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1 Liczby rzeczywiste

1.1 Liczby wymierne

Liczby wymierne Q maja postac z—j, gdzie p i q sa liczbami catkowitymi,
przy czym q # 0. Liczby rzeczywigte R mozna opisa¢ poprzez rozwiniecia
dziesietne. Na przyktad

0,125

0,232323... =0, (23)

0,123...89101112...

Aby uzyska¢ rozwiniecie dziesietne liczby wymiernej stosujemy algorytm dzie-
lenia z resztq.
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Zatem ]
- =0, (142857).

Ogodlnie kazda dodatnia liczba wymierna £ ma okresowe lub skonczone rozwi-
niecie w utamek dziesietny. Rzeczywiscie, przy dzieleniu p przez ¢, w pewnym
momencie zaczynamy dopisywaé cyfre 0 (gdy 0 < p < ¢, to cyfre 0 dopisuje-
my na kazdym etapie algorytmu). Mamy ¢ réznych reszt z dzielenia przez q.
Zatem pewna reszta wystapi dwukrotnie. Wtedy odpowiedni blok cyfr bedzie
sie powtarzat.

Zatem

122

— =11, (09).
= =11, (09)

Kazda liczba o rozwinieciu okresowym jest wymierna. Na przyktad

1
8,15(123) = 8,15 +0,00(123) = 8,15 + - - 0. (123).

Oznaczmy = = 0, (123). Wtedy
1000z = 123, (123).

Zatem
1000z — z = 123.
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Czyli
123

~ 999
Czy istniejg liczby niewymierne ?

T

Przyklad. v/2 jest liczba niewymierng. Zatézmy (nie wprost), ze
v2=L pgen
q
Wtedy
2¢% = p*.
Krotnos¢ czynnika 2 po prawej stronie jest liczbg parzysta, a po lewej niepa-

rzysta, co prowadzi do sprzecznosci. SkorzystaliSmy z faktu, ze kazda liczba
naturalna ma jednoznaczny rozktad na czynniki pierwsze. Np.

12=2%.3, 90=2-3%-5.
Poza rozwinigciami w systemie dziesietnym, uzywa si¢ rozwinie¢ w innych

systemach, np. dwojkowym.

1.2 Wtasnosci liczb rzeczywistych

Liczby rzeczywiste mozna dodawac i mnozy¢. Reguty dotyczace tych dziatan
powoduja, ze R tworzy ciatlo przemienne. Zbior R jest lintowo uporzgdkowany,
tzn. dla dwu liczb x i y mamy =z < y lub y < z. Porzadek jest zwiazany z
dziataniami:

e do dwu stron nieréwnosci mozna dodac te sama liczbe
e obie strony nieréwnosci mozna pomnozy¢ przez liczbe dodatnig

Podzbiér A C R jest ograniczony z gory przez liczbe g, jesli a < g dla
dowolnej liczby a € A. Tzn. zbiér A jest potozony na lewo od liczby ¢ na osi
liczbowej.

Przyktlady.
(a) (—o0,1) jest ograniczony z gory przez 2 (réwniez przez 1).

(b) Q nie jest ograniczony z géry.
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(¢) QN (—1,1) jest ograniczony z gory przez 1.

Zbidr liczb rzeczywistych ma wtasnosé ciggtosci: dla dowolnego podzbioru
A C R ograniczonego z gory istnieje najmniejsza liczba ograniczajaca ten
zbiér od gory. Te liczbe oznaczamy symbolem sup A i nazywamy kresem
gérnym zbioru A.

Przyklady.
(a) sup(—o0,1) = 1.

(b) supQnN(—1,1) = 1.

Liczba a = sup A ma dwie wtasno$ci:
— a ogranicza A od gory,
— jedli liczba b ogranicza A od gory, to a < b.

Kres dolny inf A definiuje si¢ analogicznie.
Liczby wymierne (Q nie majg wlasnosci ciggtosci, tzn. kres gorny podzbio-
ru liczb wymiernych nie musi by¢ liczba wymierng.

Przyktad.
A={zecQ:2>0,22<2}={ze€Q: x>0,z <2} =QnN(0,V2).

sup A = V2.

1.3 Indukcja matematyczna

Niech T'(n) oznacza jakie$ stwierdzenie o liczbie naturalnej n. Zasada induk-
cji méwi, ze jesli T'(ng) jest prawdziwe (czesto ng = 1) oraz z prawdziwosci
stwierdzenia T'(n) wynika prawdziwosé¢ T'(n+ 1) dla wszystkich liczb n > ny,
to stwierdzenie jest prawdziwe dla kazdej liczby n > ng. Schemat uzasadnie-
nie ma postac:

T(ng) = T(no+1) = T(ng+2) = ...

Mozna réwniez podaé uzasadnienie nie wprost. Zalozmy, ze T'(n) nie jest
spetnione dla pewnych liczb n > ng. Niech n; bedzie najmniejsza taka liczbg.
Wtedy n; > ng + 1. Ponadto stwierdzenie T'(n; — 1) jest spelnione, bo ny <
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ny—1 < ny. Zatem réwniez T'(ny ) jest spetnione, co prowadzi do sprzecznosci.

Zadanie Korzystajac z drugiego uzasadnienia wykazac¢, ze kazda liczba na-
turalna ma ,interesujacg”’ wtasnosc.

Przyktad. Niech ¢(n, k) oznacza liczbe k-elementowych podzbioréw zbioru
n-elementowego (tzw. kombinacje). Pokazemy, ze

T Kl(n— k)

gdzie n > 1. Stosujemy umowe 0! = 1. Przy dowodzie zastosujemy indukcje
wzgledem n. Tzn. T'(n) oznacza, ze wzér jest prawdziwy dla n i dowolnej
liczby 0 < k£ < n. Dla n =1 mamy
1! 1!
C(l,O)leﬁ, C(l,l)zlzTO'

Zaktadamy, ze wzor jest prawdziwy dla liczby n i dowolnej liczby k. Chcemy
pokazaé, ze wzor jest spetniony dla n + 1 i dowolnej liczby 0 < & < n + 1.
Mamy

|
c(n,k)z(Z) " 0<k<n

(n+1)!

1,0)=1= T2
e(n+1,0) (n+1)0!

Niech k£ > 1. Zauwazmy, ze
cn+1,k) =c(n, k) +c(n, k —1).

Rzeczywiscie, w zbiorze (n+1)-elementowym wyrézniamy jeden element (np.
w stadzie n + 1 owiec jedna jest czarna, a pozostale sa biate). Aby wybraé k
elementow mozemy:

e wybraé k niewyr6znionych elementéw na ¢(n, k) sposobéw

e wybraé¢ k — 1 niewyrdznionych elementéw na c(n,k — 1) sposobéw i
dorzuci¢ wyrdzniony element.

Z zalozenia indukcyjnego otrzymujemy zatem

n! n!
cn+1,k) = k! (n — k)| + (k=1 (n—k+1)!
_nlln—k+1+k (n+1)!

En—k+1)!  k(n+1—k)!
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Twierdzenie 1.1 (wzér dwumianowy Newtona).

n __ - n n—k k: n n n n—1 n n—1 n n
(x+y) _,§)<k>x Y (())x +<1>x y+...—|—<n_1>xy +<n>y.

Dowod. Mamy
(+y)" =@@+y)lz+ty). . (z+y).

n czynnikéw

Po wymnozeniu, bez redukcji wyrazéw podobnych, otrzymamy 2" sktadnikow
postaci 2" *y*. Aby otrzymaé sktadnik 2" *y* sposréd n nawiaséw wybie-
ramy k nawiasow, z ktorych wezmiemy y. Z pozostalych n — k nawiasoéw

wezmiemy x. Takich wyboréw mamy c(n, k) czyli Z . Zatem po zreduko-

n
waniu wyrazéw podobnych wspétezynnik przy 2" *y* wyniesie < k) O

Twierdzenie 1.2 (nieréwnosé¢ miedzy srednia geometryczna i arytmetycz-
na). Dla x1,2,...,z, = 0 mamy
ry+xo+...+x,

" .

YVI1To . .. Ty <

Dowdd. (Cauchy)
Réwnowaznie trzeba udowodni¢, ze
$1+$2+...+l’n)n
" )

(1.1)

Pokazemy (|1.1)) dla n = 2% przez indukcje wzgledem k. Dla k = 1 mamy

$1+$2>2 ($1—$2)2
— = > 0.
( 2 i 2

l’lxg...l'n<(

Sprawdzamy nieréwnosé¢ dla n = 28! przy zalozeniu, ze jest spetniona dla
n =2~

T1T2X3X4 . . . Lok+1_1Tok+1 = (2711‘2)(1E3$4) N (l‘2k+1_11}2k+1)

<

X ;—332 >2( T3 —;— Ty )2 o (m2k+112—i— Tok+1 )2

y1 Y2 Yok

< (yl + Y2 +---+92k>2k'2 B (fl +To+2T3+Ta+ ...+ Tor+1_q +$2k+1>2k'2
h 2k n 9. 9k :
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Pozostaje udowodnié¢ nieréwnosé (1.1)) dla dowolnej liczby naturalnej n nieko-
niecznie bedacej potega liczby 2. Wybierzmy k tak, aby n < 2% (np. n < 2").

Rozwazamy nieujemne liczby 1, xs, ..., x,. Oznaczmy
T+ 2o+ ...+ 2Ty
A= )
n
Okreslmy
Tnt1l = Tpt2 — ... = Tok = A.

Wtedy z pierwszej czesci dowodu mamy

2k

k
e S Ty A S T IS S VA
T1T2 . Ty Tp] - - - Toht+1_1Tok K .

2k —n czynnikéw

Zatem .
,n nA+ (28 —n)A\? ,
Azk T1X2 ...Tp < ( (Qk ) ) .= A2k
Po podzieleniu obu stron przez A2 " otrzymamy 1) O]

Zadanie. Znalez¢ bezposredni dow6d przez indukcje, tzn. z nieréwnoscei (1. 1)
wyprowadzi¢ taka nierownos¢ dla n + 1.

Uwaga 1.3. Zasade indukcji mozna sformutowaé inaczej: jesli stwierdzenie
T(ng) jest prawdziwe oraz z prawdziwosci T'(k) dla ny < k < n wynika
prawdziwos¢ stwierdzenia T'(n + 1), to stwierdzenie T'(n) jest prawdziwe dla
dowolnej liczby n > ng. Schemat uzasadnienia jest podobny do schematu
dla wczesniejszej definicji. Przy wyprowadzaniu prawdziwosci T'(n + 1) ko-
rzystamy z prawdziwosci T'(k) dla wszystkich wezesniejszych liczb k, tzn. dla
ng < k < n.

2 Ciagi liczbowe

Bedziemy rozwazali ciagi ztozone z liczb rzeczywistych.

Definicja 2.1. Ciggiem {a,} nazywamy odwzorowanie liczb naturalnych w
liczby rzeczywiste. Liczby aq, as, as, ... nazywamy wyrazami ciggu.

Przyktady.
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(a) 1,2,3,4,5,....
(b) 2,4,6,8,10,....

(¢) ap=5n+3,b, =2"+ 1.

1 1
d =2 pe1 == lap, +— ).
(d) a1 y An+1 2<a +an>

(e) 2,3,5,7,11,..., - ciag liczb pierwszych.
Ciag {a,} nazywamy rosngcym ($cisle rosngcym) jesli
ap < Apy1 (n < Apyq)
dla wszystkich n. Podobnie okreslamy ciagi malejace i Scisle malejace.

Przyktad. Ciag z przykladu (d) jest Scisle malejacy. Rzeczywiscie, pokazemy
najpierw, ze a, > 1 dla wszystkich n. Mamy a; = 2 > 1. Dalej

1 1 1
Cln+1—2(an+a)> an;:1
Dalej
1 1 1/1
an+1_an:2(an+)_an:2<a_an> <O,
bo a, > 1.

Ciag {a,} nazywamy ograniczonym, jesli dla pewnej liczby M > 0 spel-
niony jest warunek |a,| < M dla wszystkich n. Tzn. wyrazy ciagu leza w
przedziale [— M, M].

Przyktad. Ciag z przykladu (d) jest ograniczony, bo
l1<a, <a =2.

2.1 Zbieznos¢ ciggow

Przyktady.

1
(a) Wyrazy ciagu a, = — zblizaja sie do zera, gdy n rosnie.
n
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1
(b) Dla b, = (=1)" + — wyrazy o numerach parzystych zblizaja si¢ do 1,
n

a te o numerach nieparzystych do —1.

Definicja 2.2 (intuicyjna). Mdéwimy, Ze cigg a, jest zbiezny do liczby g
jesli wyrazy ciggu lezg coraz blizej liczby g dla duzych wskaznikow n. Tzn.
jesli chcemy, aby liczba a,, znalazta sie odpowiednio blisko g, to wskaznik n
powinien byé odpowiednio duzy. Stosujemy zapis lirlln an =g.

Definicja 2.3 (Scista). Dla dowolnej liczby € > 0 (ktéra okresla, jak blisko
granicy majq znajdowaé sie wyrazy ciggu) istnieje liczba N (prog okreslajacy
jak duzy powinien byé wskaznik ciggu) taka, Ze dlan > N mamy |a, —g| < €.

Ostatni warunek oznacza, ze dlan > N wyrazy ciagu a,, leza w przedziale
(9—e,9+¢), tzn. w przedziale tym leza prawie wszystkie wyrazy ciagu {a,},
tzn. poza skonczong iloscig aq, as, ..., ay.

Uwaga 2.4. ¢ jest dowolng liczbg dodatnia, np.: 0,001, n, %, g2,

Przyklady.

—1 1 1
(a) ap, = n =1- . Mamy |a, —1| = - Widaé, ze ciag a,, jest zbiezny

n
do 1 na podstawie intuicyjnej definicji. Przeé¢wiczymy Scista definicje.

1
Ustalmy liczbe € > 0. Niech N = [] . Wtedy dla n > N otrzymamy
€

1 1 1
n > {} + 1> —. Zatem — < ¢.
£ n
(b) a, = (=1)". Jedli a,, dazy do g, to wyrazy o duzych numerach powinny
lezeé¢ blisko siebie. Ale |a, 11 — a,| = 2.

Twierdzenie 2.5. Zbiezny cigg posiada tylko jedng granice.

Dowadd. Zatdézmy nie wprost, ze livgbn an, = ¢, lign a, = ¢, oraz g < ¢g'. Okredl-
my € = (¢’ — g)/2. Przedzialy (g —e,g +¢) oraz (¢’ —¢,¢9 + ¢) sa wtedy
roztaczne. Nie jest mozliwe wiec, aby prawie wszystkie wyrazy lezaty zaréwno

w pierwszym jak i drugim przedziale. O

Twierdzenie 2.6. Kazdy cigg monotoniczny (rosngcy lub malejgcy) i ogra-
niczony jest zbiezny.
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Dowdd. Zatézmy, ze a, jest rosnacy oraz niech g = supa,. Pokazemy, ze
liczba g jest granicg ciagu a,,. Ustalmy liczbe € > 0. Liczba g —¢ nie ogranicza
ciagu a, od gory. Tzn. ay > g — € dla pewnego wskaznika N. Wtedy dla
n > N mamy

g—e<ay<a,<g<g-+e.

]

Twierdzenie 2.7. Zalozmy, ze liyrln a, = g oraz ligln b, = h. Wtedy ciggt po
lewej stronie wzorow ponizej sq zbieine oraz:

(a) lign(an +b,) = lim a;, + lim by,.
(b) lirrln(anbn) = lim a,, - lim by,.

_a, lma,
(c) hrrlna = T, 0 ile lim by, # 0.

Dowdd. (a) Ustalmy ¢ > 0. Z zalozenia istnieja progi Ny i N takie, ze dla
n > N mamy

€
|@n—9|<§7 n > Ny,
|bn—h|<§, n > N,.

Wtedy dla n > max(Ny, N2) otrzymujemy

[(an +bn) = (g + h)| = [(an — g) + (bn — )|

£ g
<|an—g|+|bn—h|<§+§=5

(b) Skorzystamy z nieréwnosci

lanb, — gh| = |(a, — ¢)(b, — h) + h(a, — g) + g(b, — h)|
< lan — gl |bn — | + |h] |an — g + |g] |bn — h]. (2.1)

Niech 0 < n < 1. Z zalozenia istnieje prog N taki, ze dla n > N mamy
la, —g| < n1ilb,—h| <n. Wtedy dlan > N na podstawie (2.1]) otrzymujemy

|anbn, — gh| <n* + [h|n+|g]n < (L4 |g| + |r])n,



Ciagi liczbowe 13

bo n? < ndla 0 < n < 1. Dla liczby € > 0 wybieramy liczbe n taka, zZe
0<n<1oraz
(1 + gl +[h[)n <e.

Np. mozna przyjac

5
T g+ e
(¢) Zaczniemy od wersji
I 1 1
im— = :
n b, limb,

n

h
Oznaczmy &, = |2’ 7 zalozenia istnieje prog N; taki, ze dla n > N; mamy

Al
b, — h —.
by — bl <
Zatem ;
Ih] = [bu] <|bn—h| - |2|,
czyli

I

|bn| > 7, n > Nj.

Dla n > N; otrzymujemy zatem

1 1 |b, —h|  2|b, — h|
— === < . 2.2
e BT A S AP 22
Ustalmy ¢ > 0. Istnieje prog N, taki, ze dla n > Ny mamy
h2
b — Al < = (2.3)
Niech n > max(Ny, No) |f| Wtedy z (2.2) i (2.3)) uzyskamy
1 1 -
e €.
Z (b) mamy wtedy
ay 1 lima,
lifrlna = h;zn&" . 0 = lirrlnan . lirrlna = liTILnbn'

*Skorzystaliémy z nieréwnosci |« — y| > |y| — |z|.
"Mozna przyjaé¢ n > Ny + No.
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Whiosek 2.8. Jesli cigg a, jest zbieiny, to li£ncan = clirlln an.EI
Whniosek 2.9. Jesli ciggi a,, 1 b, sq zbiezne, to
lign(bn —a,) = lign by, — linLn .-

Dowad.

lim(b, — a,) = lim[b, + (—1)an] = lim b, + lim(—1)a, = limb, — lim a,,.

O

Twierdzenie 2.10. Jesl ciggi a, @ b, sq zbiezne, to

(a) [lima,| = lim[a,|.

(b) Jesli a, > 0, to lim a,, > 0.

(c) Jesli a, < by, to lima, < lim by.

(d) (twierdzenie o trzech ciggach) Jesli a, < ¢, < b, oraz lima, =
lirrln b, to ciqg c, jest zbieiny oraz lirrln Cn = lizn (-

Dowdéd. (a) Oznaczmy lima, = g. Wtedy teza wynika natychmiast z nierow-
nosci

anl = lg1] < lan gl

(b)

lim a,, = lim |a,| = [lim a,| > 0.
(c) Mamy 0 < b, — a,. Zatem z (b) otrzymujemy
limb,, — lima,, = lim(b, — a,) > 0.
(d) Z zatozenia mamy
0< ¢, —a, <b, —a,. (2.4)

Dalej
lim(b, — a,) = limb,, — lima,, = 0.

Wystarczy przyjaé b, = c.
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Ustalmy liczbe € > 0. Istnieje prog N taki, ze dlan > N mamy 0 < b, —a, <
e. Wtedy z (2.4) uzyskujemy

0<¢e,—a, <e, dlan>N.

Stad liqgn(cn — a,) = 0. Ciag ¢, jest zbiezny jako suma ciagéw ¢, — a, oraz
a,,. Ponadto
lirrln Cp = lirrln ay, + lirrln(cn —a,) = h,{n ay,.

O

Definicja 2.11. Dla ciggu {a,} i $cisle rosngcego ciagu liczb naturalnych
My €igg {am, } nazywamy podciggiem ciggu {a,}.

Przyktady. a,2, a,, ap,, gdzie p, jest n-tg liczba pierwszg.
Dla rosnacego ciagu m,, liczb naturalnych mamy m,, > n.

Twierdzenie 2.12. Podcigg ciggu zbieinego jest zbieiny do tej samej liczby
co pelny ciqg.

Dowdd. Oznaczmy g = hran a,. Dlaliczby € > 0 rozwazamy przedziat (g — €, g + ¢).
Z zalozenia prawie wszystkie wyrazy ciggu a, znajduja siec w tym przedziale.
Tym bardziej prawie wszystkie wyrazy podciagu a,,, tam sie znajduja. [

Uwaga 2.13. Prawdziwe jest twierdzenie odwrotne: jesli kazdy podciag cig-
gu a, zawiera podciag zbiezny do liczby g, to caty ciag jest zbiezny do g.

Przyklad. Niech

1 1
Ap+1 = 5 (a/n + a> s a; = 2. (25)

Wiemy, ze a,, jest zbiezny jako ciag malejacy i ograniczony z dotu, przez 1.
Oznaczmy g = livgn a,. Ciag a,.1 jest podciagiem ciagu a,, wiec jego granica
wynosi g > 1. Z réwnosci ([2.5)) otrzymujemy

0
9=59+5)

Stad po przeksztalceniu uzyskujemy ¢? = 1, czyli g = 1.
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1
Zadanie. Dla liczby 5 < a < 1 okreslamy ciag a,, rekurencyjnie

11—«
pi1 = Qa, + , n=1 a;=a>0.
a'fl

Zbada¢ zbiezno$¢ ciagu a,.

Twierdzenie 2.14 (Bolzano, Weierstrass). KaZdy cigg ograniczony zawiera
podciqg zbieziny.

Dowdd. Zalézmy, ze wyrazy ciagu ¢, znajduja sie w przedziale [aq, b;]. Be-
dziemy konstruowaé podciag d,, ciggu c¢,. Niech d; := ¢;. Dzielimy przedzial
la1, bi] na dwie potowy punktem (a; + b;)/2. Przynajmniej jeden z przedzia-
tow [aq, (a1 +b1)/2], [(a1+b1)/2, by zawiera nieskoficzenie wyrazéw ciagu c,.
Oznaczmy ten przedzial przez [as, bs]. Niech my oznacza najmniejszy wskaz-
nik, wiekszy niz 1, dla ktorego ¢, =: dy lezy w [az, bo]. Dalej przedzial [as, by
dzielimy na poét. Jeden z przedzialow [ag, (as +b2)/2], [(a2+b2)/2, by] zawiera
nieskonczenie wyrazéw ciagu c,. Konce tego przedzialu oznaczmy przez as i
bs. Podobnie jak wczesniej wybieramy najmniejszy wskaznik mgs > mo, dla
ktorego ¢, =: d3 lezy w [ag, bs]. Postepujac tak dalej otrzymamy nieskori-
czony ciag przedziatéw [a,, b,] oraz podciag d,, := ¢, o whasnosciach

dn S [anabn] C [an—17bn—1]> bn — an = %(bn—l - an—l)-
Mamy
ai < Ap—1 < (07% < bn < bn—l < bl-
Ciag a, jest rosnacy i ograniczony, natomiast cigg b, jest malejacy i tez
ograniczony. Zatem ciagi te sa zbiezne. Z rownosci

(b1 —a1)

bn—an:F

wynika lifrln(bn —a,) = 0. Zatem h,{n b, = lign a,. Poniewaz a,, < d, < b,, to
z twierdzenia o trzech ciggach wnioskujemy, ze ciag d,, jest zbiezny. O]

Czasami chcemy rozpoznaé, czy dany ciag jest zbiezny, ale nie potrafimy
wskazaé granicy. Wtedy mozemy uzy¢ warunku Cauchy’ego.

Definicja 2.15. Mowimy, ze cigg spetnia warunek Cauchy’ego jesli dla du-
zych wskaznikow wyrazy ciggu lezq blisko siebie. Scisle: dla dowolnej liczby
e > 0 istnieje prog N taki, ze dla m,n > N mamy |a, — ap| < €.
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Przyktady.
(a)
1 1 1
Zatozmy, ze n > m. Wtedy:

! + ! +...+ !

Ay — Ay = oo+ =
(m+1)2  (m+2)? n?

1 1 1

SomAD)  mrDm+2 T m=1m

1 1 1 1 1 1 1 1 1
- (— )+( - )+...+( —) o2
m m+1 m+1 m+2 n—1 n m n m

Checemy, aby 1/m < e. Niech N = [1/¢]. Wtedy dla n > m > N mamy
1/m < e, zatem

1
O<a,—a,<—<Ee¢.
m

Ciag a,, jest zbiezny. Rzeczywiscie ciag a,, jest Scisle rosnacy oraz z prze-
prowadzonego wyzej rozumowania (dlam = 1) wynika, ze a,, — a; < 1
czyli a,, < 2. Mozna udowodni¢, ze

lirrlnan:—
(b) 1 1 1
bpy=1+=+=4+...+—.
totgt -
Obliczamy
by b= —— oyt Ly L
T 4l a2 T T m T 2m 2 T on 2

n skltadnikéw

Zatem warunek Cauchy’ego nie jest spetniony.

Twierdzenie 2.16. Ciqg jest zbiezny wtedy @ tylko wtedy, gdy spetnia waru-
nek Cauchy’ego.
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Dowdd. (=) Niech g = lim a,. Wtedy

|an = am| = [(an = 9) = (am — 9)| < lan = g| + |am — g|.

Z zalozenia dla liczby e > 0 istnieje prog N, dla ktérego |ax — g| < § dla
k > N. Niech n,m > N. Wtedy

la, — an| < e.
(<) Pokazemy, ze ciag a, jest ograniczony. Dla e = 1 istnieje prog N (liczba
naturalna) taki, ze |a, — a,,| < 1 dla n,m > N. Niech
M = max{|as], |az|, . .., lan], x| + 1}
Wtedy |a,| < M dla wszystkich n. Rzeczywiscie:
(1) Dlan=1,2,...,N mamy |a,| < M w oczywisty sposob.
(2) Dlan > N mamy |a, — ays1| < 1 zatem

lan| = [(an — ans1) + ang1| < |an — anp1| + lanp| < 14 |ang| < M

Z twierdzenia Bolzano-Weierstrassa ciag a, posiada podciag zbiezny. Niech
g = 1irrln ap,, . Pokazemy, ze liTILn a, = g. Ustalmy liczbe ¢ > 0. Istnieje prog
Ny taki, ze |a, — am| < § dla n,m > N;. Dalej istnieje prog N taki, ze dla
n > Ny mamy |am,, —g| < 5. Okredlmy N = max(Ny, Ny). Wtedy dlan > N
otrzymujemy m, > n > N, zatem

19 19
|an_g| = |(an_amn)+<amn _9)| < |an_amn|+|amn _g| < 5"*‘5 =

O
Uwaga 2.17. Przypusémy, ze ,zyjemy” w przedziale (0, 1). Ciag 1/n spelnia
warunek Cauchy’ego, ale granica lezy poza przedziatem (0, 1).
Na prostej R wprowadzamy nowa odlegtosé

d(x,y) = |arctg x — arctg y|.

Wtedy ciag x, = n spelnia warunek Cauchy’ego, ale nie jest zbiezny.
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Definicja 2.18. Mowimy, Ze cigg a, jest rozbieiny do nieskoriczonosci (00)
jesli dla dowolnej liczby M istnieje prog N taki, Ze dlan > N mamy a,, > M,
tzn. w przedziale (M, 00) znajdujq sie prawie wszystkie wyrazy ciggu.

Przyktady.
(a) limn = oo.
(b) limlogn = oc..

Dowéd. Niech M > 0. Chcemy, aby logn > M = logeM, czylin > eM.
Wystarczy, aby n > [eM]. Wtedy logn > M. ]

(c)

by= 14+ b st
n=ltg gt

Wiemy, ze by, — b, > % Zatem
n
an - (bgn - bgn—l) + (bgn—l - b2n—2) —|— [N + (b2 - bl) + bl > 5 + 1
Dla liczby naturalnej £ > 2 mamy 2" < k < 2"*! dla pewnej wartosci

n. Wtedy (n+ 1)log2 > log k oraz

n_n+1 logk  logk

b >bpm =214+ —> > = .
k2 b 2 Ly 2 2log2  log4

Twierdzenie 2.19. Cigg dodatni a,, spetnia li1£n a, = oo wtedy 1 tylko wtedy,

1
gdy lign — =0.

n

1
Dowdd. ( =) Niech € > 0. Okre$lmy M = —. Istnieje prog N, dla ktérego
€

1
ap > M = —, n > N.
€
Wtedy
1
0< — <e¢, n > N.

7
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(<=) Rozwazamy liczbe M. Jesli M < 0, to a, > M dla wszystkich n. Jesli
1
M > 0, to przyjmujemy € = i Istnieje prog N taki, ze

1 1
—<e=—, > N.
an c M "

Wtedy
a, > M, n > N.

]

Twierdzenie 2.20 (kryterium poréwnawcze). Jesli a,, < b, oraz lima, =
n

o0, to liqgn b, = oo.
Definicja 2.21. Okreslamy lim a,, = —oo jesli liTan(—an) = 00.

Definicja 2.22. Liczbe o nazywamy punktem skupienia ciggu a, jesli mozna
znaleZé podciqg ay, zbieiny do o

Uwaga 2.23. Zbiezny ciag posiada tylko jeden punkt skupienia - swoja
granice.

Przyklady.
(a) a, = (—1)". Wtedy ag, = 11 ag,11 = —1.
(b) a, = sinn. Zbiér punktéw skupienia jest réwny [—1,1].
(¢) Rozwazmy ciag

1 1
) I ’47""

W =

J

W
N | —

1
17 71a77
2

N | —

11
Wtedy zbior punktéw skupienia jest réwny {0, 1, 373 } .
Uwaga 2.24. Liczba « jest punktem skupienia ciggu a,, wtedy i tylko wtedy,
gdy w kazdym przedziale (o« — ¢, + ¢€) znajduje sie nieskonczenie wiele
wyrazoéw ciagu a,.

Zadanie. Czy zbiér liczb wymiernych z przedziatu [0, 1] moze by¢ zbiorem
punktow skupienia jakiegos ciagu ?
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Twierdzenie 2.25. Dla ograniczonego ciggu a, istniejg najmniejszy i naj-
wiekszy punkt skupienia nazywane granicg dolng i gorng ciggu i oznaczane
symbolami lim inf a,, oraz lim sup a,,.

Dla ciggu z przyktadu (c) granica dolna wynosi 0, a gérna 1.

Uwaga 2.26. Mozna udowodnic¢, ze

liminf a,, = sup inf a,,, limsupa, = inf sup a,,.
n mz2n " m>n

Dowdd. (*) Oznaczmy b = inf sup a,,. Pokazemy, ze b jest punktem skupie-
" m>n

nia. Jedli nie, to dla pewnej liczby ¢ > 0 przedzial (b — ¢,b + ¢) zawiera
tylko skoniczenie wiele wyrazow ciagu a,. Na prawo od b+ € moze by¢ tylko

skonczenie wiele wyrazéw ciggu, bo w przeciwnym razie sup a,, > b+ ¢ dla
m>n

wszystkich n. Zatem prawie wszystkie wyrazy leza ponizej b — e, co prowadzi
do sprzecznosci.
Oznaczmy b,, = sup a,,. Wtedy a,, < b,. Ponadto ciag b, jest malejacy,

m>=n
zatem

b, \, inf b, = b.
n
Jesli a,,, — «, to z nieréwnosci a,,, < by, wynika, o < b, czyli faktycznie
liczba b jest najwiekszym punktem skupienia. O]

2.2 Liczba e

Rozwazmy dwa ciagi

1\" 1 n+1
mn:<1—|—> , yn:<1—|—> .
n n

Mamy z, < y,. Obliczamy

rs_ (1+55)" (1+1) - <n<n+2>>”“ (1+)

T (1+l)n+1

n
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W ostatniej linii skorzystalismy z nieréwnosci Bernoulli’ego (1+x)" > 1+nx
dla x > —1, x # 0. Udowodniliémy, ze ciag x, jest Scisle rosnacy. Dalej

1%%)%'—1 1 < n2 >n+1n_1
g (14 1) e At D1

1 L | 1 n—1
=1 1 = 1.
<+n2—1> n ><+n—1) n

n

Zatem vy, jest ciagiem Scisle malejacym. Mamy wiec
2= <2< .. <Tp <Yp<...<yp <y =4.

Oba ciagi sa wiec zbiezne. Oznaczmy
. . I\"
e =limz, = lim (1 + > .
n n n
Wtedy
1
yn:xn<1+) — e.
n
Znajdziemy teraz inng przydatng postac liczby e. Mamy
" " (n\ 1
n = 1 — et —_
’ < * n) ,g (l{:) nk
“nn—-1)...(n—k+1) 1 "1

=1+ H<1+ZH

k=1

Ustalmy liczbe naturalng m. Dla n > m mamy

xn:<1+1> >1+Zn(n—l)(n—Z)k...(n—]g+1)i
" =1 n !

:1+§:1<1_i> (1—2)...(1_745;1)]{1:!

Przechodzimy z n do nieskonczono$ci i otrzymujemy

moq
e>1+’;H.
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Reasumujac mamy

(e d) cresnd <

o
Juy

Zatem
i (1 1 1 1 1
6—17£n(+1'+2|+3|+ —i-n!).

Twierdzenie 2.27. Liczba e ma przedstawienie

LI NI G
e = - - 7
20 3 n!  nln’
gdzie 0 < 6(n) < 1
Dowdd. Dla m > n mamy
I I
Cm i= —+ =+ =+...+— ot —
o2 3l n! (n+1)! m!
+ 1y ! ot !
=Cpt—
(n+1)! n+2 (n+2)(n+3) n+2)(n+3)-...-m

1 1 1
< ¢y 1 e
¢ +(n—|—1)![ LR R e P +(n+2)m”1]

1 1—W 1 n -+ 2
=c, + T <t
(n+1) - m+1DIn+1
Zatem
1 n+2

Ch < Cp < Cp+——c—.
(n+1)!n+1

Przechodzac do granicy, gdy m — oo otrzymujemy

1+1+1+1+ 41 < <1+1+1+1+ +1+1”(”+2)
— e —t——
120 3 n! h 120 3 nln (n+1)2

Zatem

. R N Y _
<e—<+1,+2,+3,+ +>\.<'.

Stad otrzymujemy teze twierdzenia. O



Ciagi liczbowe 24

Uwaga 2.28. Rozwiniecie dziesietne liczby e ma postaé
e=2,718281828... .

Whniosek 2.29. Liczba e jest niewymierna.
Dowdd. Symbolem {z} oznaczamy cze$¢ utamkowa liczby z. Gdyby e = 2

dla liczb naturalnych p i ¢, to {¢le} = 0. Ale z poprzedniego twierdzenia

mamy
{nle} = {Q(n)} = b(n) > 0.

n n
O

Uwaga 2.30. Mozna udowodnié, ze liczba e jest przestepna, tzn. nie jest
pierwiastkiem zadnego wielomianu o wspotczynnikach catkowitych. Liczby
bedace pierwiastkami takich wielomianéow nazywamy liczbami algebraiczny-
mi.

Wiemy, ze

1\" 1 n+1
(1+> <e<(1—|—) .
n n

Zastosujmy logarytm przy podstawie e do nierownosci. Otrzymamy po prze-
ksztatceniach

(2.6)

L <1 (1+1><1
J— O _ _
n+1 & n n

Rozwazmy ciag
1 1
n=1+=-4+...+=—1 1).
Un =14 54+~ log(n+ 1)
Mamy
Up — Up—1 = ——log(n—l—l)—i—logn: ——log <1+> >O,
n n n
na podstawie drugiej nieréwnosci w (2.6). Rozwazmy inny ciag
1 1
Un:1+*++f—10gn
2 n

Mamy

L ogn4 1) +1 Lo <1+1)<o
nt1 — op = —— — log(n n=———1o — ,
Vst = = o —log ogn=——— ~log(1+
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na podstawie pierwszej nieréwnosci w (2.6)). Dla n > 1 otrzymujemy
U < Uy < vy < V1.

Zatem oba ciagi sg zbiezne jako ciggi monotoniczne i ograniczone. Poniewaz
Up = Up—1 + —, to granice obu ciagéw sa rowne. Oznaczmy symbolem c te

n
granice. Wtedy
O0<l—-log2=u<c<wv =1.

Reasumujac
. 1 1
hm<1+2—|—...+—logn):c, 0<e< 1. (2.7)
n n
Liczbe ¢ nazywamy stata Fulera. Rozwinigcie dziesigtne ma postac

c=0,5772156649 ... .

3 Szeregi liczbowe

Dla ciggu a,, okreslamy cigg sum czesciowych s, wzorem
Sp=a; +ag+ ...+ a,.

W szczegblnosci s5 = ay + as + ag + ag + as. Jedli ciag s, jest zbiezny (do
granicy §), to mowimy, ze szereg jest zbiezny i zapisujemy

o0
S ay = s.
n=1

Przyktlady.
(a) Rozwazmy ciag geometryczny a, = ¢" dla |¢| < 1. Wtedy

w_ q—q"! q
= - ,
l—q » 1—g¢q

Sn=q+¢+...+¢q

bo ¢" — 0, dla |¢| < 1. | Zatem

o0
n__ 4
Z 4 = 1—a’
n=1 q
*Wystarczy pokazaé |q|" — 0, czyli rozwazaé 0 < ¢ < 1. Niech 1/¢ =1+ a, dla a > 0.

Wtedy 1/¢" = (14 a)™ > 14 na. Czyli 0 < ¢" < 1/(1 4 na).
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(b) Rozwazmy szereg harmoniczny o wyrazach a,, = % Wiemy, ze

o0
1
Szereg g — jest rozbiezny (do nieskonczonodci).
n
n=1

Twierdzenie 3.1 (warunek Cauchy’ego dla szeregu). Szereg Y _ ay, jest zbiez-

n=1
ny wtedy @ tylko wtedy, gdy spetnia warunek, ze dla dowolnej liczby € > 0
istnieje prog N taki, ze dla n > m > N mamy

|amg1 + gz + ...+ ay| < e
Dowdéd. Dla n > m mamy
S0 — Sm| = |@mi1 + Gmao + ...+ an| < e.

To oznacza, ze warunek w twierdzeniu jest identyczny z warunkiem Cau-

chy’ego dla ciggu s,. O
Twierdzenie 3.2. Jesli szereg Z a, jest zbiezny, to liyrln an = 0.
n=1

Dowdd. Mamy a,, = s, — S,_1. Oznaczmy s = lirrln Sp. Wtedy
ligbnan = h}bnsn — lirrlnsn_l =s—s5=0.
n

Uwaga 3.3. Warunek w tezie nie wystarcza do zbieznosci szeregu. Na przy-
ktad szereg o wyrazach

a§a§7§7§7§a"'
nie jest zbiezny. Ile wynosi wyraz szeregu o numerze 2014 7 Ktére numery
maja wyrazy szeregu o wartosci 1/2014 7

Twierdzenie 3.4. Dla kazdego szeregu zbieznego cigg sum czeSciowych jest
0graniczony.

Dowad. Ciag s, spelnia warunek Cauchy’ego wiec jest ograniczony. O
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Twierdzenie 3.5. Zalézmy, ze szeregi Z Qp 0 Z b, sq zbiezne. Wiedy zbiez-

n=1 n=1
o o0
ne sq szereqi Z(an +b,) i Z Aa,, oraz
n=1 n=1

[e.e]

Z(an:l:bn) = Zanian,
n=1 n=1 n=1
Z A, = A Z Q-
n=1 n=1

Teza wynika z Twierdzenia[2.7] zastosowanego do ciagéw sum czesciowych

szeregow Z an 1 Z b,,.

Definicja 3.6. Szereg Z a, jest bezwzglednie zbiezny jesli szereg Z la,| jest
n=1 n=1

zbiezny.

Twierdzenie 3.7. Szereg bezwzglednie zbieiny jest zbiezny.

Dowdd. Teza wynika z nieréwnosci dla n > m

|am+1 +am+2 + . + an| < |(Im+1| + |am+2| + . ‘l— |an|.

Zatem warunek Cauchy’ego dla szeregu Z la,| pociaga ten warunek dla
n=1
szeregu Z Q.- O

n=1

Uwaga 3.8. Zbiezny szereg nie musi by¢ bezwzglednie zbiezny. Na przyktad
szereg o wyrazach

O O I
27274 44 46 66 6 6 6
jest zbiezny do liczby 0, ale nie jest zbiezny bezwglednie.

oo
Uwaga 3.9. Zbiezno$¢ ciggu a, i szeregu Z a, nie zalezy od zachowania

sie skonczonej liczby poczatkowych wyrazow. Tzn. jesh a,, = b, dlan > N
to ciagi a, i b, sa Jednoczesme zbiezne lub jednoczesnie rozbiezne. To samo

dotyczy szeregdw Z y, i Z by,

n=1 n=1
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Twierdzenie 3.10 (Kryterium Dirichleta). Zaldimy, Ze cigg a, jest male-
jacy oraz a, — 0. Zalozimy rowniez, ze sumy czesciowe ciqgu b, sq¢ ograni-
czone (tzn. cigg o wyrazach s, = by + by + ...+ b, jest ograniczony). Wtedy
szereg Z anb, jest zbiezny.

n=1
Dowdd. Sprawdzimy warunek Cauchy’ego. Z zatozenia |s,| < M dla pewnej
statej M > 0. Niech n > m. Wtedy

|@my10ms1 + @miobmia + ...+ ayby|

= |@m+1(Sms1 — Sm) + @mr2(Smi2 — Sma1) + -« + an(Sp — Sp—1)|
= |—ami18m+(Ami1—0ms2)Smi1+ (@mio—Amis)Smiot- - A (An_1—0n)Sp_1+0, 5,
< A1 [Sm | H(@ms 1= ms2) [Smt [ (@mr2—Am3) [Smra|+- - A (@n-1—an) [Sp-1]+an|sn|
< M [ami1 + (@ms1 — my2) + (Qmg2 — Gpgs) + .o 4 (@1 — an) + an] = 2M a1
Dla € > 0 istnieje liczba naturalna mg taka, ze a,,, < 53;- Wtedy dlam > my
mamy

|@ms10mr1 + Gmiobmia + .+ anby| < 2May, 1 < 2Mag,, < e.

]

>, sinnw
Przyktad. Rozwazamy szereg Z

n=1

. Dla © = k7 szereg jest zbiezny,

1
bo kazdy wyraz si¢ zeruje. Zatézmy, ze x # 2kn. Przyjmujemy a, = — oraz
n

b, = sinnx. Bedziemy korzysta¢ ze wzoru trygonometrycznego
B— Bto

— 94ip 8= gip Bt
cosa — cos B = 2sin 5= sin =5,

czyli po przeksztatceniu
cos(v — u) — cos(u + v) = 2sinusinv.

Badamy sumy czesciowe ciggu b,,.

sinx +sin2x + ...+ sinnx

= (2sin£sinx—|—2sm£sin2x+...+231n@sinna:)

2sin 2 2 2 2
1
-1 In+1
= [(cos® —cos3®) 4+ (cos3® —cos52) ... 4 (cos BTz _ cog Bntlz
9 sin & 2 2 2 2 2 2
2
_ 1 (cos ¢ cos (2n+1)x) _ sin 5 sin
2sin £ 2 2 sin §
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Otrzymujemy
1

|sin 3|

|sinx +sin 2z + ... 4+ sinnz| <

Whniosek 3.11 (kryterium Leibniza o szeregu naprzemiennym). Jesli cigg

a, jest malejgcy oraz a, — 0, to szereg Z(—l)"“an jest zbiezny.

n=1

Dowéd. Przyjmujemy b, = (—1)""'. Wtedy sumy cze$ciowe ciagu b, maja

postac sg, = 01 So,01 = 1. Zatem szereg jest zbiezny. O

00 (_1>n+1
Przyktad. Szereg Z
n

n=1

(2.7) mozna wykazaé, ze szereg jest zbiezny do liczby log 2.

jest zbiezny z kryterium Leibniza. Ze wzoru

Whniosek 3.12. Jesli a, jest zbieznym ciggiem monotonicznym a szereq

Z b, jest zbiezny, to zbieiny jest szereg Z by, .

n=1 n=1

Dowdd. Mozemy zatozyé¢, ze ciag a, jest malejacy. Oznaczmy a = lign Q.-

Wtedy a, —a \, 0. Z twierdzenia Dirichleta szereg » _(a, — a)b, jest zbiezny.
Ale

n=1

anb, = (a, — a)b, + aby,,

zatem szereg Z a,b, jest zbiezny. O

n=1
Twierdzenie 3.13 (Kryterium poréwnawcze). Zaléimy, ze 0 < a, < b,.

Jesli szereg Z b, jest zbieiny, to zbieiny jest szereq Z a,. Ponadto
n=1 n=1

Dowdd. Dla n > m mamy
0 < mg1 + gz ..+ ap < by + o + ...+ by

Warunek Cauchy’ego dla szeregu an pocigga ten warunek dla szeregu
Zan. Sumy czeSciowe szeregu Zan sg niewigksze niz sumy czesciowe dla

szeregu Z b,,. Zatem nier6wno$¢ przenosi sie na sumy szeregow.
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Mozna poda¢ inne uzasadnienie. Mamy
0<s, ::a1+a2+...—|—an<bl—l—bg+...—|—bn<ij =: B.
j=1

Ciag sum czesciowych s, jest rosnacy i ograniczony, zatem jest zbiezny. Po-
nadto

oo
Zaj = liqgnsn < B.
j=1
O

Uwaga 3.14. Kryterium poréwnawcze stosujemy tylko dla szeregow o wy-
razach nieujemnych, przynajmniej od pewnego miejsca ng. Wtedy

Zan< an.

n=ng n=no

Uwaga 3.15. Jesli a,, > 0, to ciag s, = Zai jest rosnacy. Zatem ciag s,
i=1

(i w zwiazku z tym szereg Z a,) jest zbiezny wtedy i tylko wtedy, gdy ten

ciag jest ograniczony (od géry). Jesli s, nie jest ograniczony od gory, to s,

jest rozbiezny do oco. Stosujemy wtedy zapis

[e'9)
Z a, = OQ.
n=1

[e.e]

Whniosek 3.16. Jesli 0 < a,, < b, oraz szereg Z a, jest rozbiezny, to szereg
n=1
Z b, tez jest rozbiezny.
n=1
Przyklad. Badamy szere i 77,4—1——871
Y ' Y gn:12n5+n2+4'
nt + 8n n* 1

> = .
MBS +n2+47 205+ nd+4n5  Tn

1
Wiemy, ze Z — = 00, wiec badany szereg jest rozbiezny.
n
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Twierdzenie 3.17 (Kryterium Cauchy’ego). Zaldzmy, Ze

a = lim {/|a,|.
n

(i) Jeslia < 1, to szereg »  a, jest bezwglednie zbiezny.

n=1

(ii) Jeslia > 1, to szereq >  a, jest rozbiezny.

n=1
Uwaga 3. 18 Kryterium nie rozstrzyga zbieznosci, gdy a = 1. Dla szeregow

Z Z mamy a = 1. Pierwszy z szeregdéw jest zbiezny a drugi rozbiezny.

Dowdd. (i) a < 1. Niech r = a;—. Wtedy a < r < 1. Istnieje prog N taki,
ze dlan > N mamy {/|a,| < r. Zatem |a,| < r™ dlan > N + 1. Z kryterium

poréwnawczego szereg Y _ |a,| jest zbiezny.

n=1

1
(ii) a > 1. Dla r = ot istnieje prog N taki, ze dla n > N mamy {/|a,| >

r > 1. Tzn. |a,| > r™* dlan > N, czyli a, jest rozbiezny do nieskoniczonosci.
Tym bardziej szereg Z a, jest rozbiezny. O]

Twierdzenie 3.19 (Kryterium d’Alemberta). Zaldzmy, ze

lim [0 41] =
|an|

(i) Jesli a < 1, to szereg Z a, jest bezwglednie zbieiny.

n=1

o0
(i) Jeslia > 1, to szereq > a, jest rozbiezny.

n=1
1
Dowad. Zastosujemy oznaczenia z dowodu kryterium Cauchy’ego, tzn. r = a4 ; .
(i) Istnieje N takie, ze dla n > N mamy |C|Ln+|1| < r. Wtedy
an
a Uy a _N— a
’ n’ _ ’ nl | n 1’ | N+2||aN+1| <" N 1‘GN+1| | N+1| (3 1)

1| Janel T Jantl PN+
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o0
Z kryterium poréwnawczego szereg »  |a,| jest zbiezny.
n=1
a
(ii). Istnieje N takie, ze dla n > N mamy W > r > 1. 7 pierwszej
an
réwnosci we wzorze (3.1) otrzymujemy wtedy
lant1| ,
| ”|>) N+1
Zatem |a,| — 0. O
a
Uwaga 3.20. Mozna udowodni¢, ze z istnienia granicy lim | |n+|1| wynika
n an

|an+1|
|ad

lim {/|a,| = lim
n n

Whniosek 3.21. Jesli cigg a, spelnia zatozenia kryterium Cauchy’ego lub
d’Alemberta, to dla a < 1 cigg ten jest zbiezny do zera, a dla a > 1 wartosci
bezwzgledne wyrazow dgzg do nieskonczonosci.

Przyktlady.

[e.9] n

(a) > —- Stosujemy kryterium d’Alemberta
n

n=1 """

Apt1 . 2n+1 n' . 2 0

an  (n+1)! 20 n4l n

W zwiazku z tym szereg jest zbiezny.

0o k

(b) Z " dlakeN. Uzywamy kryterium Cauchy’ego.

3n’
LA 1
37—5(\/5) it

i otrzymujemy zbieznos¢ szeregu.

n=1
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0 |
(c) Y —. Wygodniej bedzie uzy¢ kryterium d’Alemberta.
n=1 n
| n n
any1  (n4+1)! n n B 1 _}1<1'

n

an  (n+ D)™ pl T (ny 1) (1+1) " e
Zatem szereg jest zbiezny.

Twierdzenie 3.22 (Cauchy’ego o zageszczaniu). Zaldzmy, Ze cigg a, jest

malejgcy oraz a, — 0. Szereg Z ay, jest zbieiny wtedy i tylko wtedy, gdy

n=1

zbiezny jest szereg (zageszczony) Z 2" agn.

n=1
Przyklady.
(a) Rozwazmy szereg Z —, dla > 0. Szereg zaggeszczony ma postac
n=1 n
(e.) 2n

¢ ona Z (Qa 1)”.

Szereg ten jest zbiezny tylko jedli 207! > 1, czyli dla o > 1.

1
(b) Niech a,, = ———, dlan > 2 oraz o > 0. Wtedy

nlog®n’
oo 27’1,

,;2 a2 :nz::l 21 (log 27)° EZ:

alog® 2’
Zatem szereg jest zbiezny tylko dla a > 1 na podstawie przyktadu (a).

(c) Mozna pokazaé, ze szereg o wyrazach

1
~ nlogn(loglogn)®’

WV
w

jest zbiezny tylko dla o > 1.



Szeregi liczbowe 34
Dowdd twierdzenia o zageszczaniu. (=) Mamy

Z Waoe = ay + 2a4 + dag + ... + 2" Lagn
k=1

as + (az + ayg) + (a5 + ag + a7 +ag) + ...+ (agn-141 + ... + agn)

2m oo
<Zak<2ak =.S.
k=1 k=1

A DO | —

n oo
Zatem Z 2% aq. < 25. To oznacza, ze sumy czesciowe szeregu Z 2" o
k=1 k=1
sg ograniczone od goéry. Stad szereg jest zbiezny, bo sumy czesciowe
tworza ciag rosnacy.

(<) Poniewaz 2" > n+ 1, to

n 2" —1
>k < ) a
k=1 k=1

=a1+ (ag +a3) + (as +as +ag+a7) + ...+ (agn-1 4+ ... + agn_q)

<ap+2as +4as+ ...+ 2" agn < ay + Z QkGQk =: 3.

k=1
oo
Sumy czesciowe szeregu Z a, sa ograniczone przez s, zatem szereg ten
. . . n:1
jest zbiezny.
O
o0
Dla zbieznego szeregu s = Z a, okreslamy cigg n-tych ogonéw wzorem
n=1
o
Ty, = Z ai. Mamy
k=n+1

Sp+Tp =38, Tp=38—S8y,

zatem
limr, = lim(s — s,) = 0.
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3.1 Lacznos$¢ i przemienno$¢ w sumie nieskonczonej

oo
Jesli szereg Z a, jest zbiezny, to zbiezny jest szereg postaci

n=1
(ay +ag+ ...+ ap) + (@n 41+ apyyo + .o+ apy)
+ oot (g1 F g2+ )+ (3.2)

Rzeczywiscie, sumy czesciowe szeregu (3.2)) maja postaé
Snys Sngy s Snps s

zatem ciag s,, jest podciggiem ciagu s,. Stad s,, jest zbiezny do tej samej
granicy co ciag s,, czyli suma szeregu z nawiasami jest taka sama jak suma
oryginalnego szeregu.

Uwaga 3.23. Wynikanie odwrotne nie jest spelnione. Szereg (3.2)) po otwo-
rzeniu nawiaséw moze by¢ rozbiezny:

(14 D)+ (=141 +. .+ (=1+1)+...

Jesli w kazdym nawiasie szeregu wyrazy maja ten sam znak i szereg jest
zbiezny (do s), to szereg bez nawiaséw tez jest zbiezny do s. Rzeczywiscie,
zauwazmy, ze jesli ngy < n < ngyq, to suma s, lezy pomiedzy s,, i s, . Dla
duzych wskaznikow k liczby sy, i sp, ., leza blisko liczby s. Wtedy wielkosci
s, dla ng < n < ngyq réwniez leza blisko s.

Przy dodawaniu skonczonej liczby sktadnikow ich kolejnosé nie gra roli.
Co to znaczy zmiana kolejnosci dodawania w sumie nieskonczonej 7

Definicja 3.24. Permutacjq zbioru liczb naturalnych nazywamy cigg oy, o9, . . .

ztozony z liczb naturalnych, w ktorym kazda liczba naturalna wystepuje do-
ktadnie raz.

Przyklad.
2,1,4,3,...,2n,2n —1,...

Twierdzenie 3.25. Jesli szereqg Zan jest bezwglednie zbiezny, to szeregq

n=1
[eS)

Z a,, jest zbiezny dla dowolnej premutacyi o oraz

n=1

0o 00
Sa= Y an.
n=1 n=1
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Uwaga 3.26. Zalozenie bezwzglednej zbieznodci jest istotne. Rozwazmy sze-

oo(_l)n—l—l
regz Mamy
n=1
S N ESE T N
2 3 4 5 6 7 2 3
14—1 1+<1+1 1)+ —i—( ! + ! 1>+ >1—i—1 !
3 2 5 7 4 n—-3 4dn—-1 2n 3 2
—_——
>0 >0

Szereg w drugiej linii jest zbiezny. Istotnie

_<1+1 1)+<1+1 1)+ +( 1 1 1>
%an = 372 57 &) T T =3 T =1
"o 1 n 1 | 1

_£(4k—3+4k—1 ) ,;<4k 3 4k+4k:—1_4k:>

3 1
- ,; <4k;(4k —3) " ak(ak = 1)) ‘

Ciag s3, jest rosnacy, bo sktadniki wystepujace w ostatniej sumie sg dodatnie.
Mamy 4k — 1 > 4k — 3 > k. Zatem

LA | > 1

Czyli ciag ss3, jest zbiezny. Oznaczmy s = 117?1 S3,. Mamy

S3n+1 = S3p T il S,
1 1
S3n+2 = S3n + + — S.

dn+1 4n—+3 n

Zatem lim s,, = s.
n

3
Zadanie. Wykazac, ze s = 5 log 2.

Dowdd. Oznaczmy s = Z a,. Ustalmy liczbe £ > 0. Istnieje liczba naturalna

n=1
%)

N, dla ktoérej Z lan| < 5. Rozwazamy permutacje {0,}. Istnieje liczba
n=N+1
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naturalna M taka, ze wsréd liczb oy, 09, ..., 0y Wystepuja wszystkie liczby
1, 2, ..., N. Niech m > M. Wtedy

m m N [e%9)

S — 5 = (Zagk _ Zak> - Y a

k=1 k=1 k=1 k=N+1

W nawiasie wyrazy z drugiej sumy si¢ uproszcza i po odjeciu pozostang tylko
wyrazy o numerach wickszych od N. Zatem

o0 o0
< + > Jal <2 D) a| <.

k=N+1 k=N+1

m
Z oy, — 8
k=1

m N
Z Qg — Z ag
k=1 k=1

]

Definicja 3.27. Mowimy, Ze szereg Z ay, jest zbiezny warunkowo, jesli szereq
ten jest zbiezny, ale nie jest zbieiny bezwglednie, tzn.

o
> Jan| = oc.

n=1

Twierdzenie 3.28 (Riemann). Jesli szereg Zan jest zbiezny warunkowo,
to poprzez zamiane kolejnoSci wyrazow mozna uzyskaé szereq zbiezny do z
gory ustalonej liczby, rozbiezny do —oo, +00 lub szereg rozbiezny.

Dowaéd. Przedstawimy szkic dowodu. Dla liczby a okreslamy dodatnig i ujem-
ng czesé tej liczby wzorami

o a >0, N el a <0,
0 a<0’ 0 a>0

Zauwazmy, ze

7 zalozenia szereg

jest zbiezny, ale

i(af{—i—a;) = 00.
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Stad wynika, ze oba szeregi Y _at 1) a, sa rozbiezne oraz

Yaf = a, =occ. (3.3)
n=1 n=1

Ponadto a i a,, sa zbiezne do zera, bo |a,| dazy do zera. Stad wynika, ze
suma wyrazow nieujemnych szeregu jest rozbiezna do oo a suma wyrazow
ujemnych do —oco. Chcemy uzyskaé¢ z gory zadana liczbe s jako sume sze-
regu Zagn. W tym celu wybieramy po kolei wyrazy nieujemne szeregu i
dodajemy do momentu, gdy suma przekroczy s. Nastepnie dodajemy po ko-
lei wyrazy ujemne do momentu, gdy suma znajdzie si¢ ponizej s. Nastepnie
dodajemy (nieuzyte do tej pory) wyrazy nieujemne az suma przekroczy s,
i dodajemy wyrazy ujemne, az suma znajdzie sie ponizej s. Postepujac tak
dalej otrzymamy szereg zbiezny do s. Kolejne kroki sa mozliwe do wykonania
dzigki (3.3). To, ze otrzymany szereg jest zbiezny do s wynika z tego, ze |ay|
dazy do zera.

Jesli chcemy uzyskaé Zagn = oo dodajemy wyrazy nieujemne do mo-
mentu, gdy suma przekroczy 1. Nastepnie dodajemy jeden wyraz ujemny. W
nastepnym kroku dodajemy wyrazy nieujemne az suma przekroczy 2 i doda-
jemy jeden wyraz ujemny. Postepujac tak dalej uzyskamy szereg o zadanej
wlasnosci. O]

3.2 Mnozenie Cauchy’ego szeregow.

(0. ) o0
Rozwazmy dwa wielomiany Z a,x" oraz Z by,a" (zaktadamy, ze a, = b, =
n=0 n=0

0 dla duzych n). Mnozymy te wielomiany i grupujemy wyrazy z ta sama
potega przy x:

(ap + a1z + agw® + ...+ apa™ +...)(bg + b + b + ...+ by 4. )
== aobo + (aobl + CllbO).’E + (aobg + &1b1 + agbo).’L’Q —+ ...

+ (aghn + a1by_1 + ...+ ap_iby Fanbe)z™ + ... = > <Z akbn_k> ",

n=0 \k=0

Podstawmy z = 1 aby otrzymac

[e.e] [e.e] o0 n

Z Ay Z bn = Z Z akbn_k. (34)

n=0 n=0 n=0 k=0
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o0 oo
Wzér (3.4]) mozna uzasadni¢ w inny sposéb. Chcemy pomnozy¢ Z ap 1 Z by,

n=0 n=0
Tworzymy tabele mnozenia

bo b1 by ... bn1 by,
ag | apbo  apby  apby aoby
ap | apbp  a1by a1bn,_q
as | asbg
An—1 ap—1b1
an anb()

Nastepnie sumujemy wyrazy na przekatnych i wyniki dodajemy.

Twierdzenie 3.29. Jesli szeregi Z Gy 0 Z b, sa zbieine, przy czym co-
n=0 n=0

najmniej jeden z nich bezwzglednie, to szereq o wyrazach ¢, = Z apbn_ jest

. . k:O
zbiezny oraz

Z an Z b, = Z Cp-
n=0 n=0 n=0
Uwaga 3.30. Zalozenie bezwglednej zbieznodci jest istotne. Niech ag = by =

0 oraz 1y
(=) n>1.

n — bn - )
a NG
Wtedy
S (1
=3 (1)
k=1 (n—k)k
Korzystajac z nieréwnosci 2ab < a? + b? otrzymamy
—k)+k
(n— k)k < (n—k)+k _ n
2 2
Zatem .
b 2(n — 1)
|Cn| = Z > .
=1 1/(n —k)k n

To oznacza, ze ciag c, nie jest zbiezny do 0, czyli szereg o wyrazach ¢, nie
moze by¢ zbiezny.
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Dowéd Twierdzenia[3.29. * Zalézmy, ze

oo
> an] < oo.
n=0

Anzzak) Bn:ZbIm On:ZCk
k=0 k=0 k=0

Zatem
Cy = aobm
a1 = apby + ajbo,
ca = aopby + a1by + agby,

Cnh = aobn + albn,1 -+ agbn,Q + ...+ anbo.
Sumujac (pionowo) otrzymamy

Cn = aoB,+a B, +ayB, 2+ ...+ a,Bo,
A, B, aoB, + a1B,, +aB, +...+a,B,.

Zatem
Cn — Aan = a (Bn—l — Bn) + (lQ(Bn_Q — Bn) —f- e + an(Bo — Bn)

Ciag B, spelia warunek Cauchy’ego. To oznacza, ze dla z gory zadanej
liczby € > 0 istnieje prog Ny taki, ze dla s, ¢ > N; spelniony jest warunek

|Bs — By| < e.

Z kolei z bezwglednej zbieznosci szeregu o wyrazach a, wynika, ze istnieje
prog N, taki, ze

o0

> an] <e

n=No+1

Przyjmijmy N = max(N;, Ny). Ciag B, jest ograniczony. Istnieje wiec stata
M > 0, dla ktoérej

B <M, > lad <M.
n=0
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Niech n > 2N. Wtedy
‘Cn — Aan| < ‘al‘ ’anl - Bnl + ...+ ’CLN’ |anN - Bn’
+ ‘(ZN_Hl ’Bn—N—l — Bnl 4+ ...+ |6Ln’ |BO — Bn|

W pierwszej cze¢sci sumy oba numery w réznicy B; — B,, sa wigksze niz N,
bo n > 2N. Zatem |B; — B,| < . W drugiej czesci stosujemy oszacowanie
|B; — B,| < 2M. W rezultacie otrzymamy

Ch = AuBal < = (lar| +as| +. ..+ an]) + 2 (Jana] +lansal +- . . +]a])

<e ) lan|+2M > a,| <3Me.
n=0 n=N-+1

Z podkreslonych elementéw wynika, ze ciag C, — A, B,, dazy do zera. Oznacz-
my

A= Z s B = Z by,
n=0 n=0

Mamy
Cn,=(C,— A,By,) + A, By.
Zatem
li;bn C, = li£n A, B, = AB.
To oznacza, ze szereg Z cn jest zbiezny i jego suma jest réwna AB. O]

Przykltad. Pomnozymy szereg Z x" przez siebie metoda Cauchy’ego, dla
n=0
|z| < 1. Otrzymamy

1 oo oo oo n oo
= Soat et =3 Y aFam =" (n+1)2" (3.5)
(1—x) n=0 n=0 n=0 k=0 n=0
A 1
W szczegdlnosci dla z = 3 uzyskamy
~n+1 1

> = —4.

n=0
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Zatem (por. zadanie 8 z listy 2)

2n—1 +22n2 2271—1—1

n=1 n=0

> 1
—32—:14—8—6:3.
n=0 2n
Prawdziwy jest wzor

= (m+mn\ . 1
Z( )x —7(1_33)7)1“. (3.6)

n=0 m

Podamy uzasadnienie indukcyjne wzgledem m. Dla m = 1 wzor sprowa-
dza sie do (3.5]). Przypusémy, ze wzor spelniony jest dla liczby m. Wtedy

(1 iz) <1—i>m+1'1—x_i<m+n>n'§xn
g 2P G B 51 ol (e | e oY SRR B

W ostatniej réwnosci wykorzystalismy wzor

)« () e () = (0

ktéry mozna wyprowadzié¢ (zadanie) z

(2) = G) =)

00 2
Zadanie. Obliczy¢ Z Z—n korzystajac z 1' dlam=1im=2.

n=1

4 Funkcje i granice

Jesli kazdej liczbie z pewnego podzbioru £ C R przyporzadkowana jest jakas
liczba rzeczywista, to mamy do czynienia z funkcja. Funkcja sktada sie z
dziedziny F oraz przepisu, ktory mowi jakie liczby nalezy przyporzadkowaé
liczbom z E. Zwykle przepis podany jest wzorem y = f(z).

Przyktady.
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(a) £=(0,1), f(z) = .
(b) E=(0,00), f(x) = v/x.

sine —1<x<0,
(C) E:(_Ll)?f(x): 5 r =0,
x? 0<z<l.

Bedziemy badali zachowanie sie warto$ci funkcji w poblizu punktu. Do
tego stuzy granica funkcji w punkcie.

Definicja 4.1 (intuicyjna). Zaléimy, Ze funkcja f(x) jest okreslona wokél
punktu a (ale niekoniecznie w punkcie a). Méwimy, ze liczba g jest grani-
cq funkeji f(x) w punkcie a, jesli wartosci f(x) lezq coraz blizej liczby g
dla argumentow x lezgcych coraz blizej liczby a, ale x # a. Piszemy wtedy
lim f(z) = g.

Powyzsza definicja wystarcza do obliczenia wickszosci granic. Uscislenia
tej definicji mozna wykonac¢ na dwa sposoby.

Definicja 4.2 (Heine). Zaldzmy, ze funkcja f(x) jest okreslona wokdl punktu
a (ale niekoniecznie w punkcie a). Mowimy, Ze liczba g jest granicq funkcji
f(x) w punkcie a, jesli dla kazdego ciggu x, zbieinego do a, ale z, # a, cigg
f(zy) jest zbiezny do liczby g.

Uwaga 4.3. Wartosé granicy w punkcie a (i fakt jej istnienia) nie zalezy
od wartosci f(a). Co wigcej funkcja f moze nie by¢ okreslona w punkcie a.
Granica zalezy tylko od wartosci funkcji w poblizu punktu a, z wytaczeniem
tego punktu.

Przyklady.

(a) E =R, f(z) = 2% Wtedy lin%) 2% = 0. Rzeczywiscie, niech m, — 0,
T, # 0. Wtedy 22 — 0.
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(b) E=R
2%, x40,
fle) = {5 T i 0.
Wtedy
iy ) = g ? =0
(c) E=(-1,0)U(0,1), f(z) = L # Ile wynosi lim f(x) ?
T x\/m 70

1 1 vr+1-—1

E_x\/x—i—l - v+ 1

B 1

SV I(Vrr 14+l Vet l(Wrrl+1)

N | —

Gdy z, — 0, to f(xy,) — % Zatem lin% flz) =

(d) E=R\{2}.
o) = {$ +2, x<2,

32 x> 2.

1 1
Niech x5, =2 — — oraz x9,_1 = 2+ —. Wtedy
n n

fam) = (2-1) 26

1 2
n n
Zatem ciag f(x,) nie jest zbiezny.

Definicja 4.4 (Cauchy). Moéwimy, Ze liczba g jest granicqg funkcji f(x) w
punkcie a jesli dla dowolnej liczby € > 0 istnieje liczba 6 > 0 taka, Ze jesli
0<|x—al<é to|f(x)—g|<e.

Uwaga 4.5. Definicja Cauchy’ego odpowiada definicji intuicyjnej. Osoba
watpiaca, ze f(z) moze znalezé sie blisko g, wyraza zadanie, aby odlegto$é
f(x)ig byta mniejsza niz €, np. ¢ = 0,0001. Naszym zadaniem jest wskazanie
liczby 0 > 0, ktéra zagwarantuje, ze jesli odlegtosé argumentu z # a od a
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jest mniejsza niz J, to faktycznie odleglos¢ f(z) od g bedzie mniejsza niz
€. Po wykonaniu zadania osoba watpiaca moze zmniejszy¢ wartosé € np. do
0,00001. Wtedy my musimy znalezé nowa (zwykle znacznie mniejsza) wartosé
dla liczby d, aby zaspokoi¢ zadanie. Jedli potrafimy to zrobi¢ dla dowolnej
wartosci €, to faktycznie granica funkcji w punkcie a jest rowna liczbie g.

-1
Przyktad. f(x) = Ve T Chcemy obliczyé¢ granice w punkcie 1 z definicji
x _—

Cauchy’ego. Mamy f(z) =

1
NS 7 definicji intuicyjnej widac, ze granica

w 1 wynosi % Mamy

1 | 1 W_|Lwﬁ\_ |z — 1| 1

v+l 2

@

— 2= < =z —1).
: -1

S 2(yz+1) 2z +1)2 2
Jedli chcemy, aby

V@y—i<0ﬁ1

wystarczy, aby 0 < |z — 1| < 0,02, tzn. mozemy przyja¢ 6 = 0,02 lub za
0 przyja¢ dowolna liczbe dodatnia mniejszg niz 0,02, np. 6 = 0,01. Ogdlnie
dla liczby € > 0 niech 6 = 2. Wtedy dla 0 < |z — 1| < 2¢ mamy

1 1
— < Sz —1] <.
f@)- 5| < glo-1<e

Mozna tez przyja¢ 6 = €.
Uwaga 4.6. Zapis kwantyfikatorowy definicji Cauchy’ego ma postac
Ve>030>0Ve {0<|z—a|<d = |f(z)—yg| <e}.

Twierdzenie 4.7. Definicje granicy wedtug Cauchy’ego 1 Heinego sq row-
nowazne.

Dowdd. (C) = (H).

Zaktadamy, ze 310123 f(x) = g w sensie Cauchy’go. Niech z, # a oraz z, —a.
Trzeba udowodnié, ze f(x,) — ¢g. W tym celu ustalmy liczbe ¢ > 0. Z
zalozenia istnieje liczba § > 0, dla ktorej

O0<|z—al<éd = |f(x)—yg|<e. (4.1)
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Poniewaz z,, —a, to istnieje prog N taki, ze dlan > N mamy 0 < |z, —a| < 0.
Wtedy z (4.1) otrzymujemy

|f(z,) —g| <e, dlan>N.

To oznacza, ze lim f(z,) =g.

(H) = (C). Zalézmy nie wprost, ze liczba g nie jest granica funkcji
f(z) w punkcie a w sensie Cauchy’ego. To oznacza, ze istnieje liczba £ > 0
taka, ze dla dowolnej liczby 6 > 0 mozna znalez¢é argument x spelniajacy
0 < |z —a| <0, ale |f(z) — g| > e. Przyjmijmy 6, = * i niech z,, oznacza
argument odpowiadajacy liczbie d,. Otrzymujemy 0 < |z, — a| < % oraz

|f(z,) — g| > €. Wtedy z,, — a, ale f(x,) 7/9, =

Uwaga 4.8. W zaleznosci od sytuacji mozemy uzywac definicji Heinego lub
Cauchy’ego.

Co zrobi¢, gdy nie wida¢ kandydata na wartosé¢ granicy funkeji ? Do tego
stuzy warunek Cauchy’ego. Intuicyjnie oznacza on, ze jesli dwa argumenty
x 1 2’ leza blisko liczby a, ale x, 2" # a, to wartosci f(x) i f(a') leza blisko
siebie. Sciste okreglenie znajduje sic w nastepnym twierdzeniu.

Twierdzenie 4.9 (warunek Cauchy’ego). Funkcja f(x) posiada granice w
punkcie a wtedy 1 tylko wtedy, gdy dla dowolnej liczby € > 0 mozna znalezé
liczbe & > 0 takq, Ze

0<|z—all'—al<d = |f(x)—f(2")| <e. (4.2)

Dowdd. (=). Dowdd tej implikacji jest jasny na podstawie intuicyjnych defi-
nicji granicy i warunku Cauchy’ego. Rzeczywiscie jesli dwa argumenty x, ©’ #
a leza blisko a, to wartosci f(z) i f(2') leza blisko liczby ¢. Zatem te wartosci
leza blisko siebie.

Scidle, z zalozenia dla ¢ > 0 mozna znalezé liczbe 6 > 0, dla ktérej
spetniona jest implikacja
€

O<|t—a|l<éd = |f(zf)—g|<2

Wtedy dla 0 < |z — a| < ¢ oraz 0 < |2’ — a] < § mamy

@) = F@) < |f@) =gl +1f @) =gl < 5 + 5 ==
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(«<). Niech z, — a, ale =, # a. Wtedy ciag f(x,) spelia warunek
Cauchy’ego dla ciagéow. Rzeczywiscie, dla liczby € > 0 istnieje liczba § > 0
spetniajaca . Poniewaz z,, —a, to 0 < |z, — a| < § dla duzych wartosci
n, np. dla n > N. Wtedy dla n,m > N na podstawie otrzymamy
|f(z) — f(zp)| < €. Zatem ciag f(z,) jest zbiezny. Oznaczmy g = lim f(zy).
Wtedy ilirtll f(z) = g w sensie Heinego. Rzeczywiscie, niech 2/, —a iz #a.
Z poprzedniego rozumowania wiemy, ze ciag f(z),) jest zbiezny, np. do liczby
¢'. Rozwazmy nowy ciagg postaci

/

/ /
L1y L1, T2, Loy ooy Ty Ly - -

Ten ciag dazy do a. Zatem odpowiadajacy ciag wartosci funkcji

f(l'l)a f(xll>7 f(xQ)a f(x,2>7 ceey f(xn)7 f(x;z)a cee
jest zbiezny. To jest mozliwe tylko dla g = ¢'. ]

Uwaga 4.10. Z dowodu wynika, Ze granica lim f(z) istnieje wtedy i tylko
wtedy, gdy dla dowolnego ciagu z, # a, x, —a ciag f(z,) spelia warunek
Cauchy’ego dla ciagow.

4.1 Wazna granica

Twierdzenie 4.11. )
. sinz
lim =1.
z—0 g

Dowdd. Dla kata 0 < x < § rozwazmy trojkat prostokatny o kacie x i przy-
prostokatnej dtugosci 1 przy tym kacie. Trojkat ten zawiera w sobie wycinek
kota o kacie x i promieniu 1, ktory z kolei zawiera tréjkat rownoramienny
o kacie wierzchotkowym z i ramionach dlugosci 1. Poréwnujac pola figur
otrzymamy nieréwnosé .
sin
2

T tgx
< =< —.
2 2

Zatem ]
sin

sine <x < .
COS T

)\ 2 x3
DY G I S
(2)] T

Z drugiej nieréwnosci otrzymujemy

. Lo
sinx >xcosxr ==x [1 —2811122} >
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Uzyskujemy wiec

3
x T
x—?<sinx<x, 0<x<§. (4.3)
Zatem ) ‘
x sin x ™
1—-—< <l, O<z<—.
2 T 2
L .. sinx :
Z parzystosci funkcji otrzymujemy
r?  sinx 77
1-—< I, 0<|z| < —.
2 x
Z nieréwnoéci wynika, ze
. sinz
lim = 1.
z—0

4.2 Granice jednostronne

Przyktad. 7Z wysokosci 20 m upuszczamy kamien. Chcemy znalez¢ predkosé
kamienia w chwili uderzenia w ziemie. Przed uderzeniem wysokos¢ wynosi
h(t) = 20 — Lgt. Przyjmijmy g = 10m/s*. Wtedy h(t) = 20 — 5¢*. Kamien
spadnie po 2 sekundach. Srednia predkosé¢ kamienia od momentu ¢ < 2 do
momentu uderzenia w ziemie wynosi

h(t) —h(2) 20— 5¢ (t—2)(t+2)
t—2 t—2 g t—2 S(t+2)
Predkos¢ chwilowa w momencie uderzenia wynosi zatem
— h(2
lim MO =22 o
t—2 t—2
t<2

Definicja 4.12. Zaloimy, ze funkcja f(x) jest okresSlona w pewnym prze-
dziale a < x < a +n (na prawo od punktu a). Moéwimy, Ze funkcja f(z)
ma granice prawostronng w punkcie a rowng liczbie g, jesl dla kazdego ciggu
Tn — @, T > @, Mamy f(zy) — g. Réwnowaznie

Ve>03>0Ve{a<zr<a+d = |f(z)—yg|<e}

Stosujemy zapis lim+ flz) =g.
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Podobnie okresla si¢ granice lewostronna lim f(x).

Twierdzenie 4.13. Granica lim f(z) istnieje wtedy i tylko wtedy, gdy ist-
niejg granice jednostronne lim f(z) i lim+ f(x) i sq sobie rowne.

Dowdd. (=)

Niech }:m}b f(x) = g. Przypusémy, ze x,, — @ 0raz Ty > a. Wtedy f(z,) —
g. Zatem lim+ f(z) = g. Podobnie pokazujemy, ze lim f(x) = g.

(<)

Zatozmy, ze lim f(x) = lim+ f(z) = g. Dla liczby e > 0 istnieja liczby

01,09 > 0 spelniajace warunek:

a—0h <z<a = |f(z)—g|<e,
a<zr<a+d = |f(zr)—yg|<e.

Przyjmijmy § = min(dy, d3). Wtedy jesli 0 < |z — a| < § to albo

a—0h <a—d<z<a

albo
a<rxr<a+d<a+ds.
W obu przypadkach uzyskujemy |f(z) — g| < e. ]
Przyktad.
1
——1 <1
flay=3a2 = T

r—x x>1.

lim f(z) = lim <1 — 1) =0,

rz—1— rz—1— $2
li =1 —2%) =0.
S () = Jip (=)
4.3 Granice niewlasciwe i granice w punktach niewta-
sciwych
Definicja 4.14. Funkcja f(x) ma granice oo w punkcie a jesli dla kazdego
cLagu Ty — 4, Tn # a, mamy f(x,) — 0. Rownowaznie, dla dowolnej

liczby M istnieje liczba 6 > 0, dla ktorej warunek 0 < |x — a| < & pocigga
f(z) > M.
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Definicja 4.15. Zalézmy, ze funkcja f(x) jest okreslona w przedziale (a,00).
Moéwimy, ze liczba g jest granicq funkcji f(x) w oo jesli dla dowolnego ciggu
Ty — 0O mamy f(zn) — g. Réwnowaznie

Ve>03dMVe{z>M = |f(z)—yg|<e}.

Podobnie okresla si¢ granice —oo i granice w —oo.

Twierdzenie 4.16.

1
1) Jesl lim f(x) = £oo, to lim —— = 0.
() Tz—a ( ) T—a f(l’)

(i1) Jesli f(x) > 0 w pewnym przedziale (a—n, a+n)\{a}, oraz 0 lim f(z) =0,

to lim —— = oc.
w=a f(z)
Dowdd. (i) Niech glEILI(IL f(z) = oo. Rozwazmy ciag x,, zbiezny do a oraz z,, # a.
1
Z zalozenia mamy f(x,) — oo. Wtedy ) — 0.
n xn n

(ii) Niech z, — a oraz Iy # a. Wtedy f(z,) — 0. Dla odpowiednio
duzych wskaznikéw n, np. dla n > N, mamy z, € (a — n,a + n). Wtedy
1

Flon) — 00. ]

Uwaga 4.17. Analogiczne twierdzenie jest prawdziwe dla granic jednostron-
nych i granic w punktach niewtasciwych.

f(z,) > 0. Zatem z Twierdzenia [2.19| otrzymujemy

4.4 Dzialania na granicach

Twierdzenie 4.18. Zalozmy, ze lim f(x) = A oraz lim g(z) = B. Wtedy

Tr—a r—a

(i) lim[f(x) + g(z)] = A+ B.

(i1) lim f(x)g(x) = AB.

A
(#i) lim @) =50 ile B # 0.

7=a g(x)
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Dowdd. Teza wynika z odpowiedniego twierdzenia o ciagach. Rzeczywiscie

Niech z, — a i x, # a. Wtedy ciagi f(z,) £ g(z,), f(x,)g(z,) oraz f(($n)>
" g(xn
A
daza odpowiednio do A+ B, AB i e O

Uwaga 4.19. Twierdzenie jest prawdziwe dla granic jednostronnych i granic
w punktach niewtasciwych.

Twierdzenie 4.20 (regula podstawienia). Jesli

lim f(z) =0 i lilrrll7 9(y) =c,
r—a y—
oraz funkcja f(x) nie przyjmuje wartosci b w poblizu punktu a, to

lim g(f(2)) = e

Dowdéd. Niech x, — a, T # a. Wiemy, ze f(z) # b w pewnym przedziale
(a—mn,a+n)\ {a}. Wtedy z, lezy w tym przedziale dla duzych wartosci n,
np. dla n > N. Zatem y,, := f(z,) # b dlan > N oraz y, = f(z,) — b.

Otrzymujemy wiec g(f(z,)) = g(yn) — . O

Uwaga 4.21. Przy zastosowaniu reguty podstawienia postugujemy sie zapi-
sem

lim T = lim = c.
limg(f(z)) = limg(y)

) / 1
lim/x + —.
r—2 x
1

Przyjmujemy f(z) = 24—, g(y) = /y. Wtedy b = 3 oraz ¢ = \/g W innym
x

zapisie mamy
i o ! lim 7 \F
mijex+— = im =4/=.
z—2 x y:g;—i—% y—)% y 2

1
Trzeba si¢ upewnié¢, ze x + — # g, gdy = # 21 x lezy blisko 2. Réwnanie
x

Przyktad.

-I—l L 2—1—1
€T —_—= - = —
r 2 2

1
ma dwa rozwigzania =21z = 1. Dla 0 < |z —2| < 1 mamy wiec z+ — # 2.
T
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4.5 Funkcje ciggte

Definicja 4.22. Mdéwimy, ze funkcja f(x) jest ciggla w punkcie a, jesli f(x)
jest okreslona w pewnym przedziale wokot punktu a, wlgcznie z punktem a,
oraz

(1) istnieje granica lim f(z),

(2) lim f(z) = f(a).

r—a

Przy zastosowaniu definicji Cauchy’ego granicy funkeji, ciggtos¢ w zapisie
kwantyfikatorowym ma postac

Ve>030>0Vae {|lr—al|<d = |f(zx)— f(a)| <e}.

Mozna pomingé¢ warunek 0 < |z — a|, bo dla z = a mamy |f(z) — f(a)| =
0<e.
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Przyktady.
(a) _
sin x
b '7: 07
fay={ = "7
1 z=0
. . sinz
lig f(@) = iy 2 = 1 = (0)

*rysunek wykonany przez Natalie Majewska z kursu Analizy I (2020)
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(b)

frysunek wykonany przez Natalie Majewska z kursu Analizy I (2020)
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(c)

1

sin—, x #0,
x

0 xz =0.

fx) =

Granica w punkcie 0 nie istnieje (wykres dla 0 < = < 1/7). Niech

1
Ty = — oraz T = m Wtedy f(x,) =0 oraz f(x),) = 1.

Twierdzenie 4.23. Jesli funkcje f(x) i g(z) sq ciggle w punkcie a, to funkcje
[z
F(&) £ 9(e). F@gle) i 1)

sa rowniez ciggle w a, przy czym w ostatnim

przypadku zaktadamy, Ze gg((xa)) # 0.

Dowaéd. Teza wynika z Twierdzenia [4.18 O
Uwaga 4.24. Jedli g(a) # 0, to z ciagtoéci wynika, ze g(x) # 0 dla x w
poblizu punktu a. Rzeczywiscie, przyjmijmy € = M. Wtedy istnieje liczba

d > 0 taka, ze dla |z — a| < § mamy |g(x) — g(a)| < “(](2&”. Dalej

9ta)] ~ lgfa)| < lo(e) — gla)] < 2
Zatem |g(z)| > |g(2a)|.

Przyktlady.
(a) Kazdy wielomian jest funkcja ciagta w kazdym punkcie.

(b) Hloraz dwu wielomianéw jest funkcja ciagta poza miejscami zerowymi
mianownika.

Twierdzenie 4.25. Jesli funkcja f(x) jest ciggla w punkcie a, a funkcja
g(y) jest ciggla w punkcie b = f(a), to funkcja ztozona g(f(x)) jest ciggla w
punkcie a.

Dowdéd. Niech x, — a. Wtedy vy, := f(z,) — f(a) = b. Zatem g(y,) —
g(b). To oznacza, ze g(f(xn)) — g(f(a)). O


https://pl.m.wikipedia.org/wiki/Plik:Warsaw_sinusoid.svg
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Przyktad.
h(z) = |2 — 32 — 10].

Sprawdzamy ciagtos¢ w punkcie 5. Niech
flz)=2=3x-10,  g(y) = lyl-
Funkcja g(y) jest ciaglta w kazdym punkcie, bo
lyl = bl] < [y = bl.
Zatem funkcje h(z) = g(f(z)) jest ciagta w punkcie 5 (oraz w kazdym innym
punkcie).
Zadanie. Zalézmy, ze f : (0,1) — R oraz lim f(z) istnieje dla wszystkich

punktéw 0 < a < 1. Okredlmy f(a) = lim f(x). Czy funkcja f jest ciagla w
kazdym punkcie przedziatu (0,1) 7

Definicja 4.26. Mowimy, ze funkcja f(x) jest ciggla w przedziale (a,b), jesli
jest ciggla w kazdym punkcie tego przedziatu. Mowimy, Ze funkcja f(x) jest
ciagla w przedziale [a,b], jesli dodatkowo

lim f(z) = f(a) oraz hril, f(z) = f(b).

Przyktlady.

1
(a) f(:c)—m,0<x<1.

(b) hy) =y, y > 0.
Sprawdzenie: dla yo > 0 mamy
[y — Yol 1

V= T e, <

Dla yo = 01ie > 0 niech 0 <y < e*. Wtedy /y < €.

|y—yo|-

(¢) flz) =/z(1—2),0<x < 1.
Z twierdzenia o sktadaniu funkcja jest ciagta w przedziale (0,1), bo
funkcje 2(1 — x) jest ciagla wszedzie a funkcja g(y) = /¥ jest ciagta
w punktach dodatnich. Sprawdzimy ciggto$¢ w 0 i 1. Niech z, ~ 0,

x, = 0. Wtedy z,(1 — z,) — 0 oraz y, = x,(1 — x,) > 0. Zatem

V(1 —2n) = /Yn — 0= f(0).
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Twierdzenie 4.27 (jednostajna ciagtosé funkcji). Funkcja f(x) ciggla na
przedziale domknietym |a, b] jest jednostajnie ciggla, tzn. dla dowolnej licz-
by € > 0 istnieje liczba § > 0 taka, Ze dla x, 2" z [a,b], jesli |x — 2’| < 6, to

[f(x) = f(2)] <e.

Uwaga 4.28. Zapis kwantyfikatorowy ciggtosci jednostajnej ma postac
Ve>030>0Va€lab]Va' €la,b] {|z—2| <d = |f(x)—f(a")| <e}.

Dla poréwnania zapis kwantyfikatorowy ciggloéci w kazdym punkcie x prze-
dziatu [a, b] ma postaé

Ve>0Va€la,b]30>0Va' €la,b] {|z—2| <d = |f(x)—f(a)| <e}.

Przy jednostajnej ciaglosci liczba 6 > 0 jest uniwersalna dla wszystkich punk-
tow a < x < b, gdy przy ciagtosci punktowej ta liczba jest dobierana indy-
widualnie dla kazdego punktu z a < z < b.

Intuicyjnie jednostajna ciggtos¢ oznacza, ze jesli dwa argumenty funkcji
lezg blisko siebie, to odpowiadajace im wartosci funkcji sa rowniez potozone
blisko siebie, niezaleznie od potozenia tych argumentéw.

Dowdéd. (nie wprost). Zalézmy, ze warunek jednostajnej ciaglosci nie jest
spetniony. Tzn., ze istnieje liczba € > 0 taka, ze dla dowolnego wyboru liczby
d > 0 znajda sie¢ punkty z, 2’ w przedziale [a,b] takie, ze |z — 2| < ¢ oraz

|f(z) — f(2")] > e. W szczegblnosei dla §,, = - istnieja punkty z,, z/, w

przedziale [a, b] spelniajace

fr =) < T [fle) — ()] > (14)

Z twierdzenia Bolzano-Weierstrassa z ciagu x,, mozna wybraé¢ zbiezny pod-
ciag x,,. Oznaczmy x = liin Ty, L plerwszego warunku w 1} mamy

L <2 < + !
—— <z x —.
Nk Nk nE N

T,

. . . . . . o . / . ;.
Z twierdzenia o trzech ciggach wnioskujemy, ze x = hllgn T, . Z ciaglosci w

/

punkcie z otrzymujemy f(z,, ) — flx) i f(xy,) — f(z). To oznacza, ze

f(wp,)—f(23,) — 0, co stoi w sprzecznosci z drugim warunkiem w (4.4)). [
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Przyktady.

1
(a) Domknietos¢ przedziatu jest istotna. Rozwazmy f(x) = — na przedziale
x

1 1
(0,1]. Dla z,, = o ix), =— mamy f(x,)=2n, f(x)=n. Zatem
n n

t—ty 0, flan) — f(z}) — oo

(b) Funkcja w poprzednim przyktadzie byla nieograniczona. Rozwazmy
1 1 1
f(z) = sin — na przedziale (0,1]. Dla 2, = — i 2], =
x

nwr " (2n+1/2)7
mamy

Wy — 0, f(a) = () = 1
(c) Jesli nachylenie wykresu funkcji jest ograniczone, tzn.

|f(x1) — f(z2)]

|21 — 2

<L7 X1 7é$27

to funkcja jest jednostajnie ciggta. Istotnie mamy wtedy

|[f(z1) = f(@2)] < Llzy = 25].

Np. f(z) = x jest jednostajnie ciggla na calej prostej. Z kolei f(x) = z*

nie jest jednostajnie ciagla na caltej prostej, bo dla z, =n+ —, 2/, =n
n

mamy x, — ), — ( oraz f(xn) — fla3,) > 2.

(d) Ograniczone nachylenie wykresu nie jest warunkiem koniecznym dla
jednostajnej ciagtosci. Np. funkcja f(z) = Mjest jednostajnie ciggta
na calej prostej mimo, ze nachylenie wykresu w poblizu punktu 0 jest
nieograniczone.

Twierdzenie 4.29 (Weierstrass). Funkcja ciggla f(x) na przedziale do-
mknietym |a,b] jest ograniczona oraz osigga swoje kresy gérny M i dolny m.
Tzn. istniejg punkty c i d w przedziale |a, b takie, ze f(c) =m i f(d) = M.

Uwaga 4.30.
m= inf f(z), M = sup f(z).

asw<h a<z<b
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Dowdéd. Dla liczby € = 1 istnieje liczba § > 0 taka, ze jesli |x — 2’| < 0, to
bh—

|f(x) — f(2")|] < 1. Wybierzmy liczbe naturalng n tak, aby LA } Np.
n

b—a

niech n = [

] +1. Dzielimy przedzial [a, b na n réwnych czesci punktami

b—a

ap = a -+ kdlak=0,1,...,n. Oznaczmy

C = max{|f(a)| + 1, [fas)] + 1, ..., [f(an)| + 1}.

Niech a < z < b. Wtedy a1 < x < a dla pewnej liczby & = 1,2,...,n.

Zatem
b—a

< 0.

|z —ar] < ap —ap_y =

Wtedy
|f(2)] = [flaw)| < |f(z) — flan)] < 1.

Otrzymujemy wiec

|f ()] <|flax)| +1<C,

czyli funkcja f jest ograniczona.
Zatézmy, nie wprost, ze f(z) < M dla wszystkich a < x < b. Rozwazmy

funkcje g(x) . Funkcja g(z) jest dodatnia i ciagta na przedziale

la,b]. Z pierwszéy czggc(ixc)bwodu wynika, ze g jest ograniczona z gory, tzn.
1
m =g(z) <N,
dla pewnej statej N. Po przeksztatceniu otrzymamy
M= f@)> —, cayli f(z) < M-~
N N
Dalej
M= sup fz)<M——,
a<a<b N
co daje sprzecznosé. O

Twierdzenie 4.31 (wlasno$¢ Darboux). Funkcja ciggla na przedziale [a, b]
przechodzi od wartodci f(a) do wartosci f(b) przez wszystkie wartosci posred-
nie, tzn.dla dowolnej liczby | lezgcej pomiedzy f(a) i f(b) (pod warunkiem
f(a) # f(b)) istnieje punkt ¢, a < ¢ < b, dla ktérego f(c) = I.
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Dowdéd. Rozwazymy przypadek f(a) < f(b). Niech f(a) <1 < f(b). Chcemy
udowodnié, ze f(zo) = [ dla pewnego punktu zy w [a, b]. Zalézmy, nie wprost,
ze f(x) # | dla wszystkich z. Rozwazymy funkcje

1
9@ = =

Z twierdzenia Weierstrassa mamy

1 —
[f(x) =1

dla pewnej statej N. Zatem

g(z) <N,

1

f@)=ll> 5 a<z<b. (4.5)

1

~ mozna znalez¢ liczbe 9, dla ktorej

Z jednostajnej cigglosci dla € =

v —2'| <6 = [f(z) - f(2)] <

=

—a
Dzielimy przedziat na n réwnych czesci punktami ap, = a + ——Fk tak, aby
n

— 1
bna < 0. Zatem |f(ag) — f(ax_1| < N Mamy f(ag) <! < f(a,). Niech k

bedzie najmniejszym wskaznikiem, dla ktérego | < f(ag). Wtedy f(ax—1) <

1 1
[ < f(ag). Poniewaz |f(ax) — f(ax_1| < N to |f(ag) —1| < N Otrzymujemy
sprzecznosé z (4.5)).

Intuicyjnie: w chwili aj znajdujemy sie¢ w punkcie f(ax) osi y. Kolejne
kroki (czyli przejScia miedzy momentami czasu x = ay_1 i © = a) sa krot-

1
sze Nniz N Przypusémy, ze obszar pomiedzy (l - —,1l+ N> oznacza rzeke.

N
Przechodzac od f(ag) < [ do f(a,) > [ krokami krétszymi od N musimy
wejsé do rzeki, co przeczy (4.5)). O]

Whiosek 4.32. Funkcja ciggla na przedziale domknietym przyjmuje wszyst-
kie wartosci pomiedzy swoimi kresami dolnym @ gornym.
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Dowdéd. Z twierdzenia Weierstrassa istnieja punkty c i d takie, ze f(c¢) =m i
f(d) = M. Z wtasnosci Darboux zastosowanej do przedziatu pomiedzy ¢ i d
funkcja przyjmuje wszystkie wartosci pomiedzy m i M. O]

Przyktady.
(a) Chcemy rozwiazaé¢ réwnanie
w(r) :=a*+22° + 1 -3 =0.
Mamy w(0) = =3 1 w(l) = 1. Z wtlasnosci Darboux w(zy) = 0 dla
1
pewnego punktu xy pomiedzy 0 i 1. Poniewaz w <2> < 0, to mozna
znalez¢ rozwigzanie pomiedzy 3 il.
(b) )
sin— x #0,
x
0, xz=0.

fx) =

Funkcja ma wtasno$¢ Darboux na dowolnym przedziale [—a, a] mimo,
ze nie jest ciagta w punkcie 0 (wykres dla 0 < z < 1/7).

Twierdzenie 4.33. Funkcja monotoniczna w przedziale [a, b] jest ciggla wte-
dy 1@ tylko wtedy, gdy ma wlasnosé Darbou.

Lemat 4.34. Funkcja monotoniczna posiada granice jednostronne w kazdym
punkcie.

Dowaod. Pokazemy, ze

liny f(x) = it f(2)

r—C

dla dowolnej funkcji rosnacej. Dla x > ¢ mamy f(z) > f(c), zatem

o= iuf f(z) > f(c).

Dla € > 0 liczba « + ¢ nie ogranicza z dotu wartosci funkcji f(z) dla x >
c. Zatem istnieje argument xo > ¢ spetniajacy f(zo) < o + . Wtedy dla
c < x < xomamy o < f(z) < f(zo) < a+e. Zatem |f(z) — a| < e. Czyli
lim f(z) = a. O

r—cC


https://pl.m.wikipedia.org/wiki/Plik:Warsaw_sinusoid.svg
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Dowdéd twierdzenia. Rozwazmy funkcje rosnaca f(x) i punkt ¢ wewnatrz [a, b].
Nieciaglosé oznacza, ze przynajmniej jedna z nieréwnosci

lim f(x) < f(e) < lim f(x)
jest ostra. W kazdym przypadku funkcja nie miataby wtedy wtasnosci Dar-
boux.

Zatézmy, ze f(x) nie jest ciagta w punkcie ¢, ktéry jest koficem przedziatu.
Gdy c jest prawym koncem, to nieciggto$¢ oznacza, ze

lim f(z) < f(c).

Podobnie jak poprzednio funkcja nie ma wlasnosci Darboux. O]

Definicja 4.35. Méwimy, Ze funkcja f(x) jest réznowartosciowa na podzbio-
rze E C R, jesli dla dwu argumentow xq # xo z E mamy f(x1) # f(z2).

Niech F' = {f(x) : x € E} dla funkcji r6znowartosciowej. Wtedy dla
wartoéci y € F istnieje jedyny element = € E taki, ze f(z) = y. Mozemy
okresli¢ g(y) = x. Wtedy ¢g(f(x)) =z oraz f(g(y)) = v.

Twierdzenie 4.36. Funkcja ciggla © réznowartosciowa na przedzml@ jest
monotoniczna.

Dowaod. Zatézmy, ze f nie jest monotoniczna. To oznacza, ze mozna zna-
lez¢ trzy argumenty x; < xo < xz spelniajace f(x1) < f(x2) > f(x3) albo
f(z1) > f(x2) < f(xs). Tzn. f(xq) nie lezy pomiedzy f(x1) i f(z3). Rozwaz-
my przypadek f(z1) < f(z2) > f(x3). Oznaczmy o = max{f(x1), f(x2)}.
Z wtasnosci Darboux wartosci z przedziatu [« f(z2)] sa przyjete dwukrotnie
przez funkcje f, raz w przedziale (1, z5) i drugi raz w przedziale (xq, z3). O

Twierdzenie 4.37 (o funkcji odwrotnej). Jesli funkcja f(x) jest ciggla i
réznowartosciowa na przedziale |a,b], to funkcja odwrotna g(y) jest ciggla na
przedziale [m, M|, gdzie m = inf f(x) oraz M = sup f(z).

a<z<h a<z<b
Dowdd. Wiemy, ze f(x) jest $ci$le monotoniczna. Przyjmijmy, ze f(x) jest
rosngca. Wtedy funkcja odwrotna tez jest rosnaca na przedziale [m, M]. Dla
ciagtosci wystarczy zatem pokaza¢ wtasnos¢ Darboux. Niech y; < yo oraz

tPrzedzial moze mieé¢ postaé [a, b], (a,b], [a,b) lub (a,b)
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g(y1) < ¢ < g(y2). Trzeba znalezé argument y taki, ze g(y) = c. Nakladamy
na nier6wnos¢ funkcje f i otrzymujemy

1= f(g(y)) < i(g < f(9(y2)) = y2.

Yy

U

Dalej g(y) = g(f(c)) = c.
Przyktad. Dla funkcji f(x) = 2™, 0 < x < M, funkcja odwrotna jest g y) =
vy, 0 <y < M". Poniewaz M jest dowoln@ dodatnig liczba, to g(y) =
jest ciagta na [0, 00).

4.6 Scisle wprowadzenie funkcji wyktadniczej

Ustalmy liczbe a > 1. Dla liczb wymiernych w € Q okreslamy

aw:(ap)é, jeéliwzz, qgeN,peZ.
Wynik nie zalezy od przedstawienia liczby w w tej postaci. Np. (a?)'/* = a!/2.
Funkcja Q 3 w — a" ma wtlasnosci:
(a) a™tv2 = g*1q™2,
(b) wy <wy = a" < a".
(c) a' =a.

Definicja 4.38. Podzbior E C R nazywamy gestym, jesli dla dowolnej
liczby x € R stnieje cigg liczb a, € E zbieiny do x.

Zbior liczby wymiernych jest gesty w R. Rzeczywiscie, dla z € R mamy
nr — 1 < [nz] < nz. Zatem

To oznacza, ze M — .

n n
Lemat 4.39. Jesli funkcje g(z) i h(x ) sq ciggle na R oraz g(a) = h(a) dla
punktéow a z gestego podzbioru E C R, to g(x) = h(zx).
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Dowdd. Dla x € R bierzemy ciag a, punktow z F zbiezny do x. Wtedy

9(x) =limg(a,) = lim h(a,) = h(z).

Okreslamy
F(z) = supa®.

weQ
w<x

Zauwazmy, ze dla x € Q mamy F(z) = a*. F(x) jest funkcja $cisle rosnaca.
Istotnie, niech x; < 3. Mozna znalez¢ liczby wymierne wy, wo takie, ze
T < wp < wy < xo. Wtedy
F(z1) = sup a” < sup a¥ = a"* < a"? < F(xq).

weQ weQ

w<zy wLw
Zbadamy ciagtosé funkcji F'(z). Z monotonicznosdci wiemy, ze F'(x) posiada
granice jednostronne w kazdym punkcie zy oraz

lim F(z) < F(zo) < lim F(z).

a:—m:o :l:—>ac0
Dla liczby xq istnieje cigg liczb wymiernych w,, spetiajacy
Wy, < Tg < Wy + 2.

1
Np. w, = [nzo) — —. Obliczamy
n n

2
lim F(z) =limF (wn + ) = lima“" 7 = lima”" an
n n n n

I*)Ig

= lim a™" liTILn(a2)% =lima*" = lim F(z).

T—T

Lemat 4.40. F(z +y) = F(x)F(y).

Dowdéd. Niech w, — T, Uy — ), gdzie wy,, v, € Q. Wtedy

F(ac + y) = 1i7rln F(wn + Un) = hTILn q¥ntvn — h}ln a¥n q¥n

= lima®" lim ™ = lim F(w,,) lim F(v,) = F(z)F(y).

[]
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F(x) nazywamy funkcja wyktadnicza. Funkcja wyktadnicza ma nastepu-
jace whasnosci (dla a > 1).

1) Fla+y) = F()F(y).

2 r) < F(y), dla z < y.

(1)
(2)
(3)
(4) F(z) jest ciagla.

Mozna udowodnié¢, ze powyzsze wtasnosci okreslaja funkcje wyktadnicza w
sposéb jednoznaczny. Np. z (1) i (3) wynika, ze F(2) = F(1)* = a®. Z kolei
F(1) = F(1)F(0), zatem F(0) = 1. Dalej 1 = F(0) = F(1)F(-1), czyli
F(-1)=a".

Przyjmujemy oznaczenie F(z) = a®. Mamy

. ) ) 1
lim a® = 7 lim ¢ = lim = 0.
T—00 Tr——00 rz——o00 q 7T

Funkcje odwrotna, okreslona na pdlprostej (0,00) nazywamy logarytmem
przy podstawie a i oznaczamy symbolem log, =

5 Ciagi i szeregi funkcyjne

5.1 Ciagi funkcyjne

Definicja 5.1. Niech f, bedzie ciggiem funkcji okreslonych na A C R, np.
A =a,b], [a,0), (a,b). Méwimy, ze cigg f, jest zbieiny punktowo do funkcji
f, jesli dla kazdego punktu x ze zbioru A mamy f, () — f(x).

Przyklad.
fn(x):l—l—%, z€eR.

lim f,(z) = lim <1 + x) ~ 1.
n n
Tzn. funkcja graniczng jest f(x) =

§Bo a"™ — oo
n
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W zapisie kwantyfikatorowym definicja przybiera postac
Ve>0Vere AINVn> N {|fulz)— flz)] <e}

Prog N zalezy od punktu x i od e.

Definicja 5.2. Mowimy, ze ciqgg f, jest zbieiny jednostagnie do funkcji f
na zbiorze A, jesli

Ve>03dNVxe AVn> N {|fu(x) — f(z)| <e}.
Uzywamy zapisu f, = f.

Tym razem prég N nie zalezy od z, jest uniwersalny dla wszystkich punk-
tow ze zbioru A.
Co oznacza warunek

Vee AVn> N {|fulz) - flx)| <e}?
Po przeksztatceniu otrzymamy
Vee AVn> N {f(x) —e < fulz) < f(x) +£}.

Tzn. od pewnego miejsca (dla n > N) wykresy funkcji f,(z) leza w pasie o
promieniu € wokot wykresu funkcji f(x).

Przyklad. f,(z)=2", 0 <z <1

0 0<z<l,
limz" = “ =: f(x).
n 1, x=1.

1
Czy mozliwa jest zbieznos¢ jednostajna ? Niech € = 3 W pasie o promieniu

1
— wokot wykresu funkeji f nie ma wykresu zadnej funkeji ciagte;j.

Niech f,(z) = 2", 0 < x < a < 1. Wtedy ciag f, jest jednostajnie zbiezny
do 0. Rzeczywiscie, dla ¢ > 0 istnieje liczba naturalna N, dla ktérej oV < e.
Mozemy prog wyznaczy¢ jawnym wzorem, bo nieréwnosé jest rownowazna

1
Nloga <loge, czyli N > loﬁ. Wtedy dlan > N i0 < x < a mamy
oga

0< fulz)=2"<a" <a" <e.

W przyktadzie funkcja graniczna nie byta ciagta.
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Przyktad.
ne 0<x<%,
fa@)=32-nz L<a<2 =0—-|1—-nz|),.
0 2<r<1

Mamy f,(z) — 0 =: f(z) dla 0 <z < 1. Nie ma jednak zbieznosci jedno-

1
stajnej, bo f, (%) = 1. W pasie o promieniu 3 wokot zera nie ma wykresu

zadnej z funkcji f,,.

Twierdzenie 5.3. Granica jednostajnie zbieznego ciggu funkcji cigglych jest
funkcjg cigglq.

Dowdd. Zalézmy, ze ciag f,(z) jest zbiezny jednostajnie do funkcji f(x).
Sprawdzamy ciagtos¢ funkcji f w punkcie xg. Ustalmy liczbe € > 0. Z za-
tozenia istnieje prog N, taki, ze dla n > N mamy |f.(z) — f(z)] < 5. W
szczegolnosci .

[fnga() = fz)] <

3
Z ciagltosci funkeji fyq istnieje liczba § > 0 taka, ze dla |z — x| < 0 mamy
5
| fv41(@) = fya(@o)| < 3

Zatem dla |z — x¢| < ¢ otrzymujemy

|f (@)= f(2o)| < (@) = s (@) +]fvsn (@) = fva (o) [+ | v (20) — f (20)]

< : + - + - €
33 3 7
O
Whiosek 5.4. Jesli cigg funkcyi ciggtych f, jest zbieiny punktowo do funkcyi
f, ale f nie jest ciggta, to cigg f, nie jest zbieiny jednostajnie.

Przyktad. f(xz) = 2", 0 < z < 1. Granica punktowa nie jest funkcja ciagla.

Twierdzenie 5.5. Zalozmy, ze istnieje cigg liczb a,, > 0 taki, Ze a, — 0
oraz
|fn(x) - f(x)’ < Ay, T E A.

Wtedy cigg f, jest zbiezny do funkcji f jednostajnie na zbiorze A.
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Dowdd. Dla ¢ > 0 istnieje prog N taki, ze dla n > N mamy a, < . Wtedy
dla n > N mamy

|fulz) — f(2)]| <a, <e, x€A

Przyktlady.

(a) fu(z) = 1f , x > 0. Mamy f,(0) = 0. Dla x > 0 szacujemy
nx

Stad f, = 0.

(b) fn(x):a:”—x”+1,0<x<1.D1a0<x<l—ﬁmamy

0< fulz)=2"(1—2)<a" < (1 -

Zkoleidlal— L <x<1

n

B

0< ful) =2"(1-2) < 1-a < L
Zatem dla 0 < x < 1 uzyskujemy
0< fule) < (1= )"+ g — 0,

o= f=fa- g

Twierdzenie 5.6 (warunek Cauchy’ego zbieznosci jednostajnej). Cigg funk-
cji fn(x) jest jednostajnie zbieiny na zbiorze A wtedy i tylko wtedy, gdy

Ve>03INVere AVn,m> N {|f.(x)

*Mozna tez skorzystaé z nieréwnoéci 0 < x < 1

- 1 1-
(11)"<1+ x) < <"

X 7

— fm(z)| <e}.
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Uwaga 5.7. Intuicyjnie oznacza to, ze jesli n i m sa duze, to wykresy funkcji
fn 1 fin leza blisko siebie.

Dowdéd. (=). Niech f,, = f. Dla liczby € > 0 istnieje prog N taki, ze dla
m,n > N mamy

@) = f@I <5, o) = J(@)] <

DN ™

dla wszystkich x z A. Wtedy dla n, m > N mamy

[fu(2) = fm(@)] < [fole) = @) + |f(2) = fml2)] <

_|_

NN NO)
N ™

(«). Z zalozenia dla kazdego punktu = z A ciag liczbowy f,(x) spetnia
warunek Cauchy’ego. Zatem f, () jest zbiezny. Oznaczmy f(x) = lim fu(x).
Chcemy pokazaé, ze f, = f. Niech € > 0. Z zalozenia istnieje prog N taki,

ze dla n,m > N mamy

() = fm(2)l <5, w €A

Wtedy dla n > N otrzymujemy
|[fu(2) = f(2)] = lim [ f,(2) = fm(2)] < 5 <e.
O

Twierdzenie 5.8 (Dini). Niech f,(x) bedzie monotonicznym ciggiem funk-
cji ciaglych okreslonych na przedziale [a,b], tzn. spelniony jest jeden z dwu
warunkow:

(a) fo(x) < froy1(z) dlaa <z <b neN.
(b) fu(x) > far1(x) dlaa <z <b néeN.

Zaloimy, ze f, jest zbiezny punktowo do funkcji f cigglej na [a,b]. Wtedy

zbiezno$é f, do f jest jednostajna.

Dowdéd. Zalézmy, ze f,(x) / f(z). Oznaczmy g,(z) = f(x) — fo(x). Wtedy
gn(x) \ 0. Trzeba pokazac 7€ Gn :; 0. Zal6zmy nie wprost, ze g, ti 0.

To oznacza ze istnieje liczba € > 0 taka ze dla dowolnego wyboru hczby
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naturalnej NN istnieje liczba naturalna ny > N oraz punkt xy w [a, b] takie,
7€ gny (Tn) = €. Wtedy

gn+1(TN) 2 gny(2n) > €.
Na podstawie twierdzenia Bolzano-Weierstrassa mozemy wybraé¢ podciag
zbiezny xy, . Oznaczmy zy = li]£n zn,. Wtedy dla m < Nj, otrzymujemy
QM(ka) > gNk+1(xNk) 2 €.

Przechodzimy do granicy, gdy k — oo aby uzyskaé ¢,,,(x¢) = liin gm(zTnN,) > €.

Ale g, () — 0, co daje sprzecznosé. ]
Przyktad. f,(z) = 2" — 2" 0 <z < 1. Mamy
falz) = 2"(1 —2) > 2" (1 = 2) = fora(2)

zatem ciag f,(x) jest malejacy. Ponadto f,(1) = 0 oraz f,(z) = 2" —a"H! — 0
dla 0 < x < 1. Z twierdzenia Dini’ego zbieznos¢ jest jednostajna.

5.2 Szeregi funkcyjne

Definicja 5.9. Mowimy, Ze szereq Z fn(x) jest jednostajnie zbieiny dla

n=1

x € A, jesli cigg sum czesciowych s, () = Z fr(x) jest jednostajnie zbiezny.
k=1

Przyktad. Z 2", 0< x <

n=1

1
T :L.n—i-l 2n+1 1
n — = = — O
() 1—x 1—:,5\1_7 o
Zatem I
T
n , 0<z <=
snl®) 2 TSy
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Twierdzenie 5.10 (warunek Cauchy’ego). Szereg » _ f,(x) jest jednostajnie
n=1

zbiezny wtedy 1 tylko wtedy, gdy
Ve>03INVee AVn>m> N {|foi1(z) + faa(x) + ...+ fu(z)] <e}.

Dowdd.
$n(2) = $m(®) = frni1(®) + frmaa(@) + ...+ fal2).

Zatem warunek sformutowany w twierdzeniu jest identyczny z warunkiem
Cauchy’ego zbieznosci jednostajnej ciagu s, (). ]

Twierdzenie 5.11 (kryterium Weierstrassa o majoryzacji). Jesli szereg licz-

bowy > a, o wyrazach nieujemnych jest zbiezny oraz | f,(x)| < a, dlaz € A,

n=1

to szereg Z fn(x) jest zbiezny jednostajnie i bezwzglednie dla x € A.
n=1

Dowaéd. Sprawdzamy warunek Cauchy’ego. Dla n > m mamy

[fnr1(2) + fng2(2) + - 4 fo(0)] < fnsa (@) + [frnsa (@) + - 4 [ fa(2)]
<am+1+am+2+...+an.

Teze uzyskujemy z warunku Cauchy’ego dla szeregu Z (. O

n=1

Twierdzenie 5.12. Jesli funkcje fo(x) sq ciagle na Al| oraz szereg > fo()

n=1
jest zbiezny jednostajnie na A, to suma szerequ s(x) = > fu(x) jest funkcjq
n=1

cigglg na A.

Dowaéd. Funkcja
k=1

jest ciagta jako suma skonczonej ilosci funkeji ciagtych. Ponadto s, (z) =

s(z). Zatem funkcja s(z) tez jest ciagla. O

tZwykle A jest przedzialem
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Przyklad. Szereg
—T flll
IR YT

jest zbiezny dla wszystkich wartosci x, np. z kryterium d’Alemberta. Roz-
wazmy |z| < a. Rzeczywisdcie dla « # 0

2"l ]
: = — 0.
(n+ 1! |z n+1n»
Dalej
x" a”
nll = ol

Z kryterium Weierstrassa szereg jest zbiezny jednostajnie i bezwzglednie w
przedziale [—a, a]. Suma szeregu reprezentuje wiec funkcje ciagta na R, bo a
jest dowolna dodatniag liczba. Oznaczmy

exp(x —1—|—Z—
Wtedy exp(0) = 1 oraz
1 1 1 1
exp(l)—1—|—1+2+3'+ —I—m—i-...:e.

Korzystajac z mnozenia szeregéw metoda Cauchy’ego otrzymamy

yn 0o n wn—k yk
exp(w) exp(y Z Zﬁ P3P Dy sk
=3 = (Z) "yt =" ety 'y) = exp(z +y).
n=0 """ k=0 n—o v

Zauwazmy, ze dla t > 0 mamy
o t’n
exp(t)—1+zf‘> 1.
— n!

Stad
exp(t) exp(—t) = exp(0) = 1,
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czyli exp(—t) > 0. To oznacza, ze funkcja exp(x) jest dodatnia. Ponadto dla
y > x przyjmujac t =y — x > 0 uzyskamy

exp(y) = exp(t + 1) = exp(t) exp(x) > exp(x),

co oznacza, ze exp(z) jest funkcja rosnaca.
W oparciu o podrozdziat 4.6, z wtasnosci funkeji exp(z) wynika, ze exp(z) =
e”. Udowodnilismy wiec, ze

c_ NV
et = nz:% T
Przyktlady.
> sin nx
(a) flz)=> —5— z€R
n=1 n
sin nx 1
n2 | S op2

Zatem f(x) jest funkcja ciagta o okresie 27.

(b) g(x) = i sin nx

n=1
Dirichleta. Mozna pokaza¢ analizujac dowdd twierdzenia Dirichleta i

pierwszy przyktad po tym twierdzeniu, ze zbieznosé¢ jest jednostajna
dla |z — 2k7| > e > (f]

, x € R. Szereg jest zbiezny dla x € R z kryterium

5.2.1 Szeregi potegowe

Definicja 5.13. Szeregi postaci Z a,x" nazywamy pot@gowym.

n=0

Przyklad. Szereg » 2" jest zbiezny tylko dla |z| < 1. Méwimy wtedy, ze
n=1
liczba 1 jest promieniem zbieznosci tego szeregu.

o0
Definicja 5.14. Promieniem zbieinosci szeregqu Z anx" nazywamy kres gor-

n=0
ny wartosci bezwglednych liczb x, dla ktorych szereg jest zbiezny.

Szereg nie jest zbiezny jednostajnie w przedziale [, 7]
$Przyjmujemy 20 = 1
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Przyktady.
o= (=t o o
(a) > ~———a". Znajdziemy promien zbieznosci z kryterium d’Alemberta.
n=1 n
=14+ — .
‘ n+1 (—1)n+ign T 2l = I

Dla |z| < 1 szereg jest bezwzglednie zbiezny, a dla |z| > 1 jest rozbiezny.
Promien zbieznosci wynosi zatem 1.

[e.9] n

b —. Promien zbieznosci wynosi oco.
( , y

n=0 """

o0

c nlz™. Promien zbieznos$ci wynosi 0. Rzeczywiscie dla z # 0 mam
y Yy y
n=0
(n+ D!z
o0

Twierdzenie 5.15. Jesli R > 0 jest promieniem zbieznosci szeregu Z anpx",

n=0
to szereg jest zbiezny dla |x| < R i rozbiezny dla |x| > R. Ponadto zbieznosé

jest jednostajna w kazdym przedziale [—r,r] dla 0 < r < R.

Dowdd. 7 okreslenia liczby R szereg jest rozbiezny dla |z| > R. Kazda liczba
|z] < R lezy w pewnym przedziale [—r,r] dla r < R, (np. r = |z]). Z
okreslenia promienia zbieznosci istnieje liczba xg spetniajaca r < |zo| < R

oraz szereg Y  a,zy jest zbiezny. Wtedy |a,zf| — 0. Zatem |a,zf| < M
n

n=0
dla pewnej dodatniej liczby M. Niech Niech |z| < r. Wtedy

x |™ r\"
kil <M(> |
Zo ’$0|

r
Ale ﬁ < 1. Zatem z kryterium Weierstrassa uzyskujemy jednostajnag i
To

bezwzgledna zbieznosé w przedziale [—r, r]. O

lana"| = |anxg|
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Uwaga 5.16. Z dowodu wynika, ze

R = sup {|x| Y apa” jest ZbieZny}

n=0

= sup{|z| : a,z" jest ograniczony} (5.1)

Twierdzenie 5.17.

1
i) R=——,
lim,, {/|an|
1

lim |41
n g

o ile granica wyrazenia w mianowniku istnieje.

(i) R =

K o ile granica wyrazenia w mianowniku istnieje.

W obu przypadkach dopuszczamy granice rowng 0 lub co. Wiedy R = oo lub
R =0, odpowiednio.

Przyktady.
oo xn
(a) > —5- Mamy
n=1 n
.o 1
117ILT1 W =1

(b) 2—nx"2. Wtedy asge0 = 0. Nie mozemy zastosowaé poprzedniego
n=0

twierdzenia, bo ciag 1/|a,| nie jest zbiezny. Stosujemy kryterium Cau-
chy’ego dla szeregdéw liczbowych

. ) 0 J|z| <1,
n2795|”2=§|$|n7 3 =1,
oo x| > 1.
Zatem R = 1.
oo ,.n!
(c) > x—‘ Z kryterium d’Alemberta
= n!
O ||l 1 et 0 |zl <1,
(n+ D! jaz™] n+1 o loo |z > 1.

Otrzymujemy R = 1.
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Uwaga 5.18. Mozna udowodni¢, ze

1
R=—ire.
lim sup {7/ |ay|

Rzeczywiscie, niech A = {|z| : ciag a,z™ jest ograniczony}. Dla x € A mamy
la,x™| < M dla pewnej liczby M > 0. Zatem

Ml/n
< — 7
|| PREE
Niech o oznacza najwiekszy punkt skupienia ciagu |a,|'/". Wtedy

Une __, o

|ank| .

dla pewnego podciagu liczba naturalnych ny. Zatem

M/ 1
< —— —.
|5U| X ’ankyl/nk T) o

Na podstawie (5.1]) otrzymujemy
1 1

o  limsup la, |t/

R <

Zatoézmy, ze
1

<.
2 lim sup |a,|}/™

Tzn.
lim sup |a,z"|Y/" < 1.
Wybierzmy liczbe r spetniajaca
lim sup |a,z" " < r < 1.
7 okredlenia granicy gérnej wszystkie wyrazy ciggu |a,2"|'/™ (poza byé moze
skoniczong iloscia leza ponizej r, tzn.

|lanz™|Y™ <7, n > ng

dla pewnego wskaznika ny. Rownowaznie

lapx™| < 7", n > ng.
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Z kryterium poréwnawczego szereg Z apx" jest wtedy zbiezny bezwzglednie.
To oznacza, ze R > |x|. Zatem

1
~ limsup |a,|/n

Twierdzenie 5.19. Suma szeregu s(x Zanx jest funkcjq ciggle w
n=0
przedziale (—R, R).

Dowdd. s, (z) = Zakxk jest funkcja ciagla. Wiemy, ze s, () :; s(z) dla
—r<z<rdla dowolneJ liczby 0 < r < R. Stad otrzymujemy tezg ]

Przyklady. Szereg potegowy moze mie¢ rézne zachowanie na brzegu prze-
dziatu zbieznoéci.

1. Szereg Z x" jest zbiezny tylko dla |z| < 1.

n=1

=1
2. Szereg Y  —a" jest zbiezny dla |z < 1
n=1 n

x™ jest zbiezny dla —1 < x < 1. Mozna pokazaé, ze

3. Szereg Z

n=1
suma szeregu wynosi log(1 + x).

o] (_1)n+1
n

Twierdzenie 5.20 (Abel). Jesli szereg f(x Zanx jest zbieiny dla
n=0

x = a, to funkcja f(z) jest lewostronnie ciggla w punkcie x = a, jesli a > 0
it prawostronnie ciggta, jesli a < 0.

Dowod. Wystarczy rozwazy¢ przypadek a = 1. Chcemy udowodnié, ze

lim f(x Z Q-

r—1—
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Oznaczmy s, = Z apis = Z a,. Wtedy (przyjmujac s_; = 0 otrzymujemy
k=0 n=0

n n

n n—1 n
=Y s =Y sttt = (1—2) ) spat + 2™t
k=0 k=0

Dla 0 < x < 1 przechodzimy do granicy w podkreslonych wyrazeniach.
Poniewaz cigg s, jest ograniczony, to s,z""1 — 0. Zatem

0 0
= Z anxn = (]_ — [[‘) Z snx".
n=0 n=0

Dalej
F@)— F(1) = (1 - 2) f: S — 8

=(1-2)) sp2"—(1—2)) sz"=(1—-2)) (s,
n=0 n=0 n=0

Otrzymujemy wiec

N [e's)

[f@) = fI<A=2) > |sn—sla"+ (1 —z) > [sa—s|a

n=0 n=N+1

£
Dla € > 0 istnieje liczba naturalna N taka, ze dla n > N mamy |s, — s| < 7

Ciag s, jest ograniczony wiec |s,| < M dla pewnej liczby M > 0. Wtedy
If(x) — f(D)| <2M(1 —x) Zaz‘+ (1—x)> "
n=0
<MV + D1 -a) +

Jedli |z — 1 <4M(;H),te 1f(z) — F(1)] < e. O
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6 Pochodne

Przez punkt P i Q # P okregu przeprowadzamy sieczng. Gdy punkt @)
zbliza si¢ do punktu P, to przyjmujemy, ze graniczne potozenie siecznych
okresla potozenie stycznej do okregu w punkcie P. Bedziemy zajmowaé sie
stycznymi do wykresow funkeji y = f(x). Cheemy znalezé styczna do wykresu
w punkcie (a, f(a)). Wybierzmy inny punkt wykresu (z, f(z)). Nachylenie
(wspotezynnik kierunkowy) siecznej przechodzacej przez punkty (a, f(a)) i

(z, f(x)) wynosi
f(z) = f(a)
r—a
Zatem nachylenie stycznej wyraza sie wzorem
@)~ f(@)
t—a g —aq
Wyrazenie pod granicg nazywamy ilorazem réznicowym.
Przyklad. Dla f(x) = 2% i a = 1 oraz  # 1 mamy
fla)— f(1) _a? -1

= 1.
r—1 r—1 T

Zblizamy si¢ z « do 1. Nachylenie stycznej do wykresu w punkcie (1, 1) po-
winno by¢ rowne granicznemu nachyleniu siecznych, czyli

linq($ +1)=2.
Réwnanie stycznej ma posta¢ y—1 = 2(z—1). Po przeksztalceniu otrzymamy
y=2r—1.
Ogodlnie obliczamy granice

m = lim M, o ile istnieje.
r—a x J— a

Wtedy réwnanie stycznej ma postac
y— fla) =m(z—a).

Obiekt porusza si¢ po linii pionowej i jego wysoko$¢ w chwili ¢ wynosi
h(t). Checemy obliczy¢ predko$¢ w chwili t = a. Wybieramy moment czasu t
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blisko a, ale t # a (np. t > a). Srednia predkos¢ w przedziale czasu od a do
t wynosi

h(t) — h(a)
t—a
Predkos¢ chwilowa okreslona jest wzorem

lim 7h(t) — h(a)'

tma  {—aq
Przyklad. f(t) = t3 + 3t. Chcemy obliczy¢ predkosé obiektu w chwili ¢ = 1.

f)—fQQ) _£+3t—4

=12 +t+4.
t—1 t—1 T

Zatem
NGRS

t1—>1 t—1 =6.

Definicja 6.1. Mowimy, ze funkcja f(x) okreslona w pewnym przedziale wo-
kot punktu a ma pochodng w tym punkcie, jesli istnieje granica

o) — g F@) = T @)

t—a g —aq

Uwaga 6.2. Liczba f'(a) okresla chwilowe tempo zmiany wartosci funkeji w
punkcie a.

Jesli f'(a) istnieje, to réwnanie stycznej do wykresu funkeji y = f(z) w
punkcie (a, f(a)) ma postaé

y—fla) = f(a)(z —a).

Przyktad. Chcemy znalezé réwnanie stycznej do wykresu y = /x w punkcie
(2,4/2). Mamy

ViV i B 1 1

12 (a-VR(VEEVE) Va2 et 22

Roéwnanie stycznej to

1
y—ﬁ:ﬁ(:ﬂ—m.
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Definicja 6.3. Jezeli funkcja f(x) jest okreslona w przedziale [a,a + 0) (lub
(a — 0,a)) oraz istnieje granica

fi(a) = lim (@) ~ fa) (lub £ (a) = lim M)

z—at T —a T—a~ r—a

to mowimy, Ze istnieje pochodna prawostronna (lub lewostronna) w punkcie
a.

Przyklad. Zrzucamy kamien z wysokosci 20m. Jaka jest predkos¢ kamienia
w chwili uderzenia w ziemie ? Mamy

h(t) =
®) 0 t > 2.

{20—5t2 0<t<2,
Trzeba obliczyé b’ (2).

B (2) = lim M m -
- t—2~ t—2 t—2— t—2 t—2~ A

Oczywiscie W/, (2) = 0.

Przyktad. Czy funkcja f(z) = |z| ma pochodna w punkcie z = 0 ? Obli-
czamy

] —

"(0) = — =1 — =1 —1)=-1
f2(0) = lim =% = lim —= = lim (—1) = -1,
O T
f+(0) B :EEI(I]l‘*‘ x —xli%l'*‘l‘ _xlirgl‘*‘l =L
N
Zatem granica hn% nie istnieje.
z—0

Twierdzenie 6.4. Jesli funkcja f(x) ma pochodng w punkcie a, to jest w
tym punkcie ciggla.

Powod f@) - f(a)
f@) = fla) = S=—"2 (@ —a) —0.
No
N f ()
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Przyktad. Funkcja

o={r o

nie jest ciaglta w punkcie 0. Zatem nie jest w tym punkcie rézniczkowalna.
Twierdzenie 6.5. Zaldzmy, Ze f'(a) i ¢'(a) istniejg. Wtedy

(1) (f £9)(a) = f(a) £ g'(a).

(ii) (f9)'(a) = f'(a)g(a) + f(a)g'(a).

A Pl - F@)g @)
i) (£) (@ = FO2 =]

, 0 ile g(a) # 0.

Dowad.
(i)

(@) +g(x) = [fla) + 9(@)] _ flz) = fla)  g(@)—gla) f(a) + ¢'(a).

(ii)
f(x)g(x) — f(a)g(a)

Tr —a

[f (&) = f(@)]lg(x) = g(a)] + [f (=) = fla)lg(a) + f(a)lg(x) — g(a)]

)= 110) sto) = sta) i}?x; SONRIEAIGEIT
— @o(a) + [(0)g' (@)
(iii)
1) fla)
o) ) _ St et
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Przyktady.

(b) fn(x) =az",n=>1
f;@(a) _ :ltll)r}l ZL’:E :Z _ :lﬂiir(ll(xn_1+a$n_2+a2$n_3+. ) '_'_an—Qx_'_an—l)

=ad" '+ .+ =nadh

n skladnikéw

I U
(©) gula) =7 = £ 2 £

P B B N (10 W
)= (55) = TR = |

Uwaga 6.6. Przyklady (b) i (c) daja (z") = naz" ! dlan € Z,n # 0.

Czasami stosuje si¢ inny zapis dla pochodnej. Przyjmujac h = x—a mamy

Fla) — pn L0 ) = S(a)

h—0 h

[le wynosi liTann2 [f(2+ #) — f(2)} przy zatozeniu, ze f’(2) istnieje 7 To
wyrazenie jest rowne

lim 7 — 1(2)
n2
Przyktady.
<a) z+h _ h 1
(ex)/:}lbii%%zeg;%{%e h =e
—_——

=1
Ostatnia granica byta obliczona na podstawie zadania 9 z listy 6. Mozna
te granice obliczy¢ inaczej korzystajac ze wzoru

> x x x x
=) —=l4r+=-++""+....
n=0

n 2 3 4
n! 20 31 4l
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Rzeczywiscie
et —1 1_$+QJ2+$3+
T IRPTRRE TR TR

Zatozmy, ze |z| < 1. Wtedy

(b) (sinz) = cosz. Rzeczywiscie

sin(z +h) —sinx _ sinz(cosh — 1) + cosxsinh

h N h
. cosh —1 sin h
=smmxr ——— +CosSx —— COS .
h h—0
———
—0 7
cosh —1 cosh —1 sinh  h
p— = — —)
h h(cosh + 1) h? cosh+1 h—0

Uwaga 6.7. Niech f(x) = g(z +b). Wtedy f'(z) = ¢'(x + b). Istotnie
[l +h)— f(z) ((z+b)+h)—glz+b)

/ T ... g 0
fo=m= " =i h e
(f) (cosz) = —sinx, bo cosx = sin <x + 72T> zatem

/ - ™ ™ .
(cosz)" = sin (3: + 2) = cos (x + 2) = —sinz.
sinz\’ cos?z +sin®x : 7r
(g) (tgz) = ( ) - - — { cos’z Tz # 3T k.
cos cos? x | +tg2z
1
(h) = > 0, (logx) = —. Uzasadnienie:
x
h
log 1+ —
. log(x+h)—logzx 1 . og( +x> 1. log(1+1t)
lim =— lim ———% = — lim
h—0 h € h—0 ﬁ xr t—0 t
x
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Ostatnia granica wg zadania 1 z listy 6 wynosi 1. Ale mozemy ja tez
obliczy¢ na podstawie przyktadu (a). Niech u = log(1l + ). Wtedy
u — 0, gdy t — 0. Rzeczywiscie dla ¢ > 0 mamy

e'>1+t, zatem ¢t >log(l+t)>0.

Z kolei dla —1 < t < 0 otrzymujemy

1 _ —t
log(1+ 1) = —log(1 + 1) =1 “log (14— ) <« =5
[ log(1 +1)| og(l +1) =log ;—— Og( +1+t><1+t

1
Zatem dla —3 < t < 0 mamy

[log(1 4 t)| < =2t = 2]t|.

Reasumujac
1
|log(1+ )| < 2|t|,dla [t] < 5
Ostatecznie low(1 4 ¢
i 08 ED vy
t—0 t u—0 e — ]

Twierdzenie 6.8 (regula taricucha). Jesli funkcja f(x) jest rozniczkowalna
w punkcie x = a, natomiast funkcja g(y) jest rézniczkowalna w punkcie b =
f(a), to funkcja ztoZona (g o f)(z) = g(f(x)) jest rézniczkowalna w punkcie
T =a oraz

(go f)(a) =g'(b)f'(a) = g'(f(a))f(a). (6.1)

Dowad. Niesciste, ale obrazowe uzasadnienie jest nastepujace.

9(f(x)) —9(f(a)) _ g(f(x)) —9g(f(a)) f(z) = [f(a)
r—a f(x) = f(a) r—a

przy zalozeniu f(x) # f(a). Przyjmujac oznaczenie y = f(z) otrzymamy

9(f(2)) = 9(f(a)) _ 9(y) — g(b) f(z) — f(a)

r—a y—>b r—a

Dla © — a mamy y = f(xz) — f(a) = b. Zatem pierwszy utamek dazy do
g'(b), a drugi do f'(a).
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Przejdziemy do Scistego dowodu. Z zatozenia mamy

FO =IO _ o) 4 ute), ale) — 0
Podobnie b

g(yy) - g( ) g toly). o) 0
Zatem

Czyli

g(f(x); - Z(f(“)) = [f'(a) + u(2)][g'(b) + v(y)].

Gdy = — a, to u(zx) — 0. Ponadto y = f(x) — f(a) = b. Zatem v(y) — 0.

r—a

Ostatecznie w granicy otrzymujemy f’(a)g’(b). ]

Uwaga 6.9. Wzér (6.1) mozna tez zapisa¢ w postaci

(go f)(x) =g f(z), egdziey=f(v).
Przyktlady.

(a) Obliczy¢ (logsinz)'.

y=f(zr)=sinx  f'(x)=cosz
1
9(y) = logy 9'(y) = ;
Zatem
oy 1
(logsinz) = —cosx = —— cosx = ctgx.
sin

(b) h(z) = cos(x®). W(x) = — sin(z®) 5z*.
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6.1 Zapis Leibniza

Ay = f(x + Az) — f(z).

Ay
I[loraz s reprezentuje stosunek zmiany wartosci y do zmiany wartosci x.
x

Ay _dy
() = lim — = —.
fz) Ao Az dx
Prawa strona jest oznaczeniem pochodnej w zapisie Leibniza.
Zobaczmy jak wyglada reguta tancucha w tym zapisie. Wprowadzamy
oznaczenia u = f(x), y = g(u). Wtedy

du / dy o o /
Mt P=dw = (@)
Dalej
y=olf@). 2= (g0 1))
Wzor (6.1) przyjmuje postaé
dy dy du B
dr  du dz’ u= f(x).
Przyklady.

(a) y = sin® . Niech u = sinz, y = u®. Wtedy

d dy d
% — ﬁ% = 8u” cosz = 8sin’ z cos z.

(b) y =log(cos(z? +1)). Niech u = 22 + 1, v = cosu, y = logv.
d7y _dydvdu 1

— — — = —(—sinu) 2z = —

de  dvdudr v

2z sin(z? + 1)
cos(z2+1)

Definicja 6.10. Mowimy, ze funkcja f(z) jest rézniczkowalna w przedziale
(a,b) jesli f'(x) istnieje w kaiZdym punkcie x z (a,b). Mowimy, Ze funkcja
f(x) jest rézniczkowalna w przedziale [a,b], jesli dodatkowo istniejq f)(a)

oraz f'(b).
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Przyktady.
1 £0
rsin— ,
(a) flz) = x
0 x=0.
Dla x # 0 pochodna istnieje i wynosi

1 —1 1 1 1 1

f'(x) = sin ~ +x — cos — = sin — — —cos —.

x x x r x

Sprawdzimy istnienie pochodnej w 0.

f@) = f0) _ 1

Otrzymane wyrazenie nie ma granicy, gdy z — 0.

1
2 i &
(b) fla) = z”sin — x #0,
0 x = 0.
Dla z # 0 mamy
1 1
f'(z) = 2xsin — — cos —.
x x
Dalej
7][(%) — f0) =xsin — — 0.
X xr x=—0
Zatem

1 1
) = 2xsin;—cos; x # 0,

0 x=0.
Zauwazmy, ze funkcja f’(x) nie ma granicy w punkcie 0.
Twierdzenie 6.11. Zalézmy, funkcja f(z) jest ciggla w przedziale [c,d]

1
g(y) jest funkcjq odwrotng do funkcji f. Jesli dla ¢ < a < d pochodna f'(a)
(a)

istnieje oraz f'(a) # 0, to funkcja g jest rézniczkowalna w punkcie b = f
oraz

a
1

fla)
Uwaga 6.12. Przy oznaczeniach g = f~!, a = f~1(b) mamy

g'(b)

1

(S0 = )
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Uwaga 6.13. Jesli f(x) =y, to
1
frx)
Dowdd. 7 Twierdzenia funkcja g(y) jest ciagta. Checemy zbadaé

9(y) — g(b)
y—>b

J'(y) =

gdy y — b. Oznaczmy = = g(y). Zatem y = f(z). Ponadto z f(a) = b mamy
g(b) = a. Otrzymujemy wiec

9(y) —g(b) _  z—a
y—b f(x) = f(a)

Gdy y — b, to z ciaglosci funkeji ¢ w punkcie b wynika, ze g(y) — g(b), czyli
T — a. Zatem

Zmajdziemy posta¢ wzoru na pochodng funkcji odwrotnej w zapisie Leib-
niza. Dla y = f(z) i * = ¢g(y) mamy

dy_ , dac_ ,
o= (z), a9 (y).
Zatem
dr_ 1
dy—@'

dx
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Przyktady.

(a) y =tgx, r = arctgy. Wtedy

dv 1 1 1
dy dy  1+4+tg?z  1+y?
dz
W szczegdlnosci
, 1
(arctgt) = -
t=1 2
Ry 1 o : . .
(b) (arcsinz)’ = —==. Rzeczywiicie, niech y = sinz, -5 < x < .

vV1—22

Wtedy = = arcsiny, —1 < y < 1. Zatem

(arcsiny)’ = L1 ! -
Y= sin's sz VI—sintz V17
W szezegélnosei (arcsinz)’| = 1.

=0

Jesli « jest katem nachylenia stycznej do wykresu funkcji y = f(x) w
punkcie (a, f(a)), to f'(a) = tga. Przy zamianie x i y rolami kat 3 = § — «
okresla nachylenie wykresu x = g(y) (czyli tego samego wykresu) w punkcie
(9(b),b) = (a, f(a)). Zatem

B) = to 3 = to (T — o) — 1
g'(b) =tg B =tg (3 a)—ctga—tga—f,(a>

6.2 Maxima i minima

Definicja 6.14. Zalozmy, Ze funkcja f(x) jest okreslona w otoczeniu punktu
a 1 w pewnym przedziale (a — 6,a + 0) mamy f(z) < f(a). Méwimy wtedy,
ze [ posiada lokalne maksimum w punkcie a. Jesli nierownosé jest ostra dla
x # a z przedziatu (a — 0,a + 0), to mamy do czynienia ze Scistym lokalnym
maksimum. Podobnie okresla sie lokalne minimum i Sciste lokalne minimum.

Twierdzenie 6.15. Zaldzmy, ze funkcja f(x) jest rézniczkowalna i posiada
lokalne ekstremum w punkcie a. Wtedy f'(a) = 0.
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Dowdd. Zatézmy, ze w a wystepuje lokalne minimum. Wtedy dla a < z <
a + 6 mamy

Fx) = fa) _
r—a
Zatem
f’(a)— lim f( )_f(a’) 20
r—a™t Tr—a
Dla a — < x < a mamy
f@) = o) _
T —a
czyli
f’(a) — lim f(l’) B f(a) < 0
T—a~ r —a
Stad f'(a) = 0. O

Definicja 6.16. Punktam: krytycznym funkcji nazywamy punkty, w ktorych
pochodna nie istnieje lub istnieje 1 wtedy jest réwna 0 (punkty stacjonarne).

6.3 Metoda znajdowania wartosci najwiekszej i naj-
mniejszej funkcji ciaglej na przedziale [a, b|

Z twierdzenia Weierstrassa wiemy, ze istnieja punkty ¢ i d w przedziale [a, D]
takie, ze

f(c) = min f(z) =:m, f(d) = max f(z) =: M.

a<a<h a<a<b

Zajmiemy si¢ potozeniem punktu c¢. Mamy nastepujace mozliwosci.
1. ¢=alub ¢ =D, tzn. ¢ jest jednym z koncow przedziatu.
2.a<c<hb.

2(a) Pochodna w ¢ nie istnieje.

2(b) Pochodna w ¢ istnieje i f'(c) = 0, bo ¢ jest w szczegdlnosci mini-
mum lokalnym.

Reasumujac, wartosci m i M sa przyjete na koncach przedziatu lub w jakich$
punktach krytycznych. Aby wyznaczy¢ m i M wykonujemy nastepujace czyn-
nosci.
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(a) Znajdujemy wszystkie punkty krytyczne funkcji.

(b) Obliczamy wartosci funkcji w punktach krytycznych i na koncach prze-
dziatu.

(c) Najwieksza z otrzymanych wartosci jest réwna M, a najmniejsza to m.
Przyktad. f(z) = 2?/® — 2 = (2®)/3 — 2, [~1, 1]. Obliczamy
fl(z) =322 — 1, x # 0.

Sprawdzamy istnienie pochodnej w 0.

J@) = fO) e w Ly g

x x — 00
z—0*

Zatem 0 jest punktem krytycznym. Rozwiazujemy réwnanie f'(z) = 0. Czyli
2

g(:r?)’z/?’:c —1=0.

Stad r = 2. Mamy

27
Zatem m =01 M = 2.
Uwaga 6.17. W przyktadzie mozna pominaé¢ sprawdzanie rézniczkowalno-
Sci w punkcie 0, przyjmujac, ze ten punkt jest potencjalnie krytyczny, wiec
obejmuje go punkt (b) procedury.
Twierdzenie 6.18 (Rolle). Niech f(x) bedzie funkcjq ciggle na [a,b] i 16z-
niczkowalng w (a,b). Jesli f(a) = f(b), to f'(c) = 0, w pewnym punkcie
a<c<b.
Dowdd. Jesdli f jest stala, tzn. f(z) = f(a), to f'(x) = 0. Jedli [ nie jest
stata, to m < M. Zatem wartos¢ m lub M jest przyjeta w pewnym punkcie
wewnetrznym c. Ale wtedy f'(¢) = 0. O
Twierdzenie 6.19 (Cauchy). Funkcje f(x) i g(z) sq ciggle w [a,b] i 16z
niczkowalne w (a,b), przy czym ¢'(x) # 0, dla a < x < b. Wtedy

) - @) 1

g9(b) —g(a)  g'(c)
dla pewnego punktu ¢, a < ¢ < b.
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Dowéd. Mamy g(a) # g(b), bo gdyby g(a) = g(b), to z twierdzenia Rolle’a
mielibysmy ¢'(¢) = 0 dla pewnego punktu a < ¢ < b. Okre$lmy funkcje

———=[g(x) — g(a)].

Wtedy h(a) = h(b). Z twierdzenia Rolle’a otrzymujemy h'(c) = 0 dla pewne-
goa<c<b Tzn.

Po przeksztatceniu otrzymujemy teze. O]

Twierdzenie 6.20 (Lagrange, o wartosci sredniej). Jesli f(x) jest funkcjq
ciggla na [a,b] i rézniczkowalng w (a,b), to dla pewnego punktu a < ¢ < b

mamy
fb) = fla) _

Dowdd. Stosujemy twierdzenie Cauchy’ego dla g(x) = x. O
b) —

Uwaga 6.21. Wyrazenie f([))f(a) jest wspotcezynnikiem nachylenia siecz-

—a
nej przechodzacej przez punkty (a, f(a)) i (b, f(b) wykresu funkcji y = f(z).
Z kolei f'(c) jest wspdtezynnikiem nachylenia stycznej do wykresu w punkcie
(¢, f(c)). Twierdzenie Lagrange’a méwi zatem, ze w pewnym punkcie posred-
nim styczna do wykresu jest réwnolegta do siecznej.

Whniosek 6.22. Jesli f'(z) = 0 dla wszystkich a < x < b, to funkcja f(x)
jest stata.

Dowaéd. Niech a < x,y < b. Mozemy przyjaé¢ x < y. Wtedy

y—x
dla pewnego punktu =z < z < y. Zatem f(z) = f(y). O]

Whiosek 6.23. Jesli f'(z) = ¢'(x) dlaa < x < b, to f(x) = g(x) + ¢ dla
pewnej statej c.

Dowdéd. Dla h(zx) = f(z) — g(z) mamy h/(x) = 0, zatem h(x) = c. O
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Twierdzenie 6.24. Jesli f'(x) > 0 dla a < x < b, to f(x) jest funkcjq
rosngcq. Jesli f'(x) > 0 dla a < x < b, to f(x) jest scisle rosnqca.

Uwaga 6.25. Podobne twierdzenie jest prawdziwe dla przeciwnej nieréwno-
Sci.

Dowéd. Niech a <z <y < b. Wtedy z twierdzenia Lagrange’a mamy

y—x
dla pewnego punktu x < z < y. Zatem f(y) > f(z). W przypadku f'(z) >0
otrzymujemy f(y) > f(z). O

Uwaga 6.26. Jesli f(z) jest Scisle rosngca, to nie znaczy, Ze f'(x) > 0 dla
kazdego punktu x. Np. f(x) = x® jest Scisle rosnqca, ale f'(0) = 0.

Przyklad. Udowodni¢, ze
1+2)*>14ar, dlax>-1, 2#0, a>1. (6.2)
Okreslamy
flx)=(14+2) —azr—1.

Pomocniczo obliczamy

Zatem
flr)=a(l+2)* ' —a=a[(l+z)* " -1].

Stad f'(z) > 0 dla 2 > 0 oraz f'(x) < 0 dla —1 < z < 0. To oznacza,
ze funkcja f(x) $cisle rosnie na potprostej [0, 00) i Scisle maleje na (—1,0].
Whioskujemy, ze f(x) > f(0) dlaz > —1, 2 #0. Czyli (1+2)* —az—1>0
dlaz > -1, x # 0.

6.4 Wyzsze pochodne

Definicja 6.27. Jesli f'(x) jest rézniczkowalna w punkcie a, to jej pochodng
oznaczamy symbolem

f//(a) — lim f/(l’> — f/(a’)

1 nazywamy drugq pochodng w punkcie a.
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W zapisie Leibniza dla funkcji y = f(z) druga pochodna oznaczamy

Y~ ).

dx?
Przyklady.
(a) f(x) =sinz, f'(z) =coszx, f"(x) = —sinz.
() S(a) = a2, 1) = §a~, a) = a0,

Podobnie okreslamy nastepne pochodne. Czyli n-ta pochodna funkcji jest
pochodng (n — 1)-tej pochodnej. Uzywamy symbolu f™.

Przyktlady.
f(z) =sinzx fl(x)=cosz  f'(x)=—sinzx
f"(x) = —cosx fW(z)=sinz fCM(z) = —sinx.
Przys$pieszenie

Druga pochodna potozenia obiektu (poruszajacego sie po linii prostej) wzgle-
dem czasu nazywamy przyspieszeniem, czyli chwilowym tempem zmiany pred-
kosci. Srednie przyspieszenie od chwili ¢y do chwili ¢ wynosi

ult) = vlto)

t—t,
Wtedy
vt —elt) () = ()
a(ty) = tlg% T }E{t T in f (o),

gdzie f(t) oznacza polozenie obiektu na prostej.

6.5 Robzniczkowanie niejawne
Funkcje w dotychczasowych przyktadach byty podane jawnym wzorem y =
2

f(z), np. y = [ y = tgx. Zalézmy, ze y jest zwigzane z x poprzez
x
rOwnanie, np.

23+ % = 2xy, (6.3)
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przy czym y jest funkcja zmiennej x. Zalézmy, ze y jest rozniczkowalna.
Checemy obliczy¢ y'. Rézniczkujemy tozsamosé (6.3)), czyli naktadamy d/dz
pamietajac, ze y = y(x). Otrzymamy

d d
322 + 32 — oy 4 2.
dx dx
czyli
dy 2y — 322 9
— =—, 3 2.
de  3y% — 2z’ y 72

Przyklad. Zal6zmy, ze y jest rozniczkowalng funkcja zmiennej x speliajaca
rownanie
23 =yt + a?siny + 1,

d
oraz y = 0 dla x = 1. Chcemy obliczy¢ d—y . Naktadamy pochodng d/dx
xXr =1

na tozsamosé (obie strony tozsamosci sa funkcjami zmiennej x).

d d
32% = 4y3—y + 2z siny + 2% cosy & (6.4)
dx dx
Dalej
dy 322 — 2xsiny
dr 43 +22cosy’
dy e . : . dy
Zatem —= = 3. Rdézniczkujac tozsamos¢ (6.4) mozna obliczy¢ —=
T lg=1 dx? "=l

Uwaga 6.28. Oznaczenie Leibniza na wyzsze pochodne funkcji y = f(z)

d"y
dan’

f ) =
Przyktad. Znalezé stycznag do wykresu funkcji y zadanej rownaniem
1,2 4 y2 -1

w punkcie (—%, @) Obliczamy

d
2x+2y£ — 0.
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Zatem
dy «x
de vy
dy 1 , )
Stad — = —. Styczna ma zatem rownanie
dx Zz;%g V3

2 3

x—|—§

V31 ( 1)
6.6 Related rates czyli dwa tempa zmiany powigzane
ze sobg

Pompujemy balon w ksztalcie sfery. Wtedy objetosé¢ V' i promien r sa funk-
cjami czasu t zwigzanymi ze soba rownaniem

4
V = §7TT'3.

Rézniczkujac réwnanie wzgledem ¢ otrzymamy
— =drr’ —. (6.5)

Balon jest pompowany w tempie 10cm?3/s. Jakie jest tempo zmiany pro-
mienia w momencie, gdy r = 10cm ? Niech ¢, oznacza moment czasu, gdy
r = 10. Do wzoru (6.5)) podstawiamy ¢ = t,. Wtedy

10 = C?t/ = 410> fl: .
Zatem i )
pril = 10n (cm/s).
Przyktady.

1. Woda jest nalewana do stozkowego kubka w tempie tempie 20 cm?/s.
Kubek ma wysoko$¢ 15 ¢cm i promien na brzegu rowny 5 cm. Jaka jest
szybkos¢ podnoszenia si¢ poziomu wody, gdy poziom ten osiaga 10 cm?
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Niech V' oznacza objeto$¢ nalanej wody w chwili ¢, natomiast h i r
oznaczaja poziom wody i promien gornej warstwy wody, odpowiednio,
w chwili ¢. Mamy

1
V = _mr’h
37rr
Z twierdzenia Talesa ]
r
RT3
czyli
1
r = —h.
3
Zatem .
V = —h.
27
Roézniczkujemy obie strony wzgledem czasu t.
ﬂ_lg}ﬁ@_fh?dh

dt 217 dt 9 dt’
Niech ¢y oznacza moment czasu, gdy h = 10 cm. Wtedy

:ﬂ :E102@
dt

20 .
t=to 9 dt t=to

Stad otrzymujemy
dh

dt

g(cm/s).

t=to 57T

2. Na odcinku drogi z ograniczeniem 60 km/h policja ustawita radar 5m
od drogi (za krzaczkami). Samochdd jedzie z predkoscia 90 km /h. Jaki
bedzie odczyt na radarze, gdy samochdd znajdzie sie¢ 20 m od miejsca na
drodze, w poblizu ktérego ustawiono radar ? Niech y oznacza odlegtoscé
pojazdu od radaru a x odlegto$¢ pojazdu od odpowiadajacego miejsca

na drodze. Wtedy y? = 22 + 52. Chcemy znalezé Y w momencie, gdy

x = 20m. Roézniczkujemy rownanie wzgledem t. Otrzymamy

dy dx
2y~ = 2 —.
Ya ~ @
Zatem
dy xdr x dx

dt  ydt a2t 25 dt
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Wiemy, ze % = —90. Niech t, oznacza moment czasu, gdy = = 20.

dt
Wtedy
dy 20

WZ g~
dt li=t, V400 + 25

Jaki jest pomiar na radarze, gdy x = 4 7 Oznaczmy przez t; ten moment
czasu.

—87,3.

dy

4
= —90—= ~ —56, 22.
7 90 56,

t=t1 V41

6.7 Aproksymacja za pomoca stycznej

Rozwazamy funkcje f(x) = 2'/3. Chcemy obliczy¢ /T, 1. Ogélnie zatézmy,
ze f(x) jest rézniczkowalna w punkcie a, czyli

f(I) — f(a) _ f’(a).

€Tr — r—a

To oznacza, ze

r—a

gdy z lezy blisko a. Otrzymujemy

f(@) = f(a) + f'(a)(z — a).

Prawa strona reprezentuje rownanie stycznej do wykresu w punkcie a. Oznacz-
my h = x — a. Wtedy

fla+h) =~ f(a)+h f'(a). (6.6)

Aby obliczy¢ przyblizong wartos¢ /1, 1 przyjmujemy a = 1 i h = 0, 1. Mamy
fl(x) = %x”/?’, zatem f'(1) = % 7 otrzymujemy

, 1
L1~ 140,15 =1083.. .

Dla poréwnania doktadna wartos¢ wynosi

J11=1,032....
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6.8 Regula de I’Hospitala

Twierdzenie 6.29 (reguta de I'Hospitala). Zaldéimy, Ze funkcje f(x) i g(x)
sq ciggle w [a,b) oraz réiniczkowalne w (a,b). Ponadto f(a) = g(a) =0 oraz
g (x) #0 dla a < x <b. Wtedy
/
@) f@

lim 7 — ,
et g(z)  emat g(a)

o ile granica po prawej stronie istnieje.

Uwaga 6.30. Analogiczne twierdzenie jest prawdziwe dla granicy lewostron-
nej i dwustronne;.

Dowéd. Niech x > a. Wtedy z Twierdzenia [6.19] otrzymujemy
flx) _ flx) = fla) _ f'(E)

g(x)  glx) —gla)  g'(&)
dla pewnego &, a < £ < x. Gdy v — a™, to £ — a™. Zatem
fl@) L f(©)
1 —r =] )
smat g(z) et g(€)

Uwaga 6.31. Teza jest prawdziwa rowniez dla granicy niewlasciwej.

Przyklady.
(a)

1 —cosz @) .. sin @ ) 1 1
——— = lim ———— = lim = —.
z—0 sin“x z—02sinxcosx =—02cosx 2

Lepszym wyjsciem jest uzycie wzoréw trygonometrycznych

1—cosz 1—cosz 1 1

N 2 pr— pr—y —_— —.

sin® x 1—cos?2z 14 cosx z—0 2

(b)
. sin Tz . T COSTXT . mVax2 —1cosmx
lim —— = lim ——%— = lim =
z—1t /12 — z—1+ z—1+ T
2 —1

Mozna tez obliczy¢ granice bezposrednio

sintz  sinm(z—1) mvr—1

s iy
2—1  w(x-1) Vr+1 a—1+ N
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. Vsinx . CcosS ¥ . T CoST
lim 7 = lim —————= = lim

T—T— T—T - 1 T 1 -
log — 2Weinz — 2vsinz

—0OQ.

Whniosek 6.32. Zalozmy, ze funkcje f(x) i g(x) sq réiniczkowalne w prze-
dziale (a,00), ¢'(x) # 0 dla x > a, oraz Jim flz) = Jim g(x) = 0. Wtedy

f(z) /(@)

lim —% = lim
w00 g(x) w0 g'(x)

o ile druga granica istnieje.

Y

Dowaod. Mozemy przyjac, ze a > 1. Okreslmy funkcje

1 1 1 1

f() 0<y<-—, g() 0<y<-—,

F(y) = Yy a G(y) = y a
0 y =0, 0 y=

1
Wtedy F' i G sg rozniczkowalne w przedziale (0, ) i ciagte w punkcie 0.
a

Rzeczywiscie
lim F(y) = lim f 1 — lim f(z) =0
yilgi Y _yi%i y =AY A
Dalej
f 1 _ 1 gl f! 1 ,
i 1) _ lim (f> = lim —2° 0% = lim (f) — fi(x).
oo - — S — /(L T—00
g(«T) y—0 g(g) y—0 y29 <y) y—0 g (y) g(x)
m
Przyktlad.
1
T arct EE—t 2
Ji o (5 —eretar) = Jim 2T = i = i =
s ;pQ

Mozna tez granice obliczy¢ bezposrednio stosujac podstawienie

T £
o = — — arc Z.
5 g
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Twierdzenie 6.33 (reguta de I'Hospitala dla 2). Funkcje f(x) i g(x) sq
rozniczkowalne w (a,b) oraz ¢'(x) # 0 dla a < x < b. Zalézmy, Ze

Jim,f(0) = i, o) = o0,

Wiedy

x "z
lim —f( ) = lim f/( >,
i g(x) e g(x)
o ile granica po prawej stronie istnieje.
Uwaga 6.34. Analogiczne twierdzenie jest prawdziwe dla granic lewostron-
nych, obustronnych i granic w +oc.

Uwaga 6.35. Przeksztalcenie
fa) _ gla)”
g(@)  fl)™!

i uzycie Twierdzenia nie bedzie skuteczne, bo

(90))) _ g(2) (f(2))?
(@)~ F) (g@)?

f (=)

g()

Dowdd. Idea dowodu polega na tym, ze dla x blisko a wyrazenia oraz

f(x) = f(wo) zachowuja sie podobnie. Niech a < < x5. Wtedy
g9(z) — g(x0)

fx) _ f(x) = f(xo) + [(20)

9(z)  g(z) — g(xo) + g(z0)

flz) = f(xo) (o) f'(€) n f (o)
_ g(x) - glzo) : () z) —g(xo) _ g'(§) g(l&) —)g(xo)
g\ To g\To
H @) — g ORI

dla pewnego punktu & potozonego pomiedzy = i xg. Oznaczmy L = lim L 8?
Wtedy

€ J(@o) — Lg(zo)
I@) ,_ g© ) g
9(x) 14— 9(0)

9(x) = g(o)
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Ustalmy liczbe 0 < n < 1/2. Wybierzmy x, tak, aby

f')
0 —Li<n, dlaa<t<ux.
Wtedy
1Oy,
9'(€) ’

bo a < © < £ < xg. Poniewaz g(x) — oo dla + — a™, to mozemy teraz
znalez¢ a < x1 < xq tak, aby

| f(w0) — Lg(wo)| + [g(z0)]
l9(x) — g(w0)|

<n, dlaa<zx<ua.

Niech a < x < x7. Otrzymamy

£ L| | /@) = Ly(ao)|

/ —
‘f(l‘) | < [9© 9(x) —glw)l 20 _ .
g(x) L lg(zo)| 1—n
|9(x) = g(20)]
O
Przyktady.
1
(a) lim L~ fim — =0.
T—00 696 T—00 ez
1
. . logz . - .
x x?
. 2P . 2z . : o .
(¢) lim — = lim — = 0. Mozna tez uzasadni¢ inaczej: dla z > 0 mamy
r—00 ex r—00 et
F b k+1)!
b1 z
(d) lim 2” = lim e*'8” lim e’ = 1.

z—0t x—0t y=zlogz y—0—
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6.8.1 Naduzycia reguly de I’'Hospitala

Wiemy, ze
sin

lim = 1.
z—0

Jesli uzyjemy reguty de I’Hospitala, to otrzymamy

. COSZ
lim = 1.
x—0 1

Zastosowanie reguty de 1'Hospitala wymaga znajomosci pochodnej funkcji
sin z. Ale wyjsciowa granica, ktora obliczamy jest z definicji réwna pochodnej
funkcji sinxz w punkcie 0. Wiec uzycie reguty wymaga i tak informacji o
granicy, ktora wtasnie obliczamy.

Ogodlnie, gdy obliczamy granice postaci

i 1@ = £(0)

x—0 €T ’

to jesli granica istnieje, jest réwna f'(0). Uzycie reguty de 'Hospitala prowa-
dzi do granicy
lim f/(),

z—0
ktéra wymaga znajomosci pochodnej f/(x). Czyli do obliczania granicy uzy-
wamy narzedzi, ktére wymagaja wiedzy, ile ta granica wynosi. Takie rozu-
mowanie traktuje si¢ jako naduzycie.
Poza tym moze sie zdarzyé, ze f'(0) istnieje, ale ostatnia granica nie
istnieje. Na przyktad

1
r?sin— x #0,
T

0 xz=0.

fx) =

Wtedy
lim M = lim xsin — = 0.
z—0 x x—0 €T

Ale dla x # 0 mamy

1 1
f'(z) = 2xsin — — cos —,
T T

wiec granica f'(x) w punkcie 0 nie istnieje.



Pochodne 105

Przyktady.
@ .
lim & = )| =€ =1
=0 1 z=0 z=0
(b) X
lim <2070 (cosz)'| = —sinz| =0.
x—0 x =0 =0

6.9 Pochodna ciggu i szeregu funkcyjnego

Twierdzenie 6.36. Funkcje f,,(x) sq ciggle i réiniczkowalne w sposéb ciggly
w przedziale [a,b]. Zaloimy, Ze ciggi fn(x) i fl(x) sq jednostajnie zbieine
do f(x) i g(x), odpowiednio. Wtedy f'(x) = g(z) (na koticach przedziatu
fila) = g(a) i fL(b) = g(b)). Tzn.

(lim f,(2))' = lim f ().
Czyli pochodna granicy ciggu funkcji jest granicg pochodnych tych funkcji.

Dowdd. Niech a < xy < b. Cheemy pokazaé, ze f'(zo) = g(zo). Z zalozenia
dla e > 0 istnieje prog N taki, ze dlan > N mamy |f/ (t)—g(t)| < e/3,dlaa <
t < b. Wiemy, ze funkcja g(z) jest ciagta, jako granica jednostajnie zbieznego
ciagu funkcji f! (z). Zatem istnieje liczba 6 > 0 taka, ze dla | —x¢| < 6 mamy
19(§) — g(xo)| < €/3. Niech 0 < |z — 2| < 6. Wtedy dla n > N otrzymujemy

fn(@) = fnl20)

r — Xy

- 9(950)’ = [£,(§) — g(w0)]
e € 2
<11208) = 9(©)] +19(8) — glao)| < 5 + 5 = 3.
dla pewnego punktu ¢ lezacego pomiedzy x i xg. Zatem dla 0 < |z — zo| < §
mamy

‘f(l’) — f(=o)

r — X

fn(ﬁi : ir;(xf)) —g(z0)| < za < e.

- g(xo)’ = lim

To oznacza, ze

czyli f'(xo) = g(xo). O
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Uwaga 6.37. W dowodzie wykorzystana byta jedynie zbieznos¢ punktowa
ciggu fp.-

Uwaga 6.38. Wystarczy zatozy¢, ze ciag f,,(x) jest zbiezny w jednym punk-
cie ¢ przedziatu [a, b]. Rzeczywiscie, z tego warunku wynika jednostajna zbiez-

no$¢ ciagu f,(z). Sprawdzimy jednostajny warunek Cauchy’ego dla ciagu
funkcji f,,(z).

() = fn(2)] < | [fn(2) = fn(2)] = [falc) = fm(O)] | + | () = fin(c)]

h(z) h(c)
=1 2(&) = fu() [z — el + [ fule) = fm(c)]
h(€)

< (b= a)lf(&) = Fru ()] + () = frm(c)]-

Uwaga 6.39. Nie trzeba zaktadaé, ze funkcje f/(x) sa ciagte. Wystarczy,
aby funkcja g(z) byla ciagla.

Whniosek 6.40. Zalozimy, Ze funkcje f, sq ciggle i rézniczkowalne w sposob

ciggly w przedziale [a,b). Jesli szereg > fu(x) jest zbiezny przynajmniej w

n=1
jednym punkcie, natomiast szereq Z fr(x) jest zbiezny jednostajnie, to suma
n=1
szeregu s(x Z fulz) jest funkcjq rézniczkowalng oraz

(2 fn(x)> =s'(z) = 2 fal), (6.7)

tzn. pochodna sumy szeregu funkcyjnego jest szeregiem pochodnych jego sktad-
nikow.

Dowéd. Niech s, (x Z ). Wtedy

_ z fi(x)

Ciag funkcyjny s, (x) spelia zatozenia poprzedniego twierdzenia, w z uwzgled-
!/

niona Uwaga |6.38] Zatem (lign sn(x)> = lim sy (z), co jest rébwnoznaczne z
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(6-7), bo
lims,(e) = 3 fula). lims(a) = 3 £1(a),
n=1 n=1

czyli /
(zl fn(iv)> -3 o)

O

o0 _nxQ —n$2

Przyklad. s(z) = ) ¢ , 0 < z < 1. Przyjmujemy f,(x) = ¢
n=1

2re "’

)
7?/2

n3 n3

Wtedy f!(z) = —

2 [ee]
co daje | f,(z)| < —. Zatem szereg > fi(x) jest
n

n=1
oS

jednostajnie zbiezny z kryterium Weierstrassa o majoryzacji. Szereg Z ful(z)

n=1
tez jest jednostajnie zbiezny, bo

0 < e~ N B i
n3 n3
o0 —nIQ
Czyli §'(z) = =22 ) _ enz
n=1

Twierdzenie 6.41. Zalézmy, ze liczba R > 0 jest promieniem zbieznosci

szeregu potegowego f(x) =Y a,x". Wtedy funkcja f(x) jest rézniczkowalna
n=0
w przedziale (—R, R) oraz f'(z) = > na,z" .
n=1

Uwaga 6.42. Szereg potegowy dla funkcji f/'(x) ma wieksze wartosci bez-
wzgledne wspotezynnikéw, wiec promien zbieznosci nie moze by¢ mniejszy od
R. Jednak promienie zbieznosci obu szeregdéw sg takie same. Istotnie, niech

R’ oznacza promieri zbieznosci dla 71 )~ na,a" x # 0.
n=1
|an+1| . 1

=t
] R

(a) Jedli istnieje granica lim
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1
B) Jedli istnic; ica lim f]ay] = —, t
(b) Jesli istnieje granica 1Tan\/|a| 7 0

1 1
= lim § nla,| = lim IUn lim an| = lim § la,| = I
Ogolnie mamy
L limsup {fnlan] = lim /7 limsup {fJas] = ~
— = limsup {/n|a,| = lim {/n limsu a,| = —=.
R n P n n p R

Dowéd. Szereg pochodnych Y na,z™ " jest zbiezny w przedziale (—R, R).
n=1

Wiemy, ze zbieznos¢ jest jednostajna w kazdym przedziale [—-R+6, R—/], dla

0 > 0. Szereg Z a,x" jest tez jednostajnie zbiezny w tym przedziale (wystar-
n=0

czy, ze jest zbiezny w jednym punkcie x = 0). Z Wniosku otrzymujemy

teze, czyli

0o / 00
Z a, " | = Z na,x™ .
n=0 n=1
O

Whiosek 6.43. Funkcja f(z) = Y a,2" dla —R < © < R, gdzie R jest

n=0
promieniem zbieznosci, jest nieskonczenie wiele razy rozniczkowalna oraz

o0 (k) )
f® () = (Z anx”> =Y nn—1)...(n—k+1az""
n=0 n=~k
Dowdd. Stosujemy wielokrotnie Twierdzenie [6.41] korzystajac z faktu, ze pro-
mien zbieznosci nie zmienia sie przy rézniczkowaniu. O]
Przyklady.

(a) Rozwazmy funkcje f(z) =log(l + ), |z| < 1. Mamy

! 1 - n, .n
f(a:)—1+x— (=1)"z", dla |z| < 1.

n=0
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Rozwazmy szereg i ﬂx”“ = i (_17)%1

tego szeregu wynosi 1. Z Twierdzenia [6.41] mamy

(i fon> _ (i <—1>"In+l> S (1) — 1; _ (log(142)).

z"™. Promienh zbieznosci

n=1 n=0 n+1 n=0
Zatem
00 (_1)n+1
log(l+z) =Y ———a"+C, |z] <1,
n=1 n
dla pewnej statej C. Podstawiajac x = 0 uzyskamy C' = 0. Zatem
>~ (_1 n+1
log(1+x) =) (7>x", dla — 1<z <. (6.8)
n=1 .

Z kryterium Leibniza szereg po prawej stronie jest zbiezny réwniez dla
x = 1. Zatem z Twierdzenia [5.20| otrzymujemy

oo (_1)71—‘,—1
log?2 =
og ; p
(b) f(x) = arctgz. Wtedy
1 oo
f(z) = = (=12, lz] < 1.
1+22 =
. o (D" onnt : y
Rozwazmy szereg » mrit Szereg ten jest zbiezny dla |z| < 1.
n=0 2T
Wiemy, ze
0o n / oo
Z (_1) $2n+1 — Z(_l)ann — (arctgx)’,
n=0 2n +1 n=0
czyli
o (=1)" anp1
tgr =) ——x*" C < 1.
arctg ;::02n+1x +C, ||

Podstawiamy x = 0 i otrzymujemy C' = 0. Zatem

- (_1>n 2n+1
tgr = — " < 1. 6.9
arctg x ngzo T 72 || (6.9)
Podobnie jak w poprzednim przyktadzie mozemy podstawi¢ x = 1 i

uzyskac
n

E:i (=1)
4 Z2n+1
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6.10 Wzory Taylora i MacLaurina

Twierdzenie 6.44 (Wzér Taylora). Niech f(x) bedzie funkcjg n-krotnie réz-
niczkowalng w przedziale wokot punktu a. Wtedy dla liczb b z tego przedziatu
mamy

(b—a)? (b—a)~ !

£0) = fla) + T @)+ C ) S ) + B

gdzie R, ma jedng z dwu postaci:

(1) R, = (b—a)"

w posta,c'/, Lagrange’a),

~———— (a4 0(b—a)), dla pewnej liczby 0 < § < 1 (reszta

(2) R, = EZ__C;))' (1= (a+0 (b—a)), dla pewnej liczby 0 < 6’ < 1

(reszta w postacti Cauchy’ego).

Uwagi
1. Oznaczmy b — a = h. Wtedy

flath) = fla) + 17 (@) + o) + ok

n n

h
= = £ Oh) =
Ftn n! [ (a+0h) (n—1)!

2. Reszta R, oraz 010’ zalezg od a, b i n.

Dowaéd. Oznaczmy

(b—=)*
2|

(b— )t

f(x)—...— Wf(”*l)(x).
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Mamy g(a) = R, oraz g(b) = 0. Z twierdzenia Lagrange’a otrzymujemy

9(b) — g(a)
b—a

dla pewnej liczby 0 < ¢ < 1. Zatem R,, = —(b—a)g¢'(a + 0'(b — a)). Podsta-
wiamy z = a + 0'(b — a) do wzoru (6.10). Wtedy

b—xz=b—a—00b—a)=(1-6)b-a)

= gl<a + el(b - CL)),

oraz

(b—a)"
(n—1)!

Rozwazmy funkcje u(x) = (b — z)". Mamy u(a) = (b — a)™ oraz u(b) = 0.
Z twierdzenia Cauchy’ego otrzymujemy

9(b) —g(a) _ g'(a+0(b—a))
uw(b) —u(a) v(a+6(0b—a))

R, = (1= (a+0'(b—a)).

dla pewnej liczby 0 < 6 < 1. dalej

ng(a+6(b—a))
u(a+0(0b—a))

Mamy u'(z) = —n(b— z)""'. Z (6.10) wynika, ze

R,=(b—a)

g(x) _ f"(x)
u'(x) ol
Ostatecznie .
R, = (b_n,“)f(”)(a 00— a)).

]

Uwaga 6.45. Przy dowodzie wzoru na reszte w postaci Lagrange’a sko-
rzystaliSmy z twierdzenia Cauchy’ego, natomiast przy postaci Cauchy’ego
skorzystaliSmy z twierdzenia Lagrange’a.

We wzorze Taylora przyjmijmy b = x i a = 0. Wtedy otrzymujemy wzdér
McLaurina
f"(0) 5 a" !

o T +"'+(n—1)!

f(z) = f(0) + f(0)z + FoD0) + R, (6.11)
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(1 _ el)nflf(n)oglx)'

~ (n—1)!

Uwagi.

1. Jedli f(z) jest wielomianem, to R, = 0, gdy n przekroczy stopiefi wie-
lomianu.

2. 7 warunku R, — 0 wynika

00,

n

ﬂmzﬂm+i

n

Jedli | £ ()| < M dla stalej niezaleznej od n, to R,, — 0, bo x—' —
n n! n
(np. z kryterium d’Alemberta). Mozna dopusci¢ tez stabszy warunek

[fO )] < M.
3. Reszta R, nie musi dazy¢ do zera nawet, gdy szereg jest zbiezny. Roz-
wazmy funkcje
e Ve x40,
€Tr) =
/(@) {O, xz=0.

Mozna udowodnié, ze f jest rézniczkowalna nieskonczenie wiele razy
w punkcie 0 oraz f(™(0) = 0. Rzeczywiscie, w tym celu udowodnimy
przez indukcje, ze dla n > 0 mamy

) )Pz e’ 140,
f(@—{o o (6.12)

gdzie p,(t) jest wielomianem. Dla n = 0 mamy

fO(x) = f(a),

czyli po(t) = 1. Zatézmy, ze réwnos$é (6.12) jest spelniona dla liczby
n > 0. Wtedy dla x # 0 otrzymamy

£ @) = @) = [ (o) ]
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dla
Posr (t) = £[2tpn(t) — pl, ()] ] (6.13)

Pozostaje sprawdzi¢, ze f("*9(0) = 0. W tym celu rozwazamy iloraz
roznicowy funkeji f™(z) w punkcie 0.

f(N) ($) ; f(n)(o) — xflpn(xfl)efzfz’ T 7& 0.

Podstawmy t = z7!. Gdy z — 0, to |[t| — oco. Zatem

FOa) = fMO) L tpalt)

Mamy
_tpa(t) L tpa(t) 1
tliglo et2 - tllglo et etQ*t - 0
oraz
tl}r—noo et2 - tlir& e# - tll)f& et et2*t - O

np. na podstawie reguly de ’'Hospitala. Ostatecznie f"+1(0) = 0.

Ze wzoru (6.11)) otrzymujemy f(z) = e * = R, dla z # 0, czyli reszta
nie dazy do zera.

4. Przypustmy, ze szereg potegowy f(x) = Z a,x" ma dodatni promien
n=0
zbieznosci. Prawa strona jest wtedy automatycznie szeregiem McLauri-
f™(0)

na funkcji f(x), tzn. a, = - Rzeczywiscie, na podstawie Wniosku
n!

mamy f*)(0) = klay.
Przyktad. f(z) = (1 +x)*, = > —1. Mamy

fM@)=ala—1)... (o —n+1)(1+z)*™

Zatem

n! n!

f™0) ala—1)...(a —n+1) _. <a>

n .

*Mozna wykazaé, ze degp, = 3n oraz po,(t) = v, (t?), pani1(t) = tw,(t?), gdzie v, i
wy, sa wielomianami.
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@
Ze wzoru McLaurina otrzymujemy, przy konwencji <0> =1,

(1+2)* = nz_:l <Z>a¢k + R,.

k=0

Pokazemy, ze R, — 0 dla |z| < 1. Skorzystamy z postaci Cauchy’ego reszty.

R, = (1= )" £ (6)

= .(1 —0)" la(a—1)... (a—n+1)(1+0z)* ™"

~ n<o‘> (1= 0)" (14 6)°"

n

Wyrazenie n<a> 2" dazy do 0 dla |z| < 1, np. z kryterium d’Alemberta.
n

Wystarczy udowodni¢, ze wielkos¢ (1 — 6)"~1(1 + 6x)*™" jest ograniczona.
Dla || <1i0<6<1mamy 1—0 <1+ 60z. Zatem

1—0)"'1+02)* " < (14 02)" 11+ 02)* " = (1 + ) !
Zaleznosé od n jest jeszcze ukryta w 6. Dalej

ga-1. a>1,
(1—1z])*, a<1,

(1+6z)* {

przy czym dla o < 1 skorzystaliSmy z nier6wnosci 1 + 6z > 1 — |z|. Reasu-
mujac otrzymaliSmy uogélniony wzér dwumianowy Newtona.

(1+2)* = ;;0 (Z) 2", x| < 1. (6.14)

Przyjmijmy a = —%. W miejsce x podstawmy —z? dla |z| < 1. Wtedy

\/ﬁ +Z<§> 1) z?".
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Dalej
13 2n—1

()t ()

2n)!
bo (2n — D! = (Qn) Ostatecznie uzyskaliSmy

mn!
! ey (" (x)zn o < 1
— = =), |z :
V1—a2 —\n 2
Al inx) = ! dl 1.7
e (arcsinz)’ = i a |z| < 1. Zatem
2 (2n) [x\*H!
= — 1. 6.15
arcsinx = x+22n+1< )(2) .zl < (6.15)

Dla z = %, po pomnozeniu przez 2 obu stron (6.15)), otrzymamy

e 2n\ 1
2 n+1( >16

Podstawiajac dla odmiany =z = i i mnozac (6.15) przez v/2 uzyskamy

™ > 1 [(2n\1
—— =1+ :
2v2 Z2n+1< >8n

Zauwazmy, ze dla 0 < x < 1 mamy

o 92 2 2n+1
g = arcsin 1 > arcsinz = 2:% ST (:) <;)

Przechodzac do granicy  — 17 otrzymamy

>

LS 1 2n\ 1
27 Zom+1\n )4
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Poniewaz liczba N jest dowolna, to

T > 1 2n\ 1
27 Z o+ 1\n )4
Dalej

00 2 2 2n+1
arcsinx = Z ( n) <x>
2n+1\n 2
s 2 2n 1\ 2+t 2n\ 1
< - _
7;)271—1-1(71)(2) Z2n+1< )4

Przechodzimy do granicy x — 17, aby uzyskac¢

i)
n—O 4r

1

_22n+1< >4n (6.16)

Uwaga. Zbieznosé szeregu po prawej stronie (6.16) mozna tez uzyskaé ze
wzoru Stirlinga podajacego przyblizona wartosé wielkosci n! ~ n™e™"/27n.

Otrzymujemy zatem

Twierdzenie 6.46 (Reszta Peano). Jesli funkcja f(x) jest n-krotnie roz-
niczkowalna w punkcie a, to

n

Flath) = F(a)+ 50 a) 4 o F'(@) 4 )+ Rah),

gdzie
lim B (h)

h—0 k"

—0,
tzn. wielkosé R, (h) jest mala w stosunku do h"™ dla malych wartosci |h.

Dowad. Zastosujemy wielokrotnie regute de’Hospitala korzystajac z

a (Y _
dh \n!')  (n—10
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o Beh) o Fat ) = (@) = §f(0) = ") = = B )
h—0  h" - h—0 B
~ flla+h) = f'(a) = % f"(a) - %?f’”(a) —_ = %f(")(a)
= lim n=1)
h—0 nhr—1
Y el ) e Al O B AR L)
h=0 n'h
(n—1) h) — f(n—1)
= s [t })L SN gy | =0,

Ostatnia granica wynosi zero bezposrednio z okreslenia pochodnej w punkcie

a. 0

Definicja 6.47. Punkt xo nazywamy punktem przegiecta funkcyi f, jezeli

dla wszystkich punktow x # xo w poblizu xo mamy @) = f(xo) > f'(x0),
Tr — 2o

lub dla wszystkich takich punktéow mamy M < f'(zo).

T — X
Uwaga. Geometrycznie oznacza to, ze czesci wykresu funkcji dla z < xq
idla x > x( leza po przeciwnych stronach stycznej do wykresu w punkcie

f(xm) — fo) > f'(xg). Wtedy

— o

fx) > f(xo)+ f'(xo)(x —xp), dlaz > xo,
flx) < f(zo)+ f'(xo)(x —x0), dlaz < x.

(x0, f(x0)). Rzeczywiscie, niech

Twierdzenie 6.48. Funkcja f(x) jest n-krotnie rézniczkowalna w przedziale
wokot punktu a oraz f™ jest ciggla w a. Zaldimy, Ze

@)= f'@) = ... = f"D(a) =0, f™(a)£0, n>2.
Jesli n jest liczbg parzystq, to funkcja posiada Sciste ekstremum lokalne w

punkcie a. W przeciwnym wypadku a jest punktem przegiecia funkcji f.

Dowdd. Rozwazymy przypadek f™(a) > 0. Z ciaglodci mozemy przyjaé, ze
f™(t) > 0 dla argumentéw ¢ blisko a. Niech z lezy blisko a. Wtedy ze wzoru
Taylora z reszta w postaci Lagrange’a otrzymujemy

F™()

n!

f(@) = fla) +

(l‘ - a)n7
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dla pewnego punktu ¢ pomiedzy a i x. Jedli n jest liczba parzysta, to drugi
sktadnik po prawej stronie wzoru jest dodatni. Zatem f(x) > f(a) dla x # a
w poblizu a. To oznacza, ze w a wystepuje Sciste lokalne minimum. Jesli n
jest liczbag nieparzysta, to

o) — fla (n)

dla z blisko a. Wtedy a jest punktem przegiecia. O]

Uwagi.
1. W punkcie przegiecia nie moze wystepowac ekstremum lokalne.

2. Jesli f"(a) > 0, to w a jest Sciste minimum, a dla f”(a) < 0, Sciste
maksimum.

Przyklady.

(a) Chcemy znalez¢ ekstrema funkcji f(z) = z* + 4z. Obliczamy f'(z) =
4(z® +1). Zatem f'(—1) = 0. Dalej f”(—1) = 12. Zatem w punkcie —1
wystepuje Sciste lokalne minimum.

(b) f(z) = 2® + 2. Mamy f'(x) = 32% + 42® = 2*(3 + 4x). Pochodna
zeruje sie w 01w —2. Dalej f”(z) = 6z + 122% = 62(1 + 2z). Zatem
f"(—=2) > 0. Mamy f”(0) = 0. Ale f(0) > 0. W rezultacie w punkcie
—% wystepuje $ciste lokalne minimum, a w punkcie 0 przegiecie wykre-
su.

Definicja 6.49. Mowimy, Ze funkcja f(x) okreslona w przedziale (a,b) jest
wypukta w dot, jesli dla dowolnych punktéow a < z1 < x2 < b oraz liczb
a, >0, a+ =1 mamy

flaxy + Brs) < af(zr) + Bf(x2). (6.17)
Podobnie, f(x) jest wypukia w gore jesli

flazy + Bra) > af(x1) + Bf(x2). (6.18)

Uwaga 6.50.
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1. Wypuktos¢ w doét oznacza, ze fragment wykresu pomiedzy punktami
(21, f(x1)) 1 (xe, f(x2)) lezy pod sieczna przechodzaca przez te punkty.
Rzeczywiscie, jesli u(z) jest funkcja liniowa oraz u(xy) = f(z1), u(ze) =

[(z2), to u(azy + fry) = au(ry) + fu(z) = af(x1) + Bf(z2).

2. Jedli funkcja f(x) jest ciagta na przedziale (a,b), to z warunku

f (m;xz) _ f(a)—gf(zvz)’

a<x <xT9<b

wynika wypuktosé w dot. Bez warunku cigglosci teza nie jest prawdzi-
wa.

Twierdzenie 6.51. Jesli f"(x) > 0 dla a < x < b, to funkcja f(x) jest
wypukia w dét. Natomiast jesli f"(x) < 0 dla a < x < b, to funkcja f(x) jest
wypukta w gore.

Dowod. Udowodnimy pierwsza czes¢ twierdzenia. Zakladamy, ze x; < zo
oraz a, >0, a4+ [ = 1. Z twierdzenia Lagrange’a mamy

flaxy + Bry) — af(vy) — Bf(v2)
= af(ax1 + Bra) — f(z1)] = B[f(22) — flax1 + Bz2)]
= af(zy — 11) f'(§&1) — af(ze — 1) f/(&2)
= af(zy — 21)[f'(&) — ['(&)] = aB(x1 — 22) (&2 — &1) " (n),

gdzie 11 < & < axy + fBry < & < x9 oraz & < n < &. Zatem
flaxy + Bra) — af(r1) — Bf(x2) <0
dlaa,8>0ia+p=1. O

Uwagi.

1. Twierdzenie odwrotne jest tez prawdziwe, ale w tezie otrzymamy staba
nieréwnosé dla f”. Istotnie zalézmy, ze f jest wypukta w dot. Dla x; <
x9 1 a, > 0, z nierownosci (6.17) otrzymujemy

alf(axy + Bra) — f(21)] < B[f(z2) — flaxs + Bra)].

Zatem

flazy + Bxs) — f(x1) - flaz, + Bry) — f(x1)'

Bz — 1) oy — 1)
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Po przeksztatceniu dostajemy

flaxy + Bry) — f(21) _ f(x2) — flaw; + Br,)
(axy + Pag) — a4 ry — (oxy + Pag)

Gdy a — 07, to f — 17 oraz ax; + fre — x9. Otrzymujemy wiec

flz2) = f(z1)

To — X1

< f(a).
Podobnie, z # — 07 wynika
f(xs) — f(l'l)

To — T1

f(1) <

Zatem f'(z1) < f'(z2), czyli f’ jest funkcja rosnaca. Tzn. f” > 0.

2. Zalézmy, ze f jest wypukla w dot. Wtedy funkcja f’ jest $cisle rosnaca.
Istotnie, gdyby f'(z1) = f'(x2) dla pewnych x; < x9, to funkcja f
bylaby stala w przedziale [z, 25]. To by oznaczalo, ze f jest funkcja
liniowg w tym przedziale.

7 Iloczyny nieskonczone

Dla liczb a,, > —1 rozwazamy ciag iloczynow
P,=0+a)(1+as)...(1+ay,) :ﬁ 1+ ag).
k=1
Moéwimy, ze iloczyn nieskonczony
lo—o[ 1+ay,)

jest zbiezny, jesli ciag P, (iloczynéw czesciowych) jest zbiezny do liczby do-
datniej P. Piszemy wtedy

H 1+a,) =

W przeciwnym wypadku, tzn. gdy ciag P, nie ma granicy lub jest zbiezny
do zera, méwimy, ze iloczyn nieskonczony jest rozbiezny.
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= 1
Przyklad. Rozwazmy iloczyn H (1 = 2) . Mamy
n
k

n=2
L 1 “k-15k4+1 1 n+1 1
pn:H(1_):H I _ L o, L
k=2 k> k=2 k k=2 k n 2 2

Zatem

- 4)-4

n=2

= 1
Przyktad. Iloczyny czesciowe dla H (1 — ) . majg postac
n

n=2

> 1
Zatem iloczyn ] (1 — ) jest rozbiezny (do zera).
n

n=2
Twierdzenie 7.1. Jesli iloczyn H (1+ a,) jest zbiezny, to a, — 0.
n=1

Dowaéd. Niech 0 < P = lim,, P,,. Wtedy

14 Po n 1
a, = — 1.
P,

n—1

Stad a,, — 0. O

Definicja 7.2. Méwimy, ze iloczyn [[ (1+a,) jest zbiezny bezwzglednie, jesli

n=1

iloczyn [[ (1 + |an|) jest zbieiny.

n=1

Lemat 7.3.
1
[log(1+ )| < 2fz| < dlog(1+ o)), |o| <.

Dowdéd. Dla 0 <t <1 mamy

X tn t
1+t<e <1+ =1+-—F<1+2t (7.1)
n=1

S
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Stad
log(1+1t) <t<log(l+2t), 0<t<l. (7.2)

x
Podstawiajac t = |2’ i mnozac przez 4 otrzymamy drugg nieréwnosé. Z kolei

dla t = x uzyskamy pierwsza nieréwnos¢ dla nieujemnych wartosci x (nawet
bez czynnika 2). Pozostaje udowodnié¢ pierwsza nieréwnosé dla x = —y, 0 <

1 :
y < 3 Otrzymujemy

1
|log(1 4 z)| = log 1

= log (1 + 1y> < log(1 +2y) < 2y = 2z,
)

gdzie ostatnia nieréwnosé wynika z ((7.2) poprzez podstawienie t = 2y. [

Twierdzenie 7.4. [loczyn bezwzglednie zbiezny jest zbiezny.

Dowéd. Oznaczmy P, = [1(1+|ax|). Z Twierdzenia 6.1 wynika, ze |a,| ——

k=1
0. Zatem |a;| < 1 dla k > ko. Wtedy dla n > m > ky mamy

|log P, — log P,| = |1log[(1 + ami1)(1 + amy2) ... (1 + ay)]|
< log(1 + am1)] + [log(1 + am2)| + ... + [log(1 + ay)]
< A4llog(1 + |am1|) + log(l + |amaz|) + - .. + log(1l + |as]|)]
= 4[log P, — log IBm],

gdzie druga nierownos¢ wynika z Lematu 6.3. Z zalozenia ciag log P, jest
zbiezny, wiec spelnia warunek Cauchy’ego. Zatem ciag log P, tez spetnia
warunek Cauchy’ego, czyli jest zbiezny. Oznaczmy g = lim log P,,. Wtedy

P, =¢lostn 1, 09 > (.
H

Twierdzenie 7.5. Dla a, > 0 iloczyn [[(1+ a,) jest zbieiny wtedy i tylko

n=1

wtedy, gdy zbiezny jest szereq Z Q-

n=1
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Dowdd. Zatézmy, ze iloczyn [](1+ a,) jest zbiezny. Wtedy

n=1
l4a+a+...+a, <(I+a)(l+a)...1+a,) < [[Q+a).
k=1

Stad wynika zbiezno$¢ szeregu.
Zatozmy teraz, ze szereg Z a, jest zbiezny. Wtedy dla pewnego wskaz-

n=1
nika ny mamy

S <
k .
k=no+1 2
Z nieréwnosci Bernoulli’ego (zadanie 3, lista 1) otrzymujemy

(1 —angr1)(I —angy2) - (L —an) 2 1 —apge1 — Qpgy2 — - . — Gy >

Zatem dla n > ng mamy

n no n 1 o
Qn::H(l—ak):H(l—ak) H 1—&k §H 1—ak
k=1 k=1 k=no+1 k=1

Ciag @, jest malejacy i ograniczony od dotu przez liczbe dodatnia. Zatem
iloczyn H(l — ay,) jest zbiezny. Zauwazmy, ze P,Q, < 1, czyli P, < Q'

n=1
Rosnacy ciag P, jest wiec ograniczony od gory, skad wynika jego zbieznosc.

]

Whiosek 7.6. Dia 0 < a,, <1 wloczyn iloczyn H (1 —ay) jest zbiezny wtedy

n=1

1 tylko wtedy, gdy zbieiny jest szereq Z .

n=1

Dowdd. Implikacja (<=) wynika z Twierdzen i zastosowanych do
ciagu —a,,. Zatézmy, ze iloczyn jest zbiezny. Wtedy zbiezny jest tez iloczyn

ﬁ(l—an)l—ﬁ(l—i— >

n=1 n=1 1—Cln

Z poprzedniego twierdzenia otrzymujemy

oo>z

o.9]
/ Zan.

1 - Cn n=1
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Nastepne twierdzenie przypomina kryterium Leibniza o szeregach naprze-
miennych, ale potrzebne jest dodatkowe zatozenie.

Whniosek 7.7. Zatoimy, ze 1 > a, \, 0. Iloczyn

ﬁl 1+ (~1)"a,

jest zbiezny wtedy i tylko wtedy, gdy Z a? < oo.

n=1

Dowaéd. Poniewaz a,, — 0, wystarczy badaé¢ zbieznos¢ ciggu ponizej

2n n
I+ =[] — az-1)(1 + az)
k=1 k=1
= [][1 — (ask—1 — ok + asp_1a21)]
k=1
Z Whniosku [7.6] zbieznosé iloczynu
[I0+(-
jest rownowazna zbieznosci szeregu
> (ask—1 — sk + asp—1a2) = > _[(azk—1 — ag) (1 + agk) + ajy).
k=1 k=1

Zbieznos¢ ostatniego szeregu jest rownowazna zbieznosci szeregu
[o.¢]
2
> .
k=1

Z monotonicznosci ciggu a,, ostatni warunek jest rGwnowazny zbieznosci sze-

regu Z az. [l

7.1 Liczby pierwsze

Wiadomo, ze zbiér liczb pierwszych jest nieskonczony. Pokazemy, ze liczb
e.9]

pierwszych jest na tyle duzo, ze szereg Z —, jest rozbiezny, gdzie p,, oznacza

n=1

n-tg liczbe pierwsza,
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-1

1

Rozwazmy iloczyn H (1 — ) . Korzystajac ze wzoru na sume szere-
k=1 Pk

gu geometrycznego otrzymamy

-1
i 1 L 1 1
11 (1—) =11 (1++2+...>.
k=1 Pk k=1 Pk Pi
Po wymnozeniu sum dostaniemy sume odwrotnosci wszystkich liczb natu-
ralnych majacych w rozktadzie na czynniki pierwsze liczby pi,po, ..., pn. W

szczegblnosci w sumie pojawig sie odwrotnosci wszystkich liczb od 1 do n,
bo p, > n. To oznacza, ze

Stad iloczyn

)

jest rozbiezny do nieskonczonoéci, wiec iloczyn

E(l-é)

Jest rozblezny do zera. Z Wniosku otrzymujemy rozbieznos¢ szeregu

Zi

n= 1pn

— Dk

-1
L 1 n 1 1
H(l—a> :H<1+a+2a+...>.
k=1 DPx. k=1 Pr Pk

Po wymnozeniu sum dostaniemy sume¢ poteg rzedu « odwrotnosci wszyst-
kich liczb naturalnych majacych w rozkltadzie na czynniki pierwsze liczby
DP1,P2s - -y Pn- W szczegdlnodei

n —1
Dla liczby a > 1 rozwazmy iloczyn H <1 — ) . Otrzymujemy
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e o] 1 -1

To oznacza, ze iloczyn H <1 — a) jest zbiezny. Z twierdzenia o trzech
k=1 k

ciaggach otrzymujemy tozsamos¢ Eulera

-1
= 1 =01
(1 — ) = —, a>1.
n=1 p% n=1 ne

8 Utamki tancuchowe

Wykonamy dzielenie z reszta liczb 75 1 23.

75—3+6—3+ L =3+ !
23 23 3+5_ - 1
6 1

Bedziemy stosowaé zapis

T, 1,

23 13 |1 |5
Ogolnie, niech ngy i ny beda liczbami naturalnymi bez wspolnych dzielnikow.
Wykonujemy dzielenie z reszta.

ng = @11 + na, gdzie 0 < ng < ny.
Wtedy
No No 1
— =1 +—=q +—.
nq ny s
N2

Liczby n; i ny nie maja wspoélnych dzielnikow. Te sama czynnosé wykonujemy
dla liczb ny 1 ne.

n 1
70:([14‘ ) 0 < ng < ns.
nq ns
g2 + —
U
Nj—
Powtarzamy te czynno$é dopoki ny = 1. Wtedy ¢ = M1 oraz
n 1 1 1
*OZQ1+7|+7|-|—...+7| (8.1)

ny 2 |gs lar
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Wyrazenie postaci (8.1)) nazywamy skoniczonym utamkiem tanicuchowym.
7 rozumowania wynika, ze kazda liczba wymierna ma przedstawienie w po-
staci skonczonego utamka tancuchowego.

Przyktad.

1+V2=2+(V2-1)=2+

1+v2

To oznacza, ze w pewnym sensie liczba 1 + /2 ma nieskoficzone przedsta-
wienie w postaci

1 1] 1
1+\/§=2+‘2‘+‘2|+"+....

Ogolnie rozwazmy dodatnia liczbe niewymierna xy. Wtedy

xo = ag+ro, gdzie ag = [xo], 70 = {x0}.
) 1
Wtedy 0 < rg < 1, czyli 1 := — > 1 oraz
To
1

Tog = ag+ —.
€y

Podobne czynnosci wykonujemy dla liczby x;. Wtedy

1
Ty = a; + —, a1:[$1], To > 1.
)
Otrzymujemy
1
To = ag + 1 .
a; + —



Utamki lancuchowe 128

Postepujac tak dalej otrzymamy

1 1] 1 1]
ZI/’O:(IO—|—7+7+...+ +7, (82)
|a1 |CL2 |an—1 |:En
gdzie
Tpy=ap1+—, x> 1
Tk

W pewnym sensie otrzymujemy rownoscé

1 1 1
ro=a+—+—+...+—+.... (8.3)
lar  |az | an

Naszym celem jest nadanie sensu wyrazeniu po prawej stronie wzoru, gdzie ag
jest nieujemng liczbg catkowita, a liczby a,, sa naturalne dlan > 1. Rozwazmy
wyrazenia

1, 1] 11

R,=ap+ —+—+...+ 4+ =L
lar | as |an—1 |an

Liczby Ry sa wymierne. Nazywamy je reduktami utamka tancuchowego .
Pokazemy, ze Ry LI Zp, co pozwoli uzasadni¢ wzor (8.3).

Przechodzimy do analizy wielkosci R,,. Wyrazenia R,, sa funkcjami wy-
miernymi zaleznymi od liczb ag,ay,...a,. R, sa dobrze okreslone réwniez,
gdy ay, as,...,a, sa dodatnimi liczbhami rzeczywistymi. natomiast ag jest
nieujemng liczbg rzeczywista.

Okreslmy rekurencyjnie dwa ciagi liczb P, i ), zaleznych od ciagu liczb
{an}2, wzorami

PO = Qy, QO = 17
Py = apa; + 1, Q1 = ay,
Pn = anPn—l + Pn—2a Qn = anQn—l + Qn—?-
P
Lemat 8.1. R, = —-.
Q@n
Dowéd. Wzoér jest spetniony dlan =0idlan =1, bo
a 1 apa; + 1
Ry=—", Ri=a+—=—"".

1 aq ay
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Wzoér jest prawdziwy réwniez dla n = 2:

i . CL2P1—|—P0 . (a0a1+1)a2+a0
Q2 a1+ Qo aas +1

+ 22 S R
0 ajas + 1 0 1 2
ay + —
a2

Zatézmy, ze wzor jest spelmiony dla liczby n > 2 i dowolnego wyboru liczb
ay. Wtedy
Pn . anPn—l+Pn—2

R,= "= .
Qn anQn—l + Qn—2

Przy zamianie liczby a, na a,, = a,+ otrzymamy nowy ciag reduktow Ry
An1
przy czym Ry = Ry dla k <n—1oraz R, = R, 1. Z zalozenia indukcyjnego

otrzymujemy wtedy

~ n P,_ P,_
R }’? Pn anPn—l + Pn—2 <a - an+1> ' ?
n+1 —= n — = = = —=
n anQn—l + Qn—Z 1
Q (an + ) Qn—l + Qn—2
An1
o [anpnfl + Pan]an+1 + Pnfl o an+1pn + Pnfl o Pn+1
[ananl + Qn72]an+1 + anl @nJrlQn + anl Qn+1 ‘
]
Lemat 8.2.
P, P
ATL = n & — 1 TL, k > 1,
Qn—l Qn ( )
(-1)"
R,1—R, = ————.
' Qn—lQn
Dowod. Mamy
P() P1 ag QoGaq + 1
A = = =—1.
P Qo O 1 a
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Dalej dlan > 2

A _Pn—l Pn_Pn—l anPn—l+Pn—2 _Pn—l Pn—2__A
" Qn—l Qn Qn—l anQn—l + Qn—2 Qn—l Qn—? not
Stad A, = (—1)""'A; = (—1)". Dalej
P,_ P, A,
R R
anl Qn anlQn
L]

Uwaga 8.3. Z okreslenia ciggdéw P, i @),,, dla naturalnych wartosci liczb a,
liczby P, i ), sa naturalne. Z lematu 8.2 wynika, ze liczby P, i (,, nie maja
wspolnego dzielnika, czyli utamek R, = —" jest nieskracalny.
Twierdzenie 8.4. Dla dodatniej liczby niewymiernej xo ciqg reduktow R,
jest zbiezny do xg. Co wiecej ciqgg Ro, jest rosngcy, cigg Ron.1 jest malejgcy
oraz

|Rn+1 — .To‘ < ’Rn — 33'0’.

Dowdéd. Z (8.2)) otrzymujemy

1] 1, 1
x0:a0+——|—...+——|— .
|a1 |an |In+1

Niech IBLnH oznacza redukt rzedu n + 1, gdzie liczba a,,, zostata zastapiona
liczbg 1. Wtedy

- ﬁnJrl *TnJran + Pnfl
0= = = .
Qn+1 mn+1Qn + anl

Zatem

Tpr1 Py + P P,
2o — R, = +1 1

C 21Qn + Quot Qn
o An o (_l)n
B (xn—l—lQn + Qn—l)Qn B (xn-l—lQn + Qn—l)Qn (84>
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Poniewaz a, 11 = [Tpi1], t0 Tpi1 < anp1 + 1. Otrzymujemy wiec

1 1
|R” o x0| N (fEn-&-lQn + Qn—l)Qn ~ [(a”+1 + ]-)Qn + Qn—l]Qn
1
“ @t e &Y

Z ostatniej réwnosci w (8.4) zastosowanej do n + 1 i z faktu, ze x,10 > 1
dostajemy

1 1
R, 1 — x| = < . 8.6
| i O’ (xn+2Qn+1 + Qn)Qn—i—l (Qn + Qn+1)@n ( )
Zestawiajac (8.5) 1 (8.6) (oraz z (8.6) dla n :=n — 1) otrzymujemy
1
|Rn+1 - xO‘ < |Rn - $0’ < (8.7>

(Qn—l + Qn)@n—l '

Z okreslenia ciggu @), wynika, ze Q, > Qn_ 1+ Qn_2o > Q1+ 1 dlan > 2.
Zatem @, > n. To oznacza, ze R, —— x¢. Z (8.4) wynika, ze ciag Ry, jest
rosnacy a ciag Ro,.1 malejacy. O]

Uwaga 8.5. Z Twierdzenia 8.4 wnioskujemy, ze liczba xy lezy pomiedzy R,
i R,_1. Zatem z lematu 8.2 wynika, ze
1

|$0 — Rn71| < |Rn71 — Rn‘ = m

Zatem
1 1

< .
QnQn-‘rl n(n + 1)

2o — Ry < (8.8)

1
Przyktad. Liczba V5

podziale odcinka oraz wystepuje we wzorze na wyrazy ciggu Fibonacci’ego.

nazywana jest zlota. Pojawia sie przy ztotym

Mamy
1 — 1
+‘/5:1+\/5 Ly .
2 2 14+ /5
2
Zatem
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Przeanalizujemy zagadnienie odwrotne. Niech a¢ bedzie nieujemna liczba
catkowita i a,, n > 1 ciggiem liczb naturalnych. Uzywajac metod uzytych w
dowodzie ostatniego twierdzenia mozemy wywnioskowac, ze liczby Rj okre-
Slone wzorem

1, 1 o, 1
Rp=ap+—+—+...+ + —
lar  |ay |ar—1 | a
spetniaja
1
|]ﬂn _'}%n|<: = m>n,
n(n+1)

poniewaz liczba R, lezy pomiedzy R, i R, [] To oznacza, ze ciag R, jest
zbiezny, bo spetnia warunek Cauchy’ego. Oznaczmy

To = li]£n Ry.

Chcemy pokazac, ze liczby ag, aq, ..., a,,... powstaja z rozwiniecia liczby x
w utamek tancuchowy.

7 argumentacji uzytej wyzej wynika, ze dla dowolnej liczby n ciagi
1] 1] 1] 1]

+ o+ +
|an+1 |an+2 |an+k—1 |an+k

]%gﬁ = p +

sa zbiezne. Oznaczmy
T, = lilgn R,(Cn).

Ze zwigzku

n 1
R,(C ) an + —r
k—1
wynika
1
Ty = ap + ) n > 0. (8.9)
Tny1

Stad x,41 > 0, czyli x, > a, > 1 dlan > 1. Z (8.9) otrzymujemy zatem a,, =
[x,,], czyli liczby a, pochodza z rozwiniecia liczby xy w utamek tancuchowy.

Z przeprowadzonego rozumowania wynika, ze rozwiniecie liczby dodatniej
xo w utamek tancuchowy jest jednoznaczne. W szczegdlnosci nieskonczone
utamki tancuchowe reprezentuja liczby niewymierne.

*Mozna zastosowaé rozumowanie z dowodu Twierdzenia 8.4 dla zy := R,, i zauwazy¢,
ze redukty rzedu n < m dla x( sa rowne R,,.
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Twierdzenie 8.6 (prawo najlepszego przyblizenia). Zaldzmy, Ze dla dodat-
niej liczby niewymiernej xq t liczb naturalnych r © s mamy

r
.170—; < ’.To—Rn‘.

Wtedy s > Q.. Czyli sposrdd liczb wymiernych o mianownikach nie przekra-

P, o L
czajgeych Q, redukt R, = —— stanowi najlepsze przyblizenie liczby xg.

Dowdd. 7 Twierdzenia 8.4 mamy

.
o — S' < |20 — Ry < |20 — R 1].

r
Z pierwszej czesci tezy Twierdzenia 8.4 wynika zatem, ze liczba — lezy po-
s

miedzy liczbami R,,_; i R,. Otrzymujemy wiec

r A, 1
0<’—Rn_ <|R, — R,_1| = = .
S ! ’ ! | anlQn anl Qn
Tzn. P .
0 < |TQn—1 — S n—1| < .
Qn—ls Qn—lQn
Stad wynika, ze s > Q. n

8.1 Okresowe ulamki lancuchowe

Przypusémy, ze rozwiniecie w utamek tancuchowy liczby x

bt o Moy My
b (b | b,

jest okresowe, tzn.
bpik = bp, dlan > ny.

Rozwazmy cze$¢ utamka

Ll + + Ll + + Ll
| b7m+1 o | bn0+k—1 o | bm)-l—k

+...

y:bn0+
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Wprowadzmy oznaczenia a,, = byy+n,. Wtedy a1 = a,, oraz

1] 1] 1]
y=a+—+...+ + ...+ —+ ...
| ay | a1 | ay,
7, okresowo$ci otrzymujemy wiec
1] 1 1]
y=a+—+...+ + —.
| a1 lak-1 |y

Niech Rj, oznacza k-ty redukt, gdzie liczba aj zostata zastapiona przez y.
Wtedy

= B yPei+ Do
y= Ry = == Yk T k2
Qr  YQr—1 + Qr—2

Liczba y jest dodatnim pierwiastkiem tréjmianu kwadratowego

Qr1y’ + (Qro— Pe1)y — Pro=0,

z naturalnymi wspotczynnikami. Wyrdznik trojmianu jest réwny

w=(Qr_o — Pr1)* +4Qp_1 P2
= (Qr2+ Pe1)? +4A, 1 = (Q_a+ Pr1)* — 4(=1)F.
Zatem p 0 .
-1 — Qr—2
= + w.
0, T,V

Liczby x i y sa zwiazane wzorem

bo + 1|—|— 1‘—1— + L + L
r = — 4+ —+... —.
’ |01 | by [bno-1 |y

W zwiazku z tym
T =u+ vvw,

dla pewnych wymiernych liczb u i v. To oznacza, ze liczba x jest pierwiast-
kiem trojmianu kwadratowego

2? — 2uxr + (u* — v*w) = 0.

Stad = jest pierwiastkiem trojmianu kwadratowego o wspotczynnikach cat-
kowitych.
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Implikacja odwrotna tez jest prawdziwa. Ponizszy dowdd pochodzi od La-
grange’a. Zalézmy, ze liczba dodatnia z jest pierwiastkiem tréjmianu kwa-
dratowego, tzn.

ar® +bxr +c =0,

dla pewnych liczb catkowitych a, b i ¢, przy czym a, ¢ # 0. Rozwazmy macierz

M= [b?Z bﬂ

U1
(%

i wektor v = ( > . Wtedy

(Mv,v) = avi + bvyvy + cvj.
Dla wektora u = <T> otrzymujemy
(Mu,u) = az® + bz + ¢ = 0.

1
Wyznacznik macierzy M jest rowny ac — Zb2' Niech a; oznaczaja liczby z

rozwiniecia xg := x w utamek tancuchowy. Ze wzoru (8.2)) otrzymujemy

r =aqQ — — — = .
’ |CL1 ’a’2 |an—1 |xn ann—1+Qn—2

Podstawiamy to wyrazenie do tréjmianu kwadratowego i po przemnozeniu
przez (annfl + an2>2

a(ann—l + Pn—2)2 + b(xnpn—l + Pn—2)($nQn—l + Qn—2)
+ c(2,Qn1 + Qn2)*=0. (8.10)

Rozwazmy macierz
Pnfl Pnf2
U =
|ﬁ?n—1 Qn—2]

Dla wektora v = (ﬁ") mamy

Uv = ann—l + Pn—2
ann—l + Qn—Q ’
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zatem réwnanie (8.10) ma postaé

(MUv,Uv) = 0.
Zatem
(U'MUv,v) = 0.
Niech )
A B, /2
t _ n n
UMU—(Bn/2 C’n>'

Wiemy, ze z,, jest pierwiastkiem trojmianu kwadratowego
Anxi + Bz, +C, =0,
gdzie

A, = aP? [ +bP_1Qn1+cQ?
Bn - 2apn72pn71 + b[Pnlean + Pn72Qn71] + 2CQ71726271717
Cn = an—?_Q + an—QQn—2 + CQEL—?

Liczby A,,, B, i C, sa calkowite oraz A, = C, 1. Dalej
1 1
A,Cp — =B =det(U'MU) = det M = ac — ~b*.

4 4
Z |f| wynika, ze

1 1
Q1 — Pl < — < .
| Q ! 1| Qn anl
Zatem 5
Pnfl == xanl + Qn_la

dla pewnej liczby ¢ spetiajacej |§] < 1. Zatem

(o gry) +o(smrs g @ veat
Ap=alxQnq + +b0|2Qn1+ =— | Qno1 + Q)

anl anl
2 52
= (ax® + bz + c)Q*_| + (2ax + b)d + af 1 = (2ax + b)0 + a2 1

1
QnQn—l

Jr|.’£ 7Rn_1| <
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Dalej
52
A, = |(2az + ) + ——
n—1

< |2ax + b| + |al.

To oznacza, ze jest tylko skoniczenie wiele mozliwosci na warto$é¢ A,,. Ponadto

Col = |Aual, | Bul = /0? — dac+44,C,,

wiec jest tylko skoniczenie wiele mozliwych tréjek (A, By, C,). W zwiazku z
tym jakas trojka (A, B, C') wystapi trzykrotnie w ciagu (A, By, C,,). Wtedy
jeden z pierwiastkéw trojmianu kwadratowego

At + Bt+C =0,
pojawi sie¢ dwukrotnie w ciggu xwﬂ Zatem dla pewnych liczb naturalnych ng
i k otrzymamy x,, = Zn,+k, czyli
1] 1] 1] 1]

Ty = Qpy + + +...+ +
| Ang41 | QAnp4-2 | Angt+k—1 | Tng

Wtedy a,, = a4, dlan > ng, czyli utamek tancuchowy liczby x,,,, jak rowniez
liczby x jest okresowy.

9 C(Calka Riemanna

9.1 Sumy dolne i gérne

Definicja 9.1. Podzialem P przedziatu [a,b] nazywamy skoriczong rodzine
punktow a = xyp < 1 < T3 < ... < x, = b. Przyjmujemy oznaczenie
Axi =T — Tj—1-

Dla ograniczonej funkcji f(z) na przedziale [a, b] okreslamy liczby m; oraz
M, wzorami
m; = inf_ f(z), M;= sup f(z)

Ti—1STETi T 1 <STLT;

Definiujemy sumy dolne i gérnd wzorami

=1

=1

tJesli (A, B, C) wystapi dla ny, ng i ng, to liczby x,,,, T, i T,, nie moga byé rézne.
*Te pojecia pochodza od Jeana Darboux



Catka Riemanna 138

Uwaga. Jesli f > 0, to liczba L(P, f) przybliza od dotu pole obszaru pod

wykresem funkcji, natomiast liczba U (P, f) przybliza to pole od gory.
Przypusémy, ze m < f(z) < M dla a < x < b. Wtedy

> > mAz; =m(b— a),
=1

<Y MAz; = M(b—a).

=1

Okreslamy catki dolng i gorng wzorami

flz)dx = i%fU(P, f).

g\;w\

b
| f(@)dz = sup L(P. f).
P

Definicja 9.2. Mowimy, Ze funkcja f(x) jest calkowalna w sensie Riemanna

na przedziale [a,b], jesli calka dolna jest réowna calce gornej. Wtedy wspding
b

warto$é oznaczamy symbolem /f(x) dx.

a

Uwaga. Pokazemy wkroétce, ze funkcja ciggle sa catkowalne. Istniejg jednak
funkcje niecatkowalne.

Przyktlady.
(a)

0, ¢Q

Dla przedziatu [0, 1] mamy L(P, f) = 0 oraz U(P, f) = 1, bo w kazdym
przedziale [z;_1, x;] znajduja sie liczby wymierne i niewymierne. Zatem

/lf(x)dx:O, jf(x)dle.

() = {1 ree
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Dla P, ={0,1,1+ %,2} mamy

1 1 1
LPwf) = 141--+2(1- ) =3
n n n
1 1
U(Pa. f) = 1+2-+2(1—>=3.
n n

Zatem B
2 2
/f(:c)dx}?), /f(x)dx<3.
0 0

Pokazemy wkroétce, ze

zatem

Rozwazamy przedziat [0,1]. Mamy L(P, f) = 0. Ustalmy liczbe natu-
ralna NV > 2. Okredlimy specjalny podziat P. Kazdy utamek nieskra-
calny postaci %, dla ¢ < N otaczamy przedzialem o promieniu ﬁ
Takich ulamkéw jest mniej niz N?. Przedzialami podziatu sa wtedy
[g — ﬁ, g + Nj , gdzie ¢ < N, oraz przedzialy pomiedzy nimi. Licz-

by wymierne znajdujace si¢ w przedziatach z drugleJ grupy maja mia-

nowniki niemniejsze niz N. Przedzialy postaci {g — Wﬁ + 3 11,3 S§ T0Z-
laczne. Rzeczywiscie, rozwazmy dwie rézne liczby 2 . i f‘q’,, dla ¢,¢' < N.
Wtedy
— 1 1
p_P|_lpd=pd 1.1 1
q q/ qq/ N2 N3

Gdyby przedziaty odpowiadajace % i Zi, zachodzily na siebie, to
1 1

9N3 N3’

p 7
q q|°
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Niech A sktada si¢ z numeréw ¢ odpowiadajacym przedziatom [§ —
Wtedy

i=1 i€A igA
1 1 1 2
< Ax; —Ai<N2«— — = —.
\g‘ :c—l—%]v T < N3+N N

1
Poniewaz N jest dowolna liczba naturalna, to [ f(x)dz = 0.
0

Definicja 9.3. Podzial P’ przedzialu |a, b] nazywamy rozdrobnieniem podzia-
tuP, jesli P C P'. Dla podziatéw Py i Py podzial PiUPy nazywamy wspdlnym
rozdrobnieniem Py i Ps.

Twierdzenie 9.4. Jesli P C P, to L(P,f) < L(P', f) oraz U(P, f) >
U(P', f), tzn. przy rozdrobnieniu sumy dolne sie zwiekszajg a sumy gorne
ZMniejszajg.

Dowdd. Wystarczy rozwazy¢ przypadek P = P U {z'}. Niech

P = {:U07x17"'71'1'7171'2‘7"'7'1'71}7
/ /
Po= {anx17"'7xi—1ax7$i7"'7xn}~
Oznaczmy

wi= il f(z), we= inf f(z).

Wtedy wy,ws > m; zatem
LIP',f) = L(P, ) = (e’ = 21.0) + walas — ') — milAa
> my(2' — x;21) + mi(x; — 2') — mAx; = 0.
Podobnie pokazujemy, ze U(P’, f) < U(P, f). O
Whniosek 9.5.
(i) Dla dwu podziatow Py i Py mamy L(Py, f) < U(Pa, f).

(i1) /bf(x)d:p</bf(x)dx
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Dowdd. Mamy
L(P1, f) S L(P1UPs, ) SUPLUPy, ) S U(P2, f).

Biorac kres gorny wzgledem P; otrzymamy

i s

Teraz bierzemy kres dolny wzgledem P i otrzymujemy czesé (ii) wniosku. [

Twierdzenie 9.6. Ograniczona funkcja f(x) na przedziale [a,b] jest cal-
kowalna wtedy i tylko wtedy, gdy dla dowolnej liczby € > 0 mozna znaleZé
podzial P, dla ktorego

Dowdéd. (<) Zatézmy, ze dla € > 0 istnieje P spetniajacy (9.1). Wtedy

f)</bf( /bf UP.J) < L(P. f) +

Czyli

O</bf(x)d:c—/bf(:c)dx<8.

Poniewaz ¢ jest dowolna liczbg dodatnia, to

/bf(x)dx:/bf(x)dx

(=) Zatézmy, ze

/bf(x)dx:/bf(a:)d:v ::/bf(:v)d:z;_

Dla ustalonej liczby € > 0 istniejg podziaty P; i Py spelniajace

b
_ % n /f(a;) dr < L(Py, f) < L(PL U Py)

b

U(PLUP:) < U(Po, f) < /f(:r;) dr + g

a
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Zatem

U(Pl U Ps, f) - L(Pl U P, f) < e.

Uwaga 9.7. Jedli funkcja f(x) jest catkowalna na przedziale [a, b] oraz
UP,f) = L(P,f) <e,
to z nieréwnosci

uPJj</f@mx<UUaﬂ

wynika

b

b
0< [fl@)de—L(P.f)<e,  0<UP.f)~ [ f(x)do <.
b
Tzn. L(P, f) i U(P, f) przyblizaja warto$é¢ catki /f(x) dz z dokladnoscig
do ¢ od dotu i od gory, odpowiednio. ’
Przyklady.
(a) Rozwazamy f(z) = 2% na [0, 1]. Niech

1.
1 2 1

- £z ,1}.
n n

P:{Q

Wtedy

vP.p) = S M =3 (1)

=1 =1
Zatem

U(P, S~ L(P.f) = =

1
co oznacza, ze funkcja 22 jest calkowalna. Ile wynosi catka / z?dx ?
0
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(b)

f(x):{g ng,, 0<z<l1.
T T

Dla dowolnego podziatu P przedziatu [0, 1] mamy

i=1 i=1

=1 =1 =1

Zatem

n

=1

n

Ti_1 + X; 1
>3 T ) = D> @ et =
=1 i

Czyli f nie jest catkowalna.

Whiosek 9.8. KazZda funkcja ciggla na przedziale [a,b] jest calkowalna. Po-
nadto dla dowolnej liczby € > 0 mozna znaleZé liczbe § > 0 takq, Ze dla
kazdego podziatu P = {xg,x1,..., T}, jesli

d(P) := max Ax; < 0,

1<i<n
to dla dowolnego wyboru punktow posrednich x; 1 < t; < x; mamy

n

> f(t) A~ [ () do

=1

< E.

Dowaod. Ustalmy liczbe € > 0. Z jednostajnej ciggtosci mozna znalez¢ liczbe
§ > 0 taky, ze jesli |z — 2’| < 9, to [f(z) — f(2')] < =. Niech P bedzie
podziatem spetiajacym d(P) < §. Wtedy

n

=1

——(b—a)==. (9.2)
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Stad otrzymujemy catkowalnosé¢ funkcji f. Ponadto

LP.f) < [ fa)dz <UP. ),

oraz .
L(P, f) < Ef(ti)Axi <U(P, f),
: n b
bo m; < f(t;) < M;. Z nier6wnosci liczby Zf(t@)Axl oraz, /f(x) dx
leza w przedziale o dtugosci mniejsze] niz €. - ’ [

Liczbe d(P) nazywamy $rednicg podziatu P. Wyrazenie

n

S(P, f)=>_ f(t)Az;

=1

nosi nazwe¢ sumy catkowej. Mamy nastepujace typy sum catkowych:

)

) t; = x; - prawy koniec,

(¢) t; = 3(wi—1 + x;) - $rodek przedziatu,
) indywidualnie dobierane punkty t;.

Whniosek 9.9. Niech [ bedzie funkcjq ciggla na przedziale |a,b]. Rozwazmy
ciqg podziatow Py, takich, ze d(Py,) — 0 (np. P, jest podziatem nan réwnych
czesci). Wtedy

S(Paf) = [ f(x)dx.

Dowdd. Ustalmy liczbe € > 0. Z poprzedniego wniosku istnieje liczba ¢ > 0

taka, ze
b

S(P.f) = [ fla)ds

a

<e,
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dla d(P) < . Z zalozenia istnieje prog N taki, ze jesli n > N, to d(P,) < 6.
Wtedy dla n > N mamy

b

S(Pn,f)—/f(x) dx| < e.
]
Przyklady.
1. Rozwazmy /x2 dx. Dla podzialtu P = {xg, x1, ..., x,} przedziatu
0
0, 1] niech

o \/xf_l + 1 + a2
1T 3 .

Wtedy z;_1 < t; < x;. Dalej

n n 1

1 1
S(P,x*) = 3 S (@ +max + 1)) A = 3 o (af—aiy) = 3

i=1 i=1

1
Stad /x2 dx = 3 bo mozemy przyjaé¢ d(P,) = +, biorac podzial na n
rownych czesci.

Zmajac wartosé¢ caltki mozemy obliczy¢ granice Wyrazema Z k% Ma-

my

A 1
ZkQ Z() T/xde:§,
0

n,3\n

bo wyrazenie w $rodku jest sumg catkowg typu prawy koniec dla funkcji
f(x) = 2% i dla podziatu przedziatu [0, 1] na n réwnych czesci.

fz) =

cos% 0<zx<1,
0, xz = 0.

Pokazemy, ze funkcja f jest catkowalna. Rozwazymy podziat

11 1 1 2 1 n®—n?
73:{0,,++...,+ }
n n

n3’ n n3
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Niech z,y > % oraz |x — y| < n% Wtedy
1 1 ]sinéh 11
COoS — — COs —| = Ty <4 —=-,
x & 4 n%n?’ n

bo & > % Zatem najwieksza rozpietos¢ wartosci funkceji na przedziatach
podzialu P, ktére maja dtugosc %, nie przekracza % Otrzymujemy

wiec
1 e 1
i=1
2 nd—n?1 3
< —+ — < —.
n n nd n

Zadanie. Znalez¢ funkcje f : [0, 1] % [0,1], ktérej wykres jest gestym
podzbiorem w [0, 1] x [0, 1].

Zapis f € R oznacza, ze f jest catkowalna w sensie Riemanna.
Twierdzenie 9.10.

(i) Jesli f,g € R, to f £g,cf € R oraz

/b[f(x) +g(z)]de = /bf(x) dxi/bg(fﬁ) da,
/bcf(a:)dx = c/bf(a:)dx

(11) Jesli f,g € R oraz f(x) < g(z) dla a <z <b, to
b b
/f(a:) dx < /g(ac) dx.
(iii) Jesli f € Rla,b] oraz a < ¢ <b, to f € Rla,c] N R|e,b] oraz

/bf(x)dx:/cf(x)dx+/bf(x)dm,
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() Jesli f € R oraz |f(z)] < M dla a <z <b, to

M- a).

Dowdd. Dla liczby € > 0 mozna znalez¢ podziaty Py i P, dla ktérych
U(th)_L(Plaf) <3 U(P27g>_L(P27g) <

Wtedy dla podziatu P = P; U Py mam;

DO ™
o ™

U(P,f) = L(P, f) < U(P,g) = L(P,g) <

l\D\m
l\D\F‘)

W rezultacie
[UP,[)+U(P,g)] = [L(P, ) + L(P,g)] <e. (9.3)

Dalej

n

UP,f+g)=> M(f+g)Ax;
=1

< Mi(f) AxmLZM JAz; = U(P, f) +U(P,g).

i=1

Podobnie
L(P.f+g) > L(P, f) + L(P, g).

Reasumujac otrzymujemy
L(P,f)+ L(P,g) < L(P, f +9) <U(P, f+9) <UP, f) + U(P,g). (94)
W $wietle otrzymujemy
UP,f+9)—L(P.f+g) <e

b
Stad f + g jest calkowalna. Warto$é catki /[f(a:) + g(x)] dx lezy pomie-

dzy liczbami L(P,f+g)i U(P,f+ g). Z 1' warto$¢ ta lezy w przedzia-
le pomiedzy liczbami L(P, f) + L(P,g) i U(P, f) + U(P,g). Ale wielko$¢
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/ f(z)dx + / g(x) dx tez lezy w tym przedziale. Z 1) dhugosé tego prze-

dz1alu jest HlIllGJSZ& niz €. To oznacza, ze

b b b

JUr@) + g@)da— [ f@)do— [ ga)da

a a a

<eE.

Stad otrzymujemy

b

@) + g()) da = / fla)dr + / g(x) da

a

Dla liczby ¢ > 0 i podziatu P mamy
mi(cf) = emi(f), Mi(cf) = eMi(f).

L(P,cf)=cL(P,f), U(P,cf)=cU(P,f).

b

cf(x)de = sup L(P,cf) =supcL(P,f)=csupL(P, f)=c /f(x) dr,
P P P J

b
cf(x)dx = i%fU(P,cf):i%ch(P,f):ci%fU(P,f):c/f(x)dx,

a

Dla ¢ < 0 otrzymujemy

mi(cf) = inf cf(z)=c sup f(z)=-cM/(f),

Ti—1STLT; i1 <STLT;

Mi(cf) = sup cf(x)=c inf_f(z)=cmi(f).

@ —1 STy Ti-1STST

Stad
L(P,cf) =cU(P,f), U(P,cf) =cL(P, f).
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Dalej

b

b
/cf(x) dr =sup L(P,cf) =supcU(P, f) = cinf U(P, f) = c/f(x) dr.
2 P P P

a

Podobnie pokazujemy, ze

Zatem f jest catkowalna oraz

a a

/cf(:c)da: =c /f(x)dx
Dalej
[1#0) - st = [ s@ar+ [i-gnas= [ s@as [otaras

Czesé (ii) twierdzenia jest oczywista, bo

mi(f) < mi(g)
dla dowolnego podziatu P i dowolnego odcinka podziatu. Zatem
L(P, f) < L(P,g)
oraz
b b b b
/f(x)dx:/f(x)dx < /g(m)dx:/g(x)dx.

Przechodzimy do dowodu (iii). Dla liczby € > 0 mozna znalezé podzial

Py przedziatu [a, b] spetiajacy U(Py, f) — L(Py, f) < €. Wtedy dla podziatu
P =Py U {c} mamy

UP,f)—L(P, f) <e. (9.5)
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Podzial P mozemy zapisaé¢ jako suma podziatéw P i Py przedziatow [a, c| i
¢, b], odpowiednio. Ponadto

Uap)(P, ) = Upa,qg(Pr, f) + Ue)(Pa, f),
L[a,b](Pa f) = L[a,c] (Pla f) + L[c,b} (P27 f)

Na podstawie (9.5) otrzymujemy wiec

Ui (P1, f) = Liag(P1, f) <,
U[cvb] (Pa, f) — L[c,b] (P2, f) <e.

Stad funkcja f jest catkowalna w przedziatach [a, ] i [¢, b]. Wartosé / f(x)dx
lezy pomiedzy hczbaml Lioy)(P, ) i Uy (P, f). Na podstawie . i .
wartosé / f(z)dx + / f(z)dx tez lezy pomiedzy tymi liczbami. Wtedy z
otrzymujemy

b

/f(x)dx—/cf(x)dx—/bf(x)dx

a

< e

Zatozmy, ze |f(z)] < M. Wtedy —M < f(x) < M. Zatem

b

—M@b-a) = /b(—M)dx < /f(x)da: < /bde — M - a).

a

Uwaga 9.11.
b
(a) /cdaz = ¢(b—a), bo dla P = {a, b} mamy

a

L(P,c)=c(b—a)=U(P,c).

(b) Przyjmujemy, ze / f(x)dx =0 oraz dla b < a okre$lamy

/bf(x)dx:—/af(x)dx
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Wtedy wzoér w Twierdzeniu m(iii) jest prawdziwy niezaleznie od kon-
figuracji liczb a, b1 c.

Twierdzenie 9.12. Przypusémy, ze funkcja f(x) jest catkowalna na prze-
dziale [a,b] oraz m < f(x) < M dla a < x < b. Niech h(y) bedzie funkcjg
ciggla na [m, M]. Wtedy funkcja zlozona h(f(x)) jest calkowalna na [a,b].

Dowdéd. Ustalmy liczbe € > 0. Istnieje liczba 0 > 0 taka, ze jesli |y; —ya| < 0,
to |h(y1) — h(ye)| < €. Z catkowalnosci funkcji f mozna znalezé podzial P
taki, ze

i=1
Jedli liczba M; — m; jest duza, to liczba Ax; musi by¢ mata. Niech

Dla i € A maksymalna rozpietosé wartosci funkcji f na przedziale [z; 1, x]
jest mniejsza od J. Zatem maksymalna rozpietos¢ wartosci funkcji h(f(z))
na tym przedziale jest mniejsza od €. Oznaczmy
Mi=, o pU@) mi= i W@ K= ma )
Maksymalna rozpigtos¢ wartosci funkeji h(y) nie przekracza zatem 2K. To
samo dotyczy wiec rozpietosci wartosei funkeji h(f(z)) na kazdym przedziale
(1, ;] dlai € B, tzn.
0< M; —mi<2K, i€B.

(2

Wtedy
U(P,ho f)—L(P,ho f Z *—m])Ax;
=Y (M} —m)) Az + D (M —mi)Az; <ed Ax; +2K > Az,
€A i€EB €A 1€EB
2K 2K &
i€B i=1

2K
5(b—a)—|—755:5(b—a+2K).

[]
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Whniosek 9.13. Jesli funkcje f i g sq calkowalne na przedziale [a,b], to
réwniez funkcje |f|, f? oraz fg sq calkowalne. Ponadto

[ s < [ isoar

Dowéd. Dla funkcji |f| i f? stosujemy poprzednie twierdzenie z h(y) = |y| i
h(y) = y*. Dalej

]‘ 2 1 2
fgzz(erg) —z(f—g) :

Stad fg jest catkowalna. Mamy —|f(z)| < f(z) < |f(x)|. Calkujac nieréw-
nos¢ otrzymamy

—jvmwm<]f@Mx<fuunm.

Uwaga 9.14. Metody szacowania wartosci calek.

1. Obliczenie wartosci calki.
b
2. m(b—a) < /f(x)dx <SMb—a),jeslim< f(r) < Mdlaa<xz<b.

3. Znalez¢ funkcje g(x) i h(z) takie, ze g(x) < f(z) < h(z). Wtedy

h(z) dx.

—
=N
=

ISH
&

I\
—
P
=
IS
&

VA
Se—_ .

3. L(P,f) < [ f(z)dz <U(P, f).

Przyktad. Stosujac metode 2 otrzymamy

2
2</\/1—|—x4dw<2\/1—7.
0
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Lepszy wynik uzyskamy rozdzielajac catke

2 1 2
/\/1~|—a:4d35:/\/1+$4d:£—|—/\/1+x4d93.
0 0 1

Wtedy
2
1+¢§</F+m4d;¢<¢§+m.
0

9.2 Calka jako granica sum caltkowych

Moéwimy, ze sumy catkowe

gdzie P = {zg, x1,. .., x,} jest podzialem przedziatu [a, b] sa zbiezne do liczby
A, jedli dla dowolnej liczby € > 0 istnieje liczba 0 > 0 taka, ze z warunku
d(P) < § wynika

S(P,f)—A| <e.
To oznacza, ze dla drobnych podziatéw P sumy S(P, f) leza blisko liczby A,
niezaleznie od wyboru punktow posrednich t;. Stosujemy wtedy zapis

B 5P =

Z Wniosku wynika, ze dla funkcji f(x) ciagtej na [a, b] mamy

b

Jm S(P.f) = [ () de.

a

Twierdzenie 9.15.

(a) Jesli istnieje granica d(l%noS(P, f), to funkcja f jest calkowalna na

la,b] oraz
b

Jim S(P.f) = [ fla)de.

a
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(b) Jesli funkcja f jest catkowalna na [a,b], to sumy calkowe sq zbiezine.

Dowdéd. (a) Ustalmy e > 0. Z zalozenia istnieje liczba 6 > 0 taka, ze jesli
d(P) <6, to
5
SOP.S) — Al < 5.
Réwnowaznie

A—%<Zf(ti)A:ci <A+g.
i=1

Nierownos$é jest spetniona dla dowolnego wyboru punktéw ¢;, x;_1 < t; < x;.
Zatem

-1 T 1<t <y

Xn:f(ti)A:ci = inf, S(P.f)>A-

= inf
t1,82,..\tn £ 25000
=1

7777 n

Podobnie -
UP,f) < A+ 3

Reasumujac, otrzymalismy
A= S <L(P. ) SUPf) <A+

Stad
U(Paf) _L(Paf) <e,

czyli funkcja f jest catkowalna. Wiemy, ze
b
A= <LPf) << [ fla)de SUP,f) < A+ 2,

Zatem

< e.

/bf(x)dx—A

Poniewaz liczba € > 0 jest dowolna, to

A:/f(x) dz.
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(b) Niech e > 0. Z zalozenia catkowalnosci istnieje podziat P*, dla ktorego

U(P*7f) - L(P*vf) <é

Funkcja f jest ograniczona. Oznaczmy

M= sup |f(z)|.
a<z<b
Niech N oznacza liczbe przedzialéw podziatu P*. Przyjmijmy 6 = 4]\2N'

Niech P = {xg,x1,...,2,} bedzie podzialem spemliajacym d(P) < 6. Po-
kazemy, ze U(P, f) — L(P, f) < e. Czg$¢ przedzialéw podziatu P zawiera
wewnatrz punkty podziatu P*. Niech i € B jesli (z;_1,x;) zawiera punkty
podziatu P* oraz i € A w przeciwnym wypadku. Zbiér B ma co najwyzej
N — 1 elementéw. Mamy

UP,f)—L(P, f) = zn:(Mi—mi)Axi = > (Mi—m;)Az;+> _(M;—m;) Az,

=1 €A i€B
Dalej
SO(M; — mi)Az; < 37 2M6 < 2MON = =,
i€B i€B 2
bo
Jesli i € A, to przedzial [xl 1, i jest zawarty w jakims przedziale [z]_,, :vj]

bo (z;_1, xz) nie zawiera punktéw z P*. Niech A; oznacza zbiér tych liczb i,

dla ktorych [z;1, 7] C [27_y, 2], Wtedy
M; —m; < M —mj, gdzie M] = . sl<1£)<x f(t), m: = x*flirglfgm* f(t).
Suma dtugosci wszystkich przedziatow podziatu P zawartych w [x7_,, 7] nie
przekracza Az}. Zatem
N
Z(M m;)Az; = Z Z M; —m;)Ax; < Z Z P —m; )Ax;
€A j=1li€A; j=1licA;
N N -
= Z(M]* —mj) Z Azx; < Z DAz =U(P*, f)— L(P*, f) < 5
j=1 i€A; j=1
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Reasumujac dla d(P) < § zachodzi nieréwnosé
UP, [) — L(P, f(< e
Poniewaz

L(P.f) < SP.f) <UPJ),
b

L(P,f) < /f(a:)dx <U(P, f),

to

€O oznacza, ze

]

9.3 Zasadnicze twierdzenie rachunku rézniczkowego i
catkowego

Twierdzenie 9.16. Jesli funkcja f(x) jest calkowalna na [a,b], to funkcja
F(z) = /f(t) dt jest ciggta na [a,b]. Jesli f jest ciggla w punkcie xq, to F(x)

jest rézniczkowalna w xg oraz F'(xo) = f(xo) dlaa < xo <bi F\(a) = f(a),

FL(b) = f(b).

Dowdéd. Zatézmy, ze |f(z)] < M, czyli —M < f(z) < M. Dlaa < 21 < 23 <

b mamy
= Vf(t) dt

Jesli f jest ciagla w a < xp < b, to dla liczby € > 0 mozna znalez¢ liczbe
d > 0 taka, ze dla 29 < t < xg + 0 mamy |f(t) — f(xg)| < e. Zaldzmy, ze

|F(22) — F(x1)| = < M(xy — 1)

72f(t) dt — 7f(t) dt
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0 <x—x0 <9 Wtedy

’F(x) — F (=)

r — Tg

f(xo

it o [ roa] - s

x—xo/f dt—x_o/fxodt L

T — 2o

L/ [£(t) = flao)) at

/yf Flwo)| dt

<
T — X

Poniewaz zg <t < z, to g <t < xp+d. Wtedy |f(t) — f(z0)| < €. Funkcja
podcatkowa jest wiec mniejsza niz €. Stad

LEESES R

r — X9

To oznacza, ze

F' (x) = f(xo).
Dla pochodnej lewostronnej przeprowadzamy podobne rozumowanie przyj-
mujac a < g < b. Wtedy dla o — 0 < x < xg mamy

P00 )| =[P 22y
— [0 - seolat] <
Czyli F' (z0) = f(x0). -

Whiosek 9.17. Dla funkcji f(x) cigglej na przedziale |a,b] istnieje funkcja
F(x) taka, ze F'(x) = f(z) dla a < x < b oraz F'(a) = f(a) i F'(b) = f(b).
Funkcje F(x) nazywamy funkcjqg pierwotng do funkcji f(x).
Twierdzenie 9.18 (Zasadnicze twierdzenie rric). Jesli funkcja f(x) jest cal-
kowalna na |a,b] oraz F(x) jest funkcjg pierwotng do f(z), to

b

[ 1@)dz = F) = F(a) = F(a)
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Dowdd. Dla liczby € > 0 bierzemy podzial P taki, ze
U(P,f)—L(P,f) <e.

Niech zg, 1, ..., x, oznaczaja punkty podziatu P. Wtedy z twierdzenia La-
grange’a otrzymujemy

F(b) — F(a) = F(z1) — F(zo) + F(z2) — F(z1) + ... + F(an) — F(za_1)

=1

dla pewnych punktow x;_y < t; < x;. Mamy

L(P, ) < /f(af) dr <U(P, f).

Zatem

Uwaga 9.19. Wzér w twierdzeniu jest prawdziwy réowniez dla a > b, bo

[ f@)de == [ f(z)da = ~[F(a) = F)] = F(b) ~ F(a).

Przyktlady.

1 1
0 n4+1

1
1
(a) Ofxn dr = ] 1x"+1

1

1

1

(b) / T2 dx = arctg
0

0

Twierdzenie [9.18 moze by¢ uzyte do obliczania réznego rodzaju granic.
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Przyktady.

(a) Chcemy obliczyé

. 1 3 2n—1
llm(+—|—...—|— )

n? n? n?

Wyrazenie pod granicg mozemy zapisa¢ w postaci

1 /1 3 2n —1
(C+o++ ).
n o n

n n
Przyjmijmy, ze x; = — oraz t; = 1;_ Mamy Ax; = —. Zatem
n n

2
1
wyrazenie pod granica ma posta¢ sumy catkowej dla catki 5 / rxdr =1.

0
Stad granica wynosi 1. Mozna zauwazy¢, ze wyrazenie pod granicg jest

rowne 1, niezaleznie od wartosci n.

(b) Mamy do obliczenia

1 1 1
hm +...+——
(\/n2 +1 \/n2 + 22 Vn? + n2>

= lim

1
i (e ) [
= log(z + V2% + 1)‘O = log(1 +v/2).

Twierdzenie 9.20 (Catkowanie przez podstawienie). Przypusémy, Ze funk-
cja f(u) jest ciggla, a funkcja @(x) jest rézniczkowalna w sposéb ciggly na
przedziale [a,b] oraz zbior warto$ci ¢([a, b)) jest zawarty w obszarze okreslo-
nosci funkcji f. Wtedy

/b Flpla))¢ (@) dz = / lu (9:8)

©(a)

Dowdd. Symbolem F' oznaczymy funkcje pierwotng do f. Wtedy
[F(p(x))]" = F'(o(x))¢' () = f(e(x))¢(x).
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7 Twierdzenia [9.18| otrzymujemy zatem

w(b)
= F(p(b)) = F(p(a)) = [ f(u)du.

a v(a)

]

Uwaga 9.21. Patrzac mechanicznie na wzor widzimy, ze nastgpita
zamiana u = () i du = ¢'(z) dx, oraz konce przedzialu catkowania zostaty
odpowiednio zmodyfikowane.

Przyklady.
w/2
(a) Dla cafki / sin 2 cos z dr stosujemy podstawienie u = sinx =: ¢(z),
0 ) 1
f(u) = u?. Wtedy du = cosx dr. W wyniku otrzymujemy /u2 du = 3
0

(b) Wzor moze by¢ zastosowany w przeciwng strone¢. Tzn. punktem
wyjscia jest calka

/df(u) du.

Stosujemy podstawienie u = ¢(x). Aby zastosowaé wzoér z twierdzenia
trzeba znalez¢ punkty a i b spetlniajace

Wtedy

Rozwazmy catke

/1 du

) V14 u?’

Zastosujemy podstawienie u = sinhz. Wtedy du = cosh x dz. Trzeba
znalez¢ granice catkowania a i b odpowiadajgce liczbom 0 i 1. W tym



Catka Riemanna

161
celu rozwigzujemy rownania sinha = 0 i sinhb = 1. Otrzymujemy
a = 0. Drugie réwnanie przeksztatcamy do postaci

Loy  » 1
7 —e ——-=0.
2 2

Jedynym dodatnim pierwiastkiem tréjmianu kwadratowego jest 1++/2.
Zatem e’ = 1+ /2, czyli b = log(1 + v/2). Otrzymujemy wiec

log(1+v/2) log(1+v/2)
cosh x

—_—dx = / da::log(1+\/§),
/1 +sinh? z 0
bo coshx =/1+ sinh? z.

Twierdzenie 9.22 (Catkowanie przez czesci). Zalézmy, Ze funkcje u i v sq

1
/du B
| ive

ciggle natomiast v’ i v sq catkowalne w sensie Riemanna na przedziale [a, b].
Wtedy

b b

— /u(x)v'(:c) d.

a

Dowdd. Mamy (uv)’ = v'v + uv'. Z Twierdzenia otrzymujemy wiec

/u'(a:)v(x) dr = u(z)v(z)

a

Z = /b[u’(x)v(x) + u(z)v'(z)] doe = /b

a

u(z)v(w)

o' (z)v(z) de + /u(x)v’(:v) dx.

[l
Uwaga 9.23. Wz6r z Twierdzenia [0.22] mozna zapisaé¢ w postaci

[ F@yg(x) dz = F(x)g(a)

b

b

- [ F)g (@) dz, (9.9)
gdzie F'(z) oznacza funkcje pierwotna do funkcji f(z).

Przyktad. Przyjmujac f(z) = sinx oraz g(x) = = otrzymamy

s s
i
/xsinxdx: —2 COS X —|—/cosa:dx = 7.
0
0

0
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Gdyby$my zamienili rolami funkcje, tzn. f(x) =z i g(z) = sinz, to

) =
T 1 7
—f/ cosx dx,
2
0

s

1
/Ismxdx = —2%sinx
0 2 0

tzn. otrzymana funkcja do scatkowania bytaby bardziej zlozona.

Uwaga 9.24. Czesto latwiej znalez¢ funkcje pierwotng zamiast stosowaé

catkowanie przez czesci. W przyktadzie (—z cosx + sinz) = xsinz. Glow-

ng czescig funkeji pierwotnej jest sktadnik —x cos z. Po obliczeniu pochodne;j

pojawia sie dodatkowy sktadnik — cosx. Stad w funkcji pierwotnej wystepu-
1

je korekta o sinz. Podobnie przy obliczaniu catki / z2e® dz mozemy latwo

0
znalez¢ funkcje pierwotna metoda korekt. Otrzymamy
(z2e” — 2ze” + 2e%) = 2?%e”.

Zatem .

/132696 dr = (2* — 22 + 2)e”
0

1
=e— 2.
0

Wzér na catkowanie przez czesci mozna stosowacé wielokrotnie.

Whniosek 9.25. Zalozmy, Ze funkcja f jest ciggla natomiast funkcja g jest n-
krotnie rézniczkowalna w sposdb ciggly na przedziale |a, b]. Niech fi, oznacza
funkcje pierwotng rzedu k dla funkcji f, tzn. fo = w oraz f], = fr—1 dla k > 1.
Wtedy

[ 1@ de = X hea @@ + 0 [ R

Dowdéd. Dla n =1 wzér sprowadza sie do . Zatézmy, ze wzor jest spel-
niony dla liczby n. Pokazemy, ze jest prawdziwy dla liczby n+ 1. Rzeczywiscie
stosujac catkowanie przez czesci otrzymamy

b

(=" [ Ful@)g" @) do = (<1)" fasa ()9 ()

a
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Uwaga. |f| Jesli g(x) jest wielomianem stopnia co najwyzej n, to

n

[ gt e = (1 s )|

k=0 a
Ten wzér mozna zastosowaé do szybkiego obliczenia niektorych catek. Np.

1 5
/ e"2®dr = > (=1)Fe”(2°)®
0 = 0

= (1—5+20— 60+ 120)e — 120(e — 1) = 120 — 44e = 0, 3955...

Twierdzenie 9.26 (Reszta we wzorze Taylora w postaci catkowej). Jesli
funkcja h(x) jest n + 1-krotnie rézniczkowalna w sposdéb ciggly w otoczeniu
punktu a, to dla punktow b z tego otoczenia mamy

1

b— b—a)’ b—a)"
(o) = () + U= Dway + O Liriay 4 O ) 4
gdzie
1 b
Ry = — /(b — z)"h"Y(z) da.
n.

a

Dowod. Mamy

mm—hmy:/14m@dm

Zastosujemy Wniosek do calki przyjmujac f(z) := 1 oraz g(z) := h'(x).
1
(=D flw) = (b —2)", k>1.

Zatem
b -l b1 0
/h/(ﬂf) dr = — Z (k = 1)' (b_m)k+1h(k+l)($) + — /(b—x)nh(THl)(fU) dax
s k=0 :

a n:

" |
=Y (b 2)" () +j/w—w%HW@m
= a nl)
ol 17
:;Bw @WW@+a/w 2)"h" D (z) dx

H
"Wniosek i Uwage zawdzieczam Konradowi Izdebskiemu z kursu Analizy 1T (2020)
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Twierdzenie 9.27 (Twierdzenie o wartosci éredniej) Funkcje f i g sq cal-
kowalne na [a,b], przy czym g(z) > 0 dla a < x < b. Wtedy

[ @1 =2 [ o) o

dla liczby X\ lezgcej pomiedzy kresami dolnym m i gornym M funkcyi f.
Dowdd. Mamy mg(x) < f(z)g(x) < Mg(z). Catkujac otrzymamy

n [afo)in < [ fontoydo <31 [ oo

b
Jesli [ g(x) dz = 0, to réwniez ff( )g(z) dx = 0. W przypadku fg( )dx >0

otrzymujemy

Przyktad.
f(z)sinx de = )\/Sinxdx =2\

//\o\>l

dla pewnej liczby m < A < M.

Whniosek 9.28. Jesli funkcja [ jest ciggla a funkcja g(x) niewjemna i cal-
kowalna, to

/b f@)g@)dr = £() [ gla)do

a

a
dla pewnego punktu a < & < b.

Dowad. 7 poprzedniego twierdzenia mamy m < A < M. Z wtasnosci Darbo-
ux mozna znalezé € taki, ze f(£) = . O

Przyktlad. Jedli f jest ciagta, to

/f(x) sinz dx = 2f(€).
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Twierdzenie 9.29 (Drugie twierdzenie o wartosci sredniej). Jesli f(x) jest
nieujemng funkcjg malejacq a g(x) funkcja catkowalng na [a,b], to

[ f@)g@)de = f(a) [ g(a) do (9.10)

dla pewnego punktu & z przedzialu |a, b].

Dowdd. Niech
M, = sup |g(z)|.

a<z<b

Rozwazmy podzial P przedziatu [a, b] na n réwnych czesci. Wtedy

S (b~ a)lf(a) — FB)]

xz 1 xz)] - n

U(P, f) = L(P,

Stad wynika w szczegolnosci catkowalno$¢ funkeji f. Wybierzmy n tak duze,
aby

U(P, f) — L(P, f) < Mi
Wtedy
b n T
/mwww—;/fmmwx

:Z:f(xz ) / de/ ~ f(zi)] g(z) dx =: A+ B.
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uzyskujemy H

n—1

flai)Gla:) = Y fla)G(w)

1 i=1

n

A=Y flai1)[G(x:) - Glaia)] =

i=1

\E

-
Il

= [flzica) = f(@)]G(2:) + f(D)G(D).
=1
Niech
M = max G(z), m = min G(z).
Wtedy

n

S (o) — fla)] + f<b>] M = Mf(a).

i=1

A<

Podobnie otrzymujemy

A>mf(a).

Reasumujac dostajemy nieréwnosci

Stad

[ F@g(x) dz = F(@G(E) = f(@) [ glx) da

dla pewnego punktu a < £ < 0. O

Uwaga 9.30. Jesli f(x) jest nieujemna i rosnaca, to

[ f@gte)d = £(0) / o(z) da.
£

a
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Rzeczywiscie stosujac podstawienie p(x) = a + b — x otrzymamy

/f(33)9($)d$=/f(a+b—:c)g(a+b—x)dx
:f(b)/g(a+b—x) dz = f(b) / g(z) dz.

Przyktad. Dla 0 < a < b mamy

b LS ¢
sin x ) oS a — COS
/ da::f/smxdx:—.

a

T a a

a

Zatem
b

sin x
/ dx
T

a

2
< -
a

Uwaga 9.31. Dowod drugiego twierdzenia o wartosci sredniej znacznie si¢
upraszcza przy zatozeniu, ze funkcja g(x) jest ciagta a funkcja f(x) jest réz-
niczkowalna w sposob ciagly. Rzeczywiscie, okreslmy

G(z) = / g(t) dt.

Wtedy

[ f@@yde = @G| - [ F@aE)d

" b ' b

= [BGW®) ~ [ F@GE)dr = OGO + [[-F@ICE) de
Niech
m = argggbG(x), M = argggbG(x).
Wtedy
b b
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Podobnie wyprowadzamy nieréwnos¢

| f@)gw) dr < M (a).

a

Zatem , )
[ F@)ga) dz = F(@G(©) = f(a) [ glx)da
dla pewnego punktu a < £ < b, bo funkcja G(x) jest ciagta.

9.4 Wzory Wallisa i Stirlinga

an
Dla dwu ciagéw liczb dodatnich a,, i b, zapis a, ~ b, oznacza, ze ™ — 1.

CoYs () v (2 = n

2n
liczba ( > jest najwieksza. Wzér Wallisa podaje informacje jaki jest stosu-
n

We wzorze

nek tej liczby do sumy wszystkich symboli, czyli do 4.
Twierdzenie 9.32 (Wz6r Wallisa).

(n!)24"

(20

lim
n

T 2n 4n
Zn. ~ .
n /TN

/2
Dowdd. Oznaczmy I, = /sin’%d:v. Mamy [, = g oraz [; = 1. Dalej dla
0
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> 2 mamy

—cos ) (sinx)" ' dx

O\\

/2
w/2
= —cosz (sinz)" Y| +(n—1) / cos® z (sinx)" 2 dx
0

0

w/2
—(n—1) / [ —sin?z] (sine)" 2de = (n — V)l o— (n — 1)1,

Zatem 1
I="""1,, (9.11)
n
Poprzez iteracje (9.11)) otrzymujemy
2n—1 (2n—1)(2n—3)...3-1 2n)! =«
Iy, = Iy o=...= Iy = 2 o
2n 2n(2n —2)...4-2 4n(n!)? 2
(9.12)
2n (2n)(2n —2)...4-2 47(nl)?
]2n+1 - 2n—1 — - 1= 7
2n +1 2n+1)2n—1)...5-3 (2n +1)!
(9.13)

Ciag I, jest malejacy, czyli o, 1o < Io,11 < Iy,. Zatem na podstawie (9.11])
dostajemy
2n+1  Iopyo < Ion i

2n+2_ ]Qn = ]Qn
Whioskujemy, ze Io,41/12, — 1. Stad korzystajac z (9.12) i (9.13])) mamy

< L

1 Ioptq An(nl)? 4n(nl)? 2 47 (n!)? 2n
<— = —_ = .
n I, Cn+1)! 2n)! © (2n)ly/mn | 2n+1
O
Twierdzenie 9.33 (Wzor Stirlinga).
|
lim — =1,

noneTN/2mn

tzn. n! =~ n"e "/ 2mn.
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Dowdd. Udowodnimy nastepujaca nierownosé, z ktorej wynika teza twierdze-
nia.

n"e "V2mn < nl < n’e"V2mn ein. (9.14)
Oznaczmy
n! n!le”
ap, = ) = -

n"tae—n  ptta

Wtedy
an 1 (n+1)"2 1 1\"tz
any1 (n4+1)e  prta e n

Dalej

log n__ (n+1> log <1+1> — 1.

Ant1 2 n
Rozwazmy fragment wykresu funkcji y = 1/x od punktu x; = n do punktu
x9 = n + 1. Wykres jest wypukly w doét. Zatem pole trapezu pod sieczng
przechodzaca przez punkty (z1,1/x1) i (x9,1/x9) jest wieksze niz pole pod
wykresem funkcji. Z kolei to ostatnie pole jest wieksze niz pole trapezu pod
styczng do wykresu w punkcie (z3,1/z3) dla x5 = (21 + 22)/2 = n + 5. Pole
pod wykresem wynosi

n+1

1 1
/dx:log(n+1)—10gn:log<1+>.
x n

n

1 1y 1/1 1 n+;
1<10g(1—i—><(~|— >: .
+3 n 2\n n+1 n(n+1)

Zatem

Pomnoézmy nieréwnosé przez n + % i odejmijmy 1. Wtedy

1 1 (n+1)° 1
0<<n+2)10g(1+>—1<2—1:
n

n(n+1) dn(n+1)

To oznacza, ze

an, 1 /1 1
0 < log <<— ),
any1 4 \n n+1

czyli
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Stad ciag a, jest malejacy. Niech o = 1irrln a,. Mamy

Qn Gn An1 Apyk—1
1< = . S —
Anyk An+1 Apg2 Antk
1(1 1 1 1 1 1 1 1 1(1 1
< ez(;_n#»l) . ez<n+1_n+2> - ez(n+k71_n+k) — ez(;_wH»k).

Ostatnia nierownos¢ pocigga

1< =< e, (9.15)

To oznacza, ze o > 0. Obliczymy teraz wartos¢ liczby a. Mamy

2 12,21 2n+3 1\24n
Uy (n!)?e*™  (2n) _ (n!)*4 A
azV2 P (2p)le?ny2 (2n)l/no on

Ale

a? a? a

n
— —

aQn\/§ " 04\/§ B ﬁ
Stad o = v/27. Z (9.15)) uzyskujemy

co jest rownoznaczne z ((9.14]). O]

9.5 Caltkowanie ciggu funkcyjnego

Twierdzenie 9.34. Cigg funkcji f,, calkowalnych na przedziale [a, b] jest jed-
nostagnie zbiezny do funkcy f. Wtedy funkcja f jest catkowalna na przedziale
la,b] oraz

lim
n

@\@
BNy
8
~—
U
8
Il
—
—
~—~
3
&.
8
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Uwaga 9.35. Twierdzenie méwi, ze

b b
lly/fn(x) dr = /lign fn(z) dx,

tzn. mozna wejs¢ z granica pod znak calki, przy zbieznosci jednostajnej.

Dowad. Dla ustalonej liczby € > 0 mozna znalez¢ prog N taki, ze dlan > N
oraz a < r < b mamy

|[fnlz) — f(2)] < (9.16)

3(b—a)
W szczegdlnoscei

fx) =

m < fn(z) < fx) + Sh—a)

Niech P bedzie dowolnym podziatem przedziatu [a, b]. Wtedy

- Mi(f) < M) + 35— ar

mi(f) = mi(fn) — 30b—a)

Po przemnozeniu przez Ax; i zsumowaniu otrzymamy

L(P.fx) = 3 S L) SUP.F) S U fw) + 5.

Funkcja fy jest calkowalna, wiec dla pewnego podziatu P mamy

U(P, ) = L(P. fw) < 5.

Z dwu ostatnich nieré6wnosci otrzymujemy
U(Paf)_L(Paf) <g,
co dowodzi catkowalnosci funkcji f.
Dlan > N mamy

b

JUna) = f(a)]do

a

<

a/bfn(x)dz—a/bf(x)d:r %.

Ostatnia nieréwno$¢ wynika z (9.16) i Twierdzenia [9.10] (iv). O
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Przyktady.
(a) fo(z) = 2™(1 —x), 0 < z < 1. Mozna pokazaé, ze f,(x) =2 0, Zatem

1
/fn(x) dx — 0.
5 n

(b) fu(z) = 2™ Mamy

0 0Kz <1,
w(r) —
Jal2) n {1 rz=1.
; 1
Zatem f,(x) nie jest zbiezny jednostajnie, ale /x” dr = 1 — 0.
n n
0

(¢) falz) =n’z"(1 —z). Mamy fn(z) — 0, dla 0 <z < 1. Ale

1 1 n3

1
3n1_ d:3< - ): ]
!"$< pde =n"{ T T n+)(n+2) »

9.6 Calka nieoznaczona

Definicja 9.36. Przypusémy, zZe funkcje f(z) i F(x) sq okreSlone na usta-
lonym przedziale i spetniajg F'(x) = f(x). Funkcje F(x) nazywamy funkcjg
pierwotng do funkcji f(x) lub calkq nieoznaczong funkcji f(z) i zapisujemy

/f(x) dr = F(z).

Uwaga 9.37. To nie jest réwnosé¢ funkcji. Zapis oznacza, ze F'(x) = f(x)
dla z z okreslonego przedziatu.

Jesli G(x) jest inng funkcja pierwotna do f(x), to G(z) = F(x) 4+ C dla
pewnej statej C. Rzeczywiscie,

(G(z) = F(z)) = G'(z) — F'(x) = f(z) — f(z) = 0.

Zatem funkcja G(x) — F(x) jest stala na przedziale. Stwierdzenie nie jest
prawdziwe dla dwu przedziatéw. Na przykltad niech z € (0,1) U (2, 3). Niech
F(x) = 2? oraz

G(z) =

?+1 0<z<l1,
-1 2<x<3.

Wtedy G'(z) = F'(x) = 2.
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Przyktad.

log x> 0,
/ dx = = log |x|.
log(—z) <0

Zapis stosowany w wielu podrecznikach
1
/—dx = log|z| + C
x

jest mylacy, bo sugeruje, ze na obu potprostych dodatniej i ujemnej musimy
wzigl te samag stala.

Twierdzenie 9.38.
Jir@) +g@)de = [ f@)do+ [ g(@)da

/cf(a:)d:v = c/f(:lr)dx

Dowdéd. Jedli F(x) i G(x) sa funkcjami pierwotnymi do f i g, to
[F(2) + G(x)] = F'(x) + G'(z) = f(z) + g().
Czyli
JUf@) + g(@))de = Pla) + Ga) = [ flw)da+ [ g(a) do.

Podobnie ze wzoru

wynika, ze

]

Twierdzenie 9.39 (Calkowanie przez podstawienie). Zaldzmy, Ze funkcja
o(z) jest rozniczkowalna w sposéb ciggly natomiast funkcja f(u) jest ciggla
na zbiorze wartosci funkcyi . Wtedy

/f@@»d@MxZFW@M

gdzie F(u /f
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Dowad.
d

T F(p(2)) = F'(p(@) () = (o)) (2).

Uwaga. Teze mozemy zapisa¢ w postaci

[ Fle@)@ (@) de = F(u),  gdzie u = ().

Inaczej
[ fle@)e@)de = [ flw)du,  gdzie u= ().

Stosowanie twierdzenia

1. Chcemy obliczy¢ /f(go(x))cp’(a:) dx. Obliczamy /f(u) du i po wyko-

naniu obliczen podstawiamy u = ¢(z). Formalnie wyrazenie ¢'(x) dx

zamienilo sie na du, tzn. du = ¢'(z) dx. To jest zgodne z zapisem Le-
ibniza, bo ¢'(z) = du
’ dx’
2. Chcemy obliczy¢ / f(u) du. Podstawiamy u = ¢(x). Obliczamy / flp(x)¢' (x) dx.
Nastepnie pozbywamy sie zmiennej x przez podstawienie u = ¢(z). Po-
nownie du = ¢'(z) dz.
Przyklady.

(a)

1
/e dx / Ve —Qﬁdm.

Stosujemy podstawienie u = @(z) = x, f(u) = 2ue ™. Zatem du =

1
——dx. Otrzymujemy wiec

2\/x
/e’ﬁ dr = /2ue’" du = —2ue™ — 2e™" = —2\/re V¥ — 2 V7,
(b)

/sin\/ﬂdu = /sinx 2xdr = —2x cosx + 2sinw

u=x2
= —2y/usin u + 2sin v/u.

z>0
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Twierdzenie 9.40 (Catkowanie przez czesci).

| @) de = f@)g(a) = [ () (@) do

Dowdd. Mamy (f(z)g(x)) = f'(x)g(x) + f(x)g (x). Zatem

— /f’(:p)g(m) dx+/f(x)g’(x) dx

Przyktlady.
(a) /:166_“C dx = /(—e_x)'m de = —xe " + /e_m de = —xe ™ —e ",

1
/logzd:v—/x log x dx = a:logx—/$—d$:xlogx—x.
x

(c) /e“sinxdx =" sinx—/excosx = e"sinz— |e” cosx + /exsinxdx :
Zatem

1
/ex sinz dr = iex(sirm — COST).

(d) /c?sxdx:s%nx_/smx( cosx) d$_1+/cosx

ST S T s~ x ST

9.7 Calkowanie funkcji wymiernych

Bedziemy sie zajmowali obliczeniem / p(x) dx, gdzie p(z) 1 q(z) sa wielo-

(z)
mianami. Jesli deg p > deg ¢, to WykonUJemy dzielenie z reszta
p(x) = w(z)q(z) +r(z), degr < degg.

Wtedy

Przyklady.

1
a) /—dx = log |x|. Zatem
T

P g ron 7
[ iy e =toglf (@)l
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(b)

/(::;—2?(2—3) :/<xi3_:ri2> e

-3
= log |z — 3| —log |z — 2| = log ’

x—2|

Ogolnie przy catkowaniu r(x)/q(z) rozktadamy mianownik na czynniki
postaci (z — )" oraz [(x — 8)? ++*]™. Wtedy wyrazenie r(z)/q(z) rozklada
sie na sume wyrazen postaci

C1 Co Cp,
—a (r — )2 T (x — )"’
dir + e dox + es T AT + €,
R (CR L N FRO e
Kazdy sktadnik nazywamy utamkiem prostym.
Przyklady.

1.

/ dx d _/ dx
B4+1 ) (a2 -z + 1)
Wiemy, ze

1 A Bx+C

- . 9.17
(x+1)(z2 =z +1) x+1+x2—x+1 (9.17)

Chcemy znalezé state A, B i C.

Sposéb I.
Mnozymy obie strony réwnosci przez x + 1
1 :A+(Bx—|—0)(x+1)
?—x+1 2—zr+1

1
i podstawiamy x = —1. Otrzymujemy A = 3 Dalej

1 1 B —22+x+2
(z+1)(22—2z+1) 3@x+1) 3@+1)(a2—z+1)
(+)(x-2) x-2

T 3@+ D)@2—z+1)  3@—z+1)
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Ostatecznie otrzymaliSmy

1 1 T —2
(x+1)(22—2+1) - 3(r+1) N 32—z +1) (9.18)

Sposéb II.
Mnozymy réwnosé (9.17) przez (z + 1)(z* — x + 1) i otrzymujemy

1=A@*—2+1)+(Bz+C)(zv+1) = (A+B)2* +(B+C—A)z+A+C.

Nastepnie rozwigzujemy uktad rownan

A+B = 0,
B+C—A = 0,
ArC = 1.

Na podstawie (9.18]) obliczamy

/dx—llo o+ 1]
3(r+1) 3 °® '

Dalej
x—2 _1 20 — 1 § 1
2—rx+1 2a2—2+4+1 222—ax+1
1 1 4 1
2 _ 1— 2 Y 2 :
T G O G

Ostatecznie otrzymujemy wynik

d 1 1 1 20 — 1
/ v dx:—log|x+1|—6log(JJQ—x—i—l)—i——arctgL.

3+ 1 3 V3 V3

dx
2 / (x —1)2(2x2+ 1)
Mamy

1 A N B JrC:c—l—D (9.19)
(x— 1222 +1) x-1 (z—1)2 a22+1° '
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Jak najszybciej znalezé state A, B, C'i D ? Oznaczmy f(z) = 1/(x*+1).
Mnozymy réwno$é przez (z — 1)? i otrzymujemy

Cx+ D

fx)=A(x—-1)+B+ 211 (z — 1)

Wtedy
B=lim f(z) = f(1) = 5.
Przeksztatcamy rownos¢ do postaci

fle)  f1 A Cx+D
(r—1)2 (z—12 x-1 2241

Po pomnozeniu przez x — 1 otrzymujemy

flz)—f(1) Cx+D
1 —A+(x—1)x2+1.
Czyli

x—1 rz—1

Na podstawie (9.19)) obliczamy
1 1 1 +1 1
(x—1)2%22+1) 2(x—-1)2 2z2—-1
22— (P+ D)+ (z-1)(2*+1) 1-2+(z—1)(2?+1)

2(x — 1)2(22 4+ 1) 2w —1)2(22+1)
:(:c—l)(:v2+1—1—x): z(r — 1) _ oz
2(x — 1) (22 4+ 1) 20 —1)2(22+1)  2(22+1)

Ostatecznie otrzymujemy

dx 1 1 1
= loglr— 1= ——— 4 T log(a® +1).
/(x—1)2(x2+1) 3 logle =1 =gy +gloele” + 1)

f(z)

Ogolnie, rozwazamy sktadnik postaci = o gdzie f(z) jest funkcja
r—a

nieskonczenie wiele razy rézniczkowalng w punkcie a. Ze wzoru Taylora mamy

x—a)! x—a)k
flla)+...+ <(k_)1)!f(k1)(a) + (k!)f(k)(f),

r—a
1!

f(@) = fla) +
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dla pewnego punktu £ pomiedzy a i z. Wtedy

fl)  — fla) ['(a) f*(a) .
G—af  @—aF @t T oDy T @)

. P ()
lim R =1 =
i Biw) = fim = A
co oznacza, ze w mianowniku funkcji Ry (x) nie wystepuje czynnik = — a.
Kazdy sktadnik postaci c/(x — a)* calkujemy wedtug wzoréw

dx 1 1
=— k> 2,
/(m—a)"f k—1 (z— )kl
dx
/ = log |z — .
T —«
Sktadniki postaci
dk.ilﬁ + ek
(o= 3+
przez podstawienie afiniczne x = 3 + yu sprowadzamy do wyrazen postaci
Jku + gk
(u? + 1)k
Dalej B
dku + gk ~ u - 1
= Ug + (A .
(u + 1) (u? + 1) (u2 + 1)
1
/ v ilog(uz%—l) k=1,
(R VLR S ]
2(k —1) (u? + 1)k—1
d
Oznaczy I}, = /W—:—Ll)k Wtedy I; = arctgu oraz

1 U 2u?
_ / _
]k—/u(u2+1)kdU— <u2+1)k+k/(u2+1)k+1du

B u [(u* +1) — 1] y
o (u2+ 1>k +2k/ (u2 4 1)k+1 d

= m + Qk[k - 2k[k+1.
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Otrzymujemy wigc

po_ b w2k
Tk (W@ 1F T 2k

9.8 Podstawienie wyktadnicze i trygonometryczne

Przyktlady.

d
) /\/1 — e* dx. Podstawiamy u = e*, du = e*dx czyli dov = —u, aby
U

otrzymac
J1—
/\/1—ef’fdx:/ Y du
u

Nastepnie podstawiamy v = /1 — u. Wtedy 0 < v < 1 oraz u = 1 —v?,
czyli du = —2v dv.

/ 2vdv—/ 207 dv—Q/( 1 )dv
1 v?2—1 -1
1
v+/(v—1 U+1)dv v+ log(1l —v) —log(1l + v)
=2v1—e*+log(l —v1—e*)—log(l+v1—e?)
eCE‘

— o0Vl e tlog—— log(l++/1I—e2

¢ tlog A= ~log(l+ VI —e)

=2v1—e*+x—2log(l+ V1 —e").
(b) Przypomnimy podstawowe wzory dotyczace funkeji hiperbolicznych.

cosh?t = sinh? ¢ + 1,
sinh 2¢ = 2sinh  cosh t,
cosh 2t = 2cosh?t — 1 = 2sinh? ¢ + 1.

W catce / Vx? + 1dr wykonujemy podstawienie x = sinh¢. Wtedy
V2 + 1= cosht oraz dr = coshtdt. Zatem

/\/ 22+ ldx = /costhdt 5 /[cosh 2t + 1] dt

1 1 1 1
= §t+ Zsinth = §t + isinhtcosht
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Z réwnosci

2 2
otrzymujemy e’ = z+ /2% + 1, 1 w konsekwencji t = log(z + Va2 + 1).

Zatem

1 1
/\/x2 + ldx = §log(x—|— vaz+1)+ §x\/x2+ 1.

(c) Przy calce /\/ 2?2 — 1dx, x > 1, wykonujemy podstawienie x = cosht,
t > 0. Wtedy V22 — 1 = sinht oraz dx = sinht dt. Dalej

¢! = cosht +sinht =z + Va2 —1, t=log(x+ Va2 —1).

Zatem

1
/\/3:2 —1lde = /sinh2tdt = 5/[cosh2t— 1] dt
1 1 1 1
= —§t+fsinh2t: —§t+§sinhtcosht

4
1 1
= —ilog(:c +Vva?—1)+ 51:\/1’2 — 1.

(c) W calce /\/1 — 22 dx wykonujemy podstawienie x = sint, [t| < 7.
Wtedy /1 — 22 = cost, dr = costdt oraz

1 1 1
/\/1—I2dx:/c082tdt: 5/[cos2t+1]dt: isin2t+§t

1 1 1 1
= 5sintcost+ it = ix\/l —z2 4 §arcsinx‘

Rozwazamy wyrazenie postaci R(x,Vaz?+ bx + ¢), gdzie R(x,y) jest
funkcja wymierng dwu zmiennych. Poprzez podstawienie afiniczne x = at+f
sprowadzamy wyrazenie do jednej z trzech postaci i wykonujemy podane w
tabeli podstawienia.

R(t,vt?+1) a>0, A<O0 t =sinhu
R(t,v/t? — 1) a>0, A>0 t = coshu
R(t,v/1—t?) a<0, A>0 t =sinu
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Otrzymamy w wyniku wyrazenie postaci R(cosh u, sinhu) lub R(cosu, sinu).
Jesli nie potrafimy bezposrednio wskaza¢ funkcji pierwotnej na tym etapie
wykonujemy podstawienia v = e* lub v = tg 3, odpowiednio. Przy podsta-
wieniu v = e* mamy

dv

1 1
coshu = 5(1} +v7!), sinhu = i(v —o ™Y, du= —
Przy podstawieniu v = tg § otrzymujemy
cosu = cos” g — sin® % = cos® g {1 — tg® ;] = cos® g (1—0?),

Uu u Uu u u
SN u Sin 9 COS 9 COS 9 g 9 COS 9 v,

1 U
dv =~ (1 t2>d.
v 2<+g2 Y

Korzystajac ze wzoru

su 1
1+te §_cos2%

otrzymamy

1 — 2 . 2v d 2
cosu = —— siny = —— u =
1402’ 1402’ 1+ 02

Przy obu podstawieniach otrzymujemy funkcje wymierna zmiennej v.

dv.

Przyklad. Nie zawsze warto sprowadzac¢ obliczenie do catki z funkcji wy-
miernej. Czasami lepiej zastosowaé wzory trygonometryczne, aby szybciej

osiggna¢ cel. Przy zastosowaniu podstawienia v = tg 3 do catki cos® u du

1—2\* 2
/COSQUCZU:/ Y dv.
14+0v2) 1+02

Przy zastosowaniu wzoréw trygonometrycznych otrzymamy

otrzymamy

1 1 1 1 1
/COS2udu: 5/(1+0082u)du = iu—i—zsinZu: §u+§sinucosu.

Uwaga 9.41. Mozna uniknaé¢ podstawienia trygonometrycznego. Np. w cal-

ce / V1 —22dz dla x > 0 mozemy zastosowaé podstawienie z = 1/u. Wtedy

dr = —du/u?. Zatem
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9.9 Zastosowanie calek oznaczonych do obliczania wiel-
kosci fizycznych
Pole obszaru na ptaszczyznie

Jedli y = f(x) jest nieujemna funkcja ciagta na [a, b], to pole S obszaru pod
wykresem funkcji i nad osig & wynosi

Sy = /bf(x) dzx.

Pole obszaru pomiedzy wykresami dwu funkcji ciagtych 0 < f(z) < g(x),
a < x < b wynosi zatem

b

S=5,-5 = / g(x) du — / f@)de. = [lg(x) - ()] do.

Warunek nieujemnosci funkeji f(z) i g(x) nie jest konieczny.
Przyklady.

1. Znalez¢ pole obszaru ograniczonego przez wykresy funkeji y = 2% oraz
y =’
Wykresy przecinaja sie w punktach (0,0) i (1, 1), wiec chodzi o obszar
pomiedzy wykresami dla 0 < z < 1. Otrzymujemy

1
1 1 1

= 2—5d = - — — = —,
S O/(:c x°) dx 3768

2. Obliczy¢ pole kota o promieniu 7.

Chodzi o obszar potozony pomiedzy wykresami funkcji y = /12 — a2

oraz y = —/r? — 22, Wtedy
,
S, =2 V2 — x2dx.
-
Zastosujemy podstawienie x = r cost i otrzymamy

S = 27“2/ sin®t dt = r2/ (sin®t + cos®t) dt = 7r°.
0 0
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Pole wycinka kota o promieniu r i kacie 6 jest proporcjonalne do kata
0, zatem jego pole wynosi
6

1
Sr79 = %W’rz = 59?"2.

Rozwazmy fragment wycinka kota o promieniu r kacie 6 powstate przez
usuniecie wycinka o promieniu 0 < ry < r. Pole wynosi
1 5 1

S’r’,@,’ro = 507" — 597’(2) =

rod + 10

5 (r —ro). (9.20)

(19.20) przypomina wzér na pole trapezu.

Srodek masy obszaru

Zaktadamy, ze obszar miesci sie pomiedzy wykresami funkcji f(x) 1 g(x), a <
x < b, przy czym f(z) < g(x). Przyjmujemy, ze masa jest proporcjonalna do
powierzchni. Dzielimy przedzial [a, b] na n réwnych czesci punktami x;, gdzie
1 = 0,1,...,n. Temu odpowiada podzial obszaru na n waskich pionowych
fragmentéw zwiazanych z przedziatami [z;_1, x;]. Masa fragmentu wynosi w
przyblizeniu

m; = [g(w;) — f(2:)]Az;.

Srodek masy tego fragmentu znajduje sie w przyblizeniu w punkcie
X; 1= (i, 31f () + g(@:)])

Srodek masy catego obszaru jest réwny w przyblizeniu $rodkowi masy uktadu
punktéw (X;,m;) dlai = 1,2,...,n. Srodek masy tego uktadu znajduje si¢
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w punkcielﬂ . .
S am; 3 8 + glam,
X = Z:}L | =l —
Dalej
S = Ylo(e) — f(a))An— [lo(e)  f(@) ds

zngxzmZ = zn:lxl[g(xz) f(z)] Az, — /x[g(x) — f(z)] dx,
l< 1 & 2 2 1 2 2
9 Z[f(flfz) +g(xi)m; = ) Z[g(%) — f(@i)7]Az; - 9 l9(x)" — f(z)"] dx

Przeanalizujemy btad wystepujacy w obliczeniach. Dla funkcji h oraz liczby
d > 0 okre$lamy oscylacje na przedziale [a, b] wzorem

osc (h,0) = sup{|h(z) — h(z")| : a <z, 2’ <b, |z —2'| <d}.

Podobnie dla dwu funkcji hy i hy oraz liczby 6 > 0 okreslamy oscylacje
poprzez

0OSC (hla h275) = Sup{|h1(I)h2<y)—h1(l’/)hg(y/” Da < $,$,7y,y/ < bv |I'—ZE,| < 57 |y_y,| < 6}

§ Ogoélnie, gdy w punktach X; = (xi,9:), © = 1,2,...,n, umieszczono masy m;, to
srodek masy X = (z,y) tego ukladu spelnia

n

Z miX—X; =0.
i=1

Stad

n

1 1 n ) n
T = EZmixi, Y= E;miyi’ gdzie mzZmi.

i=1 i=1
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Przy obliczaniu pojedynczego sktadnika btad nie przekracza

b— b—
% osc <h17h27 a>,
n n

gdzie w roli funkcji h; wystepuje funkcja g — f a w roli hy funkcje = oraz
f 4+ ¢. Po zsumowaniu btad nie przekracza wielkosci

b—
(b — a) osc (hl, ha, a) :
n

Mamy

ha(x)ha(y) — ha(@)ha(y') = [ha(z) = ha(2')]ha(y) + ha(2)[ha(y) — ha(y')]-

b— b—
) < M, o0sc (hl, na) -+ M, osc <h2, na>’

M, = sup ()], =12

a<z<b

Zatem

b—a

0scC (hl, ho,

gdzie
Reasumujac catkowity btad nie przekracza

b— b—
(b—a) [MQ 0sc (hl, a) + M osc (hg, a)] — 0.
n n

n

Dtugosé krzywej

Krzywa na plaszczyznie zadana jest poprzez parametryzacje @ = x(t), y =
y(t), a < t < b. Zaktadamy, ze funkcje z(t) i y(t) sa rézniczkowalne w
sposéb ciagly. Checemy obliczyé dtugos$é krzywej. Dzielimy przedzial [a, b] na
n rownych czesci punktami ¢;, ¢+ = 0,1,...,n. Fragment krzywej pomiedzy
kolejnymi punktami (x(t;—1),y(ti—1)) 1 (z(t:),y(t;)) przyblizamy odcinkiem
dla kazdej wartosci ¢ = 1,2,...,n. Otrzymamy tamang o dlugosci

n

Ly =3 /la(t) — a(tn)]? + [y(t:) -yt

i=1
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Z twierdzenia Lagrange’a mamy

z(t;) —x(tii) = a'(c;) At
y(t:) —y(tic) = y'(di)At,

dla pewnych punktow c; i d; pomiedzy ¢; 1 i t;. Zatem

L= 3 ) + (P o,

Okredlmy wielkos¢

:i\/ )2 +y'(c 2At—>/./ 2 4 y/(1)2 dt.

Dalej
<V (e)? +y(d)? — \Ja'(c)? + ' (c)?] At
i=1
Skorzystamy z nieréwnosci trojkata
’¢@+wa-¢ﬁ+w%<\A@_ﬂgz+@2_my.
Zatem
~ LI , b—a , b—a
1Ly — Lo < D2 1Y/(di) — ¢/ ()| Ati < m osc (¢,
i=1 n n
h—
= (b —a)osc <y’, a) — 0,
n n

bo funkcja 3/’ jest jednostajnie ciagta. Reasumujac otrzymaliSmy

Ly — / V' ()2 +y(t)2dt.

Przyjmujemy wiec, ze dtugo$é krzywej wynosi

b

L:/ 2 ()2 + y' () dt.

a
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Przyktad. Okrag o promieniu r mozemy sparametryzowac przez r = r cost,
y=rsint, 0 <t < 2m. Wtedy

L= /\/(—r sint)? 4 (rcost)?dt = 27r.

Dhugoséé tuku okregu o promieniu r i kacie 6 jest proporcjonalna do 6
zatem

0
Ly = —27r = 0Or.
2

Uwaga 9.42. Porownujac ze wzorem na pole fragmentu wycinka kota o
kacie 0 ztozonego z punktéw oddalonych od $rodka kota o wiecej niz ry a
mniej niz r widzimy, ze pole jest réwne potowie iloczynu r — rg (wysokosci) i
sredniej arytmetycznej dtugosci tukéw okregéw o promieniach rq i 7 (podstaw
wycinka). To przypomina wzor na pole trapezu. Mozna te zalezno$¢ wykazaé
bezposrednio (zadanie).

Wracamy do sytuacji ogélnej. Niech s(t) oznacza dtugosé krzywej, gdy
czas zmienia sie od a do t. Wtedy

/\/x/ u)? du.

Zatem
W zapisie Leibniza wzér ma postaé
ds _ | (dz\" (dy)’
dt — \ \ dt dt ) -
ds = y/(dx)? + (dy)?.

Niech y = f(x) bedzie funkcja rézniczkowalna w sposob ciagly na [a, b)].
Chcemy obliczy¢ dhugo$é wykresu. Stosujemy parametryzacje x = t, y =

f(t). Wtedy b b
L:/\/1+f’ 1?2 dt = /\/1+f’ )2 dz.

Uzywa si¢ tez zapisu
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Przyktad. y = v1 — 22, —1 <z < 1. Wtedy

1 1
1
L= /1” 1—952 /lﬁdzzarcsinx_lzw.

Uwaga 9.43. Funkcja podcatkowa nie jest okreslona dla x = 41, wiec obli-
czenie nie jest do konca $ciste. W celu uscislenia obliczen mozna ograniczy¢
siedo -1+ <x<1—-0dlad>0 W wyniku dostaniemy

arcsin(1 — ¢) — arcsin(—1 + 9).

Przy 6 — 07 otrzymamy 7. Calke z funkcji, ktéra nie jest okreslona w niekto-
rych punktach przedzialu catkowania, nazywamy catks niewtasciwg. Teorig
takich calek zajmiemy si¢ w innej czedci kursu.

Dtugosé krzywej we wspolrzednych biegunowych

Dla punktu X(z,y) okreslamy wspotrzedne biegunowe (r,0), gdzie r jest
odlegloscig punktu od poczatku ukladu, natomiast 6 jest katem pomiedzy
dodatnig pélosig x i pétprostg OX. Zatem r = y/x? + y?. Ponadto x = r cos 6
iy =rsinb.

Zatézmy, ze krzywa jest zadana przez zwiazek pomiedzy r i 6 wzorem

r= f(0), 6, <0 < 6,. Wtedy
x = f(0)cosh, y= f(0)sinf, 6 <O <0b,.

Zatem

L :/\/[f’(ﬁ) cosf — f(0)sin@]2 + [f(0)sinf + f(0) cos ]2 db.
01

Po uproszczeniu otrzymujemy

0>
L= /,/ff(9)2+f(9)2d9.
01

Przyktady.
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(a) r = sinf, 0 < 0 < 7. Mozna sprawdzié¢, ze krzywa opisuje okrag o
promieniu 3 i srodku w (0, 1). Mamy

L:/\/00829+sin29d0:7r.
0

(b) =10, 0 < 0 < 47. Krzywa opisuje dwa obroty spirali. Mamy

47
1 1 4
L= /\/1 07 db = SOVIF 0 + Slog(0+ V1 +07)
0
0
=2mV1+ 1672 + - log(47r + V14 1672).

Srodek masy krzywej

Rozwazamy krzywa x = z(t), y = y(t), a < t < b. Zakladamy, ze masa
jest proporcjonalna do dtugosci krzywej. Dzielimy przedziat [a, b] na n réw-
nych czesci. Masa fragmentu krzywej odpowiadajacego przedziatowi [t; 1, ;]

Wynosi
/\/ 2 4y (62 dt = /2! (u, (u;)2At;,

dla pewnego punktu u; pomiedzy t;_; it;. Cala mase tego fragmentu umiesz-
czamy w punkcie (x(u;),y(u;)). Otrzymamy uktad n punktéw z masami m;.
Srodek masy otrzymanego uktadu znajduje sie w punkcie

n

Dalej

n b
e = Z: \/x/(ui)2 + 9 (u:)2At; = / /()2 + y'(t)? dt,
n b
Zmz v(u;) = ;w (ui) /' (us)? + o' (u;)2 At — /x(t) 2/ ()2 + v/ ()2 dt.
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Podobnie ,
> maylu) — [y +y/(t)2
i=1 v

Srodek masy znajduje sic wiec w punkcie
b b
Ja)ya' () +y' ()2 dt [y(t)/='(t)* +y'(t)* dt
b Y
[ ()2 +y/(8)* di

Mamy s'(t) = \/#'(t)2 + 3/(t)2. Przyjmijmy oznaczenie ds = s'(t) dt. Srodek
masy ma wtedy wspolrzedne

F S0 (02 di

b b
Jxds [yds

a

b b
Jds [ ds

Przyktad. f(z) = V1 — 22, —1 < z < 1. Wykres opisuje gorny poétokrag o
promieniu 1. Obliczamy druga wspéirzedna $rodka masy. Funkcja jest roz-
niczkowalna w sposob ciagly na (—1,1). Mamy

1-46 1-6

2
/\/1—:;;2 1+ dr = / dr =2(1—06) — 2.
S 1 — 22 s 50+
_+ —

Wspélrzedna ta wynosi zatem —.
T

Pole powierzchni figur obrotowych

Chcemy obliczy¢ pole powierzchni bocznej S figury otrzymanej przez obrot
krzywej x = z(t), y = y(t) > 0, a < t < b wokét osi z. Dzielimy prze-
dzial czasu na n rownych cze$ci punktami ¢;. Rozwazamy fragment krzywej
odpowiadajacy przedziatowi [t;_1,t;]. Ten fragment zastepujemy odcinkiem
taczacym punkty (z(t;—1,y(ti—1)) i (z(t;),y(t;)). Obracajac odcinek wokot
osi x otrzymamy fragment powierzchni stozka Scietego o promieniach y(¢; 1)
oraz y(t;). Po rozcieciu i rozwinieciu otrzymamy fragment wycinka kota (por.
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Uwaga [9.42)). Pole powierzchni fragmentu jest réwne

S, = 27Ty(ti—l)2+ 2my(t;) \/[x(tz) —x(ti_))? + [y(t:) — y(ti1))?

~ 21y (t; \/x’ t;)2AtL;.

Zatem

S~ (ta) /' (8:)?2 + o/ ()2 At

Przechodzac do granicy, gdy n — oo otrzymamy

—27r/y ()2dt

Uwaga 9.44. Druga wspotrzedna srodka masy krzywej wynosi

/b Vot +y(2dt,

gdzie L jest dtugoscig krzywej. Zatem

h \

S = 2’/Ty0 L.

Tzn. pole powierzchni obrotowej jest réwne iloczynowi dtugosci obracanej
krzywej i drogi jaka przebywa srodek masy tej krzywej przy obrocie (reguta
Guldina).

Jesli krzywa jest fragmentem wykresu funkeji y = f(x), a < x < b, to
pole powierzchni obrotowej wyraza si¢ wzorem

b

S:27r/f(zr:) 1+ f'(x)?dx.

a

Przyktlady.

(a) Jakie jest pole powierzchni bocznej stozka Scigtego o dtugosci tworzacej
[ i promieniach podstaw r i R 7 Powierzchnie otrzymujemy przez obrét
odcinka o dtugosci [, ktorego konce znajduja sie na wysokosciach r i R
nad osig x. Druga wspoétrzedna srodka masy wynosi (r + R)/2. Zatem

S:27TT+R

l=mn(r+ R)L.
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(b) Jakie jest pole powierzchni torusa, czyli figury powstalej przez obrét
okregu o srodku w (a,b) i promieniu r < b ? Srodek masy znajduje sie
w (a,b). Zatem
S = 27b2nr = 4nbr.

(¢) Rozwazamy gorny pétokrag f(x) = 1 —2% —1 < x < 1. Chcemy
obliczy¢ pole powierzchni otrzymanej przez obrét fragmentu wykresu
—l1<a<z<b<1l Mamy

b
2
S:27r/\/1—a:2 1—|—1f7372dx:27r(b—a).

Pole powierzchni zalezy tylko od dtugosci przedziatu [a, b].

Objetos$¢ bryly obrotowej przy obrocie wokét osi x

Rozwazamy wykres funkcji ciaglej i nieujemnej y = f(x), a < x < b. Chcemy
obliczy¢ objetos¢ V' bryly otrzymanej przez obrét obszaru pomiedzy wykre-
sem funkcji i osia z, przy obrocie wokoét osi z. Dzielimy przedziat [a,b] na
n rownych czeéci punktami z;. Symbolem V; oznaczamy objetosé fragmentu
bryty odpowiadajacej przedziatowi [z;_1,x;]. Niech m; i M; oznaczaja mini-
mum i maksimum funkcji na przedziale [z;_1, x;]. Fragment bryly zawiera w
sobie walec o wysoko$ci Ax; i promieniu m; a sam jest zawarty w walcu o
wysokosci Ax; 1 promieniu M;. Zatem

Wm?Aa:i <V < 7TM3A$¢.

7 whasnoéci Darboux dla funkcji f(z)? mamy V; = 7 f(¢;)?Aw;, dla pewnej
wartodci z;_1 < t; < z;. Calkowita objeto$¢ wynosi wiec

n

b
V=nd f(t) Az, — W/f(a:)z d.

=1

Rozwazamy obszar A pomiedzy wykresami dwu funkcji y = f(z), y =
g(x), a < x < boraz 0 < f(z) < g(x). Objetoéé¢ bryly otrzymanej przez
obrot wokot osi & wynosi

V= 7r/ {g(aj)2 — f(x)z} dx.
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Uwaga 9.45. Druga wspéhrzedna srodka masy obszaru A jest réwna

w=s5g [ lo6? - f?] dz,

gdzie S jest polem obracanego obszaru. Zatem
V = 2my,S.

To oznacza, ze objetos¢ jest réwna iloczynowi powierzchni obracanego obsza-
ru i drogi jaka przebywa srodek masy obszaru przy obrocie (reguta Guldina).

Przyktad. Rozwazmy obszar ograniczony przez y = v R2 — 22,y = /12 — 22,
dlad<r < Roraz —r < a < b<ria<x<b Objetos¢ bryty obrotowej
jest réwna

Ver [ (VR =2 — (Vi =] de = (B ~1*)(b ).

a

Objetosé zalezy tylko od dtugosci przedziatu [a, b].

Objetos¢ bryly obrotowej przy obrocie wokét osi y

Rozwazamy ponownie wykres funkcji ciagtej i nieujemnej y = f(x), 0 < a <
r < b. Checemy obliczy¢ objeto$é V' bryly otrzymanej przez obrot obszaru
pomiedzy wykresem funkcji i osia x, tym razem przy obrocie wokot osi y.
Dzielimy przedzial [a,b] na n réwnych czesci punktami x; i symbolem V;
oznaczamy objetosé fragmentu bryty odpowiadajacej przedziatowi [x; 1, z;].
Ten fragment w przyblizeniu ma ksztalt walca o wysokosci f(z;) i promie-
niu podstawy x;, w ktérym wydrazono walec o wysokosci f(x;) i promieniu
podstawy x;_1. Zatem

Vi a0 mad f(a;) — mar  f () = w(wiy + 2) f(25) Ay = 2, f (25) Ay

Po zsumowaniu otrzymamy

" b
QWinf(a:i)Aa:i — 27r/:1:f(x) dx.

=1
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Calkowita objetos¢ jest rowna

b

V= 27T/xf(x)dx.

a

Rozwazmy teraz obszar pomiedzy wykresami funkeji y = f(z), vy = g(x),
a <z <boraz 0 < f(r) < g(x). Objetos¢ bryty przy obrocie wokot osi y

Wynosi
b

V= QW/x[g(x) — f(a)] da.

a

Ale pierwsza wspotrzedna srodka masy obracanego obszaru wyraza sie wzo-
rem

b
ro =g [ algta) - f@) do,
gdzie S jest polem obracanego obszaru. Zatem
V =27mx,S.
To oznacza, ze reguta Guldina jest spetlniona przy obrocie wokot osi y.
Uwaga 9.46. Warunek nieujemnosci funkeji f(z) i g(z) jest nieistotny.
Przyklady.

L.y=1—(z—2)% 1<z <3 Wtedy

V= 27r/x[1 — (z — 2)?] da.

2. Obracamy woké! osi y obszar zawarty pomiedzy wykresami y = 1 — 22
oraz y = 3xr — 3, 0 < x < 1. Wtedy

1
V:27r/x[1—:c2—3x+3]d:c.
0
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Praca

Przypusémy, ze przy przesuwaniu obiektu wzdtuz linii prostej od punktu a do
punktu b wywieramy stata site c. Wtedy wykonana praca jest réwna c(b—a).
W przypadku, gdy sita nie jest stata i wynosi f(z) dla a < x < b, to dzielimy
przedzial [a, b] na n réwnych czesci. Praca potrzebna do przesuniecia obiektu
od z;_; do x; wynosi w przyblizeniu f(x;)Ax;. Catkowita praca jest réwna
w przyblizeniu

n

b
WQE:NMijf/f@Mx

i=1

Przyjmujemy wiec
b
IV:/f@Mm

Przyktad. Pchamy cieknaca taczke przez 100 m (tzn. od z = 0 do = = 100).
7 powodu wycieku sita wywierana na taczke wynosi

2

f@»:GO(L—%mm>(N)

100 I2
= 1— — .
W g/(l)( 20000) dz (J)

W 1676 Robert Hooke sformutowal prawo mechaniki: sita wywierana
przez sprezyne rozciagnieta o x jednostek poza naturalng dtugosé sprezyny
jest proporcjonalna do z (dla matych wartosci x). Tzn. g(z) = —kz, gdzie k
jest stalym wspotezynnikiem. Zatem praca potrzebna do rozciggniecia spre-
zyny od a do b jednostek poza naturalng dlugo$é¢ wynosi

Zatem

b
W:/mm.

Przyktad. Praca potrzebna do rozciggniecia sprezyny o 10 cm wynosi 10 J.
Ile wynosi praca potrzebna do rozciagniecia o dodatkowe 20 cm ? Mamy

0,1

Ww:/%mmz10
0
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Czyli k = 2000. Dalej

0,3
Wig g0 = /ZOOOx dz =2000-0,2-0,2 =80 (J).
0,1

Praca potrzebna do wypompowania pojemnika

Chcemy wypompowaé wode z pojemnika przez odplyw znajdujacy sie na
pewnej wysokosci. Jegli mamy podniesé warstwe wody o objetosci V' (m?) o
[ metréw w gore, to wykonana praca bedzie rowna

W =9,8-1000-V - L.

Zaktadamy, ze woda miesci si¢ pomiedzy poziomami x = a i x = b. Dzieli-
my przedziat [a,b] na n réwnych czesci. Objetosé warstwy wody pomiedzy
poziomami z;_; i x; wynosi w przyblizeniu A(x;)Ax;, gdzie A(z) oznacza
pole powierzchni przekroju pojemnika na poziomie z. Praca potrzebna do
podniesienia warstwy wynosi W; ~ 9800 A(x;)Ax;(l — x;). Calkowita praca
wynosi w przyblizeniu

i=1
Zatem

W = 9800 / (I - ) A(z) da.

Przyklad. Pojemnik w ksztatcie dolnej potkuli o promieniu 10 m jest wy-
petniony woda. Chcemy wypompowaé wode przez odptyw znajdujacy sie 1 m
nad poziomem wody. Umieszczamy skale tak, ze woda miesci sie pomiedzy
poziomami —10 i 0. Przekroj pojemnika na wysokosci x jest kotem o promie-
niu r(x) = V100 — 22. Zatem A(z) = 7(100 — z?). Otrzymujemy wigc

0
W = 9800 / (1 — 2)7(100 — ) da.

—10
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Objetosci bryt w R?

Przypusémy, ze bryta miesci si¢ pomiedzy ptaszczyznami pionowymi x = a
i x = b. Niech A(z) oznacza pole przekroju bryty plaszczyzna pionowa w
punkcie z. Aby obliczy¢ objetos$¢ bryty dzielimy przedzial [a, b] na n réwnych
czesci. Objetosé fragmentu bryty pomiedzy ptaszezyznami oz =z, 1 iz =z
wynosi w przyblizeniu V; ~ A(x;)Ax;. Zatem calkowita objetosé jest rowna

V= i A(z;)Ax;.

i=1
Stad
b
V= /A(x) dx.

Uwaga 9.47. Ze wzoru wynika, ze dwie bryty majace te same pola przekro-
jow na kazdym poziomie maja réwne objetosci.

Przyklad. Jaka jest objetos¢ piramidy o wysokosci 4 m i podstawie 3 m na

3m? Umieszczamy o$ x pionowo strzatkag w dot. Zaktadamy, ze podstawa

piramidy znajduje sie na poziomie 4, natomiast wierzchotek na poziomie

0. Przekrdj piramidy ptaszczyzng prostopadia do osi x na poziomie x jest
9

kwadratem o boku a = 2z. Zatem A(z) = 2? oraz

V—9/4 2dr =12
16 ogj v

9.10 Przyblizone obliczanie caltek

Przy obliczaniu catek oznaczonych nie zawsze mozliwe jest doktadne podanie
wartosci liczbowej.

Przyklady.

(a) Chcemy obliczy¢ dtugo$é wykresu funkcji y = %x?’ dla 0 < z < 1.
Wtedy

1
L:/\/1+x4dx.
0
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(b) Rozwazmy elipse o pélosiach 11 2. Mozemy uzy¢ parametryzacji x =
cost, y = 2sint, 0 <t < 27. Wtedy dlugosé elipsy wynosi

27 27
L:/\/Sin2t+4COS2tdt:/\/1+3€082tdt.
0 0

Metoda trapezow

b
Mamy do obliczenia / f(z)dz, gdzie f(x) > 0. Dzielimy przedzial na n

rownych czesci. Kolejne punkty wykresu (x;—1, f(x;-1)) 1 (24, f(2;)) taczymy
odcinkiem. Otrzymujemy tamana, ktéra przybliza wykres funkcji. Pole pod
b

tg tamang przybliza pole pod wykresem funkcji, czyli liczbe / f(z) dz. Zatem

f(xo)+f(1‘1)b—a+f(xl)+f($2)b—a+._.+f(fcn—1)+f(l’n)b—07
2 n 2 n 2 n

czyli

b

[ f@)de = T2 @)+ 2f (1) + 2 (@) + ..+ 2f (an0) + FO)]

—a
2n

1
Przyktad. / — dx = log 2. Zastosujemy metode trapezow dla n = 4. Wtedy
x
1

1 A 2 4 1
o2 119 .20 2 0 20 N ) 697023, .
o8 8{+ s regte gty =0

Wiadomo, ze log2 = 0,693147..., wiec doktadnos¢ obliczenia jest réwna
okoto 0,4 procenta. Blad w metodzie trapezéw wynosi

b

[ 1) da -

a

b—a

EL(f) = 2[f(@) + 2/ (01) + .+ 2f (@a1) + FOB)]].
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Mozna udowodnié, ze

b= x|

12n2?  a<a<b

EN(f) <

1 2
Dla funkcji f(z) = —, 1 <z <2, mamy f"(z) = —. Zatem
x x

Metoda Simpsona

Thomas Simpson (1710-61) byt angielskim matematykiem, ktéry w 1743
opracowal metode przyblizonego obliczania caltek. Dzielimy przedzial [a, b]

h—
na parzysta liczbe n = 2k czeéci o dtugosci h = i Trzy kolejne punkty
n

wykresu (zg, f(x0)), (21, f(x1)) 1 (22, f(22)) taczymy parabola p(z). Mamy
zatem

(x —21)(x — 29)

0= s ezl o)

2

2h?

Catke / f(z) dx zastepujemy przez

/f dm~/p o = 5 o) + 4 () + f(22)]

Ostatnia rownos¢ wynika ze wzoréw
7 7 213
/(x —xo)(x — 1) dx = /(:v —a)(x — xg)dx = TR
o xo
2

/(:c —x9)(x — x3) dx = —4?)]13.

o
Uzasadnimy jeden z nich. Podstawiajac u = z — 27 otrzymamy

z2

/(x—xl)(x—:m)dx: /hu(u—h)du:
“h

Zo

|
> =
N
[N}
=
N
Il
[\
—
N
[N}
U
N
Il
| DO
>
w
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To samo wykonujemy dla wszystkich pozostalych przedziatow postaci
[x27$4]7 [.’174,1'6], R [',1:216727'%216]- Tzn.

24 T2

[ f@dr~ [ pe)de=

L2i—2 T2i—2

Z [f(22i—2) +4f (z2i-1) + f(2)],

gdzie p; oznacza wielomian kwadratowy dla przedziatu [x9; o, 29;]. Reasumu-
jac otrzymujemy

/f(a:)d:v
’ _b—a
7 3n

[f(a) +4f(21) +2f(z2) + ...+ 2f(vn2) + 4f(v,1) + f(D)].

1
Przyklad. Zastosujemy metode Simpsona dla catki log2 = / —dx przy
x

1
n = 4. Wtedy

1 4 2 4 1
log2~ — |14+4--+2-—4+4- -+ | = 253...
og B + 5—1— 3+ 7—1—2} 0,693253
Wiemy, ze log2 = 0,693147. .., wiec doktadnosé obliczenia jest ponad dzie-
sieciokrotnie lepsza niz przy metodzie trapezéw, przy tej samej ilosci wtozonej
pracy.

Uwaga 9.48. Mozna udowodnié, ze btagd w metodzie Simpsona spetnia

b= 7).

S
<
Eu(f) 180n4 a<a<b

10 Twierdzenie Weierstrassa i wielomiany Bern-
steina

Twierdzenie 10.1 (Weierstrass). Dla dowolnej funkcji cigglej f(z) na prze-
dziale [0,1] mozna znaleZé cigg wielomiandw p,(x) spelniajecy p, = f na
przedziale [0,1]. To oznacza, zZe dla dowolnej liczby € > 0 w pasie o promie-
niu € wokdt wykresu funkcji f(x) znajduje sie wykres jakiegos wielomianu.
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Uwaga. Teza twierdzenia jest prawdziwa dla dowolnego przedziatu |a,b].
Rzeczywiscie, dla f € Cla,b] okreSlamy f(z) = f((b — a)xr + a). Wtedy

f € CI0.1]. Jesti iy = f. t0 p = f. gelie pu(a) = (5 )

—a
Dowdéd (wg S. Bernsteina (1880-1968)). Dla funkcji ciagtej f(x) i liczby n
okreslamy wielomiany Bernsteina wzorem

BN =21 () () -ar

B, (f) ma stopien niewiekszy niz n. Wspétezynnik przy =" jest rowny
" n k
—1)" —1)k b
SUDAE) (k,)f (n) ,

k
wiec stopien wielomianu B, (f) moze by¢ nizszy niz n, jesli powyzsza suma
zeruje sie.
Mamy
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Rozwazamy funkcje ciagta f(x) na [0, 1]. Ustalamy liczbe € > 0. Z jednostaj-
nej ciagtosci mozna znalezé liczbe § > 0 taka, ze

t— sl <6 = |f(t) = f(s)] < 5.

Ustalmy punkt x w przedziale [0, 1]. Liczby naturalne N, = {0,1,2,...,n}
podzielimy na dwa podzbiory

A={keN,: |t —z|<d},
B=N,\A.

k=0 k=0
=7 (5) - s () < e (5) - s (1 )ata-ar
k=0 k=0
=3 (5] - s (1) o S (B) < | () -
keA keB
Il Il

Sa < g > <Z>xk(1 —z)"F g % En: <Z>xk(1 — )" = %

keA
Niech M = max |f(x)|. Wtedy

a<x<b
oM 2
Sp<2M Y (Z)xk(l —2)"F K = > (Z) (:v — i) (1 — )" *
keB

keB
OM I (n E\?
< - - ]C o TL*]C

n

= 2 B.()(@) ~ 2B, (@)(a) + Bu(e)(2)]
oM [, ) o r(l—2)| 2M 9 M
_52[3: — 22" 4+ 2" + - ] 52n($—x)<252n
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M
Dla n > 52 mamy Sp < ¢/2. Zatem |B,(f)(z) — f(x)| < ¢ dla odpowiednio
€

duzych wartosci n. O]

Uwaga 10.2. Z dowodu wynika, ze wielko$¢ wskaznika n zalezy tylko od
parametrow €, 0 > 01 M.

Uwaga 10.3. Dla funkcji f i liczby = wielkosé B, (f)(z) jest srednia wazo-
ng liczb f (%) ,dla k =0,1,2,...,n, ze wspbtczynnikami (Z)xk(l —x)" 7k,
Suma wspotczynnikow jest réwna 1. Sprawdzimy, ktory wspotezynnik jest
najwiekszy dla 0 < z < 1. W tym celu rozwigzujemy nieréwnosc¢

<kif1>$kW1-—aﬂ"@” < (Z)xkﬂ,—¢ﬂnh

Po uproszczeniu otrzymujemy

1—=x z
n—k+1 &k

Dalsze przeksztatcenia daja warunek rownowazny

k <
< z.
n+1

Zatem najwiekszy wspotcezynnik odpowiada wartosci kg, dla ktorej

ko ko +1
<z <
n+1\m n+1

Zauwazmy, ze
ko ko  ko+1

< — K .
n+1 n > n+l

Zatem

Przyktlady.

1. Prawdopodobienstwo sukcesu w jednej probie wynosi p, gdzie0 < p < 1.
Wykonujemy probe n razy (niezaleznie). Przy n probach wygrana wy-
nosi f (%) , gdzie k jest liczbg sukcesow, a f jest ustalong funkcja ciggta
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na [0,1]. Np. jesli f (é) = 10, to przy 12 sukcesach w 60 probach, wy-
plata wynosi 10. Wartos¢ oczekiwana wygranej przy n proébach wyraza
sie wzorem

n n

B3 (1) (5) a0 = B — 10

bo prawdopodobienstwo uzyskania k sukceséw w n probach wynosi

(Z)p’“(l —p)”k-

2. Rzucamy kostka do gry. Sukcesem jest wypadniecie széstki. Funkcja
wyplaty f(x) spetia

F1) =105,  f (é) — 0,01

Czy gra jest optacalna przy duzej liczbie rzutéw ?

*Najpierw wybieramy k pozycji sposréd n pozycji, gdzie ma wystapié¢ sukces. Mozemy
dokonaé¢ wyboru na (Z) sposob6w. Dalej prawdopoodobienstwo sukcesé6w na wybranych k
pozycjach i porazki na pozostatych n — k pozycjach wynosi p*(1 — p)»=F.
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