubuanty
o lekkich i cieżkich ogonach. Dystrybuanty o lekkich ogonach sa̧ asymptotycznie
równoważne rozkładowi wykładniczemu. Dystrybuanty o ciȩzkich ogonach służa̧ do
modelowania szkód, które moga̧ osia̧gać wartości relatywnie bardzo duże z istotnymi
prawdopodobieństwami (tak jak siȩ zdarza w przypadku portfeli ubezpieczeń od po-
żarów). Typowym rozkładem ciȩżkoogonowym używanym w praktyce jest rozkład
Pareto.
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Łatwo wyobrazić sobie sytuacje, w których proces zgłoszeń (N(t), t > 0) i cia̧g wiel-
kości zgłaszanych szkód (Xn, n = 1, 2, ...) sa̧ zależne, jak na przykład w przypadku
szkód wynikaja̧cych z wypadków drogowych, kiedy to intensywność zgłoszeń jak
również rozmiar szkód zależa̧ od warunków drogowych zwia̧zanych z pora̧ roku.
Obliczenie rozkładu całkowitej wartości szkód jest w tym przypadku możliwe je-
dynie w bardzo specjalnych przypadkach. Dlatego przyjmuje siȩ bardzo często, że
(N(t), t > 0) oraz (Xn, n = 1, 2, ...) sa̧ niezależne. Nawet przy tym założeniu wyli-
czenie rozkładu S(t) nie jest łatwym zadaniem. Podstawowym wzorem w tym przy-
padku jest P (S(t) ¬ x) =

∑∞
i=0 P (N(t) = i)F ∗iX (x), gdzie FX(x) = P (X1 ¬ x).

Jak widzimy potrzebne sa̧ sploty F ∗iX , dla których proste wzory sa̧ znane jedynie
w nielicznych przypadkach. Z tego powodu musimy zdać siȩ czȩsto na aproksyma-
cje. W przypadku, gdy liczba zgłoszeń jest duża a rozkłady maja̧ skończone wa-
riancje można bȩdzie zastosować Centralne Twierdzenie Graniczne (CTG) i wtedy
P (S(t) ¬ x) ≈ Φ( x−ES(t)

(V arS(t))1/2 ). Aproksymacja tego rodzaju jest bardzo niedokładna,
gdy tylko niewielka ilość szkód wyznacza wartość całego portfela (tak jak w przy-
padku szkód o ciȩżkich ogonach). Wyznaczenie dobrych aproksymacji w takich przy-
padkach jest bardzo trudne.

Użyliśmy oznaczenia H(t) dla oznaczenia wielkości składek zebranych w portfelu
do chwili t. Zwykle składki pobierane sa̧ raz do roku od indywidualnych posiadaczy
polis, jednakże wygodniej jest założyc, iż napływ składek odbywa siȩ jednorodnie
w ciagu całego roku. Wyznaczenie wielkości H(t) jest jedna̧ z niewielu rzeczy na
jakie może wpłyna̧ć ubezpieczaja̧cy i musi być dokonane w taki sposób, aby pokryć
zobowia̧zania w portfelu wynikaja̧ce ze zgłaszanych szkód. Z drugiej strony zawy-
żanie wysokości składek jest ograniczane konkurencja̧ na rynku ubezpieczeń. Naj-
bardziej popularna̧ forma̧ składki jest H(t) = (1 + θ)EN(t)EX, dla pewnej stałej θ
odzwierciedlajacej narzut gwarantuja̧cy bezpieczeństwo działania (safety loading).
Taki sposób naliczania składki nie odzwieciedla losowej zmienności portfela, dlatego
alternatywnie używa siȩ wzorów uwzglȩdniaja̧cych wariancje składowych zmiennych
losowych. Jeszcze innym aspektem w trakcie naliczania składek jest fakt, że nie
wszyscy indywidualni posiadacze polis w danym portfelu powinni płacić składki w
tej samej wysokości oraz składki powinny zależeć od historii indywidualnej polisy.

Rezerwa kapitału R(t) = u + H(t) − S(t) przybiera szczególnie prosta̧ postać,
gdy przyjmiemy iż parametr czasu przebiega zbiór liczb naturalnych. Oznaczaja̧c
wtedy przez Hn składki zebrane w n jednostkach czasu oraz przez Sn sumaryczne
szkody zgłoszone w n jednostkach czasu otrzymujemy rezerwȩ w n tej chwili Rn =
u+Hn−Sn (przyjmujemy S0 = 0, H0 = 0). Przy dodatkowym założeniu, że przyro-
sty Hn−Hn−1 oraz Sn−Sn−1 sa̧ wzajemnie niezależne dla n = 2, 3, ..., otrzymujemy
cia̧g (Rn, n = 0, 1, 2, ...) zwany bła̧dzeniem losowym (random walk). Ogólnie trajek-
torie przebiegu w czasie wartości R(t) obrazuja̧ zachowanie siȩ losowego procesu, w
którym trend dodatni reprezentuje H(t),a trend ujemny S(t). Przedmiotem inten-
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sywnych badań teoretycznych jest tak zwane prawdopodobieństwo ruiny w procesie
(R(t), t > 0). Jesli przez τ = inf{t > 0 : R(t) < 0} oznaczymy pierwsza̧ chwilȩ,
gdy rezerwa przyjmie wartość ujemna̧ (tak zwana chwila ruiny), to prawdopodo-
bieństwem ruiny jest ψ(u) = P (τ < ∞). W przypadku, gdy wielkości szkód maja̧
rozkład lekkoogonowy, można podać aproksymacje i ograniczenia na ψ(u) (bȩda̧ to
wzory oparte o funkcjȩ wykładnicza̧). W przypadku ciȩżkich ogonów aproksymacje
istnieja̧ dla tak zwanych rozkładów podwykładniczych (subexponential).

Ostatnim zagadnieniem omówionym w tym wprowadzeniu bȩdzie reasekuracja.
Reasekuracja jest podstawowa̧ aktywnościa̧ ubezpieczycieli. Firmy ubezpieczeniowe
podpisuja̧ kontrakty reasekuracyjne w celu zmniejszenia szansy na odpowiedzialność
za szkody tak duże, że mogłyby zagrozić wypłacalności firmy. Taka sytuacja może
nasta̧pić na przykład w sytuacji, gdy zgłoszone zostana̧ szkody o nadzwyczaj dużej
wielkości lub gdy ilość zgłoszeń skumuluje siȩ tworza̧c nadzwyczaj duże skupiska lub
gdy nastapia̧ nadzwyczajne zmiany w trakcie zbierania składek (niespodziewana in-
flacja, nagły wzrost kosztów działania itp.). Reasekuracja zwiȩksza możliwości firmy
ubezpieczeniowej i jej elastyczność pozwalaja̧c na oferowanie szerszego zakresu usług
ubezpieczeniowych. Wiȩkszość ze stosowanych kontraktów reasekuracyjnych mieści
siȩ w nastȩpuja̧cym zbiorze możliwości. Niech Z(t) = S(t)−D(t) oznacza czȩść szkód
podlegaja̧cych reasekuracji, gdzie D(t) oznacza wielkość własnej odpowiedzialności
firmy (deductible). Oczywiście, firma ubezpieczeniowa za przekazanie odpowiedzial-
ności za Z(t) musi czȩść zebranych składek przekazać firmie reasekuracyjnej. Ta z
kolei może posta̧pić podobnie rozpoczynaja̧c cały łańcuch reasekuracyjny. Rease-
kuracja proporcjonalna odpowiada sytuacji, gdy Z(t) = aS(t), dla pewnej stałej
a ∈ (0, 1). Reasekuracja excess-loss wynika z zasady Z(t) =

∑N(t)
i=1 (Xi − d)+, gdzie

d jest dodatnim poziomem retencji oraz x+ = max(0, x). Oznacza to, iż do reaseku-
racji przekazywane sa̧ sumaryczne nadwyżki indywidualnych szkód ponad poziom
retencji d. Taki kontrakt, przy dużej ilości zgłoszeń prowadzi do dużych kosztów ad-
ministracyjnych. Reasekuracja stop-loss wyznaczona jest przez Z(t) = (S(t)−D)+,
dla poziomu retencji D wyznaczonego dla całego portfela. Taka reasekuracja zabez-
piecza przed nadzwyczaj duża̧ ilościa̧ niewielkich szkód. Istnieja̧ liczne inne sposby
reasekuracji oraz ich kombinacje, jednakże ze wzgladu na ich złożoność nie sa̧ po-
wszechnie akceptowane.



Rozdział 3

Prawdopodobieństwo ruiny: czas
dyskretny

Rozważmy nastȩpuja̧cy proces:

Rn = u+ cn− Sn, n = 0, 1, . . . , (3.0.1)

gdzie u ­ 0 jest kapitałem pocza̧tkowym towarzystwa ubezpieczeniowego, c - składka̧
otrzymana̧ w cia̧gu jednego okresu, a Sn = W1 + · · ·+Wn - sumą szkód wypłaconych
do chwili n. Zmienne losowe (Wi)i­1 sa̧ wypłatami w i-tym okresie. Proces (Rn)n­1

nazywamy procesem nadwyżki ubezpieczyciela lub procesem ryzyka.

Interesować nas bȩdzie zmienna losowa T postaci

T = min{n : Rn < 0},

(zmienna ta nazywana jest momentem technicznej ruiny), jak również

ψ(u) = P (T <∞),

czyli prawdopodobieństwo ruiny, jeżeli kapitał pocza̧tkowy wynosił u.

3.1 Proces ryzyka jako błądzenie losowe-
prawdopodobieństwo ruiny

Ciąg Rn możemy zapisać jako błądzenie losowe startujące z poziomu u

Rn = u+ (c−W1) + · · ·+ (c−Wn),

11
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oraz

ψ(u) = P (
⋃
i­1

{Ri < 0})

= P (
⋃
i­1

{Si − ci > u})

= P (max(Si − ci : i ­ 1) > u).

Prawdopodobieństwo ruiny jest więc równe prawdopodobieństwu, że maksymalna
wartość pewnego błądzenia losowego przekroczy poziom u. Oznaczmy to maksimum
przez

M = max(0,W1 − c, (W1 − c) + (W2 − c), . . .),

gdzie błądzenie losowe ma przyrosty postaci Wi − c, stąd

ψ(u) = P (M > u).

Powstaje pytanie, kiedy błądzenie losowe osiąga skończone maksimum? Intuicja
wskazuje na błądzenia, które dryfują ”do dołu”i w związku z tym osiągają skoń-
czony pułap ”do góry”. Rzeczywiście zachodzi

Lemat 3.1.1 P (M <∞) = 1⇔ E [Wi − c] < 0.

Dowód. Z mocnego prawa wielkich liczb

P ( lim
n→∞

∑n
i=1(Wi − c)

n
= E [Wi − c]) = 1,

stąd, jeśli E [Wi − c] < 0, to P (limn→∞
∑n
i=1(Wi − c) = −∞) = 1, czyli trajektorie

bładzenia z prawdopodobieństwem 1 dążą do −∞ osiągając w związku z tym M <

∞. Z drugiej strony, jeśli M < ∞, to limn→∞

∑n

i=1(Wi−c)
n

¬ 0, czyli E [Wi − c] ¬ 0.
Ponieważ w symetrycznym błądzeniu losowym trajektorie z prawdopodobieństwem
1 powracają do punktu wyjścia nieskończenie wiele razy, warunek M <∞ nie może
zachodzić z prawdopodobieństwem 1, stąd E [Wi − c] = 0 jest wykluczone. Oznacza
to, że M <∞ z prawdopodobieństwem 1 pociąga E [Wi − c] < 0. �

Okazuje się, że rozkład maksimumM nie zmieni się jeśli dodamy jeden extra przyrost
do M i wyrównamy do zera.

Lemat 3.1.2 Rozkład zmiennej M jest taki sam jak zmiennej max(0,M+(W−c)),
gdzie W jest zmienną niezależną od całego błądzenia {Wi−c, i ­ 1}, ale posiadającą
rozkład równy rozkładowi Wi, pisząc krótko

M =d (M +W − c)+.
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Dowód. Możemy M zapisać w postaci

M = max(0,W1 − c+ L),

gdzie

L = max(0,W2 − c, (W2 − c) + (W3 − c), (W2 − c) + (W3 − c) + (W4 − c), . . .).

Jeśli teraz w powyższych wzorach zastąpimy ciągW1,W2,W3, . . . ciągiemW,W1,W2, . . .,
to rozkład uzyskanych zmiennych nie zmieni się, bo wyjściowy i nowy ciąg są o tym
samym rozkładzie. To znaczy, że rozkład M jest taki sam jak rozkład max(0,W −
c+ max(0,W1 − c, (W2 − c) + (W3 − c), . . .)) = (W − c+M)+. �

Używając powyższy lemat uzyskujemy rozkład M w języku funkcji tworzących w
przypadku c = 1.

Twierdzenie 3.1.3 Zalóżmy, że Wi ∈ N mają funkcję tworzącą PW . Jeśli E [Wi] <
1 to zmienna M ma funkcję tworzacą

PM(t) =
1− E [Wi]

1− E [Wi]PW̃ (t)
,

gdzie

PW̃ (t) =
1− PWi

(t)
E [Wi] (1− t)

.

Dowód. Liczymy funkcję tworzacą

PM(t) = E
[
tM
]

= E
[
t(M+W−1)+

]
= E

[
t(M+W−1)+I{M+W−1­0}

]
+ E

[
t(M+W−1)+I{M+W−1<0}

]
= P (M +W = 0)
+ P (M +W − 1 = 0) + P (M +W − 1 = 1)t+ P (M +W − 1 = 2)t2 + · · ·

= P (M +W = 0) +
1
t
(P (M +W = 1)t+ P (M +W = 2)t2 + · · · )

= P (M +W = 0)− 1
t
P (M +W = 0) +

1
t
PM+W (t)

= P (M +W = 0)(1− 1
t
) +

1
t
PM(t)PW (t).

Wyliczamy stąd

PM(t) =
(t− 1)P (M +W = 0)

t− PW (t)
.
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Przechodząc z t→ 1 w powyższej równości otrzymujemy

1 =
P (M +W = 0)

1− E [W ]
,

co daje P (M +W = 0) = 1− E [W ]. Ostatecznie więc

PM(t) =
(1− E [W ])(1− t)

PW (t)− t
,

co po przekształceniu możemy zapisać jako

PM(t) =
1− E [W ]

1− E [W ]PW̃ (t)
.

�

Funkcja tworząca PW̃ odpowiada zmiennej losowej o rozkładzie

P (W̃ = k) =
P (W > k)

E [W ]
,

który nazywamy rozkładem resztowym rozkladu zmiennej W .

Zmienna M ma rozkład złożony geometryczny CGeo(p = 1−E [W ] , FW̃ ). Tak więc
widzimy, że prawdopodobieństwo ruiny, przy wprowadzonych założeniach,
jest równe ogonowi dystrybuanty zmiennej losowej o złożonym rozkładzie
geometrycznym. Okaże się, że taka struktura jest również prawdziwa w modelu z
czasem ciągłym.

3.1.1 Współczynnik dopasowania

Załóżmy, że zmienne losowe (Wi)i­1 maja̧ ten sam rozkład i funkcjȩ tworza̧ca̧ mo-
menty MW (t) oraz E[W ] < c. Definiujemy współczynnik dopasowania R(W, c)
jako dodatnie rozwia̧zanie równania MW−c(r) = 1, co jest równoważne

exp(−cr)MW (r) = 1. (3.1.1)

Zauważmy, że
d

dr
MW−c(r) = E

[
(W − c)er(W−c)

]
,

d2

dr2
MW−c(r) = E

[
(W − c)2er(W−c)

]
­ 0.
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Co wiȩcej
d

dr
MW−c(r) = E

[
(W − c)er(W−c)

]
= E [W ]− c < 0

i MW−c(0) = 1. Oznacza to, że funkcja MW−c(r) maleje w otoczeniu 0 i jest wypukła,
co daje istnienie współczynnika dopasowania.

Przykład 3.1.4 Załóżmy, że W ∼ N(µ, σ2). Wtedy MW (r) = exp(µr + σ2r2/2)
i sta̧d R(N(µ, σ2), c) = 2(c−µ)

σ2
. Jeżeli składka za jeden okres naliczana jest według

zasady wartości oczekiwanej, to c = (1 + θ)E [W ], a sta̧d R(N(µ, σ2), c) = 2θµ
σ2

.

�

Zauważmy, że założenie o normalności zmiennej losowej W ma sens tylko wtedy,
gdy do ła̧cznych wypłat stosujemy aproksymacjȩ normalna̧ (szkody nie moga̧ być
ujemne).

Przykład 3.1.5 Załóżmy, że W przyjmuje dwie wartości: P (W = a) = p = 1 −
P (W = b). Wtedy MW (r) = p exp(ra)+(1−p) exp(rb). Współczynnik dopasowania
wylicza siȩ wiȩc ze wzoru

exp(cr) = p exp(ra) + (1− p) exp(rb)

Jeżeli a = 2, b = 0, p < 1
2 , c = 1 powyższe równanie staje siȩ równaniem kwadrato-

wym i otrzymujemy R(W, c) = − log
(

p
1−p

)
.

�

Powyższy przykład pokazuje, że rozwia̧zanie równania (3.1.1) rzadko da siȩ przed-
stawić w postaci jawnej. Współczynnik R można jednak przybliżyć stosuja̧c podobne
rozumowanie jak w przypadku aproksymacji Edgewortha. Rozwijaja̧c logMW (r) w
szereg Taylora i uwzglȩdniaja̧c dwa (trzy) pierwsze składniki dostajemy równanie
(3.1.1) w nastȩpuja̧cej postaci:

rE [W ] +
1
2
r2Var [W ]− cr = 0,

(rE [W ] +
1
2
r2Var [W ] +

1
6
r3E

[
(W − E [W ])3,

]
− cr = 0), (3.1.2)

co w pierwszym przypadku daje przybliżony współczynnik dopasowania

R(W, c) ≈ 2(c− E [W ])
Var [W ]

. (3.1.3)
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Dla W bȩda̧cego rozkładem złożonym W =
∑N
i=1Xi dostajemy wiȩc

R(
N∑
i=1

Xi, c) ≈
2(c− E [N ] E [X])

E [N ] Var [X] + (E [X])2Var [N ]
.

Przykład 3.1.6 Załóżmy, że c = (1 + θ)E [W ] = (1 + θ)E [N ] E [X].

1. Jeżeli W ∼ CPoi(λ, FX), to

R(CPoi(λ, FX), c) ≈ 2θE [X]
E [X2]

.

2. Jeżeli W ∼ CBin(n, p, FX), to

R(CBin(n, p, FX), c) ≈ 2θE [X]
Var [X] + q(E [X])2

.

3. Jeżeli W ∼ CBin−(r, p, FX), to

R(CBin−(r, p, FX), c) ≈ 2θE [X]
E [X2] + (E [X])2(1/p− 1)

.

Zauważmy, że jeżeli p→ 1 to współczynnik dopasowaniaR(CBin−(r, p, FX), c)
jest równy analogicznej wielkości dla rozkładu CPoi(λ, FX). Nie jest to za-
skakuja̧cy, gdyż rozkład Poissona można w tym przypadku traktować jako
graniczny dla rozkładu ujemnego dwumianowego.

�

Podobnie jak w przypadku rozwiniȩcia Edgewortha wzór (3.1.3) daje złe przybliżenie
jeżeli zmienna W ma duża̧ skośnośċ.

3.1.2 Prawdopodobieństwo ruiny - lekkie ogony

Twierdzenie 3.1.7 Załóżmy, że w procesie ryzyka (3.0.1)

• zmienne losowe (Wi)i­1 sa̧ niezależne i o tym samym rozkładzie,

• funkcja tworza̧ca momenty MW (t) istnieje i jest skończona,



3.1. PROCES RYZYKA JAKO BŁĄDZENIE LOSOWE-PRAWDOPODOBIEŃSTWO RUINY17

• E [W ] < c.

Wtedy dla R := R(W, c)

ψ(u) = exp(−Ru)
1

E [exp(−RRT |T <∞)]
. (3.1.4)

Dowód: Zauważmy najpierw, że cia̧g (Rn)n­1 ma przyrosty niezależn, tzn. zmienne
losowe Rn1 − R0, Rn2 − Rn1 , Rn3 − Rn2 , . . . sa̧ niezależne dla dowolnych 0 ¬ n1 <
n2 < · · · . Poza tym dla dowolnych n > i mamy z niezależności

E [exp(−R(Rn −Ri))] = E [exp(−R(c−Wi+1)− · · · −R(c−Wn))] =
= E [exp(−R(c−W ))]n−i = 1

i w szczególności dla i = 0 mamy

E [exp(−R(Rn)] = exp(−Ru). (3.1.5)

Sta̧d

exp(−Ru) = E [exp(−RRn)]

=
n∑
i=1

E [exp(−RRn|T = i)]P (T = i) + E [exp(−RRn|T > n)]P (T > n)

=
n∑
i=1

E [exp(−RRi −R(Rn −Ri)|T = i)]P (T = i)

+E [exp(−RRn|T > n)]P (T > n)

=
n∑
i=1

E [exp(−RRi|T = i)]P (T = i) + E [exp(−RRn|T > n)]P (T > n).

Teraz, ostatni składnik w powyższym równaniu da̧ży do 0 przy n→∞, a sta̧d

exp(−Ru) =
∞∑
i=1

E [exp(−RRi|T = i)]P (T = i) = E [exp(−RUT |T <∞)] .

�

Przykład 3.1.8 (cd. Przykładu 4.5.1 z a = 1 i b = 0) Zauważmy, że RT = −1 z
prawdopodobieństwem 1. Sta̧d

ψ(u) = exp(−R(u+ 1)) =
(

p

1− p

)u+1

.
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�

Wyliczenie wartości znajduja̧cej siȩ w mianowniku (3.1.4) jest zazwyczaj trudne i
możliwe jedynie tylko w kilku przypadkach. Z Twierdzenia 3.1.7 otrzymujemy jednak
górne oszacowanie na prawdopodobieństwo ruiny: Nierówność Cramera

ψ(u) ¬ exp(−Ru). (3.1.6)



Rozdział 4

*Prawdopodobieństwo ruiny: czas
ciągły

Podobnie do dyskretnego procesu ryzyka (3.0.1) rozważa siȩ model w czasie cia̧głym:

R(t) = u+ ct−
N(t)∑
i=1

Xi,

gdzie (Xi)i­1 sa̧ niezależnymi zmiennymi losowymi o tym samym rozkładzie, a
(N(t), t ­ 0) jest procesem opisuja̧cym ilość szkód zgłoszonych do chwili t. Jeżli
wiȩc szkody zgłaszane sa̧ w losowych chwilach 0 = T0 < T1 < · · · , to

N(t) := max{n : Tn ¬ t} =
∞∑
n=1

I{Tn¬}.

zajmiemy się najpierw własnosciami procesu (N(t), t > 0).

4.1 Proces zgłoszeń - teoria odnowy

Jeśli Ui = Ti − Ti−1 dla i = 1, 2, . . . są niezależnymi zmiennymi losowymi o jed-
nakowych rozkładach, to proces (N(t), t > 0) jest procesem odnowy. Zachodzą
podstawowe związki zdarzeń opisujących ten proces.

• {N(t) = 0} = {T1 > t},

• {N(t) = k} = {Tk ¬ t < Tk+1},

• {N(t) ­ k} = {Tk ¬ t},

19
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• {N(t) < k} = {Tk > t}.

Stąd P (N(t) = 0) = 1− FU(t), oraz P (N(t) ­ k) = F ∗kU (t), gdzie FU jest dystrybu-
antą odstępów Ui.

Twierdzenie 4.1.1 Jeśli E [Ui] > 0, to

P ( lim
t→∞

N(t)
t

=
1

E [U ]
) = 1.

Dowód: Korzystając z podstawowych zależności, mamy

TN(t)

N(t)
¬ t

N(t)
¬

TN(t)+1

N(t) + 1
N(t) + 1
N(t)

.

z mocnego prawa wielkich liczb otrzymujemy z prawdopodobieństwem 1

lim
n→∞

Tn
n

= E [U ] ,

stąd teza, gdyż z prawdopodobieństwem 1, limt→∞N(t) =∞.

�

Wielkość N(t) można postrzegać jako efekt sumaryczny wielu zmiennych losowych,
gdy t rośnie do∞. Należy więc oczekiwać, że zachodzi twierdzenie graniczne podobne
do CTG. Rzeczywiście:

Twierdzenie 4.1.2 Jeśli 0 < Var [Ui] <∞, to

P (
N(t)− t/E [U ]√

(Var [U ] t/(E [U ])3)
¬ x)→t→∞ Φ(x),

gdzie Φ oznacza dystrybuantę standardowego rozkładu normalnego.

Dowód:

P (
N(t)− t/E [U ]√

(Var [U ] t/(E [U ])3)
¬ x) = P (N(t) ¬ x

√
(Var [U ] t/(E [U ])3) + t/E [U ])

= P (Tbx
√

(Var[U ]t/(E[U ])3)+t/E[U ]c+1
> t)

= P (
U1 + ·+ UK −KE [U ]√

(KVar [U ])
­ t−KE [U ]√

(KVar [U ])
,
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gdzie K = bx
√

(Var [U ] t/(E [U ])3) + t/E [U ]c+ 1. Ponieważ

t−KE [U ]√
(KVar [U ])

→t→∞ −x,

z CTG dla ciągu (Ui) i równości 1− Φ(−x) = Φ(x), otrzymujemy tezę. �

Wartość oczekiwaną liczby zgłoszeń do chwili t nazywamy funkcją odnowy i ozna-
czamy

H(t) := E [N(t)] , t > 0.

Otrzymujemy natychmiast z podstawowych zależności między zdarzeniami

H(t) =
∑∞
k=0 P (N(t) > k) =

∑∞
k=0 P (N(t) ­ k + 1) =

∞∑
k=0

P (Tk+1 ¬ t) =
∞∑
k=1

F ∗kU (t). (4.1.1)

Z twierdzenia 4.1.1 wiemy, że z prawdopodobieństwem 1 uśredniona w czasie liczba
zgłoszeń jest zbieżna do odwrotności wartości oczekiwanej odstępów między zgło-
szeniami. Można się spodziewać, że wartość oczekiwana liczby zgłoszeń uśredniona
w czasie będzie zbieżna do tej samej granicy. Rzeczywiście tak jest, ale wymaga to
technicznie dodatkowej uwagi, ponieważ zbieżność z prawdopodobieństwem 1 ciągu
zmiennych losowych nie implikuje - ogólnie rzecz biorąc - zbieżności wartości ocze-
kiwanych tego ciągu.

Twierdzenie 4.1.3 Jeśli E [U1] <∞, to

lim
t→∞

H(t)
t

=
1

E [U ]
.

Dowód: Z lematu Fatou otrzymujemy

1
E [U ]

= E
[

lim
t→∞

N(t)
t

]
¬ lim inf

t→∞

H(t)
t

.

Wystarczy więc pokazać, że

lim sup
t→∞

H(t)
t
¬ 1

E [U ]
.
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W tym celu pokażemy najpierw tę nierówność dla obciętych odstępów

UK
n := min(K,Un), K > 0, n ∈ N.

Ze względu na obcięcie mamy

lim sup
t→∞

H(t)
t
¬ lim sup

t→∞

HK(t)
t

,

gdzie HK jest funkcją odnowy dla obciętych odstępów. Aby oszacować wartość
HK(t), pokażemy, że

HK(t) + 1 = E
[
NK(t) + 1

]
=

E
[
U1 + · · ·+ UNK(t)+1

]
E [UK

1 ]
.

Rzeczywiście

E
[
U1 + · · ·+ UNK(t)+1

]
= E

[ ∞∑
i=1

]
UK
i I{i¬NK(t)+1}

=
∞∑
i=1

E
[
UK
i I{i¬NK(t)+1}

]
=
∞∑
i=1

E
[
UK
i I{TKi−1¬t}

]
=
∞∑
i=1

E
[
UK
i

]
P (TKi−1 ¬ t)

= E
[
UK

1

] ∞∑
i=0

P (NK(t) + 1 > i)

= E
[
UK

1

]
E
[
NK(t) + 1

]
,

gdzie korzystaliśmy z niezależności TKi−1 od UK
i . Otrzymujemy więc oszacowanie

lim sup
t→∞

HK(t)
t
¬ lim sup

t→∞

E
[
U1 + · · ·+ UNK(t)+1

]
tE [UK

1 ]
.

Ponieważ E
[
U1 + · · ·+ UNK(t)+1

]
¬ t+K mamy

lim sup
t→∞

H(t)
t
¬ lim sup

t→∞

HK(t)
t
¬ lim sup

t→∞

t+K

tE [UK
1 ]

=
1

E [UK ]
.

Przechodząc z K →∞ otrzymujemy

lim sup
t→∞

H(t)
t
¬ 1

E [U ]
.
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�

Funkcja odnowy spełnia równanie całkowe (Fredholma)

H(t) = FU(t) +H ∗ FU(t), t > 0, (4.1.2)

gdzie tutaj operacja splotu ∗ jest zdefiniowana na (0,∞) dla dowolnych funkcji f, g
ograniczonych na przedziałach zwartych o wahaniu ograniczonym, tzn.

f ∗ g(t) =
∫ t

0
f(t− y)dg(t).

Przypomnijmy, że f ∗0(t) = I(0,∞)(t). Rzeczywiście

FU(t) +H ∗ FU(t) = FU(t) + F ∗2U (t) + F ∗3U (t) + . . . = H(t),

z równania (4.1.1).

Okazuje się, że rozważanie równań tego typu jest bardzo owocne w kontekście ba-
dania procesu ryzyka. Zachodzi następujący ogólny lemat.

Lemat 4.1.4 Niech F będzie być może ułomną dystrybuantą nieujemnej zmiennej
losowej, tzn. F (0) = 0, F jest niemalejąca i prawostronnie ciągła oraz F (∞) ¬ 1.
Jeśli dla pewnej funkcji z(t) ­ 0, ograniczonej na przedziałach zwartych zachodzi
równanie

Z(t) = z(t) + Z ∗ F (t),

to rozwiązaniem tego równania jest

Z(t) = z ∗ Ĥ(t), Ĥ(t) =
∞∑
n=0

F ∗n(t).

Dowód: Niech

Zk(t) = z ∗ (
k∑

n=0

F ∗n(t),

wtedy
Zk+1(t) = z(t) + Zk ∗ F (t).

Przy założeniu z ­ 0 mamy monotoniczność ciągu Zk(t), więc przechodząc z k →∞
w powyższej równości otrzymujemy tezę. �
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Przykład 4.1.5 Niech F := FU , o gęstości F ′U = fU . Niech z := fU . Wtedy Z(t) =
H ′(t), tzn, zachodzi

H ′(t) = fU(t) +H ′ ∗ FU(t).

Wynika to natychmiast ze wzoru (f ∗ g)′ = f ′ ∗ g = f ∗ g′, dla dowolnych różniczko-
walnych splatanych funkcji f, g.

�

Przykład 4.1.6 Niech F := qG, dla q ∈ (0, 1) i właściwej dystrybuanty G. Niech
z(t) ≡ 1− q = p. Mamy więc równanie

Z = p+ Z ∗ qG.

Wtedy Z jest dystrybuantą złożonego rozkładu geometrycznego CGeo(p,G), tzn.

Z(t) =
∞∑
n=0

pqnG∗n(t).

�

Własności asymptotyczne rozwiązań Z(t) tego typu równań są zależne od całko-
walności funkcji z(t). Kluczowym twierdzeniem odnowy jest fakt o istnieniu
granicy rozwiązania równania typu odnowy.

Twierdzenie 4.1.7 Jeśli z ­ 0 jest nierosnącą i całkowalną oraz F jest właściwą
dystrybuantą ciągłą, to rozwiązanie równania z lematu 4.1.4 ma granicę

lim
t→∞

Z(t) =
∫∞

0 z(x)dx∫∞
0 1− F (x)dx

Twierdzenie to można uogólnić na funkcje bezpośrednio całkowalne w sensie Rie-
manna.
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4.2 Prawdopodobieństwo ruiny: proces zgłoszeń
Poissona

Mówimy, że (N(t), t ­ 0) jest procesem Poissona z parametrem λ jeśli ten proces
ma nastȩpuja̧ce własności:

• N(0) = 0;

• Dla t0 < t1 < · · · < tk, przyrosty N(t1) − N(t0), N(t2) − N(t1), . . . , N(tk) −
N(tk−1) sa̧ niezależnymi zmiennymi losowymi o rozkładach Poissona

P (N(ti)−N(ti−1) = m) = exp(−λ(ti−ti−1))
(λ(ti − ti−1))m

m!
, m ­ 0, i = 1, . . . , k;

• dla h > 0, P (N(h) = 1) = λh+ o(h) oraz P (N(h) > 1) = o(h);

• Odstȩpy mi̧edzy zgłoszeniami sa̧ niezależne i maja̧ rozkład wykładniczy: P (Ti−
Ti−1 ¬ x) = 1− exp(−λx), i ­ 1.

Niech (N(t), t ­ 0) bȩdzie wiȩc procesem Poissona z parametrem λ. Ponadto, niech
(Xi)i­1 bȩdzie ci̧agiem dodatnich, niezależnych zmiennych losowych o tej samej dys-
trybuancie FX(x) = P (X1 ¬ x), niezależnym od procesu (N(t), t ­ 0). Niech
fX = F ′X . Prawdopodobieństwem ruiny przy kapitale początkowym u jest

ψ(u) = P (T <∞), T := inf(t > 0 : R(t) < 0).

Możemy, więc równoważnie napisać

ψ(u) = P

N(t)∑
i=1

Xi − ct > u dla pewnego t ­ 0

 .
Wygodnie jest wprowadzić zmienną M = sup(t > 0 :

∑N(t)
i=1 Xi − ct), bo wtedy,

analogicznie do modelu w czasie dyskretnym, możemy napisać

ψ(u) = P (M > u).

Zauważmy, że ruina może nastąpić jedynie w chwili jednego ze zgłoszeń, stąd supre-
mum M wystarczy badać w chwilach zgłoszeń:

M = sup(0, X1 − cU1, (X1 − cU1) + (X2 − cU2), . . .).

Widać, ż musimy założyć
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q :=
λE [X]
c

< 1, (4.2.1)

gdzie E [X] = E [X1] <∞. W przeciwnym razie, M nie będzie skończoną zmienną lo-
sową i ψ(u) = 1 dla każdego u > 0. Przy tym warunku, E

[∑N(t)
i=1 Xi

]
= E [N(t)] E [X1] =

λtE [X], stąd (4.2.1) oznacza, że składka c zebrana w jednostce czasu jest wiȩksza
niż średnia wartość wypłaconych szkód.

Okazuje się, że funkcja ψ oraz funkcja ψ̄ := 1 − ψ spełniają pewne równania typu
odnowy, z których będziemy mogli wywnioskować ich podstawowe własności.

Lemat 4.2.1 Jeśli q ∈ (0, 1), to

ψ̄(u) = p+ qψ̄ ∗ F̃X(u),

gdzie F̃X(u) = 1
E[X]

∫ u
0 1− FX(x)dx, p = 1− q.

Zanim podamy dowód tego faktu, zauważmy, że równanie w tym lemacie ma postać
taką jak w przykładzie 4.1.6, a stąd natychmiast widzimy, że ψ̄ jako rozwiązanie ma
postać

Twierdzenie 4.2.2 (wzór Pollaczka-Chinczyna)

Przy założeniu, że q = λE[X]
c

< 1 mamy

ψ̄(u) =
∞∑
n=0

pqnF̃ ∗nX (t),

Czyli prawdopodobieństwo nie zajścia ruiny ψ̄(u) jest jako funkcja kapitału począt-
kowego u dystrybuantą (zmiennejM) złożonego rozkładu geometrycznego CGeo(p, F̃X).
Jest to sytuacja analogiczna do modelu w czasie dyskretnym, ale tutaj nie zakła-
damy, że mamy w bładzeniu losowym, dla którego szukamy maksimum, do czynienia
ze zmiennymi o wartościach naturalnych.
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Dowód: lematu 4.2.1.

ψ̄(u) = P (R(t), t > 0) = P (S(t) < u+ ct, t > 0)
= P (S(T1) < u+ cT1, S(t)− S(T1) < u+ ct− S(T1), t > T1)
= P (X1 < u+ cT1, S(z + T1)− S(T1) < u+ c(z + T1)−X1, z > 0)

=
∫ ∞

0

∫ ∞
0

P (X1 < u+ cT1, S(z + T1)− S(T1) <

u+ c(z + T1)−X1, z > 0|X1 = x, T1 = y)dFX(x)λ exp(−λy)dy

=
∫ ∞

0

∫ ∞
0

I{x<u+cy}(x, y)P (S(z + y)− S(y) < u+ cz + cy − x, z > 0)

dFX(x)λ exp(−λy)dy

=
∫ ∞

0

∫ u+cy

0
P (S(z) < u+ cy − x+ cz, z > 0)dFX(x)λ exp(−λy)dy

=
∫ ∞

0

∫ u+cy

0
ψ̄(u+ cy − x)dFX(x)λ exp(−λy)dy

=
λ

c

∫ ∞
u

∫ s

0
ψ̄(s− x)dFX(x) exp(−λs− u

c
)ds,

gdzie ostatnia równość zachodzi po podstawieniu u+ cy := s.

Przypomnijmy regułę różniczkowania całki oznaczonej. Dla

Ψ(u) =
∫ b(u)

a(u)
f(u, s)ds,

d

du
Ψ(u) =

∫ b(u)

a(u)

∂

∂u
f(u, s)ds+ f(u, b(u))b′(u)− f(u, a(u))a′(u).

Różniczkując względem u otrzymujemy

ψ̄′(u) =
λ

c
[
∫ ∞
u

d

du
(
∫ s

0
ψ̄(s− x)dFX(x) exp(−λs− u

c
))ds−∫ u

0
ψ̄(u− x)dFX(x)]

=
λ

c
[
λ

c

∫ ∞
u

∫ s

0
ψ̄(s− x)dFX(x) exp(−λs− u

c
)ds−∫ u

0
ψ̄(u− x)dFX(x)]

=
λ

c
[ψ̄(u)−

∫ u

0
ψ̄(u− x)dFX(x)].

Całkując po zmiennej u w zakresie od 0 do t mamy

ψ̄(t)− ψ̄(0) =
λ

c

∫ t

0
[ψ̄(u)−

∫ u

0
ψ̄(u− x)dFX(x)]du.
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Aby wyliczyć ∫ t

0

∫ u

0
ψ̄(u− x)dFX(x)du,

podstawiamy s := u− x i całkujemy przez części otrzymując∫ t

0

∫ u

0
ψ̄(u− x)dFX(x)du =

∫ ∞
0

∫ t−x

0
ψ̄(s)dsdFX(x)

=
∫ t

0
ψ̄(s)ds−

∫ ∞
0

ψ̄(t− x)(1− FX(x))dx,

czyli

ψ̄(t)− ψ̄(0) =
λ

c

∫ t

0
ψ̄(u)du−

λ

c

∫ t

0
ψ̄(s)ds+

λ

c

∫ ∞
0

ψ̄(t− x)(1− FX(x))dx.

Gdy t→∞
1− ψ̄(0) =

λ

c

∫ ∞
0

(1− FX(x))dx =
λ

c
E [X] ,

co daje

ψ̄(t) = (1− λ

c
E [X]) +

λ

c
E [X] ψ̄ ∗ F̃X(t).

�

Z równania dla ψ̄ natychmiast otrzymujemy równanie dla ψ.

Lemat 4.2.3 Funkcja prawdopodobieństwa ruiny ψ spełnia nastȩpuja̧e równanie
typu odnowy:

ψ(u) = q(1− F̃X(u)) + qψ ∗ F̃X(u), (4.2.2)

Przykład 4.2.4 Gdy wielkości szkód Xi mają rozkład wykładniczy Exp(1/E [X]),
to F̃X jest znowu dystrybuantą wykładniczą Exp(1/E [X]) i wtedy ψ̄ jest dystry-
buantą CGeo(p, Exp(1/E [X]), wiemy z (??), że jest to dystrybuanta wykładnicza
wymieszana z atomem w zerze, dokładniej, dla p = 1− λE [X] /c:

ψ̄(u) = p+ q(1− exp(−pu/E [X])),

ψ(u) = q exp(−pu/E [X]).

Wprowadzając narzut (security loading) ϑ > 0 poprzez równość

c = (1 + ϑ)λE [X] ,
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otrzymujemy alternatywną postać

ψ̄(u) =
ϑ

1 + ϑ
+

1
1 + ϑ

(1− exp(− ϑ

E [X] (1 + ϑ)
u)),

ψ(u) =
1

1 + ϑ
exp(− ϑ

E [X] (1 + ϑ)
u).

�

Rozkłady lekkoogonowe- model Cramera-Lundberga

W modelu z czasem ciągłym przydatny będzie również współczynnik dopasowania,
zdefiniowany jednak inaczej niż w modelu z czasem dyskretnym. Dodatnie rozwią-
zanie równania

MX(r) =
c

λ
r + 1,

nazywamy wspólczynnikiem dopasowania w modelu ciągłym i oznaczamy R̃ :=
R̃(X,λ, c).

Przykład 4.2.5 Dla X ∼ Exp(1/E [X]), równanie definiujące przyjmuje postać

1
1− E [X] r

=
c

λ
r + 1,

co prowadzi do
R̃(Exp(1/E [X]), λ, c) = p/E [X] ,

dla p = (1− λE [X] /c). W języku narzutu otrzymujemy

R̃(Exp(1/E [X]), λ, c) =
ϑ

E [X] (1 + ϑ)
.

�

Porównując wzory na R̃ = R̃(Exp(1/E [X]), λ, c) z wzorami na prawdopodobienstwo
ruiny dla szkód o rozkładach wykładniczych z poprzedniego przykładu widać, że
możemy napisać krótko, w języku współczynnika dopasowania, że w tym przypadku

ψ(u) = (1− E [X] R̃) exp(−R̃u).
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Widzimy, z tych wzorów, że prawdopodobieństwo ruiny w przypadku szkód o roz-
kładach wykładniczych zależy od wielkości narzutu i wartości średniej szkody. Praw-
dopodobieństwo ruiny nie zmieni się w takim modelu przy jednoczesnym proporcjo-
nalnym zwiększeniu intensywności nadchodzenia szkód i intensywności pobierania
składek.

Dla rozkładów innych niż wykładniczy, wyliczenie prawdopodobieństwa ruiny jest
kłopotliwe. Dla rozkładów lekkoogonowych można jednakże wyznaczyć jego granicę
przy u→∞.

Twierdzenie 4.2.6 Jeśli istnieje skończony współczynnik dopasowania dla rozkładu
szkód w modelu ciągłym R̃ = R̃(X,λ, c), oraz M ′

X(R̃) <∞, to

lim
u→∞

ψ(u) exp(R̃u) =
p

M ′
X(R̃)(λ/c)− 1

,

gdzie p = 1− λE [X] /c.

Dla dużych wartości kapitału początkowego można prawdopodobieństwo ruiny przy-
bliżyć następująco:

ψ(u) ≈ exp(−R̃u)
p

M ′
X(R̃)(λ/c)− 1

.

Dowód: Wychodząc od równania

ψ(u) = q(1− F̃X(u)) + qψ ∗ F̃X(u),

mnożymy je obustronnie przez exp(R̃), otrzymując

ψ(u) exp(R̃u) = q(1− F̃X(u)) exp(R̃u)

+
∫ u

0
ψ(u− x) exp(R̃(u− x))

λ

c
(1− FX(x)) exp(R̃x)dx,

czyli traktując λ
c
(1− FX(x)) exp(R̃x) jako gęstość dystrybuanty powiedzmy F , oraz

przyjmując Z(u) = ψ(u) exp(R̃u), z(u) = q(1− F̃X(u)) exp(R̃u), widzimy, że jest to
równanie typu odnowy

Z(u) = z(u) + Z ∗ F (u). (4.2.3)

Z twierdzenia 4.1.7 otrzymujemy więc

lim
u→∞

ψ(u) exp(R̃u) =
∫∞
0 q(1− F̃X(u)) exp(R̃u)du∫∞

0 1− F (x)dx
.
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Pozostaje wyliczyć wartości całek pojawiajacych się w granicy,∫ ∞
0

q(1− F̃X(u)) exp(R̃u)du = p/R̃,

∫ ∞
0

1− F (x)dx =
M ′

X(R̃)(λ/c)− 1
R̃

,

co wynika natychmiast z całkownia przez częsci. �

Dla dowolnych wartości u można podać ograniczenie górne i ograniczenie dolne na
ψ(u) jeśli założymy lekkoogonowość rozkładu wielkości szkód.

Twierdzenie 4.2.7 Jeśli istnieje skończony współczynnik dopasowania dla rozkładu
szkód w modelu ciągłym R̃ = R̃(X,λ, c) <∞, to

a− exp(−R̃u) ¬ ψ(u) ¬ a+ exp(−R̃u),

gdzie

a+ = sup
x­0

z(x)
1− F (x)

,

a− = inf
x­0

z(x)
1− F (x)

,

dla funkcji z i F zdefiniowanych w równaniu (4.2.3).

4.3 Prawdopodobieństwo ruiny dla rozkładów fa-
zowych

Przypomnijmy , że zmienna losowa ma rozkład fazowy PH(p,Q, n), jeżeli F̄ (x) =
P (X > x) = p exp(Qx)e, gdzie p = (p1, . . . , pn) jest wektorem liczb nieujemnych
sumuja̧cych sia̧ do 1, Q jest macierza̧ n × n, w której poza przeka̧tna̧ sa̧ liczby
dodatnie, a na przeka̧tnej sa̧ wartości ujemne takie, że suma w wierszach macie-
rzy jest mniejsza lub równa zero, e = (1, . . . , 1)′, exp(Q) oznacza tzw. eksponens
macierzowy, exp(Q) := I + Q + Q2/2 + ... + Qn/n! + ...., gdzie I jest macierza̧
jednostkowa̧.

Dla rozkładu fazowego dystrybuanta resztowa Fe jest też fazowa i ma reprezentacjȩ:
PH(r,Q, n), gdzie r = −pQ−1/E [X] i E [X] wylicza siȩ ze wzoru

E [X] = −n!Q−1e.

Jeżeli teraz dla zadanego cia̧gu szkód (Xi)i­1 o dystrybuancie fazowej FX , rozwa-
żymy cia̧g (Yi)i­1 o dystrybuancie resztowej F̃X , to złożony rozkład geometryczny
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∑T
i=1 Yi jest znowu fazowy z parametrami (ρr,Q+t0rρ, n), gdzie t0 = −Qe. Funkcja

ψ ma wiȩc postać

ψ(u) = ρr exp ((Q + t0rρ)x) e. (4.3.1)

Przykład 4.3.1 Rozkład wykładniczego Exp(µ) jest fazowy z parametrami p = 1,
Q = [−1/µ], n = 1. Wtedy r = 1 i rozkład resztowy jest też wykładniczy. Wyli-
czaja̧c ψ(u) ze wzoru (4.3.1) dostajemy ψ(u) = ρ exp(−x/(1− ρ)/µ).

�

W ogólnym przypadku rozkładów fazowych, dla zadanych wartości x powyższy wzór
wyliczamy numerycznie.

Przykład 4.3.2 Niech p = (1/4, 1/8, 1/8, 1/4) i

Q =


−1 0 0 0
0 −2 0 0
0 0 −3 0
0 0 0 −4


Wtedy

F̄X(x) = 1/4 exp(−x) + 1/8 exp(−2x) + 1/8 exp(−3x) + 1/4 exp(−4x)

jest mieszanka̧ rozkładów wykładniczych. Rozkład resztowy dany jest wzorem

¯̃FX(x) = 3/5 exp(−x) + 3/20 exp(−2x) + 1/10 exp(−3x) + 3/20 exp(−4x).

Funkcja ψ nie ma już tak ładnej postaci, można ja̧ jednak łatwo wyrysować lub
podać konkretne wartości. Na przykład ψ(10) = 0.095 1.

�
1Plik ruina-ciagla-1.mws
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u

543210

0.8

0.7

0.6

0.5

0.4

0.3

Rysunek 4.3.1:
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10.80.60.40.20

101.5

101

100.5

100

99.5

 Rezerwa kapitalu 

10.80.60.40.20

180

160

140

120

100

80

60

 Rezerwa kapitalu 

Rysunek 4.4.1: Trajektorie procesu ryzyka

4.4 Prawdopodobieństwo ruiny dla rozkładów ciȩżkoogonowych

Ze wzoru (4.3.1) wynika, że w przypadku rozkładów fazowych funkcja prawdopodo-
bieństwa ruiny maleje wykładniczo. Podobnie wygla̧da to w przypadku wszystkich
rozkładów, dla których istnieje współczynnik dopasowania, zdefinowany w Rozdziale
3.1.1. Przypomnijmy jednak, że dla rozkładów ciȩżkoogonowych nie istnieje funkcja
tworza̧ca momenty, nie istnieje wiȩc współczynnik dopasowania. W takich przypad-
kach jesteśmy w stanie jednak otrzymać asymptotykȩ prawdopodobieństwa ruiny.

Przed podaniem twierdzenia, przyjrzyjmy siȩ najpierw trajektoriom procesu ryzyka
dla dwóch modeli.

Lewy rysunek przedstawia proces ryzyka, gdzie szkody maja̧ rozkład wykładniczy,
prawy rysunek - szkody Pareto z α = 2, a wiȩc z nieskończona̧ wariancja̧. Widzimy
ogólna̧ tendencjȩ ’do góry’, co jest zagwarantowane przez ρ < 1. Na lewym rysunku
trajektorie maja̧ lokalnie tendencjȩ w dół poprzez nagromadzenie małych szkód, na
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prawym - poprzez jedna̧ duża̧ szkodȩ2.

Jak należy siȩ wiȩc spodziewać, funkcja prawdopodobieństwa ruiny dla szkód ciȩżkoogonowych
bȩdzie zachowywała siȩ inaczej niż dla fazowych. W nastȩpuja̧cym twierdzeniu uży-
jemy klasȩ rozkładów S∗, wprowadzona̧ w Rozdziale 5.3.1.

Twierdzenie 4.4.1 Jeżeli F ∈ S∗, to

lim
x→∞

ψ(u)
F e(u)

=
ρ

1− ρ
.

Dowód: Podamy najpierw bez dowodu dwa lematy techniczne.

Lemat 4.4.2 Jeżeli Fe ∈ S, to dla każdego ε > 0 istnieje D > 0 takie, że dla
każdego n ­ 2,

F ∗ne (u)
Fe(u)

¬ D(1 + ε)n, x ­ 0. (4.4.1)

Lemat 4.4.3 Niech G(u) =
∑∞
n=0 pkH

∗n(u), (pn) jest rozkładem prawdopodobień-
stwa, H ∈ S. Jeżeli

∑∞
n=0 pn(1 + ε)n <∞ dla pewnego ε > 0, to

lim
x→∞

G(u)
H(u)

=
∞∑
n=0

npn.

Ze wzoru (??) dostajemy

ψ(u) = (1− ρ)
∞∑
n=0

ρnP

(
n∑
i=1

Yi > x

)
= (1− ρ)

∞∑
n=0

ρnF ∗n(u).

Połóżmy pn = ρn i weźmy ε > 0 tak, by ρ(1 + ε) < 1. Sta̧d
∑∞
n=0 pn(1 + ε)n <∞.

Z faktu, że F ∈ S∗ mamy Fe ∈ S, a wȩc korzystaja̧c z Lematu 4.4.2, istnieje D > 0
takie, że (4.4.1) jest prawdziwe. Z Lematu 4.4.3 mamy

lim
u→∞

ψ(u)
Fe(u)

= (1− ρ)
∞∑
n=0

nρn = (1− ρ)
ρ

(1− ρ)2
=

ρ

1− ρ
.

�

2Plik ruina-ciagla-2.mws
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4.5 Funkcje Copula

Bieżący rozdział jest oparty głównie na publikacji T. Schmidt’a [35] oraz R.Nelsena
[31]. Przedstawione poniżej funkcje copula zostaną w kolejnych rozdziałach wyko-
rzystane do opisu struktury zależności w modelach z zależnymi roszczeniami lub
odstępami czasowymi.

4.5.1 Definicja i własności funkcji copula

Definicja 4.5.1 Niech d ­ 2. Funkcja C: Rd → R nazywana jest funkcją copula,
gdy jest d-wymiarową dystrybuantą o jednowymiarowych, brzegowych rozkładach jed-
nostajnych na (0,1).

Twierdzenie 4.5.2 (Sklar)
Dla d wymiarowej dystrybuanty o ciągłych dystrybuantach brzegowych F1, ..., Fd ist-
nieje wyznaczona jednoznacznie funkcja copula C taka, że:

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)) (4.5.1)

Odwrotnie, dla danej funkcji copula C i dystrybuant brzegowych F1, ..., Fd wzór
(4.5.1) definiuje d-wymiarową dystrybuantę F.

Podstawowe własności funkcji Copula C(u) = C(u1, ..., ud) to:
1) C : Rd → [0, 1], jest rosnąca po współrzędnych
2) Rozkład brzegowy ui otrzymuje się przez podstawienie uj = 1 dla wszystkich
j 6= i

C(1, ..., 1, ui, 1, ..., 1) = ui, ui ∈ [0, 1]

3) Dla ai < bi prawdopodobieństwo P (U1 ∈ [a1, b1], ..., Ud ∈ [ad, bd]) jest nieujemne,
co prowadzi do nierówności:

2∑
i1=1

...
2∑

id=1

(−1)i1+...+idC(u1,i1 , ..., ud,id) ­ 0,

gdzie uj,1 = aj oraz uj,2 = bj.

Z drugiej strony każda funkcja C : [0, 1]d− > [0, 1], która spełnia powyższe własno-
ści jest funkcją copula. Ponadto, mając d-wymiarową funkcję copula C(u1, ..., ud),
C(1, u1, ..., ud−1) jest również funkcją copula.
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Hoeffding i Frechet niezależnie dowiedli, że funkcja copula zawsze leży pomiędzy
określonymi granicami. Powodem tego jest istnienie skrajnych przypadków zależno-
ści. Pierwszy przypadek takiej skrajnej zależności to doskonała dodatnia zależność
zmiennych (comonotonic). Wówczas funkcję copula podaje wzór:

C(u1, ..., ud) = min(u1, ..., ud).

W przypadku niezależnych zmiennych losowych funkcja copula to:

C(u1, ..., ud) = u1 · ... · ud. (4.5.2)

Bezpośrednio z twierdzenia Sklar’a otrzymujemy, że zmienne losowe są niezależne
wtedy i tylko wtedy, gdy ich funkcja copula, to opisana wzorem (4.5.2), funkcja co-
pula niezależności.
Jednakże, niezależność jest tylko etapem pośrednim od doskonałej dodatniej zależ-
ności do doskonałej ujemnej zależności (countermonotonic), dla której funkcję copula
dla dwóch zmiennych losowych, tj. w przypadku U1 = 1− U2, przedstawia wzór:

C(u1, u2) = max{u1 + u2 − 1, 0} (4.5.3)

W całej ogólności, nie istnieje taka funkcja copula dla trzech zmiennych, ponieważ
równość U1 = 1 − U2 nakłada pewne ograniczenia na zmienną losową U3 tzn. jeśli
U3 = 1−U2, to U3 = U1, a jeśli U3 = 1−U1, to U3 = U2. Z drugiej strony, nawet jeśli
taka funkcja copula nie istnieje to wynikające z niej ograniczenia nadal obowiązują,
mianowicie:

Twierdzenie 4.5.3 (ograniczenia Frechet-Hoeffding)
Rozważmy funkcje copula C(u1, ..., ud). Wtedy:

max{
d∑

i1=1

ui + 1− d, 0} ¬ C(u1, ..., ud) ¬ min{u1, ..., ud}. (4.5.4)

W analogiczny sposób, w jaki funkcja copula wiąże dystrybuantę łączną z jej dys-
trybuantami brzegowymi, można opisać związek pomiędzy funkcjami przeżycia:

F̄ (x1, ..., xd) = Ĉ(F̄1(x1), ..., F̄d(xd)) (4.5.5)

gdzie F̄ (x1, ..., xd) to łączna funkcja przeżycia opisana wzorem:

F̄ (x1, ..., xd) = P (X1 > x1, ..., Xd > xd)

natomiast F̄i(xi), dla i = 1, ..., d, to funkcje brzegowe:

F̄i(xi) = F̄ (−∞, ..., xi, ...,−∞)

Funkcja Ĉ również jest funkcją copula, zwaną funkcją copula przeżycia (ang. survival
copula). Funkcje C i Ĉ wiąże równość:

Ĉ(u1, ..., ud) = u1 + ...+ ud − 1 + C(1− u1, ..., 1− ud). (4.5.6)
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4.5.2 Funkcje copula Archimedesa

Bardzo ważną klasą kopuł są, tak zwane, kopuły Archimedesa. Charakteryzują się
one dużą różnorodnością oraz łatwością, z jaką mogą być konstruowane.

Definicja 4.5.4 Niech ϕ : [0, 1] → [0,∞) będzie ciągłą, ściśle malejącą funkcją
taką, że ϕ(1) = 0. Funkcją pseudo-odwrotną do ϕ jest funkcja ϕ[−1], zdefiniowana
wzorem:

ϕ[−1](t) =
{

ϕ−1(t), 0 ¬ t ¬ ϕ(0)
0 , ϕ(0) ¬ t ¬ ∞ (4.5.7)

Funkcja ϕ[−1] jest ciągła i nierosnąca na przedziale [0,∞], oraz ściśle malejąca na
przedziale [0, ϕ(0)]. Poza tym, ϕ[−1](ϕ(u)) = u na przedziale [0, 1], oraz:

ϕ(ϕ[−1](t)) =
{
t, 0 ¬ t ¬ ϕ(0),
ϕ(0), ϕ(0) ¬ t ¬ ∞,

= min(t, ϕ(0)).

W końcu, jeśli ϕ(0) =∞, to ϕ[−1] = ϕ−1.

Celem prezentacji kolejnego lematu wprowadzamy definicję funkcji całkowicie mo-
notonicznych:

Definicja 4.5.5 Funkcja f jest całkowicie monotoniczna na przedziale J, jeżeli jest
na tym przedziale ciągła i posiada pochodne f (n) wszystkich rzędów spełniające nie-
równość:

(−1)nf (n)(λ) ­ 0, (4.5.8)

dla każdego λ należącego do wnętrza przedziału J oraz n=0,1,2,... .

Lemat 4.5.1 Niech ϕ : [0, 1] → [0,∞) będzie ciągłą, ściśle malejącą funkcją taką,
że ϕ(1) = 0 oraz niech ϕ[−1] będzie funkcją pseudo-odwrotną do ϕ zdefiniowaną przez
(4.5.7). Funkcja C : [0, 1]d → [0, 1] postaci:

C(u) = ϕ[−1]

(
d∑
i=1

ϕ(ui)
)

(4.5.9)

jest funkcją copula wtedy i tylko wtedy, gdy funkcja ϕ[−1] jest całkowicie monoto-
niczna na przedziale [0,∞).
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Konsekwencją (4.5.8) jest, że jeśli ϕ[−1] jest funkcją całkowicie monotoniczną oraz
ϕ[−1](c) = 0 dla skończonego c > 0, wtedy ϕ[−1] jest tożsamościowo równa 0. Zatem
funkcja ϕ[−1] musi być dodatnia na przedziale [0,∞), co z kolei oznacza, że zachodzi
równość ϕ[−1] = ϕ−1.

Funkcje copula postaci (4.5.9) są nazywane funkcjami copula Archimedesa. Nato-
miast funkcja ϕ jest zwana generatorem funkcji copula.

Przykład 4.5.1 Funkcja Copula Gumbell’a jest szczególną funkcją Archimedesa,
uzyskaną dla generatora ϕ(t) = (− ln t)θ:

Cθ
Gumbel(u1, ..., ud) = exp[−((− lnu1)θ + ...+ (− lnud)θ)1/θ] (4.5.10)

gdzie θ ∈ [1,∞). Dla θ = 1 otrzymujemy funkcję copula niezależności. Natomiast
dla θ →∞ szukana funkcja jest zbieżna do funkcji copula doskonale dodatnio zależ-
nej, tak więc funkcja Copula Gumbel’a jest funkcją copula albo niezależności, albo
doskonałej dodatniej zależności.

Zgodnie z wzorem (4.5.6) funkcja copula przeżycia w tym przypadku to:

Ĉ(u1, ..., ud) = u1 + ...+ ud − 1 + exp[−((− ln(1− u1))θ + ...+ (− ln(1− ud))θ)1/θ].

Przykład 4.5.2 Funkcja Claytona również należy do rodzin funkcji copula Archi-
medesa, otrzymujemy ją przez podstawienie ϕ(t) = (t−θ − 1)/θ:

Cθ
Clayton(u1, ..., ud) = (max{u1

−θ + ...+ ud
−θ − 1, 0})−1/θ (4.5.11)

gdzie θ ∈ (0,∞). Dla θ → 0, otrzymujemy funkcję copula niezależności, a dla θ →∞
copula Clayton’a zmierza do funkcji copula doskonale dodatnio skorelowanej. Dla
θ = −1 otrzymujemy ograniczenie z dołu Frechet-Hoeffding’a. Podsumowując, tak
jak funkcja copula Gumbel’a, copula Clayton’a interpoluje wśród struktur zależności
takich jak: niezależność oraz doskonała dodatnia zależność.
Funkcja copula przeżycia wyliczona dla omawianego przykładu z wzoru (4.5.6) to:

Ĉ(u1, ..., ud) = u1 + ...+ ud − 1 + (max{(1− u1)−θ + ...+ (1− ud)−θ − 1, 0})−1/θ.
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4.6 Model zrandomizowany

Rozważmy teraz klasyczny model ryzyka (??) z wykładniczymi wielkościami rosz-
czeń, dla których, dla każdego n, spełniona jest równość:

P (X1 > x1, ..., Xn > xn|Θ = θ) =
n∏
k=1

e−θxk , (4.6.1)

gdzie Θ to dodatnia zmienna losowa. Wyliczając rozkład brzegowy Xk okazuje się,
że nie jest on wykładniczy, a wielkości roszczeń są zależne. Pokażmy to na przykła-
dzie.

Przykład 4.6.1 Weźmy dwuwymiarowy wektor losowyX = (X1, X2) oraz zmienną
losową Θ o rozkładzie

FΘ(θ) =
1
2

1[1,∞)(θ) +
1
2

1[2,∞)(θ)

Z wcześniejszych rozważań mamy równość:

P (X1 > x1, X2 > x2|Θ = θ) =
n∏
k=1

e−θxk = e−θ(x1+x2)

P (X1 > x1, X2 > x2) =
∞∫
0

exp−θ(x1+x2) dFΘ(θ)

Liczymy rozkład brzegowy X1. Najprościej będzie skorzystać z rozkładu łącznego
wykluczając z niego wpływ zmiennej X2, co osiągniemy przez podstawienie x2 = 0:

P (X1 > x1, X2 > 0) = P (X1 > x1) =
∞∫
0

exp−θ(x1+0) dFΘ(θ) =
1
2

exp−x1 +
1
2

exp−2x1

Analogicznie dla X2:

P (X1 > 0, X2 > x2) = P (X2 > x2) =
∞∫
0

exp−θ(0+x2) dFΘ(θ) =
1
2

exp−x2 +
1
2

exp−2x2

Sprawdzamy niezależność:

P (X1 > x1)P (X2 > x2) = (
1
2

exp−x1 +
1
2

exp−2x1)(
1
2

exp−x2 +
1
2

exp−2x2) =

1
4

exp−x1−x2 +
1
4

exp−x1−2x2 +
1
4

exp−2x1−x2 +
1
4

exp−2x1−2x2
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P (X1 > x1, X2 > x2) =
∞∫
0

exp−θ(x1+x2) dFΘ(θ) =
1
2

exp−x1−x2 +
1
2

exp−2x1−2x2

Iloczyn brzegowych rozkładów i rozkład łączny są różne, co świadczy o tym, że
zmienne X1 i X2 nie są niezależne. Rozkłady brzegowe nie są wykładnicze, ale są
mieszankami rozkładów wykładniczych.

Kolejnym krokiem jest przedstawienie wzoru na prawdopodobieństwo ruiny dla mo-
delu z zależnymi ryzykami. W tym celu przypomnę wzór na prawdopodobieństwo
ruiny (??) w klasycznym modelu z wykładniczymi wielkościami roszczeń Exp(θ),
który został wyprowadzony w przykładzie (1.1):

ψθ(u) = min{ λ
θc
exp{−(θ − λ

c
)u}, 1}, u ­ 0. (4.6.2)

Wówczas, po uwzględnieniu zmiennej θ, prawdopodobieństwo ruiny dla modelu za-
leżności dane jest wzorem:

ψ(u) =
∞∫
0

ψθ(u)dFΘ(θ). (4.6.3)

Dla θ ¬ θ0 = λ
c
, złamany jest wspomniany warunek zysku netto, mówiący, że

składka c zebrana w jednostce czasu musi być większa niż średnia wypłaconych
szkód. Oznacza to, że dla θ ¬ θ0 = λ

c
pojawienie się ruiny jest pewne tzn. ψθ(u) = 1,

dla wszystkich u ­ 0, dlatego wzór ogólny na prawdopodobieństwo ruiny można
zastąpić przez:

ψ(u) = FΘ(θ0) +
∞∫
θ0

ψθ(u)dFΘ(θ). (4.6.4)

Bezpośrednią konsekwencją jest:

lim
u→∞

ψ(u) = FΘ(θ0) (4.6.5)

co jest dodatnie, gdy zmienna losowa Θ ma dodatnią masę prawdopodobieństwa na
poziomie θ = λ

c
lub poniżej.

Twierdzenie 4.6.1 Model ryzyka z zależnymi wielkościami szkód, spełniający rów-
nanie (4.6.1), można opisać za pomocą wektora szkód (X1, X2, ...) o całkowicie mo-
notonicznych brzegowych rozkładach roszczeń zmiennych X1, X2, ... takiego, że od-
powiednie funkcje copula przeżycia są funkcjami Archimedesa z generatorem ϕ =
(L(FΘ))−1, gdzie L(FΘ) oznacza transformatę Laplace-Stieltjesa FΘ, a potęga (-1)
funkcję odwrotną.
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Dowód: Powołując się na wzór (4.6.1), łączny rozkład X1, .., Xn możemy zapisać
jako:

P (X1 > x1, ..., Xn > xn) =
∞∫
0

e−θ(x1+...+xn)dFΘ(θ) = L(FΘ)(x1 + ...+ xn). (4.6.6)

Na podstawie twierdzenia Sklara (tw. 2.2) oraz wzoru dla kopuł przeżycia (4.5.5), dla
każdej wielowymiarowej dystrybuanty z rozkładami brzegowymi F1, ..., Fn istnieje
kopuła przeżycia Ĉ taka, że:

P (X1 > x1, ..., Xn > xn) = Ĉ(F̄X1(x1), ..., F̄Xn(xn))

gdzie F̄X(xi) = 1− FX(xi) to ogon dystrybuanty rozkładu brzegowego Xi. W oma-
wianym przykładzie Xi, i = 1, ..., n mają takie same rozkłady. Jeśli kopuła jest
funkcją Archimedesa z generatorem ϕ wtedy powyższy wzór możemy wyrazić jako:
Ĉ(F̄X(x1), ..., F̄X(xn)) = ϕ−1(ϕ(F̄X(x1)) + ...+ ϕ(F̄X(xn))), gdzie

F̄X(xi) =
∞∫
0

e−θxidFΘ(θ) = L(FΘ)(xi), i = 1...n, (4.6.7)

co dokładnie pasuje do (4.6.6), gdy generator ϕ(t) = (L(FΘ))−1(t). Zauważmy, że
ϕ jako odwrotna tranformata Laplace’a dystrybuanty jest funkcją ciągłą, ściśle ma-
lejącą z [0, 1] do [0,∞], dla której ϕ(0) = ∞ i ϕ(1) = 0 i ϕ−1 jest całkowicie mo-
notoniczna, więc zgodnie z lematem 4.5.1 funkcja copula Archimedesa jest dobrze
określona dla każdego n. Z równości (4.6.7) widzimy, że zmienne losowe Xi muszą
być całkowicie monotoniczne.

Uwaga

Powyższą zmianę konstrukcji można zobrazować jako pobieranie próbek θ z Θ we-
dług FΘ, a następnie poprowadzenie trajektorii dla niezależnego modelu ryzyka z
parametrem θ. Tak, więc zależność zostaje wprowadzana poprzez realizację modelu
dla wszystkich możliwych wartości θ. Odpowiednio, otrzymana zależność będzie tym
silniejsza im bardziej dytrybuanta Θ będzie rozrzucona. Taka zmiana w budowie
modelu jest tylko narzędziem do określenia wzoru na prawdopodobieństwo ruiny,
natomiast nie jest konieczna do stworzenia modelu zależności. Kolejno można rów-
noważnie pójść w dwie strony: dla każdego modelu ryzyka z całkowicie monotonicz-
nymi wielkościami roszczeń - zmiennymi losowymi Xi, oraz dla dodatniej zmiennej
losowej Θ zachodzi równość (4.6.7). Wówczas wzór (4.6.2) odnosi się do struktury
zależności opisanej za pomocą kopuły Archimedesa z generatorem ϕ = (L(FΘ))−1.
Alternatywnie można zacząć od określenia kopuły Archimedesa przez jej generator,
wówczas powyższe równania dadzą rozkład brzegowy, dla którego jawny wzór (4.6.2)
zachodzi.
Poniżej znajduje się kilka szczegółowych przykładów modeli zależnych.
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4.7 Przykłady modeli z zależnymi wielkościami
roszczeń

4.7.1 Roszczenia o rozkładzie Pareto z funkcją Copula Clay-
tona

Rozważmy model zrandomizowany z wykładniczymi wielkościami roszczeń (4.6.1)
oraz z parametrem Θ o rozkładzie Gamma(α, β) z gęstością:

fΘ(θ) =
βα

Γ(α)
θα−1e−βθ, θ > 0

Otrzymany wówczas rozkład łączny wielkości roszczeń to:

P (X1 > xn, ..., Xn > xn) =
∞∫
0

e−θ(x1+...+xn) βα

Γ(α)
θα−1e−βθdθ,

co wynika bezpośrednio z:

P (X1 > xn, ..., Xn > xn|Θ = θ) = e−θ(x1+...+xn).

Na podstawie twierdzenia (3.1) strukturę zależności rozważanego modelu można
przedstawić za pomocą rozkładów brzegowych oraz funkcji copula przeżycia Archi-
medesa z generatorem:

ϕ(t) = (L(FΘ))−1(t)

W tym celu obliczamy rozkład brzegowy wielkości roszczeń Xk, zgodnie ze wzorem
(4.6.7):

F̄X(x) =
∞∫
0
e−θxfΘ(θ)dθ =

∞∫
0
e−θx βα

Γ(α)θ
α−1e−βθdθ = ( β

x+β )α·

∞∫
0

(x+β)α

Γ(α) θ
α−1e−θ(x+β)dθ = ( β

x+β )α = (1 + x
β
)−α, x ­ 0

Wyrażenie pod całką (x+β)α

Γ(α) θ
α−1e−θ(x+β) jest gęstością zmiennej θ z rozkładem Gamma

z parametrami α oraz x+ β, co na przedziale (0,∞) całkuje się do 1.
Otrzymany rozkład brzegowy Xk dla k = 1, ..., n to rozkład Pareto(α, β). Mając
dany rozkład brzegowy, na podstawie wzoru (4.6.7) z dowodu twierdzenia (3.1),
można obliczyć generator funkcji copula Archimedesa:

ϕ(t) = (L(FΘ))−1(t) = (F̄X)−1(t) = t−1/α − 1.
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Kopuła Archimedesa z takim generatorem ϕ, opisana w przykładzie (2.2), jest ko-
pułą Claytona z parametrem α. Z równości (4.6.4) wynika dla tego modelu, że:

ψ(u) = FΘ(θ0) +
∞∫
θ0

λ

θc
e−(θ−λ

c
)u βα

Γ(α)
θα−1e−βθdθ.

Na początek obliczymy FΘ(θ0) poprzez oszacowanie ogonu dystrybunty zmiennej Θ
w punkcie θ0 i wykorzystanie prawdopodobieństwa przeciwnego :

F̄Θ(θ0) =
∞∫
θ0

βα

Γ(α)
θα−1e−βθdθ =

β

Γ(α)

∞∫
θ0

(βθ)α−1e−βθdθ =

 t := βθ
dt := βdθ
1
β
dt := dθ

 =

1
Γ(α)

∞∫
βθ0

tα−1e−tdt =
Γ(α, βθ0)

Γ(α)

Czyli:

FΘ(θ0) = 1− Γ(α, βθ0)
Γ(α)

gdzie Γ(α, x) =
∞∫
x
ωα−1e−ωdω jest niekompletną funkcją Gamma.

Pozostaje obliczyć drugą część tj. całkę ze wzoru na prawdopodobieństwo ruiny,
pamiętając z wcześniejszych rozważań, że θ0 = λ

c
:

∞∫
θ0

λ

θc
e−(θ−λ

c
)u βα

Γ(α)
θα−1e−βθdθ =

θ0e
θ0uβ

Γ(α)

∞∫
θ0

βα−1θα−2e−θ(u+β)dθ =

θ0e
θ0uβα

Γ(α)(u+ β)α−2

∞∫
θ0

(θ(β + u))α−2e−θ(u+β)dθ =

 t := θ(β + u)
dt := (β + u)dθ
1

(β+u)dt := dθ

 =

θ0e
θ0uβα

Γ(α)(u+ β)α−1

∞∫
(β+u)θ0

tα−2e−tdt = θ0e
θ0uβ(1 +

u

β
)−(α−1) Γ(α− 1, (β + u)θ0)

Γ(α)

Ostateczny wzór na prawdopodobieństwo ruiny dla danego przykładu to:

ψ(u) = 1− Γ(α, βθ0)
Γ(α)

+ θ0e
θ0uβ(1 +

u

β
)−(α−1) Γ(α− 1, (β + u)θ0)

Γ(α)
.

W szczególności, z (4.6.5) wynika:

lim
u→∞

ψ(u) = 1−
Γ(α, βλ

c
)

Γ(α)
(4.7.1)
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Wreszcie dla kapitału początkowego u=0 otrzymujemy prosty wzór:

ψ(0) = 1− Γ(α, βθ0)
Γ(α)

+ βθ0
Γ(α− 1, βθ0)

Γ(α)

Warto podjąć próbę porównania wyników wzoru na prawdopodobieństwo ruiny dla
modelu niezależnego i dla modelu z zależnymi ryzykami. Dlatego w celu porówna-
nia, dla obu przypadków załóżmy λ = c = 1 oraz, że wartości oczekiwane wielkość
roszczeń będą równe. Rozkład brzegowy w niezależnym modelu to zwykły rozkład
wykładniczy z wartości oczekiwaną E[X] = 1/θ. Z kolei rozkład brzegowy wielkości
roszczeń w modelu zależnym to rozkład Pareto(α, β). Wartość oczekiwana zmiennej
z rozkładu Pareto(α, β) to E[X] = α·β

α−1 . Tak, więc szukana równość to: 1
θ

= α·β
α−1 .

Dodatkowe ograniczenia narzuca warunek składki netto, tj. E[X] < c
λ
, czyli przy

omówionych założeniach: E[X] < 1. Dla modelu niezależnego warunek jest speł-
niony, gdy θ > 1, a dla zależnego, gdy β < α−1

α
. Po rozważeniu ograniczeń można

zaproponować odpowiednie parametry np.: θ = 2, α = 3, β = 1
3 .

Kolejno zostaną obliczone wzory na prawdopodobieństwo ruiny dla modelu nieza-
leżnego i z zależnościami.

Prawdopodobieństwo ruiny w modelu niezależnym:

ψ(u) = min{1
2
exp{−u}, 1}

Prawdopodobieństwo ruiny w modelu z zależnymi wielkościami roszczeń:

ψ(u) = 1−
Γ(3, 1

3)
Γ(3)

+ eu
1
3

(1 + 3u)−2 Γ(2, 1
3 + u)

Γ(3)

Wyniki obliczeń potrzebnych do ostatecznego wzoru, wykonane w Matlabie:

Γ(3) =
∞∫
0
x2e−xdx = 2

Γ(3, 1/3) =
∞∫

1/3
x2e−xdx = 25

9 e
−1/3

Γ(2, 1/3 + u) = (4/3 + u)e−(1/3+u)

Prowadzi to do ostatecznego wzoru na prawdopodobieństwo ruiny w modelu zależ-
nym:

ψ(u) = 1− 25
18
e−1/3 +

4
3 + u

6(1 + 3u)2
e−1/3
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Z wykresu odczytujemy, że prawdopodobieństwo ruiny dla modelu niezależnego jest
z początku dużo wyższe niż prawdopodobieństwo ruiny w modelu z zależnymi ryzy-
kami, ale również szybciej maleje. Dla u > 4 prawdopodobieństwo ruiny dla modelu
niezależnego jest już mniejsze. Przykładowo obliczę prawodpodobieństwa ruiny obu
modeli dla u=0 oraz dla u=5:

Model niezależny:

ψ(0) = min{1
2
, 1} = 0, 5

ψ(5) = min{1
2
exp{−5}, 1} = 0.5 · e−5 ≈ 0, 0035

Model zależny:

ψ(0) = 1− 25
18
e−1/3 +

4
18
e−1/3 = 1− 21

18
e−1/3 ≈ 0, 2

ψ(5) = 1− 25
18
e−1/3 +

4
3 + 5

6(1 + 15)2
e−1/3 ≈ 0, 0077

Dla zerowego kapitału początkowego prawdopodobieństwo ruiny w modelu niezależ-
nym jest dużo większe, ale dla u = 5 jest już nieznacznie mniejsze niż w modelu z
zależnymi ryzykami. Poniżej został umieszczony wykres funkcji copula przeżycia dla
obu modeli, zgodnie z ustalonymi parametrami, dla dwóch zmiennych X i Y:
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4.7.2 Roszczenia o rozkładzie Weibull’a z funkcją Copula
Gumbel’a

Rozważmy kolejny model zależności. Tym razem zmienna losowa Θ pochodzi z roz-
kładu stabilnego (1/2) (zwanego również rozkładem Levy’ego) z gęstością:

fΘ(θ) =
α

2
√
πθ3

e−α
2/4θ, θ > 0

Otrzymany wówczas rozkład łączny wielkości roszczeń to:

P (X1 > x1, ..., Xn > xn) =
∞∫
0

e−θ(x1+...+xn) α

2
√
πθ3

e−α
2/4θdθ

Analogicznie do poprzedniego przykładu zostanie obliczony rozkład brzegowy F̄X(x)
i generator funkcji copula, aby następnie skorzystać z twierdzenia 3.1. W celu otrzy-
mania rozkładu brzegowego zmiennej X1, należy wykluczyć z rozkładu łącznego
wpływ pozostałych zmiennych przez podstawienie X2 = ... = Xn = 0:

F̄X(x) =
∞∫
0

e−θxfΘ(θ)dθ = exp{−αx1/2}, x ­ 0.

Uzyskany rozkład brzegowy to rozkład Weibull’a z parametrem kształtu 1/2. Po-
nieważ L(FΘ)(s) = F̄Θ(s) = e−α

√
s, to otrzymany generator ϕ(t), jako funkcja od-

wrotna ogona dystrybuanty brzegowego rozkładu wielkości roszczeń, ma wartość
(L(FΘ))−1(t) = (− ln t)2 (dla wszystkich wartości α). Zgodnie z definicją dana ko-
puła Archimedesa jest kopułą Gumbel’a (przykład 2.2), którą opisuje wzór:

C2
Gumbel(F1(x1), ..., Fd(xd)) = exp

−( d∑
i=1

(−ln(1− e−α
√
xi))2

)1/2 .
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Należy pamiętać, że rozkład brzegowy roszczeń zmienia się w zależności od wyboru
α, natomiast kopuła pozostaje niezmieniona. Z równości (4.6.5) otrzymujemy:

ψ(u) = FΘ(λ/c) +
∞∫

λ/c

λ

θc
e−θueλc/u

α

2
√
πθ3

e−α
2/4θdθ,

co można też wyrazić za pomocą funkcji błędu

Erfc(z) = 1− Erf(z) =
2√
π

∞∫
z

e−ω
2
dω = 2Φ(−z

√
2)

jako:

ψ(u) = Erfc( α

2
√
λ/c

) + λ
α2c
e−α

2c/4λ(− 2α√
πλ/c

+ e(cα−2
√
uλ)2/4cλ(1 + α

√
u)·

Erfc(
√
uλ/c− α

2
√
λ/c

)+e(cα+2
√
uλ)2/4cλ(−1 + α

√
u)Erfc(

√
uλ/c+ α

2
√
λ/c

))

Dla z > 0: Erfc(z) = Γ(1/2, z2)/
√
π. Dla u=0 otrzymujemy:

ψ(0) = Erfc(
α

2
√
λ/c

)−
2
√
λ/c

α
√
π
e−cα

2/4λ +
2λ
cα2

Erf(
α

2
√
λ/c

)

oraz
lim
u→∞

ψ(u) = Erfc(
α

2
√
λ/c

)

Jeśli FΘ(a) = 0 dla a > 0 (tzn. nie ma żadnej masy prawdopodobieństwa w okolicach
0), otrzymany rozkład brzegowy wielkości roszczeń jest lekkoogonowy. Oznacza to,
że ogon dystrybuanty da się ograniczyć przez pewną funkcję wykładniczą.

Tak jak w poprzednim przykładzie spróbujmy porównać model niezależny z mode-
lem z zależnymi ryzykami (tym razem Θ ma rozkład stabilny (1/2)). Zakładamy
λ = c = 1 oraz, że wartości oczekiwane wielkość roszczeń w modelach będą równe.
Wartość oczekiwana zmiennej z rozkładu Weibulla to: 1

α2
, czyli szukamy parametrów

spełniających równość: 1
θ

= 2
α2

. Dodatkowo, średnia szkoda musi być mniejsza od
składki tj.: E[X] < c

λ
= 1. Parametry spełniające wszystkie podane warunki to np.:

θ = 2, α = 2. Kolejno zostaną obliczone wzory na prawdopodobieństwo ruiny dla
modelu niezależnego i z zależnościami.

Prawdopodobieństwo ruiny w modelu niezależnym:

ψ(u) = min{1
2
exp{−u}, 1}
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Prawdopodobieństwo ruiny w modelu z zależnymi wielkościami roszczeń:

ψ(u) = Erfc(1) + 1
4e
−1(− 4√

π
+ e(1−

√
u)2(1 + 2

√
u)·

Erfc(
√
u− 1) + e(1+

√
u)2(−1 + 2

√
u)Erfc(

√
u+ 1))

Kolejno zostały porównane prawdopodobieństwa ruiny dla kilku wybranych wartości
kapitału początkowego:

Tak, jak w poprzednim przykładzie, dla zerowego kapitału początkowego prawdo-
podobieństwo ruiny w modelu niezależnym jest większe, ale również szybciej maleje.
Już dla u=1 prawdopodobieństwo ruiny w modelu niezależnym jest mniejsze niż w
modelu z zależnymi ryzykami.
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4.7.3 Odstępy między roszczeniami o rozkładzie Pareto z
funkcją Copula Claytona

Rozważmy model, gdzie parametr Λ ma rozkład Gamma(α, β) z gęstością:

fΛ(λ) =
βα

Γ(α)
λα−1e−βλ, λ > 0.

Wzór na rozkład brzegowy odstępów czasowych jest analogiczny do (4.6.7):

F̄T (t) =
∞∫
0

e−λtfΛ(λ)dλ = (1 + t/β)−α , t ­ 0.

Natomiast ich strukturę zależności, zgodnie z twierdzeniem (??), opisuje funkcja
copula Claytona z generatorem:

ϕ(t) = t−1/α − 1.

Jeśli rozważamy szczególny przypadek, gdy wielkości roszczeń mają rozkład wykład-
niczy z parametrem 1

EX
(tym razem ustalonym), to otrzymujemy wzór (??):

ψλ(u) = min{EXλ

c
exp{−(

1
EX
− λ

c
)u}, 1}, u ­ 0. (4.7.2)

Zgodnie ze wzorem (??) oraz warunkiem zysku netto z wartością progową λ0 = c
EX

otrzymujemy ostateczny wzór na prawdopodobieństwo ruiny:

ψ(u) = EX
βαe−

u
EX

c
(β−u/c)−1−α

(
α−

Γ(α + 1, 1
EX

(cβ − u))
Γ(α)

)
+

Γ(α, βc
EX

)
Γ(α)

, u ­ 0.

(4.7.3)

W szczególności dla u=0 mamy:

ψ(0) = EX
1
βc

(
α−

Γ(α + 1, cβ
EX

)
Γ(α)

)
+

Γ(α, cβ
EX

)
Γ(α)

i

lim
u→∞

ψ(u) =
Γ(α, cβ

EX
)

Γ(α)
.

W tym przypadku również podejmiemy próbę porównania wyników z modelem nie-
zależnym. Dla obu modeli przyjmujemy 1

EX
= 1

3 , c = 1. Zakładam również, że
wartości oczekiwane odstępów czasowych w modelu zależnym i niezależnym będą
równe tj.: 1

λ
= αβ

α−1 oraz nie zostanie złamany warunek zysku netto tzn.: λ < c
EX

= 3.
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Parametry, które spełniają wszystkie powyższe warunki to np.: λ = 2, α = 3, β = 1
3 .

Poniżej przedstawiam wzory na prawdopodobieństwo ruiny dla modelu zależnego i
niezależnego, obliczone dla wybranych parametrów:

Prawdopodobieństwo ruiny w modelu niezależnym:

ψ(u) = min{2
3
exp{−u}, 1}

Prawdopodobieństwo ruiny w modelu z zależnymi odstępami czasowymi:

ψ(u) =
(1

3)3e−3

3
(
1
3
− u)−4

(
3− Γ(4, 1− 3u)

Γ(3)

)
+

Γ(3, 1)
Γ(3)

Potrzebne obliczenia zostały wykonane w Matlabie:

Γ(3, 1) =
∞∫
1
x2e−xdx = 5e−1

Γ(4, 1− 3u) =
∞∫

1−3u
x3e−xdx = e−(1−3u) ((1− 3u)3 + 3(1− 3u)2 + 6(1− 3u) + 6)

Ostateczny wzór dla modelu zależnego to:

ψ(u) =
e−3u

34
(
1
3
− u)−4

(
3− e−(1−3u)

2
((1− 3u)3 + 3(1− 3u)2 + 6(1− 3u) + 6)

)
+

5
2e

Wzory zostały naniesione na wykres.

Otrzymane prawdopodobieństwo ruiny w modelu z zależnościami, dla każdego u ­ 0,
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jest dużo wyższe niż w modelu niezależnym. Poniżej obliczę prawdopodobieństwa
ruiny w obu modelach dla przykładowych wartości u:

Model niezależny:

ψ(0) = min{2
3
, 1} =

2
3

= 0, (6)

ψ(5) = min{2
3
exp{−5}, 1} =

2
3
· e−5 ≈ 0, 0045

Model zależny:

ψ(0) = 3− Γ(4,1)
Γ(3) + Γ(3,1)

Γ(3) =≈ 0, 9767

ψ(5) = e−3·5

(3·( 13−5))4

(
3− e−(1−3·5)

2 ((1− 3 · 5)3 + 3(1− 3 · 5)2 + 6(1− 3 · 5) + 6)
)

+
5
2e ≈ 0, 9304

4.7.4 Odstępy między roszczeniami o rozkładzie Weibulla z
funkcją Copula Gumbel’a

Rozważmy model, w którym zmienna losowa Λ (nasz czynnik ”frailty”) ma rozkład
stabilny (1/2) z gęstością:

fΛ(λ) =
α

2
√
πλ3

e−α
2/4λ, λ > 0

Wtedy, analogicznie do przykładu (4.2), otrzymany rozkład brzegowy odstępów cza-
sowych Tk to:

F̄T (t) =
∞∫
0

e−λtfΛ(λ)dλ = exp{−αt1/2}, t ­ 0

Oznacza to, że odstępy czasowe mają rozkład Weibulla z parametrem kształu rów-
nym 1/2, natomiast ich struktura zależności, na podstawie twierdzenia (??), jest
opisana funkcją copula Gumbela tj. funkcją copula z rodziny copul Archimedesa
z generatorem ϕ(t) = (− ln t)2. Prawdopodobieństwo ruiny, dla tego modelu, na
podstawie wzoru (??) to:

ψ(u) = αie−iα
√
u/c−uθ

4θ
√
cu

(
−1 + Erf

(
α

2
√
cθ
− i
√
uθ
)

+ e2i
√
u/cαErfc

(
α

2
√
cθ

+ i
√
uθ
))

+

Erfc
(

α
2
√
cθ

)
(4.7.4)
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gdzie i =
√
−1. Można wykazać, że otrzymana część urojona z prawej strony równa-

nia (4.7.4) jest równa zero, co oznacza, że wyrażenie jest w istocie liczbą rzeczywistą.
Dla u=0 otrzymujemy:

ψ(0) =
(

1− α2

2cθ

)
Erfc

(
α

2
√
cθ

)
+

α√
θπc

e−α
2/4cθ

dla dużych u: limu→∞ψ(u) = Erfc( α
2
√
cθ

).

W celu porównania prawdopodobieństwa ruiny opisywanego modelu z modelem
niezależnym, należy ustalić parametry λ, α, EX, c. Przy czym, wartości ocze-
kiwane odstępów czasowych w obu modelach powinny być równe, tj.: 1

λ
= 2

α2

oraz musi być spełniony warunek zysku netto tj.: λ < c
EX

. Wybrane wartości to:
λ = α = 2, 1

EX
= 3, c = 1. Poniżej przedstawiam wzory, dla obu modeli, dla wybra-

nych parametrów:

Model niezależny:

ψ(u) = min{2
3exp{−u}, 1}

ψ(0) = min{2
3exp{0}, 1} = 2

3 = 0, (6)

limu→∞ψ(u) = 0

Model zależny:

ψ(u) = 2ie−i2
√
u−3u

12
√
u

(
−1 + Erf

(
2

2
√

3
− i
√

3u
)

+ e2i
√
u2Erfc

(
2

2
√

3
+ i
√

3u
))

+

Erfc
(

2
2
√

3

)
ψ(0) =

(
1− 2

3

)
Erfc

(
1√
3

)
+ 2√

3π
e−
1
3 ≈ 0, 6042

limu→∞ψ(u) = Erfc( 1√
3
) ≈ 0, 4122

Dla u = 0 prawdopodobieństwo ruiny w modelu niezależnym jest większe, jednak
wraz ze wzrostem u, dąży ono do 0. Natomiast dolna granica prawdopodobieństwa
ruiny w modelu zależnym to w przybliżeniu 0,4122, co oznacza, że dla dużych u,
prawdopodobieństwo ruiny w tym modelu jest większe niż w niezależnym.

Uwaga

Dla ciężko-ogonowych rozkładów odstępów czasowych między roszczeniami zwykłe



54 ROZDZIAŁ 4. *PRAWDOPODOBIEŃSTWO RUINY: CZAS CIĄGŁY

techniki, takie jak łańcuchy Markowa nie działają, a w literaturze nie jest dostępny
żaden jawny wzór na prawdopodobieństwo ruiny. W konsekwencji, wzory (4.7.3) i
(4.7.4) mogą być pierwszymi przykładami jawnych wzorów na prawdopodobieństwo
ruiny dla identycznych, ciężkoogonowych rozkładów odstępów czasowych między
roszczeniami, z zależnościami opisanymi odpowiednio przez funkcję copula Claytona
i Gumbela.

4.8 Dalsze rozszerzenia metody mieszania

Pomysł mieszania przedstawiony w obecnej pracy może być kontynuowany na różne
sposoby. Oto kilka z nich:

Przykład 4.8.1 Jednym ze sposobów jest jednoczesne mieszanie odstępów czaso-
wych między roszczeniami oraz wielkości roszczeń, niezależnie od siebie. Prowadzi
to w obu przypadkach do funkcji copula Archimedesa. Prawdopodobieństwo ruiny
wyraża się wówczas wzorem:

ψ(u) =
∞∫
0

∞∫
0

ψ(θ,λ)(u)dFΘ(θ)dFΛ(λ)

gdzie ψ(θ,λ)(u) to warunkowe prawdopodobieństwo ruiny dla Θ = θ i Λ = λ. Jawny
wzór na ψ(θ,λ)(u), zawsze doprowadzi nas do otrzymania jawnego wzoru na ψ(u)
w modelach odnowy z zależnymi zarówno odstępami czasowymi jak i wielkościami
roszczeń.

Przykład 4.8.2 Istnieje również możliwość wprowadzenia zależności Archimedesa
pomiędzy wielkości roszczeń, a odstępy czasowe, w tym samym czasie wprowadza-
jąc zależności pomiędzy odstępami czasowymi i zależność pomiędzy wielkościami
roszczeń. Sposobem na to jest comotonic mixing, gdzie realizacja λ jest funkcją
deterministyczną realizacji θ w postaci:

λ(θ) = F−1
Λ (FΘ(θ)).

Prawdopodobieństwo ruiny w takim modelu jest opisane wzorem:

ψ(u) =
∞∫
0

ψ(θ,λ(θ))(u)dFΘ(θ),

gdzie ψ(θ,λ)(u) to warunkowe prawdopodobieństwo ruiny dla Θ = θ i Λ = λ.
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Przykład 4.8.3 Odwołując się do podrozdziału (4.1), w celu uzyskania wzoru na
prawdopodobieństwo ruiny dla pewnych, całkowicie monotonicznych rozkładów brze-
gowych roszczeń, konieczne było ustalenie ich struktury zależności. W rzeczywistości
istnieje sposób, aby zmienić strukturę zależności, pozostawiając jednocześnie asymp-
totyczny ogon rozkładu brzegowego roszczenia niezmieniony i nadal otrzymywać
jawne wzory.Niech proces nadwyżki będzie opisany wzorem:

R(t) = u+ ct−
N(t)∑
k=1

Xk −
N ′(t)∑
l=1

Yl

gdzie są dwa niezależne procesy Poisson’a: N ′(t) z intensywnością λ′ generujący nie-
zależne roszczenia Y1, Y2, ... o rozkładzie wykładniczym Exp(ν), gdzie ν jest ustaloną
stałą. Z kolei proces N(t) z intensywnością λ generuje strumień zależnych roszczeń
X1, X2, ..., tak jak w (4.6.1), gdzie Θ jest dodatnią zmienną losową. Jeśli rozkład
zmiennej Θ jest np. taki jak w podrozdziale (4.1) lub w podrozdziale (4.2), to zależne
roszczenia X1, X2, ... są ciężkoogonowe. Równoważnie możemy przedstawić powstały
proces ryzyka jako:

R(t) = u+ ct−
N ′′(t)∑
k=1

Zk,

gdzie N ′′(t) jest procesem Poisson’a o intensywności λ+ λ′ oraz brzegowe rozkłady
wielkości roszczeń Z1, Z2, ... są wyrażone jako:

fZ(x) =
λ

λ+ λ′
θe−θx +

λ′

λ+ λ′
νe−νx, x ­ 0. (4.8.1)

Oznacza to, że rozkład wielkości roszczeń jest mieszanką dwóch rozkładów wykładni-
czych, ale wymieszany jest po wartośćiach parametru θ. Brzegowy rozkład X1, X2, ...
określa zachowanie ogona, jeśli jest on ciężkoogonowy. Ponieważ dla ustalonego θ,
prawdopodobieństwo ruiny ψθ(u) w klasycznym modelu ryzyka z rozkładem wielko-
ści roszczeń z równania (4.8.1) ma jawną formę jako ważona suma dwóch wykładni-
czych wyrażeń, po raz kolejny otrzymywany jest jawny wzór na prawdopodobieństwo
ruiny na mocy (4.6.3). Należy pamiętać, że mieszanie strumienia zależnych roszczeń
X1, X2, ... z niezależnymi (w tym przypadku wykładniczymi) roszczeniami zredukuje
zależności. W szczególności, jeśli tau Kendall’a dwóch dowolnych roszczeń Xi, Xj

wynosi τ0, to wartość tau Kendall’a dla dwóch dowolnych roszczeń Zi, Zj w nowym
modelu wynosi τ1 = ( λ

λ+λ′ )
2τ0, ponieważ jedyny sposób na dodatnią korelację pomię-

dzy losowo wybranych wielkościami roszczeń jest wybrać dwa roszczenia pochodzące
z procesu N(t) i ponieważ prawdopodobieństwo, że roszczenie wygenerowane przez
N ′′(t) pochodzi z N(t) jest równe λ

λ+λ′ . W ten sposób określiliśmy metodę, w której
zależności pomiędzy wielkościami roszczeń powinny zostać osłabione, zachowanie
brzegowego ogona powinno zostać takie jak opisane w procesie N(t), a przez od-
powiednie wybranie parametru λ′, można wygenerować jawne wzory dla modeli dla
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każdej wartości τ1 pomiędzy 0 i τ0. Należy pamiętać, że odbywa się to kosztem utraty
jawnego typu zależności Archimedesa, który był dostępny dla λ′ = 0. Zamiast tego,
ogon łącznej dystrybuanty zmiennych Z1, Z2, ... otrzymano w następujący sposób:
każdy z zaistniałych roszczeń Zi jest typu Xi z prawdopodobieństwem λ

λ+λ′ oraz
typu Yi w pozostałych przypadkach. Wówczas łączna dystrybuanta jest odpowied-
nią mieszanką niezależnych typów Yi oraz struktury zależności Archimedesa typów
Xi.

W całkowicie analogiczny sposób można zmieniać strukturę zależność pomiędzy od-
stępami czasowymi, w dalszym ciągu otrzymując jawne wzory na prawdopodobień-
stwa ruiny.

Uwaga

Model ryzyka otrzymany w powyższym przykładzie obejmuje dwa rodzaje roszczeń:
niezależne, lekko-ogonowe roszczenia oraz zależne, ciężko-ogonowe (na odpowiednich
założeniach dla θ). W zakresie praktycznej interpretacji, może to rzeczywiście opi-
sywać realną sytuację portfela: zależność pomiędzy ciężko-ogonowymi wielkościami
roszczeń może pochodzić z niepewności parametrów, lub z innych źródeł korelacji
jak ryzyko środowiskowe, zmiany klimatu lub ryzyko prawne. Rzeczywiście, wiele
modeli wewnętrznych dla Solvency II współpracuje z regularnie zmieniającymi się
losowymi stratami agregowanymi przez kopułę przeżycia Claytona.

Uwaga
Analizując przykład (4.8.3), staje się oczywista możliwość wygenerowania wiele wię-
cej przykładów jawnych wzorów dla modeli ryzyka z zależnoscią przez zastąpienie
dystrybuanty rozkładu wykładniczego bardziej ogólną dystrybuantą dla której wzór
na ψθ(u) jest jawnie określony. Otrzymana struktura zależności oraz brzegowe roz-
kłady wielkości roszczeń będą wynikiem oddziaływania pomiędzy tym wyborem, a
rozkładem zmiennej Θ (analogicznie do równania (4.6.1).



Rozdział 5

Techniki statystyczne dla
rozkładów cia̧głych

W rozdziale tym zajmiemy siȩ opisem rozkładów cia̧głych, które służa̧ do modelo-
wania wielkości szkód oraz metodami statystycznymi pozwalaja̧cymi zidentyfikować
owe rozkłady na podstawie zgromadzonych danych.

Najpopularniejsze rozkłady cia̧głe używane w matematyce ubezpieczeniowej (nie
tylko w kontekście wielkości szkód) to:

• rozkład normalny N(µ, σ2)

• rozkłady fazowe, m.in.

- rozkład wykładniczy Exp(λ);

- rozkład Gamma Γ(α, β);

• rozkład logarytmiczno-normalny LN(µ, σ);

• rozkład Pareto Par(α, c);

• rozkład Weibulla

Rozkłady fazowe omówiliśmy krótko w Rozdziale ??. Podstawowe wiadomości o roz-
kładach normalnym, wykładniczym, Gamma, czy logarytmiczno-normalnym, wraz z
estymacja̧ parametrów, można znaleźć w Dodatku. Tutaj zajmiemy siȩ głównie roz-
kładami Pareto i ich modyfikacjami, szczególnie w kontekście dość skomplikowanej
estymacji parametru α.

Na pocza̧tek omówimy pewne techniki statystyczne służa̧ce do dopasowanie rozkładu
do danych.

57
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5.1 Dopasowanie rozkładu do danych

Bȩdziemy stosowali nastȩpuja̧ce funkcje do oceny dopasowania modelu empirycznego
do wybranego modelu teoretycznego:

• Dystrybuanta empiryczna F̂n(x) = 1
n
#{i = 1, ..., n : Xi ¬ x}. Wielkość ta

bȩdzie przybliżała prawdziwy rozkład szkód;

• Empiryczna funkcja kwantylowa Q̂n(p) = X∗i jeżeli p ∈
(
i−1
n
, i
n

]
, gdzie

X∗1 ¬ ... ¬ X∗n sa̧ uporza̧dkowanymi wielkościami szkód. Wielkość ta bȩdzie
przybliżała prawdziwa̧ funkcjȩ kwantylowa̧ Q(p) = F−1(p);

• Empiryczna funkcja nadwyżki eF̂n(u) =
∑n

i=1(Xi−u)I(u<Xi)∑n

i=1 I(u<Xi)
. Wielkość ta

bȩdzie przybliżała prawdziwa̧ średnia̧ funkcjȩ nadwyżki.

5.1.1 Dystrybuanta empiryczna

Z tzw. twierdzenia Kołmogorowa-Smirnowa mamy supx∈(0,∞) |F̂n(x) − F (x)| → 0,
n→∞. Tak wiȩc przy dużej liczbie obserwacji dystrybuanta empiryczna przybliża
prawdziwy rozkład szkody F .

Przykład 5.1.1 Rysunki poniżej otrzymane zostały w sposób nastȩpuja̧cy. Wyge-
nerowano n = 100 liczb X1, ..., Xn z rozkładu o gȩstości f(x) = λ exp(−λ(x − 1)),
x > 1. Jest to po prostu przesuniȩty o 1 rozkładem wykładniczym (chodzi o to,
by rozkład wykładniczy i Pareto miały te same nośniki). Bierzemy λ = 1. Dla tak
wylosowanych liczb tworzymy dystrybuantȩ empiryczna̧ F̂n. Do dystrybuanty em-
pirycznej dopasowujemy najpierw rozkład wykładniczy, a potem Pareto. Ponieważ
E [X1] = 1

λ
+1, wiȩc metoda̧ momentów λ̂ = 1∑n

i=1Xi/n−1 . Na jednym rysunku (lewy)

przedstawiamy dystrybuantȩ empiryczna̧ F̂n i przesuniȩty rozkład wykładniczy o
gȩstości λ̂ exp(−λ̂(x − 1)). Dopasowanie jest dobre. Spróbujemy teraz dopasować
rozkład Pareto. Estymujemy α̂ = n∑

logXi
, i wyrysowujemy F̂n wspólnie z rozkładem

Par(α̂, 1). Dopasowanie nie jest dobre. 1

�
1ciagle-1.mws
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5.1.2 Wykres kwantylowy (Q-Q plot)

Idea wykresu kwantylowego jest nastȩpuja̧ca: wybierzmy rozkład F . Nanosimy na
jednym układzie współrzȩdnych pary punktów postaci (Q(p), Q̂n(p)), p ∈ (0, 1).
Najbardziej typowym wyborem punktów p jest 1

n
, 2
n
, ..., n−1

n
, 1. Wtedy Q̂n( i

n
) = X∗i .

Z pewnych przyczyn technicznych wybiera siȩ 1
n+1 ,

2
n+1 , ...,

n−1
n+1 ,

n
n+1 . Pary punktów

bȩda̧ miały wiȩc współrzȩdne: (kwantyl teoretyczny, kwantyl próbkowy). Jeżeli te-
raz utworzona wykres bȩdzie w przybliżeniu linia̧ prosta̧, bȩdzie to oznaczało, że
kwantyle próbkowe sa̧ bliskie kwantylom teoretycznym, a wiȩc nasze dane pasuja̧ do
wybranego przez nas modelu teoretycznego.

Przykład 5.1.2 Wykładniczy wykres kwantylowy: Dla rozkładu wykładni-
czego Exp(λ) mamy: F (x) = 1− exp(−λx), Q(p) = − 1

λ
log(1− p). Wykres kwanty-

lowy bȩdzie miał wiȩc postać: {(− log(1− i
n+1), X∗i ), i = 1..., n}. W przypadku, gdy

otrzymalismy wykres w przybliżeniu liniowy, to ma sens dopasowanie ”najlepszej”
funkcji liniowej y = ax metoda̧ najmniejszych kwadratów. Współczynnik nachylenia
a ma wtedy postać

â =
∑n
i=1 X

∗
i qi∑n

i=1 q
2
i

,
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gdzie qi = − log(1− i
n+1), i jest oszacowaniem parametru 1/λ.

Weibullowski wykres kwantylowy: Dla rozkładu Weibull(λ, r) mamy: F (x) =

1 − exp(−λxr), Q(p) =
(
− 1
λ

log(1− p)
)1/r

lub alternatywnie logQ(p) = 1
r

log( 1
λ
) +

1
r

log(− log(1 − p)). Wykres kwantylowy bȩdzie miał wiȩc postać: {(log(− log(1 −
i

n+1)), log(X∗i )), i = 1..., n}. W przypadku, gdy otrzymalismy wykres w przybliżeniu
liniowy, to nachylenie prostej stanowi aproksymacjȩ parametru 1/r, natomiast mi-
nimalna wartość na osi x przybliża log(1/λ)/r.

Log-normalny wykres kwantylowy: Niech Φ oznacza dystrybuantȩ standardo-
wego rozkładu normalnego. Lognormalny wykres kwantylowy jest postaci {Φ−1( i

n+1), log(X∗i )), i =
1..., n}. Nachylenie krzywej daje aproksymacjȩ dla σ, a minimalna wartość na osi
poziomej przybliża wartość µ.

Wykres kwantylowy Pareto: Dla rozkładu Par(α) mamy: Q(p) = (1−p)−1/α−1
lub alternatywnie logQ(p) = − 1

α
log(1− p). Rysunek kwantylowy bȩdzie miał wiȩc

postać: {(− log(1− i
n+1), log(X∗i )), i = 1..., n}. W przypadku, gdy otrzymalismy wy-

kres w przybliżeniu liniowy, to nachylenie prostej stanowi aproksymacjȩ parametru
1/α.

Nastȩpnie, do wygenerowanych liczb z rozkładu wykładniczego, stosujemy Weibul-
lowski wykres kwantylowy, log-normalny wykres kwantylowy, wykres kwantylowy
Pareto. Żaden wykres nie jest ’linia̧ prosta̧’.

Na podstawie Q-Q plots odrzucimy na pewno rozkład Pareto, raczej też odrzucimy
rozkład log-normalny, nie bȩdziemy jednak w stanie odrzucić ’hipotezy’ o tym, że
rozkład jest Weibulla.2

�

Przykład 5.1.3 Do wygenerowanych liczb z rozkładu Pareto, stosujemy Weibul-
lowski wykres kwantylowy, log-normalny wykres kwantylowy, wykres kwantylowy
Pareto. Tylko ostatni rysunek jest ’linia̧ prosta̧’.3
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Rysunek 5.1.1: Wykładniczy wykres kwantylowy dla 100 danych z rozkładów Exp(2) i Par(1.1, 1). Lewy
wykres pokazuje dobre dopasowanie do rozkładu wykładniczego, podczas gdy prawy wykres pokazuje, że dane
zostały z rozkładu ’ciȩższego’ niż wykładniczy.
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5.1.3 Średnia funkcja nadwyżki

Innym sposobem diagnostyki jest tzw. średnia funkcja nadwyżki (mean excess func-
tion))

eF (u) = E [X − u|X > u] .

Funkcja ta jednoznacznie wyznacza dystrybuantȩ. Bezpośrednio z definicji otrzymu-
jemy

eF (u) =
E [(X − u)I(X > u)]

P (X > u)

=
∫∞
u F (s)ds
F (u)

=
E [(X − u)+]
P (X > u)

.

przy założeniu, że E [X] <∞. W praktyce estymujemy ta̧ funkcjȩ próbkowa̧ funkcja̧
nadwyżki eF̂n(u). Funkcjȩ eF̂n(u) rysuje siȩ w punktach u = X∗n−k, przyjmuje ona
wtedy postać eF̂n(X∗n−k) = 1

k

∑k
i=1X

∗
n−i+1 − X∗n−k, k = 1, ..., n − 1. Dla rozkładu

wykładniczego Exp(λ) mamy eF (u) = 1
λ
. W przypadku, gdy dane pochodza̧ z roz-

kładu ciȩższego niż wykładniczy, to funkcja nadwyżki jest rosna̧ca, w przeciwnym
razie jest maleja̧ca.
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Rysunek 5.1.2: Funkcja nadwyżki dla 300 danych z rozkładów Exp(3) i Par(3, 1).
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5.2 Rozkład Pareto

Nazwa tej klasy rozkładów wziȩła siȩ od nazwiska Vilfredo Pareto (1897), szwaj-
carskiego ekonomisty, który bogactwo w populacji opisywał za pomoca̧ M = Ax−α,
gdzie M jest iloscia̧ osób, które maja̧ dochód wiȩkszy niż x. Jeżeli F (x) = P (X >
x) = cαx−α, x > c, to mówimy, że zmienna losowa X ma rozkład Pareto Par(α, c).
Jeżeli c = 1 to bȩdziemy pisali Par(α). Gȩstość zadana jest wzorem f(x) = cαx−(α+1),
x > c. Rozklad taki ma średnia̧

E [X] =
cα

α− 1
. (5.2.1)

Aby powyższa tożsamość miała sens, musimy założyć α > 1.

Rozkład Pareto jest tzw. rozkładem ciȩżkoogonowym. W szczególności, dla
α > k nie istnieje k-ty moment.

Dla próbyX1, . . . , Xn z rokładu Par(α, c) estymujemy parametry za pomoca̧ metody
najwiȩkszej wiarogodności. Jeżeli L(α, c, x1, . . . , xn) =

∏n
i=1 f(xi), to

logL(α, c;X1, . . . , Xn) = n log (α) + nα log c− (α + 1)
n∑
i=1

logXi.

Szukamy maksimum (wzglȩdem α i c) funkcji L. Różniczkuja̧c wzglȩdem α i c oraz
przyrównuja̧c do zera, dostajemy układ równań

α =
n∑n

i=1 log(Xi/c)
, (5.2.2)

α =
α + 1
n

n∑
i=1

(1 +Xi/c)−1, (5.2.3)

który należy rozwia̧zać numerycznie.

Jeżeli chcemy uchronić siȩ od procedur numerycznych możemy posta̧pić w nastȩpuja̧cy
sposób. Parametr α estymujemy za pomoca̧ wzoru (5.2.2), a nastȩpnie wstawiamy
estymator c jako

ĉ = min(X1, . . . , Xn). (5.2.4)

2Plik ciagle-2a.mws
3Plik ciagle-2b.mws
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Postȩpowanie takie jest uzasadnione, gdyż musimy mieć c ¬ min(X1, . . . , Xn) i w
celu maksymalizacji funkcji wiarogodności kładziemy (5.2.4). Należy dodać, że tak
otrzymany estymator dla c jest obcia̧żony: E [ĉ] = ncα

nα−1 6= c. Rzeczywiście, licza̧c
rozkład minimum dostajemy

P (min(X1, . . . , Xn) > x) = P (X > x)n = cnαx−nα,

a wiȩc rozkład Pareto Par(nα, c) (patrz (5.2.1)).

Jeżeli chcemy uchronić siȩ od procedur numerycznych lub dysponujemy tylko ob-
serwacjami przekraczaja̧cymi poziom u możemy posta̧pić jeszcze w inny sposób:
Jeżeli X ∼ Par(α, σ), to rozkład warunkowy X|X > u jest też Pareto, nie zależy
od σ i jego dystrybuanta ma postać 1 − uαx−α, czyli Par(α, u). Oznaczaja̧c przez
Yi, i = 1, . . . , n, realizacje zmiennej losowej Y o powyższym rozkładzie warunkowym,
funkcja wiarogodności ma postać

lnL(α;Y1, . . . , Yn) = n log (α) + nα log u− (α + 1)
n∑
i=1

log Yi.

Różniczkuja̧c wzglȩdem α i przyrównuja̧c do zera dostajemy

α̂ =
n∑n

i=1 log(Yi/u)
. (5.2.5)

Jeżeli nasze dane dotycza̧ nie tych obserwacji, które sa̧ wiȩksze od u, ale k najwiȩkszych
obserwacji, to

α̂ =
k∑k

i=1 log(X∗n+1−i/X
∗
n−k)

, (5.2.6)

gdzie X∗1 < X∗2 < · · ·X∗n. W dalszej czȩści bȩdziemy nazywali estymator zadany
wzorem (5.2.5) estymatorem Hilla typu I, a w drugim przypadku estymatorem Hilla
typu II.

Parametr σ można wyestymować z zależności σ̂ = u/α̂. Jeżeli estymacje oparte sa̧
na k najwiȩkszych obserwacjach, to σ estymujemy z warunku

σ̂ = X∗n−k

(
k

n

)1/α̂

.

5.2.1 *Rozkłady typu Pareto

Mówimy, że L jest funkcja̧ wolno zmieniaja̧ca̧ siȩ, jeżeli limx→∞
L(tx)
L(x) = 1 dla

każdego t > 0. Typowe przykłady to L(x) = 1, L(x) = log x, L(x) = log log x.
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Rozkłady, dla których F (x) = x−αL(x), L jest funkcja̧ wolno zmieniaja̧ca̧ siȩ w
nieskończoności, nazywamy rozkładami typu Pareto. W klasie tej znajduja̧ siȩ
m.in. omówione wcześniej rozkłady Pareto oraz rozkłady Burra, log-Gamma, log-
logistyczny.

Przykład 5.2.1 Rozkład Burra ma ogon F̄ (x) =
(

β
β+xγ

)λ
, α, γ, λ, x > 0. Roz-

kład o gȩstości

f(x) =
βα(log x)α−1x−β−1

Γ(α)
, x > 1,

gdzie α > 0 nazywamy rozkładem log-Gamma. Rozkład o ogonie F̄ (x) = (1 +
βx)−α, α > 1, β, x >, nazywamy rozkładem log-logistycznym.

�

Wykładnik α charakteryzuje tempo zbieżności ogona do 0 i bȩdziemy go nazywali
indeksem Pareto.

Zauważmy delikatna̧ różniȩ pomiȩdzy rozkładami Pareto a typu Pareto. Z uwagi na
obecność funkcji L mamy jedynie informacjȩ o asymptotycznym zachowaniu ogona
F̄ (x) = x−αL(x). Funkcja L jest zazwyczaj nieznana i niemżliwa do wyestymowa-
nia. Powoduje to problemy zwia̧zane z estymacja̧ parametru α, w przeciwieństwie
do zwykłego rozkładu Pareto.

Parametr α można estymować w sposób nastȩpuja̧cy: Niech γ = 1
α

. Wtedy za esty-
mator γ kładziemy

Hk,n =
1
k

k∑
j=1

log(X∗n−j+1)− log(X∗n−k), k = 1, . . . , n.

Otrzymujemy wtedy zbiór tzw. estymatorów Hilla.

Problem, który siȩ pojawia, to wybór wartości k = kopt dla której bȩdziemy rozwa-
żali estymator Hilla Hk,n. Procedura wyboru bȩdzie oparta na własnościach wykresu
kwantylowego, który został opisany w Rozdziale 5.1.2. Wykres kwantylowy Pareto
jest postaci {(− log(1− i

n+1), log(X∗i )), i = 1, ..., n}. Jeżeli dopasowanie do rozkładu
Pareto jest dobre, to wykres kwantylowy jest w przybliżeniu liniowy i jego nachylenie
można traktować jako estymator parametru γ. Estymator Hilla Hk,n jest oszacowa-
niem nachylenia wykresu na prawo od punktu (− log( k+1

n+1), log(X∗n−k)). Optymalna̧
wartość kopt (a tym samym γopt := Hkopt,n) wyznaczymy na podstawie linii regre-
sji l1, . . . , ln−1 przechodza̧cych przez punkty, odpowiednio, (− log( k+1

n+1), log(X∗n−k)),
k = 1, . . . , n − 1 i maja̧cych nachylenie, odpowiednio, Hk,n tak, aby średni bła̧d
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kwadratowy dopasowania prostej lkopt do punktów {(− log( j
n+1), log(X∗n−j+1)), j =

1, . . . , kopt} na prawo od (− log(kopt+1
n+1 ), log(X∗n−kopt)) był minimalny. Równanie lk ma

postać

y = logX∗n−k +Hk,n

(
x+ log

(
k + 1
n+ 1

))
. (5.2.7)

Licza̧c średni bła̧d kwadratowy MSE(k) dostajemy

MSE(k) : =
1
k

k∑
j=1

(
log(X∗n−j+1)− logX∗n−k −Hk,n

(
− log

(
j

n+ 1

)
+ log

(
k + 1
n+ 1

)))2

=
1
k

k∑
j=1

(
log

(
X∗n−j+1

X∗n−k

)
−Hk,n log

(
k + 1
j

))2

.

Wartość optymalna̧ kopt wyznaczamy z warunku

MSE(kopt) = min
k
MSE(k).

Ponieważ estymator Hilla jest asymptotycznie normalny, otrzymujemy przedział uf-
ności na poziomie p dla indeksu Pareto:

(γ−opt, γ
+
opt) =

 γopt

1 + zp/2√
kopt

,
γopt

1− zp/2√
kopt

 . (5.2.8)

Wykres kwantylowy służy także do estymacji kwantyli. Kłada̧c w (5.2.7) z k = kopt
oraz x = − log p możemy traktować y jako estymator logQ(1 − p) lub exp(y) jako
estymator Q(1− p), oznaczmy go przez q̂n,p.

log q̂n,p = logX∗n−k +Hk,n log
(

k + 1
(n+ 1)p

)
.

Daje to

q̂n,p = X∗n−k

(
k + 1

(n+ 1)p

)Hk,n
, (5.2.9)

gdzie q̂n,p jest kwantylem rzȩdu p opartym na próbce n elementowej. Używaja̧c
przedziału ufności dla γopt dostajemy analogiczne oszacowanie dla q̂n,p:X∗n−k

(
k + 1

(n+ 1)p

)γ−opt
, X∗n−k

(
k + 1

(n+ 1)p

)γ+opt . (5.2.10)
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Podobnie jak wyżej dokonujemy estymacji P (X > x):

(
k + 1
n+ 1

)(
x

X∗n−k

)−1/Hk,n

. (5.2.11)

Przykład 5.2.2 4Wygenerowano 100 liczb z rozkładu Par(1.5, 1). Mamy wtedy
γ = 1/α = 0.66. Przedstawimy najpierw wykres dla estymatora Hilla:

Wyliczamy wartości MSE(k) dla k = 1, . . . , n. Z rysunku odczytujemy, że kopt jest
pomiȩdzy 90 a 100. Wyliczaja̧c: kopt = 95.
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Przedzial ufnosci dla kwantyli

Wartość Hkopt,n = γopt = 0.5867 daje optymalny wybór dla estymatora parametru
γ. Ze wzoru (5.2.8) dostajemy dla p = 0.05: [0.48, 0.73], a wiȩc prawdziwa wartość
0.66 nalezży do przedziału ufności.

Dalej, ze wzorów (5.2.9), (5.2.10) dostajemy kwantyle wraz z przedziałem ufności:

Nastȩpnie estymujemy wartości P (X > x) za pomoca̧ wzoru (5.2.11) (kółka) i
P (X > x) = x−αopt(linia cia̧gła). Wartości te pokrywaja̧ siȩ.

4ciagle-4.mws
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�

Pojawiaja̧ siȩ dwa naturalne pytania:

1. Czy warto stosować skomplikowana̧ procedurȩ otrzymywania estymatora Hilla
zamiast np. używać metodȩ momentów?

2. Jeżeli pozytywnie odpowiemy na poprzednie pytanie, to po co estymować war-
tości P (X > u) za pomoca̧ wzoru (5.2.11) zamiast od razu z P (X > x) =
x−αopt?

W przypadku pierwszego pytania odpowiedź otrzymamy w rozdziale poświȩconym
ciȩżkim ogonom. Estymatory MM sa̧ obarczone dużym błȩdem. Po drugie estyma-
tory MM stosuja̧ siȩ w przypadku rozkładu Pareto P (X > x) = x−α, a nie rozkładu
typu Pareto P (X > x) = x−αL(x) z nieznana̧ funkcja̧ L. Powyższa uwaga daje też
odpowiedź na drugie pytanie. Nie wiemy, czy nasze dane pochodza̧ z rozkładu Pa-
reto czy z rozkładu typu Pareto i przyjȩcia założenia, że L(x) ≡ 1 może prowadzić
do znacznych błȩdów.

Przykład 5.2.3 5Wygenerowano 100 liczb z rozkładu o dystrybuancie 1−x−1.5/ ln(exp(1)∗
x), x ­ 1 oraz z o dystrybuancie 1− x−100/ ln(exp(1) ∗ x), x ­ 1. W każdym przy-
padku policzyliśmy estymator Hilla, odpowiednio lewy i rawy rysunek.

Estymator zachowuje siȩ źle dla α = 1.5. Wytłumaczenie może być nastȩpuja̧ce.
Funkcja ln(exp(1) ∗ x) powoduje szybsze malenie ogona. W efekcie estymator ma
tendencjȩ do pokazywania wiȩkszej wartości niż prawdziwe α, czyli mniejsze warto-
ści niż prawdziwe γ. W przypadku α = 100 ogon maleje na tyle szybko, że dodatkowy
efekt jest niezauważalny.

�

5ciagle-5.mws
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5.3 Rozkłady z ciȩżkimi ogonami

W praktyce stosuje sie czȩsto metodȩ momentów, tzn. estymuje siȩ parametry mo-
delu na bazie momentów próbkowych, np.

µ̂ =
1
n

n∑
i=1

Xi.

Rozważmy próbȩ X1, . . . , Xn z rozkładu Par(α, 1) i załóżmy na moment, że wiemy
iż X∗n = max{X1, . . . , Xn} ¬ d. Obliczamy

E [µ̂|X∗n ¬ d] = E [µ̂|X1 ¬ d, . . . , Xn ¬ d]

=
1
n

n∑
i=1

E [Xi|X1 ¬ d, . . . , Xn ¬ d]

= E [X1|X1 ¬ d, . . . , Xn ¬ d]
= E [X1|X1 ¬ d]

=
α

α− 1
1− (1 + d)−(α−1)

1− (1 + d)−α
− 1.
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Ponieważ prawdziwa średnia wynosi 1
α−1 , wiȩc bła̧d wzglȩdny jaki popełniamy esty-

muja̧c średnia̧ za pomoca̧ µ̂ wynosi:

b :=
E [µ̂|X∗n ¬ d]− 1

α−1
1

α−1

=
−α(1 + d)−(α−1) − (1 + d)−α

1− (1 + d)−α
.

Niech teraz p ∈ (0, 1) i wybierzmy d takie, że P (X∗n ¬ d) = p, tzn. chcemy aby
z (dużym) prawdopodobieństwem p nie popełniać błȩdu zakładaja̧c, że X∗n ¬ d.
Wtedy

P (X∗n ¬ d) = (1− (1 + d)−α)n = p,

a sta̧d

b := −α(1− p)(α−1)/α − (1− p)1/n

p1/n
.

Biora̧c standardowe wartości p = 0.99 i p = 0.95 oraz próbȩ o liczebności n = 100
dostajemy dla różnych parametrów α:

W szczególności, jeżeli α = 1.5 i p = 0.95 to bła̧d wynosi −12%. Jeśli wiȩc praw-
dziwy parametr wynosi 1.5, to nasza estymacja dla średniej jest aż o 12% za niska
’w 95 na 100 przypadkach’.

Powyższe rozważania pokazuja̧, że używanie średniej próbkowej jako estymatora
średniej jest bardzo niebezpieczne w przypadku rozkładu Pareto i ogólniej, w przy-
padku rozkładów ciȩżkoogonowych.

Dla nieujemnych zmiennych losowych i dla rozkładów skoncentrowanych na pół-
prostej dodatniej istnieje wiele sposobów wyrażenia intuicji: zmienna X przyjmuje
”duże” wartości z ”istotnym” prawdopodobieństwem.

Definicja 5.3.1 Niech F (0) = 0. Zmienna losowa X ∼ F ma ciȩżki ogon, jeśli jej
funkcja tworza̧ca momenty

M(s) = E
[
esX

]
=
∫ ∞
−∞

esxdF (x) =∞

dla wszystkich s > 0.

Uwaga 5.3.2 Dla rozkładu F z ciȩżkim ogonem limx→∞ e
sxF (x) =∞ dla wszyst-

kich s > 0.
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Rysunek 5.3.1: Bła̧d wzglȩdny dla n = 100 oraz p = 0.95 (linia kropkowana) i p = 0.99 (linia cia̧gła)
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5.3.1 Klasy podwykładnicze

Rozkłady podwykładnicze sa̧ specjalna̧ klasa̧ rozkładów o ciȩżkich ogonach. Tego
typu rozkłady czȩsto stosuje siȩ w modelach ubezpieczeniowych do modelowania
wielkości szkód po pożarach, huraganach lub powodziach.

Definicja 5.3.3 Rozkład F na (0,∞) nazywamy podwykładniczym jeśli

lim
x→∞

1− F ∗2(x)
1− F (x)

= 2.

Klasȩ podwykładniczych rozkładów oznaczamy przez S.

Niech (Xi)i­1 bȩda̧ niezależnymi dodatnimi zmiennymi losowymi z tym samym roz-
kładem F takim, że F (x) < 1 dla wszystkich x > 0. Oznaczmy przez

F
n∗(x) = 1− F n∗(x) = P (X1 + . . .+Xn > x)

ogon n-tego splotu F.

Twierdzenie 5.3.4 Warunek F ∈ S jest równoważny każdemu z nastȩpuja̧cych
warunków:

a) limx→∞
F
n∗

(x)
F (x)

= n dla pewnego n ­ 2,

b) limx→∞
P (X1+...+Xn>x)

P (max(X1,...,Xn)>x) = 1 dla pewnego n ­ 2.

Jeżeli F jest rozkładem podwykładniczym, to funkcja tworza̧ca momenty nie istnieje.

Definicja 5.3.5 Niech F bȩdzie rozkładem na (0,∞) takim, że F (x) < 1 dla wszyst-
kich x > 0. Mówimy, że F ∈ S∗, jeśli F ma skończona̧ średnia̧ µ > 0 i

lim
x→∞

∫ x

0

F (x− y)
F (x)

F (y)dy = 2µ.

Twierdzenie 5.3.6 Jeśli F ∈ S∗, wtedy F ∈ S i F̃ ∈ S, gdzie

F̃ (x) =
1
µ

∫ x

0
F̄ (u)du

jest rozkładem resztowym.

Powyższe twierdzenia ma ogromne znaczenia dla wyliczania prawdopodobieństwa
ruiny dla rozkładów ciȩżkoogonowych (Rozdział 5.3).

Przykład 5.3.7 Typowe przykłady rozkładów z klasy S∗ to Wei(r, c), 0 < r < 1,
c > 0; Par(α, c), α > 1; LN(µ, σ2).

�



Rozdział 6

Dodatek

6.1 Funkcje specjalne

• Funkcja Gamma

Γ(x) =
∫ ∞

0
tx−1e−tdt, x > 0.

Zachodzi: Γ(x+ 1) = xΓ(x).

• Niekompletna funkcja Gamma

Γ(x, a) =
∫ ∞
a

tx−1e−tdt, x > 0.

• Funkcja Beta

B(a, b) :=
∫ 1

0
ta−1(1− t)b−1dt

Zachodzi: B(a, b) = Γ(a)Γ(b)
Γ(a+b)

6.2 Parametry i funkcje rozkładów

Niech X bȩdzie zmienna̧ losowa̧. Ze zmiennymi losowymi bȩdziemy utożsamiali
nastȩpuja̧ce funkcje:

• Dystrybuanta

F (x) = FX(x) := P (X ¬ x);
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• Funkcja przeżycia (ogon rozkładu)

F (x) := 1− F (x);

• Gȩstość

f(x) = fX(x) =
d

dx
F (x);

• Funkcja tworza̧ca momenty

M(t) = MX(t) = E [exp(tX)] ;

• Funkcja tworza̧ca kumulanty

C(t) = CX(t) = logMX(t).

• Funkcja tworza̧ca prawdopodobieństwa

P (t) = PX(t) = E
[
tX
]

= MX(log t).

Oznaczmy teraz µk(X) = E
[
Xk
]
, mk(X) = E

[
(X − E [X])k

]
. W przypadku, gdy

wiadomo o jaka̧ zmienna̧ losowa̧ chodzi piszemy mk i µk. Parametr µk nazywany jest
k-tym momentem zwykłym, mk - k-tym momentem centralnym. W szczegól-
ności µ1 =: µ jest średnia̧, a m2 jest wariancja̧. Parametr γ3 := m3

m
3/2
2

jest nazywamy

skośnościa̧, a γ4 := m4
m22
− 3 kurtoza̧. Iloraz γ1 := m2

µ
nazywamy indeksem dys-

persji, a γ2 =
√
m2
µ

współczynnikiem zmienności.

Drugi i trzeci moment centralny można wyrazić za pomoca̧ momentów zwykłych:

Var [X] = E
[
(X − E [X])2

]
= E

[
X2
]
− (E [X])2,

E
[
(X − E [X])3

]
= E

[
X3
]
− 3E [X] E

[
X2
]

+ 2(E [X])3.

Zachodza̧ nastȩpuja̧ce wzory pozwalaja̧ce wyliczać momenty za pomoca̧ funkcji
tworza̧cych:

M (k)(0) = E
[
Xk
]
,

C
(1)
X (0) = E [X] , C

(2)
X (0) = Var [X] , C

(3)
X (0) = E

[
(X − E [X])3

]
.

Tak wiȩc pochodne funkcji tworza̧cej momenty pozwalaja̧ wyliczać momenty cen-
tralne, podczas gdy funkcji tworza̧cej CX zwane sa̧ kumulantami.
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6.3 Estymacja momentów

Najpopularniejsza̧ metoda̧ estymacji parametrów µk i mk jest metoda momentów.
Zasada jest nastȩpuja̧ca: estymujemy ’momenty teoretyczne’ za pomoca̧ odpowied-
nich momentów próbkowych dla danych X1, . . . , Xk. I tak

µ̂1 =
1
k

k∑
i=1

Xi =: X̄; E [µ̂1] = µ1, Var [µ̂1] =
σ2

k

m̂2 =
1

k − 1

k∑
i=1

(Xi − µ1)2 µ1 znane,

m̂2 =
1

k − 1

k∑
i=1

(Xi−X̄)2 =: S2 µ1 nieznane; E [m̂2] = m2; Var [m̂2] =
2m2

2

k − 1
.

6.4 Rozkłady dyskretne

6.4.1 Rozkład dwumianowy Bin(n, p)

Jeżeli

P (X = m) =
(
n

m

)
pmqn−m,

gdzie p ∈ (0, 1), q = 1−p, m = 0, 1, . . . , n, to X ma rozkład dwumianowy Bin(n, p).
Mamy

P (t) E [X] Var [X] γ1 γ2 γ3 γ4

(q + pt)n np npq q
√
q√
np

n (q−p)√
npq

3 + 1−6pq
npq

Rozważmy teraz próbȩ X1, . . . , Xk ∼ Bin(ni, p), gdzie
∑k
i=1 ni = n jest znane. Pa-

rametr p rozkładu estymujemy w sposób nastȩpuja̧cy:

p̂ =
∑k
i=1Xi

n
,

E [p̂] = p,

Var [p̂] = pq
1
n
.
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6.4.2 Rozkład Poissona Poi(λ)

Jeżeli

P (X = m) =
λm

m!
e−λ,

gdzie λ > 0, m = 1, 2, 3, . . ., to X ma rozkład Poissona Poi(λ).

P (t) E [X] Var [X] γ1 γ2 γ3 γ4

exp(λ(t− 1)) λ λ 1 1√
λ

1√
λ

1
λ

Dla próby X1, . . . , Xk ∼ Poi(λ),

λ̂ =
∑k
i=1 Xi

k

E
[
λ̂
]

= λ

Var
[
λ̂
]

=
λ

k

6.4.3 Rozkład ujemny dwumianowy Bin−(r, p)

Jeżeli

P (X = m) =
(
r +m− 1

m

)
prqm,

r ∈ R+, m = 0, 1, . . ., tzn. X ma rozkład ujemny dwumianowy Bin−(r, p).

P (t) E [X] Var [X] γ1 γ2 γ3 γ4(
p

1−qt

)r rq
p

rq
p2

1
p

1√
rq

1+q√
rq

3 + p2+6q
rq

Jeżeli r ∈ N, to dostajemy rozkład Pascala, jeżeli r = 1 - rozkład geometryczny
Geo(p). Jeżeli X ma rozkład Geo(p) to zmienna losowa M o rozkładzie warunkowym
takim jak X pod warunkiem X > 0 ma przesuniȩty rozkład geometryczny z P (M =
n) = pqn, n ∈ {1, 2, . . .}. Oba rozkłady geometryczne różnia̧ siȩ średnia̧, wariancje
sa̧ takie same. Inaczej: M ma rozkład postaci Geo(p) ∗ δ1.

Na podstawie próby X1, . . . , Xk ∼ Poi(λ), estymacja wygla̧da nastȩpuja̧co:
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1. r znane:

p̂ =
r − 1

r +
∑k
i=1Xi/k − 1

,

E
[
λ̂
]

= p

2. r i p nieznane: r̂ = X
2

S2−X
1−p̂
p̂

= S2

X
− 1

6.5 Rozkłady cia̧głe

6.5.1 Rozkład normalny

Gȩstość zmiennej losowej X o rozkładzie normalnym ze średnia̧ µ i wariancja̧ σ2 jest
postaci

φ (x) =
1√
2πσ

exp(−(x− µ)2/2σ2).

Piszemy wtedy X ∼ N(µ, σ2). Jeżeli µ = 0 i σ2 = 1 to mówimy o standardowym
rozkładzie normalnym.

Parametry:

M(t) E [X] Var [X] γ1 γ2 γ3 γ4

e
(tσ)2

2 +tµ, µ σ2 σ2

µ
, µ 6= 0 σ

µ
, µ 6= 0 0 0

Maja̧c dane X1, . . . , Xk, parametry µ i σ estymujemy metoda̧ momentów.

6.5.2 Rozkład odwrotny normalny IG(µ, σ2)

Niech X ma gȩstość zadana̧ wzorem

fX(x) =
√

σ

2πx3
exp

{
− σ

2µ

(
x

µ
− 2 +

µ

x

)}
,

gdzie µ ∈ R, σ > 0, x ∈ R, tzn. X ma rozkład odwrotny normalny IG(µ, σ2).

Parametry:
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M(t) E [X] Var [X] γ1 γ2 γ3 γ4

, µ µ3

σ
µ2

σ

√
µ
σ

3
√

µ
σ

15µ
σ

Dla próby X1, . . . , Xk ∼ IG(µ, σ2)

µ̂ = X =
1
k

k∑
i=1

Xi,

σ̂ =
[

1
k

k∑
i=1

(
X−1
i −X

−1)2
]−1

.

6.5.3 Rozkład logarytmiczno-normalny LN(µ, σ)

Niech X ma gȩstość zadana̧ wzorem

f(x) =
1

(xσ
√

2π)
exp

(
−(log x− µ)2

2σ2

)
, x > 0, µ ∈ R, σ > 0.

Wtedy X ma rozkład logarytmiczno-normalny LN(µ, σ).

M(t) E [X] Var [X] γ1 γ2 γ3 γ4

, eµ+ 12σ
2

(
eσ
2 − 1

)
e2µ+σ2

(
eσ
2

+ 2
)√

eσ2 − 1 eσ
4

+ 2eσ
3

+ 3eσ
2 − 3

Jeśli Y jest N(µ, σ), to X = eY ∼ LN(µ, σ).

Dla próby X1, . . . , Xk ∼ LN(µ, σ2)

µ̂ =
1
k

k∑
i=1

logXi,

σ̂ =

√√√√1
k

k∑
i=1

(logXi − µ̂)2.

6.5.4 Rozkład wykładniczy Exp(λ)

Niech X ma gȩstość zadana̧ wzorem

fX(x) = λe−λx,

gdzie x > 0, λ > 0, tzn. X ma rozkład wykładniczy Exp(λ).

Parametry:
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M(t) E [X] Var [X] γ1 γ2 γ3 γ4

λ
λ−t ,

1
λ

1
λ2

1
λ

1 0

Dla próby X1, . . . , Xk ∼ Exp(λ),

λ̂ =
1∑k

i=1 Xi

.

6.5.5 Rozkład Gamma Gamma(α, β)

Niech X ma gȩstość zadana̧ wzorem

fX(y) =
βα

Γ(α)
xα−1e−βx,

α > 0, β > 0, x > 0, tzn. X ma rozkład Gamma Gamma(α, β).

M(t) E [X] Var [X] γ1 γ2 γ3 γ4

βα

(β−t)α ,
α
β

α
β2

1
β

1√
α

Jeżeli X ∼ Γ(1, β), to X ∼ Exp(β).

Dla próby X1, . . . , Xk ∼ Γ(α, β),

α̂ =

(
X
)2

1
k−1

∑n
i=1(Xi −X)2

,

β̂ =
X

1
k−1

∑k
i=1(Xi −X)2

.

6.5.6 Rozkład Weibulla Wei(r, c)

Niech X ma gȩstość zadana̧ wzorem

f(x) = rcxr−1 exp(−cxr), x > 0,

gdzie 0 < r jest parametrem kształtu, c > 0 jest parametrem skali. Wtedy X ma
rozkład Weibulla Wei(r, c).
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M(t) E [X] Var [X] γ1 γ2 γ3 γ4

,
(

1
c

) 1
r Γ

(
1
r

+ 1
) (

1
c

) 2
r

{
Γ
(

2
r

+ 1
)
−
[
Γ
(

1
r

+ 1
)]2}

Jeśli X jest Wei(1, c), to X ∼ Exp(c).

Dla próby X1, . . . , Xn ∼ Wei(r, c) parametry c i r estymujemy rozwia̧zuja̧ układ
równań:

c 1
k

∑k
i=1 X

r
i = 1

r
k

∑k
i=1(cXr

i − 1) logXi = 1

6.5.7 Rozkład Pareto Par(α, c)

Niech X ma gȩstość zadana̧ wzorem

f(x) = (
α

c
)(
c

x
)α+1, x > c,

gdzie α > 0, a c > 0 jest parametrem skali. Wtedy X ma rozkład Pareto Par(α, c) .

M(t) E [X] Var [X] γ1 γ2 γ3 γ4

nie istnieje c α
α−1 , α > 1 c2 α

(α−1)2(α−2)
, α > 2 2α+1

α−3

√
α−2
α
, α > 3
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[4] J. Beirlant, J. L. Teugels, P. Vynckier (1996). Practical analysis of extreme
values. Leuven University Press, Belgia.

[5] N. Bingham, C.M. Goldie, J.L. Teugels (1989). Regular variation. Cambridge
University Press, Cambridge.
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