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10 Twierdzenie Weierstrassa i wielomiany Bernsteina 202

1 Liczby rzeczywiste

1.1 Liczby wymierne

Liczby wymierne Q mają postać
p

q
, gdzie p i q są liczbami całkowitymi,

przy czym q 6= 0. Liczby rzeczywiste R można opisać poprzez rozwinięcia
dziesiętne. Na przykład

0, 125
0, 232323 . . . = 0, (23)
0, 123 . . . 89101112 . . .

Aby uzyskać rozwinięcie dziesiętne liczby wymiernej stosujemy algorytm dzie-
lenia z resztą.
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Zatem
1
7

= 0, (142857).

Ogólnie każda dodatnia liczba wymierna p
q

ma okresowe lub skończone rozwi-
nięcię w ułamek dziesiętny. Rzeczywiście, przy dzieleniu p przez q, w pewnym
momencie zaczynamy dopisywać cyfrę 0 (gdy 0 < p < q, to cyfrę 0 dopisuje-
my na każdym etapie algorytmu). Mamy q różnych reszt z dzielenia przez q.
Zatem pewna reszta wystąpi dwukrotnie. Wtedy odpowiedni blok cyfr będzie
się powtarzał.

Zatem
122
11

= 11, (09).

Każda liczba o rozwinięciu okresowym jest wymierna. Na przykład

8, 15(123) = 8, 15 + 0, 00(123) = 8, 15 +
1

100
· 0, (123).

Oznaczmy x = 0, (123). Wtedy

1000x = 123, (123).

Zatem
1000x− x = 123.
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Czyli

x =
123
999

.

Czy istnieją liczby niewymierne ?

Przykład.
√

2 jest liczbą niewymierną. Załóżmy (nie wprost), że

√
2 =

p

q
, p, q ∈ N.

Wtedy
2q2 = p2.

Krotność czynnika 2 po prawej stronie jest liczbą parzystą, a po lewej niepa-
rzystą, co prowadzi do sprzeczności. Skorzystaliśmy z faktu, że każda liczba
naturalna ma jednoznaczny rozkład na czynniki pierwsze. Np.

12 = 22 · 3, 90 = 2 · 32 · 5.

Poza rozwinięciami w systemie dziesiętnym, używa się rozwinięć w innych
systemach, np. dwójkowym.

1.2 Własności liczb rzeczywistych

Liczby rzeczywiste można dodawać i mnożyć. Reguły dotyczące tych działań
powodują, że R tworzy ciało przemienne. Zbiór R jest liniowo uporządkowany,
tzn. dla dwu liczb x i y mamy x ¬ y lub y ¬ x. Porządek jest związany z
działaniami:

• do dwu stron nierówności można dodać tę samą liczbę

• obie strony nierówności można pomnożyć przez liczbę dodatnią

Podzbiór A ⊂ R jest ograniczony z góry przez liczbę g, jeśli a ¬ g dla
dowolnej liczby a ∈ A. Tzn. zbiór A jest położony na lewo od liczby g na osi
liczbowej.

Przykłady.

(a) (−∞, 1) jest ograniczony z góry przez 2 (również przez 1).

(b) Q nie jest ograniczony z góry.
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(c) Q ∩ (−1, 1) jest ograniczony z góry przez 1.

Zbiór liczb rzeczywistych ma własność ciągłości : dla dowolnego podzbioru
A ⊂ R ograniczonego z góry istnieje najmniejsza liczba ograniczająca ten
zbiór od góry. Tę liczbę oznaczamy symbolem supA i nazywamy kresem
górnym zbioru A.

Przykłady.

(a) sup(−∞, 1) = 1.

(b) supQ ∩ (−1, 1) = 1.

Liczba a = supA ma dwie własności:
– a ogranicza A od góry,
– jeśli liczba b ogranicza A od góry, to a ¬ b.

Kres dolny inf A definiuje się analogicznie.
Liczby wymierne Q nie mają własności ciągłości, tzn. kres górny podzbio-

ru liczb wymiernych nie musi być liczbą wymierną.

Przykład.

A = {x ∈ Q : x > 0, x2 < 2} = {x ∈ Q : x > 0, x <
√

2} = Q∩(0,
√

2).

supA =
√

2.

1.3 Indukcja matematyczna

Niech T (n) oznacza jakieś stwierdzenie o liczbie naturalnej n. Zasada induk-
cji mówi, że jeśli T (n0) jest prawdziwe (często n0 = 1) oraz z prawdziwości
stwierdzenia T (n) wynika prawdziwość T (n+ 1) dla wszystkich liczb n ­ n0,
to stwierdzenie jest prawdziwe dla każdej liczby n ­ n0. Schemat uzasadnie-
nie ma postać:

T (n0) =⇒ T (n0 + 1) =⇒ T (n0 + 2) =⇒ . . .

Można również podać uzasadnienie nie wprost. Załóżmy, że T (n) nie jest
spełnione dla pewnych liczb n ­ n0. Niech n1 będzie najmniejszą taką liczbą.
Wtedy n1 ­ n0 + 1. Ponadto stwierdzenie T (n1 − 1) jest spełnione, bo n0 ¬
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n1−1 < n1. Zatem również T (n1) jest spełnione, co prowadzi do sprzeczności.

Zadanie Korzystając z drugiego uzasadnienia wykazać, że każda liczba na-
turalna ma „interesującą” własność.

Przykład. Niech c(n, k) oznacza liczbę k-elementowych podzbiorów zbioru
n-elementowego (tzw. kombinacje). Pokażemy, że

c(n, k) =
(
n

k

)
=

n!
k!(n− k)!

, 0 ¬ k ¬ n.

gdzie n ­ 1. Stosujemy umowę 0! = 1. Przy dowodzie zastosujemy indukcję
względem n. Tzn. T (n) oznacza, że wzór jest prawdziwy dla n i dowolnej
liczby 0 ¬ k ¬ n. Dla n = 1 mamy

c(1, 0) = 1 =
1!

0! 1!
, c(1, 1) = 1 =

1!
1! 0!

.

Zakładamy, że wzór jest prawdziwy dla liczby n i dowolnej liczby k. Chcemy
pokazać, że wzór jest spełniony dla n + 1 i dowolnej liczby 0 ¬ k ¬ n + 1.
Mamy

c(n+ 1, 0) = 1 =
(n+ 1)!

(n+ 1)! 0!
.

Niech k ­ 1. Zauważmy, że

c(n+ 1, k) = c(n, k) + c(n, k − 1).

Rzeczywiście, w zbiorze (n+1)-elementowym wyróżniamy jeden element (np.
w stadzie n+ 1 owiec jedna jest czarna, a pozostałe są białe). Aby wybrać k
elementów możemy:

• wybrać k niewyróżnionych elementów na c(n, k) sposobów

• wybrać k − 1 niewyróżnionych elementów na c(n, k − 1) sposobów i
dorzucić wyróżniony element.

Z założenia indukcyjnego otrzymujemy zatem

c(n+ 1, k) =
n!

k! (n− k)!
+

n!
(k − 1)! (n− k + 1)!

=
n![n− k + 1 + k]
k! (n− k + 1)!

=
(n+ 1)!

k! (n+ 1− k)!
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Twierdzenie 1.1 (wzór dwumianowy Newtona).

(x+y)n =
n∑
k=0

(
n

k

)
xn−kyk =

(
n

0

)
xn+

(
n

1

)
xn−1y+. . .+

(
n

n− 1

)
xyn−1+

(
n

n

)
yn.

Dowód. Mamy
(x+ y)n = (x+ y)(x+ y) . . . (x+ y)︸ ︷︷ ︸

n czynników

.

Po wymnożeniu, bez redukcji wyrazów podobnych, otrzymamy 2n składników
postaci xn−kyk. Aby otrzymać składnik xn−kyk spośród n nawiasów wybie-
ramy k nawiasów, z których weźmiemy y. Z pozostałych n − k nawiasów

weźmiemy x. Takich wyborów mamy c(n, k) czyli
(
n

k

)
. Zatem po zreduko-

waniu wyrazów podobnych współczynnik przy xn−kyk wyniesie
(
n

k

)
.

Twierdzenie 1.2 (nierówność między średnią geometryczną i arytmetycz-
ną). Dla x1, x2, . . . , xn ­ 0 mamy

n
√
x1x2 . . . xn ¬

x1 + x2 + . . .+ xn
n

.

Dowód. (Cauchy)
Równoważnie trzeba udowodnić, że

x1x2 . . . xn ¬
(
x1 + x2 + . . .+ xn

n

)n
. (1.1)

Pokażemy (1.1) dla n = 2k przez indukcję względem k. Dla k = 1 mamy(
x1 + x2

2

)2

− x1x2 =
(
x1 − x2

2

)2

­ 0.

Sprawdzamy nierówność dla n = 2k+1 przy założeniu, że jest spełniona dla
n = 2k.

x1x2x3x4 . . . x2k+1−1x2k+1 = (x1x2)(x3x4) . . . (x2k+1−1x2k+1)

¬
( x1 + x2

2︸ ︷︷ ︸
y1

)2( x3 + x4

2︸ ︷︷ ︸
y2

)2
. . .
( x2k+1−1 + x2k+1

2︸ ︷︷ ︸
y2k

)2

¬
(
y1 + y2 + . . .+ y2k

2k

)2k·2
=
(
x1 + x2 + x3 + x4 + . . .+ x2k+1−1 + x2k+1

2 · 2k
)2k·2

.
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Pozostaje udowodnić nierówność (1.1) dla dowolnej liczby naturalnej n nieko-
niecznie będącej potęgą liczby 2. Wybierzmy k tak, aby n < 2k (np. n < 2n).
Rozważamy nieujemne liczby x1, x2, . . . , xn. Oznaczmy

A =
x1 + x2 + . . .+ xn

n
.

Określmy
xn+1 = xn+2 = . . . = x2k = A.

Wtedy z pierwszej części dowodu mamy

x1x2 . . . xn xn+1 . . . x2k+1−1x2k︸ ︷︷ ︸
2k−n czynników

¬
(
x1 + . . .+ xn + xn+1 + . . .+ x2k

2k

)2k

.

Zatem

A2k−nx1x2 . . . xn ¬
(
nA+ (2k − n)A

2k

)2k

. = A2k

Po podzieleniu obu stron przez A2k−n otrzymamy (1.1).

Zadanie. Znaleźć bezpośredni dowód przez indukcję, tzn. z nierówności (1.1)
wyprowadzić taką nierówność dla n+ 1.

Uwaga 1.3. Zasadę indukcji można sformułować inaczej: jeśli stwierdzenie
T (n0) jest prawdziwe oraz z prawdziwości T (k) dla n0 ¬ k ¬ n wynika
prawdziwość stwierdzenia T (n+ 1), to stwierdzenie T (n) jest prawdziwe dla
dowolnej liczby n ­ n0. Schemat uzasadnienia jest podobny do schematu
dla wcześniejszej definicji. Przy wyprowadzaniu prawdziwości T (n + 1) ko-
rzystamy z prawdziwości T (k) dla wszystkich wcześniejszych liczb k, tzn. dla
n0 ¬ k ¬ n.

2 Ciągi liczbowe

Będziemy rozważali ciągi złożone z liczb rzeczywistych.

Definicja 2.1. Ciągiem {an} nazywamy odwzorowanie liczb naturalnych w
liczby rzeczywiste. Liczby a1, a2, a3, . . . nazywamy wyrazami ciągu.

Przykłady.
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(a) 1, 2, 3, 4, 5, . . . .

(b) 2, 4, 6, 8, 10, . . . .

(c) an = 5n+ 3, bn = 2n + 1.

(d) a1 = 2, an+1 =
1
2

(
an +

1
an

)
.

(e) 2, 3, 5, 7, 11, . . . , - ciąg liczb pierwszych.

Ciąg {an} nazywamy rosnącym (ściśle rosnącym) jeśli

an ¬ an+1 (an < an+1)

dla wszystkich n. Podobnie określamy ciągi malejące i ściśle malejące.

Przykład. Ciąg z przykładu (d) jest ściśle malejący. Rzeczywiście, pokażemy
najpierw, że an > 1 dla wszystkich n. Mamy a1 = 2 > 1. Dalej

an+1 =
1
2

(
an +

1
an

)
­
√
an ·

1
an

= 1

Dalej

an+1 − an =
1
2

(
an +

1
an

)
− an =

1
2

( 1
an
− an

)
< 0,

bo an > 1.

Ciąg {an} nazywamy ograniczonym, jeśli dla pewnej liczby M ­ 0 speł-
niony jest warunek |an| ¬ M dla wszystkich n. Tzn. wyrazy ciągu leżą w
przedziale [−M,M ].

Przykład. Ciąg z przykładu (d) jest ograniczony, bo

1 < an ¬ a1 = 2.

2.1 Zbieżność ciągów

Przykłady.

(a) Wyrazy ciągu an =
1
n

zbliżają się do zera, gdy n rośnie.
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(b) Dla bn = (−1)n +
1
n2

wyrazy o numerach parzystych zbliżają się do 1,
a te o numerach nieparzystych do −1.

Definicja 2.2 (intuicyjna). Mówimy, że ciąg an jest zbieżny do liczby g
jeśli wyrazy ciągu leżą coraz bliżej liczby g dla dużych wskaźników n. Tzn.
jeśli chcemy, aby liczba an znalazła się odpowiednio blisko g, to wskaźnik n
powinien być odpowiednio duży. Stosujemy zapis lim

n
an = g.

Definicja 2.3 (ścisła). Dla dowolnej liczby ε > 0 (która określa, jak blisko
granicy mają znajdować się wyrazy ciągu) istnieje liczba N (próg określający
jak duży powinien być wskaźnik ciągu) taka, że dla n > N mamy |an−g| < ε.

Ostatni warunek oznacza, że dla n > N wyrazy ciągu an leżą w przedziale
(g−ε, g+ε), tzn. w przedziale tym leżą prawie wszystkie wyrazy ciągu {an},
tzn. poza skończoną ilością a1, a2, . . . , aN .

Uwaga 2.4. ε jest dowolną liczbą dodatnią, np.: 0,001, η,
ε

2
, ε2,

Przykłady.

(a) an =
n− 1
n

= 1− 1
n
. Mamy |an−1| = 1

n
. Widać, że ciąg an jest zbieżny

do 1 na podstawie intuicyjnej definicji. Przećwiczymy ścisłą definicję.

Ustalmy liczbę ε > 0. Niech N =
[1
ε

]
. Wtedy dla n > N otrzymamy

n ­
[1
ε

]
+ 1 >

1
ε
. Zatem

1
n
< ε.

(b) an = (−1)n. Jeśli an dąży do g, to wyrazy o dużych numerach powinny
leżeć blisko siebie. Ale |an+1 − an| = 2.

Twierdzenie 2.5. Zbieżny ciąg posiada tylko jedną granicę.

Dowód. Załóżmy nie wprost, że lim
n
an = g, lim

n
an = g′, oraz g < g′. Określ-

my ε = (g′ − g)/2. Przedziały (g − ε, g + ε) oraz (g′ − ε, g′ + ε) są wtedy
rozłączne. Nie jest możliwe więc, aby prawie wszystkie wyrazy leżały zarówno
w pierwszym jak i drugim przedziale.

Twierdzenie 2.6. Każdy ciąg monotoniczny (rosnący lub malejący) i ogra-
niczony jest zbieżny.
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Dowód. Załóżmy, że an jest rosnący oraz niech g = sup an. Pokażemy, że
liczba g jest granicą ciągu an. Ustalmy liczbę ε > 0. Liczba g−ε nie ogranicza
ciągu an od góry. Tzn. aN > g − ε dla pewnego wskaźnika N. Wtedy dla
n > N mamy

g − ε < aN ¬ an ¬ g < g + ε.

Twierdzenie 2.7. Załóżmy, że lim
n
an = g oraz lim

n
bn = h. Wtedy ciągi po

lewej stronie wzorów poniżej są zbieżne oraz:

(a) lim
n

(an + bn) = lim
n
an + lim

n
bn.

(b) lim
n

(anbn) = lim
n
an · lim

n
bn.

(c) lim
n

an
bn

=
lim
n
an

lim
n
bn
, o ile lim

n
bn 6= 0.

Dowód. (a) Ustalmy ε > 0. Z założenia istnieją progi N1 i N2 takie, że dla
n > N1 mamy

|an − g| <
ε

2
, n > N1,

|bn − h| <
ε

2
, n > N2.

Wtedy dla n > max(N1, N2) otrzymujemy

|(an + bn)− (g + h)| = |(an − g) + (bn − h)|

¬ |an − g|+ |bn − h| <
ε

2
+
ε

2
= ε.

(b) Skorzystamy z nierówności

|anbn − gh| = |(an − g)(bn − h) + h(an − g) + g(bn − h)|
¬ |an − g| |bn − h|+ |h| |an − g|+ |g| |bn − h|. (2.1)

Niech 0 < η ¬ 1. Z założenia istnieje próg N taki, że dla n > N mamy
|an−g| < η i |bn−h| < η. Wtedy dla n > N na podstawie (2.1) otrzymujemy

|anbn − gh| < η2 + |h| η + |g| η ¬ (1 + |g|+ |h|) η,
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bo η2 ¬ η dla 0 < η ¬ 1. Dla liczby ε > 0 wybieramy liczbę η taką, że
0 < η ¬ 1 oraz

(1 + |g|+ |h|)η ¬ ε.

Np. można przyjąć
η =

ε

1 + |g|+ |h|+ ε
.

(c) Zaczniemy od wersji

lim
n

1
bn

=
1

lim
n
bn
.

Oznaczmy ε1 =
|h|
2
. Z założenia istnieje próg N1 taki, że dla n > N1 mamy

|bn − h| <
|h|
2
.

Zatem

|h| − |bn| ¬ ∗|bn − h| <
|h|
2
,

czyli

|bn| >
|h|
2
, n > N1.

Dla n > N1 otrzymujemy zatem∣∣∣∣ 1
bn
− 1
h

∣∣∣∣ =
|bn − h|
|h| |bn|

<
2|bn − h|
|h|2

. (2.2)

Ustalmy ε > 0. Istnieje próg N2 taki, że dla n > N2 mamy

|bn − h| <
h2ε

2
. (2.3)

Niech n > max(N1, N2) †. Wtedy z (2.2) i (2.3) uzyskamy∣∣∣∣ 1
bn
− 1
h

∣∣∣∣ < ε.

Z (b) mamy wtedy

lim
n

an
bn

= lim
n
an ·

1
bn

= lim
n
an · lim

n

1
bn

=
lim
n
an

lim
n
bn
.

∗Skorzystaliśmy z nierówności |x− y| ­ |y| − |x|.
†Można przyjąć n > N1 +N2.
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Wniosek 2.8. Jeśli ciąg an jest zbieżny, to lim
n
c an = c lim

n
an.
‡

Wniosek 2.9. Jeśli ciągi an i bn są zbieżne, to

lim
n

(bn − an) = lim
n
bn − lim

n
an.

Dowód.

lim
n

(bn − an) = lim
n

[bn + (−1)an] = lim
n
bn + lim

n
(−1)an = lim

n
bn − lim

n
an.

Twierdzenie 2.10. Jeśli ciągi an i bn są zbieżne, to

(a) | lim
n
an| = lim

n
|an|.

(b) Jeśli an ­ 0, to lim
n
an ­ 0.

(c) Jeśli an ¬ bn, to lim
n
an ¬ lim

n
bn.

(d) (twierdzenie o trzech ciągach) Jeśli an ¬ cn ¬ bn oraz lim
n
an =

lim
n
bn, to ciąg cn jest zbieżny oraz lim

n
cn = lim

n
an.

Dowód. (a) Oznaczmy lim
n
an = g. Wtedy teza wynika natychmiast z nierów-

ności ∣∣∣∣|an| − |g|∣∣∣∣ ¬ |an − g|.
(b)

lim
n
an = lim

n
|an| = | lim

n
an| ­ 0.

(c) Mamy 0 ¬ bn − an. Zatem z (b) otrzymujemy

lim
n
bn − lim

n
an = lim

n
(bn − an) ­ 0.

(d) Z założenia mamy
0 ¬ cn − an ¬ bn − an. (2.4)

Dalej
lim
n

(bn − an) = lim
n
bn − lim

n
an = 0.

‡Wystarczy przyjąć bn ≡ c.
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Ustalmy liczbę ε > 0. Istnieje próg N taki, że dla n > N mamy 0 ¬ bn−an <
ε. Wtedy z (2.4) uzyskujemy

0 ¬ cn − an < ε, dla n > N.

Stąd lim
n

(cn − an) = 0. Ciąg cn jest zbieżny jako suma ciągów cn − an oraz
an. Ponadto

lim
n
cn = lim

n
an + lim

n
(cn − an) = lim

n
an.

Definicja 2.11. Dla ciągu {an} i ściśle rosnącego ciagu liczb naturalnych
mn ciąg {amn} nazywamy podciągiem ciągu {an}.

Przykłady. an2 , an!, apn , gdzie pn jest n-tą liczba pierwszą.

Dla rosnącego ciągu mn liczb naturalnych mamy mn ­ n.

Twierdzenie 2.12. Podciąg ciągu zbieżnego jest zbieżny do tej samej liczby
co pełny ciąg.

Dowód. Oznaczmy g = lim
n
an.Dla liczby ε > 0 rozważamy przedział (g − ε, g + ε).

Z założenia prawie wszystkie wyrazy ciągu an znajdują się w tym przedziale.
Tym bardziej prawie wszystkie wyrazy podciągu amn tam się znajdują.

Uwaga 2.13. Prawdziwe jest twierdzenie odwrotne: jeśli każdy podciąg cią-
gu an zawiera podciąg zbieżny do liczby g, to cały ciąg jest zbieżny do g.

Przykład. Niech

an+1 =
1
2

(
an +

1
an

)
, a1 = 2. (2.5)

Wiemy, że an jest zbieżny jako ciąg malejący i ograniczony z dołu, przez 1.
Oznaczmy g = lim

n
an. Ciąg an+1 jest podciągiem ciągu an, więc jego granica

wynosi g ­ 1. Z równości (2.5) otrzymujemy

g =
1
2

(
g +

1
g

)
.

Stąd po przekształceniu uzyskujemy g2 = 1, czyli g = 1.
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Zadanie. Dla liczby
1
2
< α < 1 określamy ciąg an rekurencyjnie

an+1 = αan +
1− α
an

, n ­ 1, a1 = a > 0.

Zbadać zbieżność ciągu an.

Twierdzenie 2.14 (Bolzano, Weierstrass). Każdy ciąg ograniczony zawiera
podciąg zbieżny.

Dowód. Załóżmy, że wyrazy ciągu cn znajdują się w przedziale [a1, b1]. Bę-
dziemy konstruować podciąg dn ciągu cn. Niech d1 := c1. Dzielimy przedział
[a1, b1] na dwie połowy punktem (a1 + b1)/2. Przynajmniej jeden z przedzia-
łów [a1, (a1 + b1)/2], [(a1 + b1)/2, b1] zawiera nieskończenie wyrazów ciągu cn.
Oznaczmy ten przedział przez [a2, b2]. Niech m2 oznacza najmniejszy wskaź-
nik, większy niż 1, dla którego cm2 =: d2 leży w [a2, b2]. Dalej przedział [a2, b2]
dzielimy na pół. Jeden z przedziałów [a2, (a2 + b2)/2], [(a2 + b2)/2, b2] zawiera
nieskończenie wyrazów ciągu cn. Końce tego przedziału oznaczmy przez a3 i
b3. Podobnie jak wcześniej wybieramy najmniejszy wskaźnik m3 > m2, dla
którego cm3 =: d3 leży w [a3, b3]. Postępując tak dalej otrzymamy nieskoń-
czony ciąg przedziałów [an, bn] oraz podciąg dn := cmn o własnościach

dn ∈ [an, bn] ⊂ [an−1, bn−1], bn − an = 1
2(bn−1 − an−1).

Mamy
a1 ¬ an−1 ¬ an ¬ bn ¬ bn−1 ¬ b1.

Ciąg an jest rosnący i ograniczony, natomiast ciąg bn jest malejący i też
ograniczony. Zatem ciągi te są zbieżne. Z równości

bn − an =
1

2n−1
(b1 − a1)

wynika lim
n

(bn − an) = 0. Zatem lim
n
bn = lim

n
an. Ponieważ an ¬ dn ¬ bn, to

z twierdzenia o trzech ciągach wnioskujemy, że ciąg dn jest zbieżny.

Czasami chcemy rozpoznać, czy dany ciąg jest zbieżny, ale nie potrafimy
wskazać granicy. Wtedy możemy użyć warunku Cauchy’ego.

Definicja 2.15. Mówimy, że ciąg spełnia warunek Cauchy’ego jeśli dla du-
żych wskaźników wyrazy ciągu leżą blisko siebie. Ściśle: dla dowolnej liczby
ε > 0 istnieje próg N taki, że dla m,n > N mamy |an − am| < ε.
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Przykłady.

(a)

an = 1 +
1
22

+
1
32

+ . . .+
1
n2
.

Załóżmy, że n > m. Wtedy:

an − am =
1

(m+ 1)2
+

1
(m+ 2)2

+ . . .+
1
n2

<
1

m(m+ 1)
+

1
(m+ 1)(m+ 2)

+ . . .+
1

(n− 1)n

=
( 1
m
− 1
m+ 1

)
+
( 1
m+ 1

− 1
m+ 2

)
+. . .+

( 1
n− 1

− 1
n

)
=

1
m
− 1
n
<

1
m
.

Chcemy, aby 1/m < ε. Niech N = [1/ε] . Wtedy dla n > m > N mamy
1/m < ε, zatem

0 < an − am <
1
m
< ε.

Ciąg an jest zbieżny. Rzeczywiście ciąg an jest ściśle rosnący oraz z prze-
prowadzonego wyżej rozumowania (dla m = 1) wynika, że an − a1 < 1
czyli an < 2. Można udowodnić, że

lim
n
an =

π2

6
.

(b)

bn = 1 +
1
2

+
1
3

+ . . .+
1
n
.

Obliczamy

b2n − bn =
1

n+ 1
+

1
n+ 2

+ . . .+
1

2n
­ 1

2n
+

1
2n

+ . . .+
1

2n︸ ︷︷ ︸
n składników

=
1
2
.

Zatem warunek Cauchy’ego nie jest spełniony.

Twierdzenie 2.16. Ciąg jest zbieżny wtedy i tylko wtedy, gdy spełnia waru-
nek Cauchy’ego.
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Dowód. ( =⇒ ) Niech g = lim
n
an. Wtedy

|an − am| = |(an − g)− (am − g)| ¬ |an − g|+ |am − g|.

Z założenia dla liczby ε > 0 istnieje próg N, dla którego |ak − g| < ε
2 dla

k > N. Niech n,m > N. Wtedy

|an − am| < ε.

(⇐=) Pokażemy, że ciąg an jest ograniczony. Dla ε = 1 istnieje próg N (liczba

naturalna) taki, że |an − am| < 1 dla n,m > N. Niech

M = max{|a1|, |a2|, . . . , |aN |, |aN+1|+ 1}.

Wtedy |an| ¬M dla wszystkich n. Rzeczywiście:

(1) Dla n = 1, 2, . . . , N mamy |an| ¬M w oczywisty sposób.

(2) Dla n > N mamy |an − aN+1| < 1 zatem

|an| = |(an − aN+1) + aN+1| ¬ |an − aN+1|+ |aN+1| < 1 + |aN+1| ¬M.

Z twierdzenia Bolzano-Weierstrassa ciąg an posiada podciąg zbieżny. Niech
g = lim

n
amn . Pokażemy, że lim

n
an = g. Ustalmy liczbę ε > 0. Istnieje próg

N1 taki, że |an − am| < ε
2 dla n,m > N1. Dalej istnieje próg N2 taki, że dla

n > N2 mamy |amn− g| < ε
2 . Określmy N = max(N1, N2). Wtedy dla n > N

otrzymujemy mn ­ n > N, zatem

|an − g| = |(an − amn) + (amn − g)| ¬ |an − amn|+ |amn − g| <
ε

2
+
ε

2
= ε.

Uwaga 2.17. Przypuśćmy, że „żyjemy” w przedziale (0, 1). Ciąg 1/n spełnia
warunek Cauchy’ego, ale granica leży poza przedziałem (0, 1).

Na prostej R wprowadzamy nową odległość

d(x, y) = |arctg x− arctg y|.

Wtedy ciąg xn = n spełnia warunek Cauchy’ego, ale nie jest zbieżny.
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Definicja 2.18. Mówimy, że ciąg an jest rozbieżny do nieskończoności (∞)
jeśli dla dowolnej liczby M istnieje próg N taki, że dla n > N mamy an > M,
tzn. w przedziale (M,∞) znajdują się prawie wszystkie wyrazy ciągu.

Przykłady.

(a) lim
n
n =∞.

(b) lim
n

log n =∞..

Dowód. Niech M > 0. Chcemy, aby log n > M = log eM , czyli n > eM .
Wystarczy, aby n > [eM ]. Wtedy log n > M.

(c)

bn = 1 +
1
2

+
1
3

+ . . .+
1
n
.

Wiemy, że b2n − bn > 1
2 . Zatem

b2n = (b2n − b2n−1) + (b2n−1 − b2n−2) + . . .+ (b2 − b1) + b1 ­
n

2
+ 1.

Dla liczby naturalnej k ­ 2 mamy 2n ¬ k < 2n+1 dla pewnej wartości
n. Wtedy (n+ 1) log 2 > log k oraz

bk ­ b2n ­ 1 +
n

2
­ n+ 1

2
>

log k
2 log 2

=
log k
log 4

.

Twierdzenie 2.19. Ciąg dodatni an spełnia lim
n
an =∞ wtedy i tylko wtedy,

gdy lim
n

1
an

= 0.

Dowód. ( =⇒ ) Niech ε > 0. Określmy M =
1
ε
. Istnieje próg N, dla którego

an > M =
1
ε
, n > N.

Wtedy

0 <
1
an

< ε, n > N.
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(⇐=) Rozważamy liczbę M. Jeśli M ¬ 0, to an > M dla wszystkich n. Jeśli

M > 0, to przyjmujemy ε =
1
M
. Istnieje próg N taki, że

1
an

< ε =
1
M
, n > N.

Wtedy
an > M, n > N.

Twierdzenie 2.20 (kryterium porównawcze). Jeśli an ¬ bn oraz lim
n
an =

∞, to lim
n
bn =∞.

Definicja 2.21. Określamy lim
n
an = −∞ jeśli lim

n
(−an) =∞.

Definicja 2.22. Liczbę α nazywamy punktem skupienia ciągu an jeśli można
znaleźć podciąg ank zbieżny do α.

Uwaga 2.23. Zbieżny ciąg posiada tylko jeden punkt skupienia - swoją
granicę.

Przykłady.

(a) an = (−1)n. Wtedy a2n = 1 i a2n+1 = −1.

(b) an = sinn. Zbiór punktów skupienia jest równy [−1, 1].

(c) Rozważmy ciąg

1,
1
2
, 1,

1
2
,
1
3
, 1,

1
2
,
1
3
,
1
4
, . . . .

Wtedy zbiór punktów skupienia jest równy
{

0, 1,
1
2
,
1
3
, . . .

}
.

Uwaga 2.24. Liczba α jest punktem skupienia ciągu an wtedy i tylko wtedy,
gdy w każdym przedziale (α − ε, α + ε) znajduje się nieskończenie wiele
wyrazów ciągu an.

Zadanie. Czy zbiór liczb wymiernych z przedziału [0, 1] może być zbiorem
punktów skupienia jakiegoś ciągu ?
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Twierdzenie 2.25. Dla ograniczonego ciągu an istnieją najmniejszy i naj-
większy punkt skupienia nazywane granicą dolną i górną ciągu i oznaczane
symbolami lim inf an oraz lim sup an.

Dla ciągu z przykładu (c) granica dolna wynosi 0, a górna 1.

Uwaga 2.26. Można udowodnić, że

lim inf an = sup
n

inf
m­n

am, lim sup an = inf
n

sup
m­n

am.

Dowód. (*) Oznaczmy b = inf
n

sup
m­n

am. Pokażemy, że b jest punktem skupie-

nia. Jeśli nie, to dla pewnej liczby ε > 0 przedział (b − ε, b + ε) zawiera
tylko skończenie wiele wyrazów ciągu an. Na prawo od b+ ε może być tylko
skończenie wiele wyrazów ciągu, bo w przeciwnym razie sup

m­n
am ­ b + ε dla

wszystkich n. Zatem prawie wszystkie wyrazy leżą poniżej b− ε, co prowadzi
do sprzeczności.

Oznaczmy bn = sup
m­n

am. Wtedy an ¬ bn. Ponadto ciąg bn jest malejący,

zatem
bn ↘ inf

n
bn = b.

Jeśli amn → α, to z nierówności amn ¬ bmn wynika, α ¬ b, czyli faktycznie
liczba b jest największym punktem skupienia.

2.2 Liczba e

Rozważmy dwa ciągi

xn =
(

1 +
1
n

)n
, yn =

(
1 +

1
n

)n+1

.

Mamy xn < yn. Obliczamy

xn+1

xn
=

(
1 + 1

n+1

)n+1

(
1 + 1

n

)n+1

(
1 +

1
n

)
=
(
n(n+ 2)
(n+ 1)2

)n+1 (
1 +

1
n

)

=
(

1− 1
(n+ 1)2

)n+1 (
1 +

1
n

)
>

(
1− 1

(n+ 1)

)(
1 +

1
n

)
= 1.
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W ostatniej linii skorzystaliśmy z nierówności Bernoulli’ego (1+x)n > 1+nx
dla x > −1, x 6= 0. Udowodniliśmy, że ciąg xn jest ściśle rosnący. Dalej

yn−1

yn
=

(
1 + 1

n−1

)n+1

(
1 + 1

n

)n+1
1

1 + 1
n−1

=
(

n2

(n+ 1)(n− 1)

)n+1
n− 1
n

=
(

1 +
1

n2 − 1

)n+1 n− 1
n

>
(

1 +
1

n− 1

)
n− 1
n

= 1.

Zatem yn jest ciągiem ściśle malejącym. Mamy więc

2 = x1 < x2 < . . . < xn < yn < . . . < y2 < y1 = 4.

Oba ciągi są więc zbieżne. Oznaczmy

e = lim
n
xn = lim

n

(
1 +

1
n

)n
.

Wtedy

yn = xn

(
1 +

1
n

)
→ e.

Znajdziemy teraz inną przydatną postać liczby e. Mamy

xn =
(

1 +
1
n

)n
=

n∑
k=0

(
n

k

)
1
nk

= 1 +
n∑
k=1

n(n− 1) . . . (n− k + 1)
nk

1
k!
¬ 1 +

n∑
k=1

1
k!

Ustalmy liczbę naturalną m. Dla n > m mamy

xn =
(

1 +
1
n

)n
­ 1 +

m∑
k=1

n(n− 1)(n− 2) . . . (n− k + 1)
nk

1
k!

= 1 +
m∑
k=1

(
1− 1

n

)(
1− 2

n

)
. . .

(
1− k − 1

n

)
1
k!

Przechodzimy z n do nieskończoności i otrzymujemy

e ­ 1 +
m∑
k=1

1
k!
.
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Reasumując mamy (
1 +

1
n

)n
¬ 1 +

n∑
k=1

1
k!
¬ e.

Zatem
e = lim

n

(
1 +

1
1!

+
1
2!

+
1
3!

+ . . .+
1
n!

)
.

Twierdzenie 2.27. Liczba e ma przedstawienie

e = 1 +
1
1!

+
1
2!

+
1
3!

+ . . .+
1
n!

+
θ(n)
n!n

,

gdzie 0 < θ(n) < 1.

Dowód. Dla m > n mamy

cm := 1 +
1
1!

+
1
2!

+
1
3!

+ . . .+
1
n!

+
1

(n+ 1)!
+ . . .+

1
m!

= cn+
1

(n+ 1)!

[
1 +

1
n+ 2

+
1

(n+ 2)(n+ 3)
+ . . .+

1
(n+ 2)(n+ 3) · . . . ·m

]

< cn +
1

(n+ 1)!

[
1 +

1
n+ 2

+
1

(n+ 2)2
+ . . .+

1
(n+ 2)m−n−1

]

= cn +
1

(n+ 1)!

1− 1
(n+2)m−n

1− 1
n+2

< cn +
1

(n+ 1)!
n+ 2
n+ 1

Zatem
cn < cm < cn +

1
(n+ 1)!

n+ 2
n+ 1

.

Przechodząc do granicy, gdy m→∞ otrzymujemy

1+
1
1!

+
1
2!

+
1
3!

+ . . .+
1
n!

< e ¬ 1+
1
1!

+
1
2!

+
1
3!

+ . . .+
1
n!

+
1
n!n

n(n+ 2)
(n+ 1)2

.

Zatem

0 < e−
(

1 +
1
1!

+
1
2!

+
1
3!

+ . . .+
1
n!

)
¬ 1
n!n

n(n+ 2)
(n+ 1)2

<
1
n!n

.

Stąd otrzymujemy tezę twierdzenia.
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Uwaga 2.28. Rozwinięcie dziesiętne liczby e ma postać

e = 2, 718281828 . . . .

Wniosek 2.29. Liczba e jest niewymierna.

Dowód. Symbolem {x} oznaczamy część ułamkową liczby x. Gdyby e = p
q
,

dla liczb naturalnych p i q, to {q!e} = 0. Ale z poprzedniego twierdzenia
mamy

{n!e} =
{
θ(n)
n

}
=
θ(n)
n

> 0.

Uwaga 2.30. Można udowodnić, że liczba e jest przestępna, tzn. nie jest
pierwiastkiem żadnego wielomianu o współczynnikach całkowitych. Liczby
będące pierwiastkami takich wielomianów nazywamy liczbami algebraiczny-
mi.

Wiemy, że (
1 +

1
n

)n
< e <

(
1 +

1
n

)n+1

.

Zastosujmy logarytm przy podstawie e do nierówności. Otrzymamy po prze-
kształceniach

1
n+ 1

< log
(

1 +
1
n

)
<

1
n
. (2.6)

Rozważmy ciąg

un = 1 +
1
2

+ . . .+
1
n
− log(n+ 1).

Mamy

un − un−1 =
1
n
− log(n+ 1) + log n =

1
n
− log

(
1 +

1
n

)
> 0,

na podstawie drugiej nierówności w (2.6). Rozważmy inny ciąg

vn = 1 +
1
2

+ . . .+
1
n
− log n.

Mamy

vn+1 − vn =
1

n+ 1
− log(n+ 1) + log n =

1
n+ 1

− log
(

1 +
1
n

)
< 0,
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na podstawie pierwszej nierówności w (2.6). Dla n > 1 otrzymujemy

u1 < un < vn < v1.

Zatem oba ciągi są zbieżne jako ciągi monotoniczne i ograniczone. Ponieważ

vn = un−1 +
1
n
, to granice obu ciągów są równe. Oznaczmy symbolem c tę

granicę. Wtedy
0 < 1− log 2 = u1 < c < v1 = 1.

Reasumując

lim
n

(
1 +

1
2

+ . . .+
1
n
− log n

)
= c, 0 < c < 1. (2.7)

Liczbę c nazywamy stałą Eulera. Rozwinięcie dziesiętne ma postać

c = 0, 5772156649 . . . .

3 Szeregi liczbowe

Dla ciągu an określamy ciąg sum częściowych sn wzorem

sn = a1 + a2 + . . .+ an.

W szczególności s5 = a1 + a2 + a3 + a4 + a5. Jeśli ciąg sn jest zbieżny (do
granicy s), to mówimy, że szereg jest zbieżny i zapisujemy

∞∑
n=1

an = s.

Przykłady.

(a) Rozważmy ciąg geometryczny an = qn dla |q| < 1. Wtedy

sn = q + q2 + . . .+ qn =
q − qn+1

1− q
−→
n

q

1− q
,

bo qn −→
n

0, dla |q| < 1. ∗ Zatem

∞∑
n=1

qn =
q

1− q
.

∗Wystarczy pokazać |q|n → 0, czyli rozważać 0 < q < 1. Niech 1/q = 1 + a, dla a > 0.
Wtedy 1/qn = (1 + a)n > 1 + na. Czyli 0 < qn < 1/(1 + na).
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(b) Rozważmy szereg harmoniczny o wyrazach an = 1
n
. Wiemy, że

sn = 1 +
1
2

+ . . .+
1
n
> log n.

Szereg
∞∑
n=1

1
n

jest rozbieżny (do nieskończoności).

Twierdzenie 3.1 (warunek Cauchy’ego dla szeregu). Szereg
∞∑
n=1

an jest zbież-

ny wtedy i tylko wtedy, gdy spełnia warunek, że dla dowolnej liczby ε > 0
istnieje próg N taki, że dla n > m > N mamy

|am+1 + am+2 + . . .+ an| < ε.

Dowód. Dla n > m mamy

|sn − sm| = |am+1 + am+2 + . . .+ an| < ε.

To oznacza, że warunek w twierdzeniu jest identyczny z warunkiem Cau-
chy’ego dla ciągu sn.

Twierdzenie 3.2. Jeśli szereg
∞∑
n=1

an jest zbieżny, to lim
n
an = 0.

Dowód. Mamy an = sn − sn−1. Oznaczmy s = lim
n
sn. Wtedy

lim
n
an = lim

n
sn − lim

n
sn−1 = s− s = 0.

Uwaga 3.3. Warunek w tezie nie wystarcza do zbieżności szeregu. Na przy-
kład szereg o wyrazach

1,
1
2
,
1
2
,
1
3
,
1
3
,
1
3
, . . .

nie jest zbieżny. Ile wynosi wyraz szeregu o numerze 2014 ? Które numery
mają wyrazy szeregu o wartości 1/2014 ?

Twierdzenie 3.4. Dla każdego szeregu zbieżnego ciąg sum częściowych jest
ograniczony.

Dowód. Ciąg sn spełnia warunek Cauchy’ego więc jest ograniczony.
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Twierdzenie 3.5. Załóżmy, że szeregi
∞∑
n=1

an i
∞∑
n=1

bn są zbieżne. Wtedy zbież-

ne są szeregi
∞∑
n=1

(an ± bn) i
∞∑
n=1

λan oraz

∞∑
n=1

(an ± bn) =
∞∑
n=1

an ±
∞∑
n=1

bn,

∞∑
n=1

λan = λ
∞∑
n=1

an.

Teza wynika z Twierdzenia 2.7 zastosowanego do ciągów sum częściowych
szeregów

∑
an i

∑
bn.

Definicja 3.6. Szereg
∞∑
n=1

an jest bezwzględnie zbieżny jeśli szereg
∞∑
n=1

|an| jest

zbieżny.

Twierdzenie 3.7. Szereg bezwzględnie zbieżny jest zbieżny.

Dowód. Teza wynika z nierówności dla n > m

|am+1 + am+2 + . . .+ an| ¬ |am+1|+ |am+2|+ . . .+ |an|.

Zatem warunek Cauchy’ego dla szeregu
∞∑
n=1

|an| pociąga ten warunek dla

szeregu
∞∑
n=1

an.

Uwaga 3.8. Zbieżny szereg nie musi być bezwzględnie zbieżny. Na przykład
szereg o wyrazach

1
2
,−1

2
,

1
4
,−1

4
,

1
4
,−1

4
,

1
6
,−1

6
,

1
6
,−1

6
,

1
6
,−1

6
, . . .

jest zbieżny do liczby 0, ale nie jest zbieżny bezwględnie.

Uwaga 3.9. Zbieżność ciągu an i szeregu
∞∑
n=1

an nie zależy od zachowania

się skończonej liczby początkowych wyrazów. Tzn. jeśłi an = bn dla n > N
to ciągi an i bn są jednocześnie zbieżne lub jednocześnie rozbieżne. To samo

dotyczy szeregów
∞∑
n=1

an i
∞∑
n=1

bn.
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Twierdzenie 3.10 (Kryterium Dirichleta). Załóżmy, że ciąg an jest male-
jący oraz an −→

n
0. Załóżmy również, że sumy częściowe ciągu bn są ograni-

czone (tzn. ciąg o wyrazach sn = b1 + b2 + . . .+ bn jest ograniczony). Wtedy

szereg
∞∑
n=1

anbn jest zbieżny.

Dowód. Sprawdzimy warunek Cauchy’ego. Z założenia |sn| ¬M dla pewnej
stałej M > 0. Niech n > m. Wtedy

|am+1bm+1 + am+2bm+2 + . . .+ anbn|
= |am+1(sm+1 − sm) + am+2(sm+2 − sm+1) + . . .+ an(sn − sn−1)|

= |−am+1sm+(am+1−am+2)sm+1+(am+2−am+3)sm+2+. . .+(an−1−an)sn−1+ansn|
¬ am+1|sm|+(am+1−am+2)|sm+1|+(am+2−am+3)|sm+2|+. . .+(an−1−an)|sn−1|+an|sn|
¬M [am+1 + (am+1 − am+2) + (am+2 − am+3) + . . .+ (an−1 − an) + an] = 2Mam+1.

Dla ε > 0 istnieje liczba naturalna m0 taka, że am0 <
ε

2M . Wtedy dla m ­ m0

mamy

|am+1bm+1 + am+2bm+2 + . . .+ anbn| ¬ 2Mam+1 ¬ 2Mam0 < ε.

Przykład. Rozważamy szereg
∞∑
n=1

sinnx
n

. Dla x = kπ szereg jest zbieżny,

bo każdy wyraz się zeruje. Załóżmy, że x 6= 2kπ. Przyjmujemy an =
1
n

oraz
bn = sinnx. Będziemy korzystać ze wzoru trygonometrycznego

cosα− cos β = 2 sin β−α
2 sin β+α

2 ,

czyli po przekształceniu

cos(v − u)− cos(u+ v) = 2 sinu sin v.

Badamy sumy częściowe ciągu bn.

sinx+ sin 2x+ . . .+ sinnx

=
1

2 sin x
2

(
2 sin x

2 sinx+ 2 sin x
2 sin 2x+ . . .+ 2 sin x

2 sinnx
)

=
1

2 sin x
2

[(
cos x

2 − cos 3x
2

)
+
(
cos 3x

2 − cos 5x
2

)
+ . . .+

(
cos (2n−1)x

2 − cos (2n+1)x
2

)]

=
1

2 sin x
2

(
cos x

2 − cos (2n+1)x
2

)
=

sin nx
2 sin (n+1)x

2

sin x
2

.
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Otrzymujemy

| sinx+ sin 2x+ . . .+ sinnx| ¬ 1
| sin x

2 |
.

Wniosek 3.11 (kryterium Leibniza o szeregu naprzemiennym). Jeśli ciąg

an jest malejący oraz an −→
n

0, to szereg
∞∑
n=1

(−1)n+1an jest zbieżny.

Dowód. Przyjmujemy bn = (−1)n+1. Wtedy sumy częściowe ciągu bn mają
postać s2n = 0 i s2n+1 = 1. Zatem szereg jest zbieżny.

Przykład. Szereg
∞∑
n=1

(−1)n+1

n
jest zbieżny z kryterium Leibniza. Ze wzoru

(2.7) można wykazać, że szereg jest zbieżny do liczby log 2.

Wniosek 3.12. Jeśli an jest zbieżnym ciągiem monotonicznym a szereg
∞∑
n=1

bn jest zbieżny, to zbieżny jest szereg
∞∑
n=1

anbn.

Dowód. Możemy założyć, że ciąg an jest malejący. Oznaczmy a = lim
n
an.

Wtedy an−a↘
n

0. Z twierdzenia Dirichleta szereg
∞∑
n=1

(an−a)bn jest zbieżny.

Ale
anbn = (an − a)bn + abn,

zatem szereg
∞∑
n=1

anbn jest zbieżny.

Twierdzenie 3.13 (Kryterium porównawcze). Załóżmy, że 0 ¬ an ¬ bn.

Jeśli szereg
∞∑
n=1

bn jest zbieżny, to zbieżny jest szereg
∞∑
n=1

an. Ponadto

∞∑
n=1

an ¬
∞∑
n=1

bn.

Dowód. Dla n > m mamy

0 ¬ am+1 + am+2 . . .+ an ¬ bm+1 + bm+2 + . . .+ bn.

Warunek Cauchy’ego dla szeregu
∑

bn pociąga ten warunek dla szeregu∑
an. Sumy częściowe szeregu

∑
an są niewiększe niż sumy częściowe dla

szeregu
∑

bn. Zatem nierówność przenosi się na sumy szeregów.
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Można podać inne uzasadnienie. Mamy

0 ¬ sn := a1 + a2 + . . .+ an ¬ b1 + b2 + . . .+ bn ¬
∞∑
j=1

bj =: B.

Ciąg sum częściowych sn jest rosnący i ograniczony, zatem jest zbieżny. Po-
nadto ∞∑

j=1

aj = lim
n
sn ¬ B.

Uwaga 3.14. Kryterium porównawcze stosujemy tylko dla szeregów o wy-
razach nieujemnych, przynajmniej od pewnego miejsca n0. Wtedy

∞∑
n=n0

an ¬
∞∑

n=n0

bn.

Uwaga 3.15. Jeśli an ­ 0, to ciąg sn =
n∑
i=1

ai jest rosnący. Zatem ciąg sn

(i w związku z tym szereg
∑

an) jest zbieżny wtedy i tylko wtedy, gdy ten
ciąg jest ograniczony (od góry). Jeśli sn nie jest ograniczony od góry, to sn
jest rozbieżny do ∞. Stosujemy wtedy zapis

∞∑
n=1

an =∞.

Wniosek 3.16. Jeśli 0 ¬ an ¬ bn oraz szereg
∞∑
n=1

an jest rozbieżny, to szereg

∞∑
n=1

bn też jest rozbieżny.

Przykład. Badamy szereg
∞∑
n=1

n4 + 8n
2n5 + n2 + 4

.

n4 + 8n
2n5 + n2 + 4

­ n4

2n5 + n5 + 4n5
=

1
7n
.

Wiemy, że
∑ 1

n
=∞, więc badany szereg jest rozbieżny.
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Twierdzenie 3.17 (Kryterium Cauchy’ego). Załóżmy, że

a = lim
n

n

√
|an|.

(i) Jeśli a < 1, to szereg
∞∑
n=1

an jest bezwględnie zbieżny.

(ii) Jeśli a > 1, to szereg
∞∑
n=1

an jest rozbieżny.

Uwaga 3.18. Kryterium nie rozstrzyga zbieżności, gdy a = 1. Dla szeregów∑ 1
n2

∑ 1
n

mamy a = 1. Pierwszy z szeregów jest zbieżny a drugi rozbieżny.

Dowód. (i) a < 1. Niech r =
a+ 1

2
. Wtedy a < r < 1. Istnieje próg N taki,

że dla n > N mamy n

√
|an| < r. Zatem |an| < rn dla n ­ N + 1. Z kryterium

porównawczego szereg
∞∑
n=1

|an| jest zbieżny.

(ii) a > 1. Dla r =
a+ 1

2
istnieje próg N taki, że dla n > N mamy n

√
|an| >

r > 1. Tzn. |an| > rn dla n > N, czyli an jest rozbieżny do nieskończoności.
Tym bardziej szereg

∑
an jest rozbieżny.

Twierdzenie 3.19 (Kryterium d’Alemberta). Załóżmy, że

lim
n

|an+1|
|an|

= a.

(i) Jeśli a < 1, to szereg
∞∑
n=1

an jest bezwględnie zbieżny.

(ii) Jeśli a > 1, to szereg
∞∑
n=1

an jest rozbieżny.

Dowód. Zastosujemy oznaczenia z dowodu kryterium Cauchy’ego, tzn. r =
a+ 1

2
.

(i) Istnieje N takie, że dla n > N mamy
|an+1|
|an|

< r. Wtedy

|an| =
|an|
|an−1|

· |an−1|
|an−2|

· . . . · |aN+2|
|aN+1|

|aN+1| < rn−N−1|aN+1| =
|aN+1|
rN+1

rn. (3.1)
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Z kryterium porównawczego szereg
∞∑
n=1

|an| jest zbieżny.

(ii). Istnieje N takie, że dla n > N mamy
|an+1|
|an|

> r > 1. Z pierwszej

równości we wzorze (3.1) otrzymujemy wtedy

|an| >
|aN+1|
rN+1

rn.

Zatem |an| −→
n
∞.

Uwaga 3.20. Można udowodnić, że z istnienia granicy lim
n

|an+1|
|an|

wynika

lim
n

n

√
|an| = lim

n

|an+1|
|an|

.

Wniosek 3.21. Jeśli ciąg an spełnia założenia kryterium Cauchy’ego lub
d’Alemberta, to dla a < 1 ciąg ten jest zbieżny do zera, a dla a > 1 wartości
bezwzględne wyrazów dążą do nieskończoności.

Przykłady.

(a)
∞∑
n=1

2n

n!
. Stosujemy kryterium d’Alemberta

an+1

an
=

2n+1

(n+ 1)!
· n!

2n
=

2
n+ 1

−→
n

0.

W związku z tym szereg jest zbieżny.

(b)
∞∑
n=1

nk

3n
, dla k ∈ N. Używamy kryterium Cauchy’ego.

n

√
nk

3n
=

1
3

( n
√
n)k −→

n

1
3
,

i otrzymujemy zbieżność szeregu.



Szeregi liczbowe 33

(c)
∞∑
n=1

n!
nn
. Wygodniej będzie użyć kryterium d’Alemberta.

an+1

an
=

(n+ 1)!
(n+ 1)n+1

· n
n

n!
=

nn

(n+ 1)n
=

1(
1 + 1

n

)n −→
n

1
e
< 1.

Zatem szereg jest zbieżny.

Twierdzenie 3.22 (Cauchy’ego o zagęszczaniu). Załóżmy, że ciąg an jest

malejący oraz an −→
n

0. Szereg
∞∑
n=1

an jest zbieżny wtedy i tylko wtedy, gdy

zbieżny jest szereg (zagęszczony)
∞∑
n=1

2na2n .

Przykłady.

(a) Rozważmy szereg
∞∑
n=1

1
nα
, dla α > 0. Szereg zagęszczony ma postać

∞∑
n=1

2n

2nα
=
∞∑
n=1

( 1
2α−1

)n
.

Szereg ten jest zbieżny tylko jeśli 2α−1 > 1, czyli dla α > 1.

(b) Niech an =
1

n logα n
, dla n ­ 2 oraz α > 0. Wtedy

∞∑
n=1

2na2n =
∞∑
n=1

2n

2n(log 2n)α
=
∞∑
n=1

1
nα logα 2

.

Zatem szereg jest zbieżny tylko dla α > 1 na podstawie przykładu (a).

(c) Można pokazać, że szereg o wyrazach

an =
1

n log n(log log n)α
, n ­ 3,

jest zbieżny tylko dla α > 1.
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Dowód twierdzenia o zagęszczaniu. (⇒) Mamy

1
2

n∑
k=1

2ka2k = a2 + 2a4 + 4a8 + . . .+ 2n−1a2n

¬ a2 + (a3 + a4) + (a5 + a6 + a7 + a8) + . . .+ (a2n−1+1 + . . .+ a2n)

¬
2n∑
k=1

ak ¬
∞∑
k=1

ak =: s.

Zatem
n∑
k=1

2ka2k ¬ 2s. To oznacza, że sumy częściowe szeregu
∞∑
k=1

2ka2k

są ograniczone od góry. Stąd szereg jest zbieżny, bo sumy częściowe
tworzą ciąg rosnący.

(⇐) Ponieważ 2n ­ n+ 1, to

n∑
k=1

ak ¬
2n−1∑
k=1

ak

= a1 + (a2 + a3) + (a4 + a5 + a6 + a7) + . . .+ (a2n−1 + . . .+ a2n−1)

¬ a1 + 2a2 + 4a4 + . . .+ 2n−1a2n−1 ¬ a1 +
∞∑
k=1

2ka2k =: s̃.

Sumy częściowe szeregu
∞∑
n=1

an są ograniczone przez s̃, zatem szereg ten

jest zbieżny.

Dla zbieżnego szeregu s =
∞∑
n=1

an określamy ciąg n-tych ogonów wzorem

rn =
∞∑

k=n+1

ak. Mamy

sn + rn = s, rn = s− sn,

zatem
lim
n
rn = lim

n
(s− sn) = 0.
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3.1 Łączność i przemienność w sumie nieskończonej

Jeśli szereg
∞∑
n=1

an jest zbieżny, to zbieżny jest szereg postaci

(a1 + a2 + . . .+ an1) + (an1+1 + an1+2 + . . .+ an2)
+ . . .+ (ank+1 + ank+2 + . . .+ ank+1) + . . . (3.2)

Rzeczywiście, sumy częściowe szeregu (3.2) mają postać

sn1 , sn2 , . . . , snk , . . . ,

zatem ciąg snk jest podciągiem ciągu sn. Stąd snk jest zbieżny do tej samej
granicy co ciąg sn, czyli suma szeregu z nawiasami jest taka sama jak suma
oryginalnego szeregu.

Uwaga 3.23. Wynikanie odwrotne nie jest spełnione. Szereg (3.2) po otwo-
rzeniu nawiasów może być rozbieżny:

(−1 + 1) + (−1 + 1) + . . .+ (−1 + 1) + . . .

Jeśli w każdym nawiasie szeregu wyrazy mają ten sam znak i szereg (3.2) jest
zbieżny (do s), to szereg bez nawiasów też jest zbieżny do s. Rzeczywiście,
zauważmy, że jeśli nk < n < nk+1, to suma sn leży pomiędzy snk i snk+1 . Dla
dużych wskaźników k liczby snk i snk+1 leżą blisko liczby s. Wtedy wielkości
sn dla nk < n < nk+1 również leżą blisko s.

Przy dodawaniu skończonej liczby składników ich kolejność nie gra roli.
Co to znaczy zmiana kolejności dodawania w sumie nieskończonej ?

Definicja 3.24. Permutacją zbioru liczb naturalnych nazywamy ciąg σ1, σ2, . . . , σn, . . .
złożony z liczb naturalnych, w którym każda liczba naturalna występuje do-
kładnie raz.

Przykład.
2, 1, 4, 3, . . . , 2n, 2n− 1, . . .

Twierdzenie 3.25. Jeśli szereg
∞∑
n=1

an jest bezwględnie zbieżny, to szereg

∞∑
n=1

aσn jest zbieżny dla dowolnej premutacji σ oraz

∞∑
n=1

an =
∞∑
n=1

aσn .
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Uwaga 3.26. Założenie bezwzględnej zbieżności jest istotne. Rozważmy sze-

reg
∞∑
n=1

(−1)n+1

n
. Mamy

1− 1
2

+
1
3
−
(1

4
− 1

5

)
−
(1

6
− 1

7

)
− . . .− < 1− 1

2
+

1
3

1 +
1
3
− 1

2
+
(1

5
+

1
7
− 1

4

)
︸ ︷︷ ︸

> 0

+ . . .+
( 1

4n− 3
+

1
4n− 1

− 1
2n

)
︸ ︷︷ ︸

> 0

+ . . . > 1 +
1
3
− 1

2
.

Szereg w drugiej linii jest zbieżny. Istotnie

s3n =
(

1 +
1
3
− 1

2

)
+
(1

5
+

1
7
− 1

8

)
+ . . .+

( 1
4n− 3

+
1

4n− 1
− 1

2n

)
=

n∑
k=1

( 1
4k − 3

+
1

4k − 1
− 1

2k

)
=

n∑
k=1

( 1
4k − 3

− 1
4k

+
1

4k − 1
− 1

4k

)

=
n∑
k=1

(
3

4k(4k − 3)
+

1
4k(4k − 1)

)
.

Ciąg s3n jest rosnący, bo składniki występujące w ostatniej sumie są dodatnie.
Mamy 4k − 1 > 4k − 3 ­ k. Zatem

s3n ¬
n∑
k=1

( 3
4k2

+
1

4k2

)
=

n∑
k=1

1
k2

<
∞∑
k=1

1
k2
.

Czyli ciąg s3n jest zbieżny. Oznaczmy s = lim
n
s3n. Mamy

s3n+1 = s3n +
1

4n+ 1
−→
n

s,

s3n+2 = s3n +
1

4n+ 1
+

1
4n+ 3

−→
n

s.

Zatem lim
n
sn = s.

Zadanie. Wykazać, że s =
3
2

log 2.

Dowód. Oznaczmy s =
∞∑
n=1

an. Ustalmy liczbę ε > 0. Istnieje liczba naturalna

N, dla której
∞∑

n=N+1

|an| < ε
2 . Rozważamy permutację {σn}. Istnieje liczba
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naturalna M taka, że wśród liczb σ1, σ2, . . . , σM występują wszystkie liczby
1, 2, . . . , N. Niech m > M. Wtedy

m∑
k=1

aσk − s =
(

m∑
k=1

aσk −
N∑
k=1

ak

)
−

∞∑
k=N+1

ak.

W nawiasie wyrazy z drugiej sumy się uproszczą i po odjęciu pozostaną tylko
wyrazy o numerach większych od N. Zatem∣∣∣∣∣

m∑
k=1

aσk − s
∣∣∣∣∣ ¬

∣∣∣∣∣
m∑
k=1

aσk −
N∑
k=1

ak

∣∣∣∣∣+
∞∑

k=N+1

|ak| ¬ 2
∞∑

k=N+1

|ak| < ε.

Definicja 3.27. Mówimy, że szereg
∑

an jest zbieżny warunkowo, jeśli szereg
ten jest zbieżny, ale nie jest zbieżny bezwględnie, tzn.

∞∑
n=1

|an| =∞.

Twierdzenie 3.28 (Riemann). Jeśli szereg
∑

an jest zbieżny warunkowo,
to poprzez zamianę kolejności wyrazów można uzyskać szereg zbieżny do z
góry ustalonej liczby, rozbieżny do −∞, +∞ lub szereg rozbieżny.

Dowód. Przedstawimy szkic dowodu. Dla liczby a określamy dodatnią i ujem-
ną część tej liczby wzorami

a+ =

a a ­ 0,
0 a < 0

, a− =

−a a ¬ 0,
0 a > 0

.

Zauważmy, że
a = a+ − a−, |a| = a+ + a−.

Z założenia szereg
∞∑
n=1

(a+
n − a−n )

jest zbieżny, ale
∞∑
n=1

(a+
n + a−n ) =∞.
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Stąd wynika, że oba szeregi
∑

a+
n i

∑
a−n są rozbieżne oraz

∞∑
n=1

a+
n =

∞∑
n=1

a−n =∞. (3.3)

Ponadto a+
n i a−n są zbieżne do zera, bo |an| dąży do zera. Stąd wynika, że

suma wyrazów nieujemnych szeregu jest rozbieżna do ∞ a suma wyrazów
ujemnych do −∞. Chcemy uzyskać z góry zadaną liczbę s jako sumę sze-
regu

∑
aσn . W tym celu wybieramy po kolei wyrazy nieujemne szeregu i

dodajemy do momentu, gdy suma przekroczy s. Następnie dodajemy po ko-
lei wyrazy ujemne do momentu, gdy suma znajdzie się poniżej s. Następnie
dodajemy (nieużyte do tej pory) wyrazy nieujemne aż suma przekroczy s,
i dodajemy wyrazy ujemne, aż suma znajdzie się poniżej s. Postępując tak
dalej otrzymamy szereg zbieżny do s. Kolejne kroki są możliwe do wykonania
dzięki (3.3). To, że otrzymany szereg jest zbieżny do s wynika z tego, że |an|
dąży do zera.

Jeśli chcemy uzyskać
∑

aσn = ∞ dodajemy wyrazy nieujemne do mo-
mentu, gdy suma przekroczy 1. Następnie dodajemy jeden wyraz ujemny. W
następnym kroku dodajemy wyrazy nieujemne aż suma przekroczy 2 i doda-
jemy jeden wyraz ujemny. Postępując tak dalej uzyskamy szereg o żądanej
własności.

3.2 Mnożenie Cauchy’ego szeregów.

Rozważmy dwa wielomiany
∞∑
n=0

anx
n oraz

∞∑
n=0

bnx
n (zakładamy, że an = bn =

0 dla dużych n). Mnożymy te wielomiany i grupujemy wyrazy z tą samą
potęgą przy x:

(a0 + a1x+ a2x
2 + . . .+ anx

n + . . .)(b0 + b1x+ b2x
2 + . . .+ bnx

n + . . .)
= a0b0 + (a0b1 + a1b0)x+ (a0b2 + a1b1 + a2b0)x2 + . . .

+ (a0bn + a1bn−1 + . . .+ an−1b1 + anb0)xn + . . . =
∞∑
n=0

(
n∑
k=0

akbn−k

)
xn.

Podstawmy x = 1 aby otrzymać

∞∑
n=0

an
∞∑
n=0

bn =
∞∑
n=0

n∑
k=0

akbn−k. (3.4)
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Wzór (3.4) można uzasadnić w inny sposób. Chcemy pomnożyć
∞∑
n=0

an i
∞∑
n=0

bn.

Tworzymy tabelę mnożenia

b0 b1 b2 . . . bn−1 bn . . .
a0 a0b0 a0b1 a0b2 a0bn
a1 a1b0 a1b1 a1bn−1

a2 a2b0
... . . .

an−1 an−1b1

an anb0
...

Następnie sumujemy wyrazy na przekątnych i wyniki dodajemy.

Twierdzenie 3.29. Jeśli szeregi
∞∑
n=0

an i
∞∑
n=0

bn sa zbieżne, przy czym co-

najmniej jeden z nich bezwzględnie, to szereg o wyrazach cn =
n∑
k=0

akbn−k jest

zbieżny oraz
∞∑
n=0

an
∞∑
n=0

bn =
∞∑
n=0

cn.

Uwaga 3.30. Założenie bezwględnej zbieżności jest istotne. Niech a0 = b0 =
0 oraz

an = bn =
(−1)n√

n
, n ­ 1.

Wtedy

cn =
n−1∑
k=1

(−1)n
1√

(n− k)k
.

Korzystając z nierówności 2ab ¬ a2 + b2 otrzymamy√
(n− k)k ¬ (n− k) + k

2
=
n

2
.

Zatem

|cn| =
n−1∑
k=1

1√
(n− k)k

­ 2(n− 1)
n

.

To oznacza, że ciąg cn nie jest zbieżny do 0, czyli szereg o wyrazach cn nie
może być zbieżny.
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Dowód Twierdzenia 3.29. * Załóżmy, że

∞∑
n=0

|an| <∞.

An =
n∑
k=0

ak, Bn =
n∑
k=0

bk, Cn =
n∑
k=0

ck.

Zatem

c0 = a0b0,

c1 = a0b1 + a1b0,

c2 = a0b2 + a1b1 + a2b0,
...

cn = a0bn + a1bn−1 + a2bn−2 + . . .+ anb0.

Sumując (pionowo) otrzymamy

Cn = a0Bn + a1Bn−1 + a2Bn−2 + . . .+ anB0,

AnBn = a0Bn + a1Bn + a2Bn + . . .+ anBn.

Zatem

Cn − AnBn = a1(Bn−1 −Bn) + a2(Bn−2 −Bn) + . . .+ an(B0 −Bn).

Ciąg Bn spełnia warunek Cauchy’ego. To oznacza, że dla z góry zadanej
liczby ε > 0 istnieje próg N1 taki, że dla s, t > N1 spełniony jest warunek

|Bs −Bt| < ε.

Z kolei z bezwględnej zbieżności szeregu o wyrazach an wynika, że istnieje
próg N2 taki, że

∞∑
n=N2+1

|an| < ε.

Przyjmijmy N = max(N1, N2). Ciąg Bn jest ograniczony. Istnieje więc stała
M > 0, dla której

|Bn| ¬M,
∞∑
n=0

|an| ¬M.
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Niech n > 2N. Wtedy

|Cn − AnBn| ¬ |a1| |Bn−1 −Bn|+ . . .+ |aN | |Bn−N −Bn|
+ |aN+1| |Bn−N−1 −Bn|+ . . .+ |an| |B0 −Bn|.

W pierwszej części sumy oba numery w różnicy Bj − Bn są większe niż N,
bo n > 2N. Zatem |Bj − Bn| < ε. W drugiej części stosujemy oszacowanie
|Bj −Bn| ¬ 2M. W rezultacie otrzymamy

|Cn − AnBn| ¬ ε (|a1|+ |a2|+ . . .+ |aN |) + 2M (|aN+1|+ |aN+2|+ . . .+ |an|)

¬ ε
∞∑
n=0

|an|+ 2M
∞∑

n=N+1

|an| < 3Mε.

Z podkreślonych elementów wynika, że ciąg Cn−AnBn dąży do zera. Oznacz-
my

A =
∞∑
n=0

an, B =
∞∑
n=0

bn.

Mamy
Cn = (Cn − AnBn) + AnBn.

Zatem
lim
n
Cn = lim

n
AnBn = AB.

To oznacza, że szereg
∑

cn jest zbieżny i jego suma jest równa AB.

Przykład. Pomnożymy szereg
∞∑
n=0

xn przez siebie metodą Cauchy’ego, dla

|x| < 1. Otrzymamy

1
(1− x)2

=
∞∑
n=0

xn ·
∞∑
n=0

xn =
∞∑
n=0

n∑
k=0

xkxn−k =
∞∑
n=0

(n+ 1)xn. (3.5)

W szczególności dla x =
1
2

uzyskamy

∞∑
n=0

n+ 1
2n

=
1(

1− 1
2

)2 = 4.
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Zatem (por. zadanie 8 z listy 2)

∞∑
n=1

2n− 1
2n

= 1 +
∞∑
n=0

2n− 1
2n

= 1 + 2
∞∑
n=0

n+ 1
2n
− 3

∞∑
n=0

1
2n

= 1 + 8− 6 = 3.

Prawdziwy jest wzór

∞∑
n=0

(
m+ n

m

)
xn =

1
(1− x)m+1

. (3.6)

Podamy uzasadnienie indukcyjne względem m. Dla m = 1 wzór sprowa-
dza się do (3.5). Przypuśćmy, że wzór spełniony jest dla liczby m. Wtedy

1
(1− x)m+2

=
1

(1− x)m+1
· 1

1− x
=
∞∑
n=0

(
m+ n

m

)
xn ·

∞∑
n=0

xn

=
∞∑
n=0

n∑
k=0

(
m+ k

m

)
xkxn−k =

∞∑
n=0

[
n∑
k=0

(
m+ k

m

)]
xn =

∞∑
n=0

(
m+ n+ 1
m+ 1

)
xn.

W ostatniej równości wykorzystaliśmy wzór(
m

m

)
+
(
m+ 1
m

)
+ . . .+

(
m+ n

m

)
=
(
m+ n+ 1
m+ 1

)
,

który można wyprowadzić (zadanie) z(
n

k − 1

)
+
(
n

k

)
=
(
n+ 1
k

)
.

Zadanie. Obliczyć
∞∑
n=1

n2

2n
korzystając z (3.6) dla m = 1 i m = 2.

4 Funkcje i granice

Jeśli każdej liczbie z pewnego podzbioru E ⊆ R przyporządkowana jest jakaś
liczba rzeczywista, to mamy do czynienia z funkcją. Funkcja składa się z
dziedziny E oraz przepisu, który mówi jakie liczby należy przyporządkować
liczbom z E. Zwykle przepis podany jest wzorem y = f(x).

Przykłady.
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(a) E = (0, 1), f(x) = x.

(b) E = (0,∞), f(x) =
√
x.

(c) E = (−1, 1), f(x) =


sinx −1 < x < 0,
5 x = 0,
x2 0 < x < 1.

.

Będziemy badali zachowanie się wartości funkcji w pobliżu punktu. Do
tego służy granica funkcji w punkcie.

Definicja 4.1 (intuicyjna). Załóżmy, że funkcja f(x) jest określona wokół
punktu a (ale niekoniecznie w punkcie a). Mówimy, że liczba g jest grani-
cą funkcji f(x) w punkcie a, jeśli wartości f(x) leżą coraz bliżej liczby g
dla argumentów x leżących coraz bliżej liczby a, ale x 6= a. Piszemy wtedy
lim
x→a

f(x) = g.

Powyższa definicja wystarcza do obliczenia większości granic. Uściślenia
tej definicji można wykonać na dwa sposoby.

Definicja 4.2 (Heine). Załóżmy, że funkcja f(x) jest określona wokół punktu
a (ale niekoniecznie w punkcie a). Mówimy, że liczba g jest granicą funkcji
f(x) w punkcie a, jeśli dla każdego ciągu xn zbieżnego do a, ale xn 6= a, ciąg
f(xn) jest zbieżny do liczby g.

Uwaga 4.3. Wartość granicy w punkcie a (i fakt jej istnienia) nie zależy
od wartości f(a). Co więcej funkcja f może nie być określona w punkcie a.
Granica zależy tylko od wartości funkcji w pobliżu punktu a, z wyłączeniem
tego punktu.

Przykłady.

(a) E = R, f(x) = x2. Wtedy lim
x→0

x2 = 0. Rzeczywiście, niech xn −→
n

0,

xn 6= 0. Wtedy x2
n −→n 0.
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(b) E = R.

f(x) =

x2, x 6= 0,
5 x = 0.

Wtedy
lim
x→0

f(x) = lim
x→0

x2 = 0.

(c) E = (−1, 0) ∪ (0, 1), f(x) =
1
x
− 1
x
√
x+ 1

. Ile wynosi lim
x→0

f(x) ?

1
x
− 1
x
√
x+ 1

=
√
x+ 1− 1
x
√
x+ 1

=
x

x
√
x+ 1(

√
x+ 1 + 1)

=
1√

x+ 1(
√
x+ 1 + 1)

.

Gdy xn −→
n

0, to f(xn) −→
n

1
2 . Zatem lim

x→0
f(x) =

1
2
.

(d) E = R \ {2}.

f(x) =

x2 + 2, x < 2,
3x2 x > 2.

Niech x2n = 2− 1
n

oraz x2n−1 = 2 +
1
n
. Wtedy

f(x2n) =
(

2− 1
n

)2

+ 2 −→
n

6,

f(x2n−1) = 3
(

2 +
1
n

)2

−→
n

12.

Zatem ciąg f(xn) nie jest zbieżny.

Definicja 4.4 (Cauchy). Mówimy, że liczba g jest granicą funkcji f(x) w
punkcie a jeśli dla dowolnej liczby ε > 0 istnieje liczba δ > 0 taka, że jeśli
0 < |x− a| < δ, to |f(x)− g| < ε.

Uwaga 4.5. Definicja Cauchy’ego odpowiada definicji intuicyjnej. Osoba
wątpiąca, że f(x) może znaleźć się blisko g, wyraża żądanie, aby odległość
f(x) i g była mniejsza niż ε, np. ε = 0, 0001. Naszym zadaniem jest wskazanie
liczby δ > 0, która zagwarantuje, że jeśli odległość argumentu x 6= a od a
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jest mniejsza niż δ, to faktycznie odległość f(x) od g będzie mniejsza niż
ε. Po wykonaniu zadania osoba wątpiąca może zmniejszyć wartość ε np. do
0,00001. Wtedy my musimy znaleźć nową (zwykle znacznie mniejszą) wartość
dla liczby δ, aby zaspokoić żądanie. Jeśli potrafimy to zrobić dla dowolnej
wartości ε, to faktycznie granica funkcji w punkcie a jest równa liczbie g.

Przykład. f(x) =
√
x− 1
x− 1

. Chcemy obliczyć granicę w punkcie 1 z definicji

Cauchy’ego. Mamy f(x) =
1√
x+ 1

. Z definicji intuicyjnej widać, że granica

w 1 wynosi 1
2 . Mamy

∣∣∣∣f(x)− 1
2

∣∣∣∣ =

∣∣∣∣∣ 1√
x+ 1

− 1
2

∣∣∣∣∣ =
|1−
√
x|

2(
√
x+ 1)

=
|x− 1|

2(
√
x+ 1)2

¬ 1
2
|x− 1|.

Jeśli chcemy, aby ∣∣∣∣f(x)− 1
2

∣∣∣∣ < 0, 01

wystarczy, aby 0 < |x − 1| < 0, 02, tzn. możemy przyjąć δ = 0, 02 lub za
δ przyjąć dowolną liczbę dodatnią mniejszą niż 0, 02, np. δ = 0, 01. Ogólnie
dla liczby ε > 0 niech δ = 2ε. Wtedy dla 0 < |x− 1| < 2ε mamy∣∣∣∣f(x)− 1

2

∣∣∣∣ ¬ 1
2
|x− 1| < ε.

Można też przyjąć δ = ε.

Uwaga 4.6. Zapis kwantyfikatorowy definicji Cauchy’ego ma postać

∀ ε > 0 ∃ δ > 0 ∀x { 0 < |x− a| < δ =⇒ |f(x)− g| < ε }.

Twierdzenie 4.7. Definicje granicy według Cauchy’ego i Heinego są rów-
noważne.

Dowód. (C) =⇒ (H).
Zakładamy, że lim

x→a
f(x) = g w sensie Cauchy’go. Niech xn 6= a oraz xn →

n
a.

Trzeba udowodnić, że f(xn) →
n
g. W tym celu ustalmy liczbę ε > 0. Z

założenia istnieje liczba δ > 0, dla której

0 < |x− a| < δ =⇒ |f(x)− g| < ε. (4.1)
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Ponieważ xn →
n
a, to istnieje prógN taki, że dla n > N mamy 0 < |xn − a| < δ.

Wtedy z (4.1) otrzymujemy

|f(xn)− g| < ε, dla n > N.

To oznacza, że lim
n
f(xn) = g.

(H) =⇒ (C). Załóżmy nie wprost, że liczba g nie jest granicą funkcji
f(x) w punkcie a w sensie Cauchy’ego. To oznacza, że istnieje liczba ε > 0
taka, że dla dowolnej liczby δ > 0 można znaleźć argument x spełniający
0 < |x − a| < δ, ale |f(x) − g| ­ ε. Przyjmijmy δn = 1

n
i niech xn oznacza

argument odpowiadający liczbie δn. Otrzymujemy 0 < |xn − a| < 1
n

oraz
|f(xn)− g| ­ ε. Wtedy xn →

n
a, ale f(xn) 6→

n
g.

Uwaga 4.8. W zależności od sytuacji możemy używać definicji Heinego lub
Cauchy’ego.

Co zrobić, gdy nie widać kandydata na wartość granicy funkcji ? Do tego
służy warunek Cauchy’ego. Intuicyjnie oznacza on, że jeśli dwa argumenty
x i x′ leżą blisko liczby a, ale x, x′ 6= a, to wartości f(x) i f(x′) leżą blisko
siebie. Ścisłe określenie znajduje się w następnym twierdzeniu.

Twierdzenie 4.9 (warunek Cauchy’ego). Funkcja f(x) posiada granicę w
punkcie a wtedy i tylko wtedy, gdy dla dowolnej liczby ε > 0 można znaleźć
liczbę δ > 0 taką, że

0 < |x− a|, |x′ − a| < δ =⇒ |f(x)− f(x′)| < ε. (4.2)

Dowód. (⇒). Dowód tej implikacji jest jasny na podstawie intuicyjnych defi-
nicji granicy i warunku Cauchy’ego. Rzeczywiście jeśli dwa argumenty x, x′ 6=
a leżą blisko a, to wartości f(x) i f(x′) leżą blisko liczby g. Zatem te wartości
leżą blisko siebie.

Ściśle, z założenia dla ε > 0 można znaleźć liczbę δ > 0, dla której
spełniona jest implikacja

0 < |t− a| < δ =⇒ |f(t)− g| < ε

2
.

Wtedy dla 0 < |x− a| < δ oraz 0 < |x′ − a| < δ mamy

|f(x)− f(x′)| ¬ |f(x)− g|+ |f(x′)− g| < ε

2
+
ε

2
= ε.
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(⇐). Niech xn →
n
a, ale xn 6= a. Wtedy ciąg f(xn) spełnia warunek

Cauchy’ego dla ciągów. Rzeczywiście, dla liczby ε > 0 istnieje liczba δ > 0
spełniająca (4.2). Ponieważ xn →

n
a, to 0 < |xn − a| < δ dla dużych wartości

n, np. dla n > N. Wtedy dla n,m > N na podstawie (4.2) otrzymamy
|f(xn)−f(xm)| < ε. Zatem ciag f(xn) jest zbieżny. Oznaczmy g = lim

n
f(xn).

Wtedy lim
x→a

f(x) = g w sensie Heinego. Rzeczywiście, niech x′n −→n a i x′n 6= a.

Z poprzedniego rozumowania wiemy, że ciąg f(x′n) jest zbieżny, np. do liczby
g′. Rozważmy nowy ciąg postaci

x1, x
′
1, x2, x

′
2, . . . , xn, x

′
n, . . .

Ten ciąg dąży do a. Zatem odpowiadający ciąg wartości funkcji

f(x1), f(x′1), f(x2), f(x′2), . . . , f(xn), f(x′n), . . .

jest zbieżny. To jest możliwe tylko dla g = g′.

Uwaga 4.10. Z dowodu wynika, że granica lim
x→a

f(x) istnieje wtedy i tylko
wtedy, gdy dla dowolnego ciągu xn 6= a, xn →

n
a ciąg f(xn) spełnia warunek

Cauchy’ego dla ciągów.

4.1 Ważna granica

Twierdzenie 4.11.
lim
x→0

sinx
x

= 1.

Dowód. Dla kąta 0 < x < π
2 rozważmy trójkąt prostokątny o kącie x i przy-

prostokątnej długości 1 przy tym kącie. Trójkąt ten zawiera w sobie wycinek
koła o kącie x i promieniu 1, który z kolei zawiera trójkąt równoramienny
o kącie wierzchołkowym x i ramionach długości 1. Porównując pola figur
otrzymamy nierówność

sinx
2

<
x

2
<

tg x
2
.

Zatem
sinx < x <

sinx
cosx

.

Z drugiej nierówności otrzymujemy

sinx > x cosx = x
[
1− 2 sin2 x

2

]
> x

[
1− 2

(
x

2

)2
]

= x− x3

2
.
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Uzyskujemy więc

x− x3

2
< sinx < x, 0 < x <

π

2
. (4.3)

Zatem

1− x2

2
<

sinx
x

< 1, 0 < x <
π

2
.

Z parzystości funkcji
sinx
x

otrzymujemy

1− x2

2
<

sinx
x

< 1, 0 < |x| < π

2
.

Z nierówności wynika, że

lim
x→0

sinx
x

= 1.

4.2 Granice jednostronne

Przykład. Z wysokości 20 m upuszczamy kamień. Chcemy znaleźć prędkość
kamienia w chwili uderzenia w ziemię. Przed uderzeniem wysokość wynosi
h(t) = 20 − 1

2gt
2. Przyjmijmy g = 10 m/s2. Wtedy h(t) = 20 − 5t2. Kamień

spadnie po 2 sekundach. Średnia prędkość kamienia od momentu t < 2 do
momentu uderzenia w ziemię wynosi

h(t)− h(2)
t− 2

=
20− 5t2

t− 2
= −5

(t− 2)(t+ 2)
t− 2

= −5(t+ 2).

Prędkość chwilowa w momencie uderzenia wynosi zatem

lim
t→2
t<2

h(t)− h(2)
t− 2

= −20 m/s.

Definicja 4.12. Załóżmy, że funkcja f(x) jest określona w pewnym prze-
dziale a < x < a + η (na prawo od punktu a). Mówimy, że funkcja f(x)
ma granicę prawostronną w punkcie a równą liczbie g, jeśli dla każdego ciągu
xn −→

n
a, xn > a, mamy f(xn) −→

n
g. Równoważnie

∀ ε > 0 ∃ δ > 0 ∀x { a < x < a+ δ =⇒ |f(x)− g| < ε }.

Stosujemy zapis lim
x→a+

f(x) = g.
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Podobnie określa się granicę lewostronną lim
x→a−

f(x).

Twierdzenie 4.13. Granica lim
x→a

f(x) istnieje wtedy i tylko wtedy, gdy ist-
nieją granice jednostronne lim

x→a−
f(x) i lim

x→a+
f(x) i są sobie równe.

Dowód. (⇒)
Niech lim

x→a
f(x) = g. Przypuśćmy, że xn →

n
a oraz xn > a. Wtedy f(xn)→

n

g. Zatem lim
x→a+

f(x) = g. Podobnie pokazujemy, że lim
x→a−

f(x) = g.

(⇐)
Załóżmy, że lim

x→a−
f(x) = lim

x→a+
f(x) = g. Dla liczby ε > 0 istnieją liczby

δ1, δ2 > 0 spełniające warunek:

a− δ1 < x < a =⇒ |f(x)− g| < ε,

a < x < a+ δ2 =⇒ |f(x)− g| < ε.

Przyjmijmy δ = min(δ1, δ2). Wtedy jeśli 0 < |x− a| < δ to albo

a− δ1 ¬ a− δ < x < a

albo
a < x < a+ δ ¬ a+ δ2.

W obu przypadkach uzyskujemy |f(x)− g| < ε.

Przykład.

f(x) =


1
x2
− 1 x < 1,

x− x3 x > 1.

lim
x→1−

f(x) = lim
x→1−

( 1
x2
− 1

)
= 0,

lim
x→1+

f(x) = lim
x→1−

(x− x3) = 0.

4.3 Granice niewłaściwe i granice w punktach niewła-
ściwych

Definicja 4.14. Funkcja f(x) ma granicę ∞ w punkcie a jeśli dla każdego
ciągu xn −→

n
a, xn 6= a, mamy f(xn) −→

n
∞. Równoważnie, dla dowolnej

liczby M istnieje liczba δ > 0, dla której warunek 0 < |x − a| < δ pociąga
f(x) > M.
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Definicja 4.15. Załóżmy, że funkcja f(x) jest określona w przedziale (a,∞).
Mówimy, że liczba g jest granicą funkcji f(x) w ∞ jeśli dla dowolnego ciągu
xn −→

n
∞ mamy f(xn) −→

n
g. Równoważnie

∀ ε > 0 ∃M ∀x {x > M =⇒ |f(x)− g| < ε }.

Podobnie określa się granicę −∞ i granicę w −∞.

Twierdzenie 4.16.

(i) Jeśli lim
x→a

f(x) = ±∞, to lim
x→a

1
f(x)

= 0.

(ii) Jeśli f(x) > 0 w pewnym przedziale (a−η, a+η)\{a}, oraz o lim
x→a

f(x) = 0,

to lim
x→a

1
f(x)

=∞.

Dowód. (i) Niech lim
x→a

f(x) =∞. Rozważmy ciąg xn zbieżny do a oraz xn 6= a.

Z założenia mamy f(xn)→
n
∞. Wtedy

1
f(xn)

→
n

0.

(ii) Niech xn →
n
a oraz xn 6= a. Wtedy f(xn) →

n
0. Dla odpowiednio

dużych wskaźników n, np. dla n > N, mamy xn ∈ (a − η, a + η). Wtedy

f(xn) > 0. Zatem z Twierdzenia 2.19 otrzymujemy
1

f(xn)
→
n
∞.

Uwaga 4.17. Analogiczne twierdzenie jest prawdziwe dla granic jednostron-
nych i granic w punktach niewłaściwych.

4.4 Działania na granicach

Twierdzenie 4.18. Załóżmy, że lim
x→a

f(x) = A oraz lim
x→a

g(x) = B. Wtedy

(i) lim
x→a

[f(x)± g(x)] = A±B.

(ii) lim
x→a

f(x)g(x) = AB.

(iii) lim
x→a

f(x)
g(x)

=
A

B
, o ile B 6= 0.
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Dowód. Teza wynika z odpowiedniego twierdzenia o ciągach. Rzeczywiście

Niech xn →
n
a i xn 6= a. Wtedy ciągi f(xn) ± g(xn), f(xn)g(xn) oraz

f(xn)
g(xn)

dążą odpowiednio do A±B, AB i
A

B
.

Uwaga 4.19. Twierdzenie jest prawdziwe dla granic jednostronnych i granic
w punktach niewłaściwych.

Twierdzenie 4.20 (reguła podstawienia). Jeśli

lim
x→a

f(x) = b i lim
y→b

g(y) = c,

oraz funkcja f(x) nie przyjmuje wartości b w pobliżu punktu a, to

lim
x→a

g(f(x)) = c.

Dowód. Niech xn →
n
a, xn 6= a. Wiemy, że f(x) 6= b w pewnym przedziale

(a− η, a+ η) \ {a}. Wtedy xn leży w tym przedziale dla dużych wartości n,
np. dla n > N. Zatem yn := f(xn) 6= b dla n > N oraz yn = f(xn) →

n
b.

Otrzymujemy więc g(f(xn)) = g(yn)→
n
c.

Uwaga 4.21. Przy zastosowaniu reguły podstawienia posługujemy sie zapi-
sem

lim
x→a

g(f(x)) =
y=f(x)

lim
y→b

g(y) = c.

Przykład.

lim
x→2

√
x+

1
x
.

Przyjmujemy f(x) = x+
1
x
, g(y) =

√
y. Wtedy b = 5

2 oraz c =
√

5
2 . W innym

zapisie mamy

lim
x→2

√
x+

1
x

=
y=x+ 1

x

lim
y→ 52

√
y =

√
5
2
.

Trzeba się upewnić, że x+
1
x
6= 5

2 , gdy x 6= 2 i x leży blisko 2. Równanie

x+
1
x

=
5
2

= 2 +
1
2

ma dwa rozwiązania x = 2 i x = 1
2 . Dla 0 < |x−2| < 1 mamy więc x+

1
x
6= 5

2 .
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4.5 Funkcje ciągłe

Definicja 4.22. Mówimy, że funkcja f(x) jest ciągła w punkcie a, jeśli f(x)
jest określona w pewnym przedziale wokół punktu a, włącznie z punktem a,
oraz

(1) istnieje granica lim
x→a

f(x),

(2) lim
x→a

f(x) = f(a).

Przy zastosowaniu definicji Cauchy’ego granicy funkcji, ciągłość w zapisie
kwantyfikatorowym ma postać

∀ ε > 0 ∃ δ > 0 ∀x { |x− a| < δ =⇒ |f(x)− f(a)| < ε }.

Można pominąć warunek 0 < |x − a|, bo dla x = a mamy |f(x) − f(a)| =
0 < ε.
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Przykłady.

(a)

f(x) =


sinx
x

, x 6= 0,

1 x = 0.

lim
x→0

f(x) = lim
x→0

sinx
x

= 1 = f(0).

∗

∗rysunek wykonany przez Natalię Majewską z kursu Analizy I (2020)
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(b)

f(x) =

x sin
1
x
, x 6= 0,

0 x = 0.

lim
x→0

f(x) = 0 = f(0), bo |x sin
1
x
| ¬ |x|.

†

†rysunek wykonany przez Natalię Majewską z kursu Analizy I (2020)
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(c)

f(x) =

sin
1
x
, x 6= 0,

0 x = 0.

Granica w punkcie 0 nie istnieje (wykres dla 0 ¬ x ¬ 1/π). Niech

xn =
1
nπ

oraz x′n =
1

2nπ + π
2

. Wtedy f(xn) = 0 oraz f(x′n) = 1.

Twierdzenie 4.23. Jeśli funkcje f(x) i g(x) są ciągłe w punkcie a, to funkcje

f(x) ± g(x), f(x)g(x) i
f(x)
g(x)

sa również ciągłe w a, przy czym w ostatnim

przypadku zakładamy, że g(a) 6= 0.

Dowód. Teza wynika z Twierdzenia 4.18.

Uwaga 4.24. Jeśli g(a) 6= 0, to z ciągłości wynika, że g(x) 6= 0 dla x w

pobliżu punktu a. Rzeczywiście, przyjmijmy ε =
|g(a)|

2
. Wtedy istnieje liczba

δ > 0 taka, że dla |x− a| < δ mamy |g(x)− g(a)| < |g(a)|
2

. Dalej

|g(a)| − |g(x)| ¬ |g(x)− g(a)| < |g(a)|
2

.

Zatem |g(x)| > |g(a)|
2

.

Przykłady.

(a) Każdy wielomian jest funkcją ciągłą w każdym punkcie.

(b) Iloraz dwu wielomianów jest funkcją ciągłą poza miejscami zerowymi
mianownika.

Twierdzenie 4.25. Jeśli funkcja f(x) jest ciągła w punkcie a, a funkcja
g(y) jest ciągła w punkcie b = f(a), to funkcja złożona g(f(x)) jest ciągła w
punkcie a.

Dowód. Niech xn −→
n

a. Wtedy yn := f(xn) −→
n

f(a) = b. Zatem g(yn) −→
n

g(b). To oznacza, że g(f(xn)) −→
n

g(f(a)).

https://pl.m.wikipedia.org/wiki/Plik:Warsaw_sinusoid.svg
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Przykład.
h(x) = |x3 − 3x− 10|.

Sprawdzamy ciągłość w punkcie 5. Niech

f(x) = x3 − 3x− 10, g(y) = |y|.

Funkcja g(y) jest ciągła w każdym punkcie, bo∣∣∣|y| − |b|∣∣∣ ¬ |y − b|.
Zatem funkcje h(x) = g(f(x)) jest ciągła w punkcie 5 (oraz w każdym innym
punkcie).

Zadanie. Załóżmy, że f : (0, 1) → R oraz lim
x→a

f(x) istnieje dla wszystkich

punktów 0 < a < 1. Określmy f̃(a) = lim
x→a

f(x). Czy funkcja f̃ jest ciągła w
każdym punkcie przedziału (0, 1) ?

Definicja 4.26. Mówimy, że funkcja f(x) jest ciągła w przedziale (a, b), jeśli
jest ciągła w każdym punkcie tego przedziału. Mówimy, że funkcja f(x) jest
ciagła w przedziale [a, b], jeśli dodatkowo

lim
x→a+

f(x) = f(a) oraz lim
x→b−

f(x) = f(b).

Przykłady.

(a) f(x) =
1

x(1− x)
, 0 < x < 1.

(b) h(y) =
√
y, y ­ 0.

Sprawdzenie: dla y0 > 0 mamy

|√y −√y0| =
|y − y0|√
y +
√
y0

¬ 1
√
y0

|y − y0|.

Dla y0 = 0 i ε > 0 niech 0 ¬ y < ε2. Wtedy
√
y < ε.

(c) f(x) =
√
x(1− x), 0 ¬ x ¬ 1.

Z twierdzenia o składaniu funkcja jest ciągła w przedziale (0, 1), bo
funkcje x(1 − x) jest ciągła wszędzie a funkcja g(y) =

√
y jest ciągła

w punktach dodatnich. Sprawdzimy ciągłość w 0 i 1. Niech xn →
n

0,
xn ­ 0. Wtedy xn(1 − xn) →

n
0 oraz yn = xn(1 − xn) ­ 0. Zatem√

xn(1− xn) =
√
yn →

n
0 = f(0).
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Twierdzenie 4.27 (jednostajna ciągłość funkcji). Funkcja f(x) ciągła na
przedziale domkniętym [a, b] jest jednostajnie ciągła, tzn. dla dowolnej licz-
by ε > 0 istnieje liczba δ > 0 taka, że dla x, x′ z [a, b], jeśli |x − x′| < δ, to
|f(x)− f(x′)| < ε.

Uwaga 4.28. Zapis kwantyfikatorowy ciągłości jednostajnej ma postać

∀ ε > 0 ∃ δ > 0 ∀x ∈ [a, b] ∀x′ ∈ [a, b] { |x−x′| < δ =⇒ |f(x)−f(x′)| < ε }.

Dla porównania zapis kwantyfikatorowy ciągłości w każdym punkcie x prze-
działu [a, b] ma postać

∀ ε > 0 ∀x ∈ [a, b] ∃ δ > 0 ∀x′ ∈ [a, b] { |x−x′| < δ =⇒ |f(x)−f(x′)| < ε }.

Przy jednostajnej ciągłości liczba δ > 0 jest uniwersalna dla wszystkich punk-
tów a ¬ x ¬ b, gdy przy ciągłości punktowej ta liczba jest dobierana indy-
widualnie dla każdego punktu z a ¬ x ¬ b.

Intuicyjnie jednostajna ciągłość oznacza, że jeśli dwa argumenty funkcji
leżą blisko siebie, to odpowiadające im wartości funkcji są również położone
blisko siebie, niezależnie od położenia tych argumentów.

Dowód. (nie wprost). Załóżmy, że warunek jednostajnej ciągłości nie jest
spełniony. Tzn., że istnieje liczba ε > 0 taka, że dla dowolnego wyboru liczby
δ > 0 znajdą się punkty x, x′ w przedziale [a, b] takie, że |x − x′| < δ oraz

|f(x) − f(x′)| ­ ε. W szczególności dla δn =
1
n

istnieją punkty xn, x
′
n w

przedziale [a, b] spełniające

|xn − x′n| <
1
n
, |f(xn)− f(x′n)| ­ ε. (4.4)

Z twierdzenia Bolzano-Weierstrassa z ciągu xn można wybrać zbieżny pod-
ciąg xnk . Oznaczmy x = lim

k
xnk . Z pierwszego warunku w (4.4) mamy

xnk −
1
nk

< x′nk < xnk +
1
nk
.

Z twierdzenia o trzech ciągach wnioskujemy, że x = lim
k
x′nk . Z ciągłości w

punkcie x otrzymujemy f(xnk) −→
k

f(x) i f(x′nk) −→k f(x). To oznacza, że

f(xnk)−f(x′nk) −→k 0, co stoi w sprzeczności z drugim warunkiem w (4.4).
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Przykłady.

(a) Domkniętość przedziału jest istotna. Rozważmy f(x) =
1
x

na przedziale

(0, 1]. Dla xn =
1

2n
i x′n =

1
n

mamy f(xn) = 2n, f(x′n) = n. Zatem

x′n − xn −→n 0, f(xn)− f(x′n) −→
n
∞.

(b) Funkcja w poprzednim przykładzie była nieograniczona. Rozważmy

f(x) = sin
1
x

na przedziale (0, 1]. Dla xn =
1

2nπ
i x′n =

1
(2n+ 1/2)π

mamy
x′n − xn −→n 0, f(x′n)− f(xn) = 1.

(c) Jeśli nachylenie wykresu funkcji jest ograniczone, tzn.

|f(x1)− f(x2)|
|x1 − x2|

¬ L, x1 6= x2,

to funkcja jest jednostajnie ciągła. Istotnie mamy wtedy

|f(x1)− f(x2)| ¬ L|x1 − x2|.

Np. f(x) = x jest jednostajnie ciągła na całej prostej. Z kolei f(x) = x2

nie jest jednostajnie ciągła na całej prostej, bo dla xn = n+
1
n
, x′n = n

mamy xn − x′n −→n 0 oraz f(xn)− f(x′n) ­ 2.

(d) Ograniczone nachylenie wykresu nie jest warunkiem koniecznym dla
jednostajnej ciągłości. Np. funkcja f(x) =

√
|x| jest jednostajnie ciągła

na całej prostej mimo, że nachylenie wykresu w pobliżu punktu 0 jest
nieograniczone.

Twierdzenie 4.29 (Weierstrass). Funkcja ciągła f(x) na przedziale do-
mkniętym [a, b] jest ograniczona oraz osiąga swoje kresy górny M i dolny m.
Tzn. istnieją punkty c i d w przedziale [a, b] takie, że f(c) = m i f(d) = M.

Uwaga 4.30.
m = inf

a¬x¬b
f(x), M = sup

a¬x¬b
f(x).
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Dowód. Dla liczby ε = 1 istnieje liczba δ > 0 taka, że jeśli |x − x′| < δ, to

|f(x) − f(x′)| < 1. Wybierzmy liczbę naturalną n tak, aby
b− a
n

< δ. Np.

niech n =
[
b− a
δ

]
+1. Dzielimy przedział [a, b] na n równych części punktami

ak = a+
b− a
n

k dla k = 0, 1, . . . , n. Oznaczmy

C = max{|f(a1)|+ 1, |f(a2)|+ 1, . . . , |f(an)|+ 1}.

Niech a ¬ x ¬ b. Wtedy ak−1 ¬ x ¬ ak dla pewnej liczby k = 1, 2, . . . , n.
Zatem

|x− ak| ¬ ak − ak−1 =
b− a
n

< δ.

Wtedy
|f(x)| − |f(ak)| ¬ |f(x)− f(ak)| < 1.

Otrzymujemy więc
|f(x)| < |f(ak)|+ 1 ¬ C,

czyli funkcja f jest ograniczona.
Załóżmy, nie wprost, że f(x) < M dla wszystkich a ¬ x ¬ b. Rozważmy

funkcję g(x) =
1

M − f(x)
. Funkcja g(x) jest dodatnia i ciągła na przedziale

[a, b]. Z pierwszej części dowodu wynika, że g jest ograniczona z góry, tzn.

1
M − f(x)

= g(x) ¬ N,

dla pewnej stałej N. Po przekształceniu otrzymamy

M − f(x) ­ 1
N
, czyli f(x) ¬M − 1

N
.

Dalej

M = sup
a¬x¬b

f(x) ¬M − 1
N
,

co daje sprzeczność.

Twierdzenie 4.31 (własność Darboux). Funkcja ciągła na przedziale [a, b]
przechodzi od wartości f(a) do wartości f(b) przez wszystkie wartości pośred-
nie, tzn.dla dowolnej liczby l leżącej pomiędzy f(a) i f(b) (pod warunkiem
f(a) 6= f(b)) istnieje punkt c, a < c < b, dla którego f(c) = l.
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Dowód. Rozważymy przypadek f(a) < f(b). Niech f(a) < l < f(b). Chcemy
udowodnić, że f(x0) = l dla pewnego punktu x0 w [a, b]. Załóżmy, nie wprost,
że f(x) 6= l dla wszystkich x. Rozważymy funkcję

g(x) =
1

|f(x)− l|
.

Z twierdzenia Weierstrassa mamy

1
|f(x)− l|

= g(x) ¬ N,

dla pewnej stałej N. Zatem

|f(x)− l| ­ 1
N
, a ¬ x ¬ b. (4.5)

Z jednostajnej ciągłości dla ε = 1
N

można znaleźć liczbę δ, dla której

|x− x′| < δ =⇒ |f(x)− f(x′)| < 1
N
.

Dzielimy przedział na n równych części punktami ak = a +
b− a
n

k tak, aby

b− a
n

< δ. Zatem |f(ak) − f(ak−1| <
1
N
. Mamy f(a0) < l < f(an). Niech k

będzie najmniejszym wskaźnikiem, dla którego l < f(ak). Wtedy f(ak−1) <

l < f(ak). Ponieważ |f(ak)− f(ak−1| <
1
N

to |f(ak)− l| <
1
N
. Otrzymujemy

sprzeczność z (4.5).
Intuicyjnie: w chwili ak znajdujemy się w punkcie f(ak) osi y. Kolejne

kroki (czyli przejścia między momentami czasu x = ak−1 i x = ak) są krót-

sze niż
1
N
. Przypuśćmy, że obszar pomiędzy

(
l − 1

N
, l +

1
N

)
oznacza rzekę.

Przechodząc od f(a0) < l do f(an) > l krokami krótszymi od
1
N

musimy

wejść do rzeki, co przeczy (4.5).

Wniosek 4.32. Funkcja ciągła na przedziale domkniętym przyjmuje wszyst-
kie wartości pomiędzy swoimi kresami dolnym i górnym.
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Dowód. Z twierdzenia Weierstrassa istnieją punkty c i d takie, że f(c) = m i
f(d) = M. Z własności Darboux zastosowanej do przedziału pomiędzy c i d
funkcja przyjmuje wszystkie wartości pomiędzy m i M.

Przykłady.

(a) Chcemy rozwiązać równanie

w(x) := x3 + 2x2 + x− 3 = 0.

Mamy w(0) = −3 i w(1) = 1. Z własności Darboux w(x0) = 0 dla

pewnego punktu x0 pomiędzy 0 i 1. Ponieważ w
(1

2

)
< 0, to można

znaleźć rozwiązanie pomiędzy
1
2

i 1.

(b)

f(x) =

sin
1
x

x 6= 0,

0, x = 0.

Funkcja ma własność Darboux na dowolnym przedziale [−a, a] mimo,
że nie jest ciągła w punkcie 0 (wykres dla 0 ¬ x ¬ 1/π).

Twierdzenie 4.33. Funkcja monotoniczna w przedziale [a, b] jest ciągła wte-
dy i tylko wtedy, gdy ma własność Darboux.

Lemat 4.34. Funkcja monotoniczna posiada granice jednostronne w każdym
punkcie.

Dowód. Pokażemy, że
lim
x→c+

f(x) = inf
x>c

f(x)

dla dowolnej funkcji rosnącej. Dla x > c mamy f(x) ­ f(c), zatem

α := inf
x>c

f(x) ­ f(c).

Dla ε > 0 liczba α + ε nie ogranicza z dołu wartości funkcji f(x) dla x >
c. Zatem istnieje argument x0 > c spełniający f(x0) < α + ε. Wtedy dla
c < x < x0 mamy α ¬ f(x) ¬ f(x0) < α+ ε. Zatem |f(x)− α| < ε. Czyli
lim
x→c+

f(x) = α.

https://pl.m.wikipedia.org/wiki/Plik:Warsaw_sinusoid.svg


Funkcje i granice 62

Dowód twierdzenia. Rozważmy funkcję rosnącą f(x) i punkt c wewnątrz [a, b].
Nieciągłość oznacza, że przynajmniej jedna z nierówności

lim
x→c−

f(x) ¬ f(c) ¬ lim
x→c+

f(x)

jest ostra. W każdym przypadku funkcja nie miałaby wtedy własności Dar-
boux.

Załóżmy, że f(x) nie jest ciągła w punkcie c, który jest końcem przedziału.
Gdy c jest prawym końcem, to nieciągłość oznacza, że

lim
x→c−

f(x) < f(c).

Podobnie jak poprzednio funkcja nie ma własności Darboux.

Definicja 4.35. Mówimy, że funkcja f(x) jest różnowartościowa na podzbio-
rze E ⊆ R, jeśli dla dwu argumentów x1 6= x2 z E mamy f(x1) 6= f(x2).

Niech F = {f(x) : x ∈ E} dla funkcji różnowartościowej. Wtedy dla
wartości y ∈ F istnieje jedyny element x ∈ E taki, że f(x) = y. Możemy
określić g(y) = x. Wtedy g(f(x)) = x oraz f(g(y)) = y.

Twierdzenie 4.36. Funkcja ciągła i różnowartościowa na przedziale‡ jest
monotoniczna.

Dowód. Załóżmy, że f nie jest monotoniczna. To oznacza, że można zna-
leźć trzy argumenty x1 < x2 < x3 spełniające f(x1) < f(x2) > f(x3) albo
f(x1) > f(x2) < f(x3). Tzn. f(x2) nie leży pomiędzy f(x1) i f(x3). Rozważ-
my przypadek f(x1) < f(x2) > f(x3). Oznaczmy α = max{f(x1), f(x2)}.
Z własności Darboux wartości z przedziału [α, f(x2)] są przyjęte dwukrotnie
przez funkcję f, raz w przedziale (x1, x2) i drugi raz w przedziale (x2, x3).

Twierdzenie 4.37 (o funkcji odwrotnej). Jeśli funkcja f(x) jest ciągła i
różnowartościowa na przedziale [a, b], to funkcja odwrotna g(y) jest ciągła na
przedziale [m,M ], gdzie m = inf

a¬x¬b
f(x) oraz M = sup

a¬x¬b
f(x).

Dowód. Wiemy, że f(x) jest ściśle monotoniczna. Przyjmijmy, że f(x) jest
rosnąca. Wtedy funkcja odwrotna też jest rosnąca na przedziale [m,M ]. Dla
ciągłości wystarczy zatem pokazać własność Darboux. Niech y1 < y2 oraz

‡Przedział może mieć postać [a, b], (a, b], [a, b) lub (a, b)
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g(y1) < c < g(y2). Trzeba znaleźć argument y taki, że g(y) = c. Nakładamy
na nierówność funkcję f i otrzymujemy

y1 = f(g(y1)) < f(c)︸ ︷︷ ︸
y

< f(g(y2)) = y2.

Dalej g(y) = g(f(c)) = c.

Przykład. Dla funkcji f(x) = xn, 0 ¬ x ¬M, funkcją odwrotną jest g(y) =
n
√
y, 0 ¬ y ¬ Mn. Ponieważ M jest dowolną dodatnią liczbą, to g(y) = n

√
y

jest ciągła na [0,∞).

4.6 Ścisłe wprowadzenie funkcji wykładniczej

Ustalmy liczbę a > 1. Dla liczb wymiernych w ∈ Q określamy

aw = (ap)
1
q , jeśli w =

p

q
, q ∈ N, p ∈ Z.

Wynik nie zależy od przedstawienia liczby w w tej postaci. Np. (a2)1/4 = a1/2.
Funkcja Q 3 w 7→ aw ma własności:

(a) aw1+w2 = aw1aw2 .

(b) w1 < w2 =⇒ aw1 < aw2 .

(c) a1 = a.

Definicja 4.38. Podzbiór E ⊆ R nazywamy gęstym, jeśli dla dowolnej
liczby x ∈ R istnieje ciąg liczb an ∈ E zbieżny do x.

Zbiór liczby wymiernych jest gęsty w R. Rzeczywiście, dla x ∈ R mamy
nx− 1 < [nx] ¬ nx. Zatem

x− 1
n
<

[nx]
n
¬ x.

To oznacza, że
[nx]
n
−→
n

x.

Lemat 4.39. Jeśli funkcje g(x) i h(x) są ciągłe na R oraz g(a) = h(a) dla
punktów a z gęstego podzbioru E ⊆ R, to g(x) ≡ h(x).
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Dowód. Dla x ∈ R bierzemy ciąg an punktów z E zbieżny do x. Wtedy

g(x) = lim
n
g(an) = lim

n
h(an) = h(x).

Określamy
F (x) = sup

w∈Q
w¬x

aw.

Zauważmy, że dla x ∈ Q mamy F (x) = ax. F (x) jest funkcją ściśle rosnącą.
Istotnie, niech x1 < x2. Można znaleźć liczby wymierne w1, w2 takie, że
x1 < w1 < w2 < x2. Wtedy

F (x1) = sup
w∈Q
w¬x1

aw ¬ sup
w∈Q
w¬w1

aw = aw1 < aw2 ¬ F (x2).

Zbadamy ciągłość funkcji F (x). Z monotoniczności wiemy, że F (x) posiada
granice jednostronne w każdym punkcie x0 oraz

lim
x→x−0

F (x) ¬ F (x0) ¬ lim
x→x+0

F (x).

Dla liczby x0 istnieje ciąg liczb wymiernych wn spełniający

wn < x0 < wn + 2
n
.

Np. wn =
[nx0]
n
− 1
n
. Obliczamy

lim
x→x+0

F (x) = lim
n
F
(
wn +

2
n

)
= lim

n
awn+ 2

n = lim
n
awn a

2
n

= lim
n
awn lim

n
(a2)

1
n = lim

n
awn = lim

x→x−0
F (x).

Lemat 4.40. F (x+ y) = F (x)F (y).

Dowód. Niech wn −→
n

x, vn −→
n

y, gdzie wn, vn ∈ Q. Wtedy

F (x+ y) = lim
n
F (wn + vn) = lim

n
awn+vn = lim

n
awnavn

= lim
n
awn lim

n
avn = lim

n
F (wn) lim

n
F (vn) = F (x)F (y).
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F (x) nazywamy funkcją wykładniczą. Funkcja wykładnicza ma następu-
jące własności (dla a > 1).

(1) F (x+ y) = F (x)F (y).

(2) F (x) < F (y), dla x < y.

(3) F (1) = a.

(4) F (x) jest ciągła.

Można udowodnić, że powyższe własności określają funkcję wykładniczą w
sposób jednoznaczny. Np. z (1) i (3) wynika, że F (2) = F (1)2 = a2. Z kolei
F (1) = F (1)F (0), zatem F (0) = 1. Dalej 1 = F (0) = F (1)F (−1), czyli
F (−1) = a−1.

Przyjmujemy oznaczenie F (x) = ax. Mamy

lim
x→∞

ax =∞§, lim
x→−∞

ax = lim
x→−∞

1
a−x

= 0.

Funkcję odwrotną, określoną na półprostej (0,∞) nazywamy logarytmem
przy podstawie a i oznaczamy symbolem loga x.

5 Ciągi i szeregi funkcyjne

5.1 Ciągi funkcyjne

Definicja 5.1. Niech fn będzie ciągiem funkcji określonych na A ⊆ R, np.
A = [a, b], [a,∞), (a, b). Mówimy, że ciąg fn jest zbieżny punktowo do funkcji
f, jeśli dla każdego punktu x ze zbioru A mamy fn(x) −→

n
f(x).

Przykład.
fn(x) = 1 +

x

n
, x ∈ R.

lim
n
fn(x) = lim

(
1 +

x

n

)
= 1.

Tzn. funkcją graniczną jest f(x) ≡ 1.

§Bo an →
n
∞
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W zapisie kwantyfikatorowym definicja przybiera postać

∀ ε > 0 ∀x ∈ A ∃N ∀n > N {|fn(x)− f(x)| < ε }.

Próg N zależy od punktu x i od ε.

Definicja 5.2. Mówimy, że ciąg fn jest zbieżny jednostajnie do funkcji f
na zbiorze A, jeśli

∀ ε > 0 ∃N ∀x ∈ A ∀n > N {|fn(x)− f(x)| < ε }.

Używamy zapisu fn ⇒ f.

Tym razem próg N nie zależy od x, jest uniwersalny dla wszystkich punk-
tów ze zbioru A.

Co oznacza warunek

∀x ∈ A ∀n > N {|fn(x)− f(x)| < ε } ?

Po przekształceniu otrzymamy

∀x ∈ A ∀n > N {f(x)− ε < fn(x) < f(x) + ε} .

Tzn. od pewnego miejsca (dla n > N) wykresy funkcji fn(x) leżą w pasie o
promieniu ε wokół wykresu funkcji f(x).

Przykład. fn(x) = xn, 0 ¬ x ¬ 1.

lim
n
xn =

0 0 ¬ x < 1,
1, x = 1.

=: f(x).

Czy możliwa jest zbieżność jednostajna ? Niech ε =
1
3
. W pasie o promieniu

1
3

wokół wykresu funkcji f nie ma wykresu żadnej funkcji ciągłej.

Niech fn(x) = xn, 0 ¬ x ¬ a < 1. Wtedy ciąg fn jest jednostajnie zbieżny
do 0. Rzeczywiście, dla ε > 0 istnieje liczba naturalna N, dla której aN < ε.
Możemy próg wyznaczyć jawnym wzorem, bo nierówność jest równoważna

N log a < log ε, czyli N >
log ε
log a

. Wtedy dla n > N i 0 ¬ x ¬ a mamy

0 ¬ fn(x) = xn ¬ an < aN ¬ ε.

W przykładzie funkcja graniczna nie była ciągła.



Ciągi i szeregi funkcyjne 67

Przykład.

fn(x) =


nx 0 ¬ x ¬ 1

n
,

2− nx 1
n
¬ x ¬ 2

n
,

0 2
n
¬ x ¬ 1

= (1− |1− nx|)+.

Mamy fn(x) −→
n

0 =: f(x) dla 0 ¬ x ¬ 1. Nie ma jednak zbieżności jedno-

stajnej, bo fn
(

1
n

)
= 1. W pasie o promieniu

1
2

wokół zera nie ma wykresu
żadnej z funkcji fn.

Twierdzenie 5.3. Granica jednostajnie zbieżnego ciągu funkcji ciągłych jest
funkcją ciągłą.

Dowód. Załóżmy, że ciąg fn(x) jest zbieżny jednostajnie do funkcji f(x).
Sprawdzamy ciągłość funkcji f w punkcie x0. Ustalmy liczbę ε > 0. Z za-
łożenia istnieje próg N, taki, że dla n > N mamy |fn(x) − f(x)| < ε

3 . W
szczególności

|fN+1(x)− f(x)| < ε

3
.

Z ciągłości funkcji fN+1 istnieje liczba δ > 0 taka, że dla |x− x0| < δ mamy

|fN+1(x)− fN+1(x0)| < ε

3
.

Zatem dla |x− x0| < δ otrzymujemy

|f(x)−f(x0)| ¬ |f(x)−fN+1(x)|+|fN+1(x)−fN+1(x0)|+|fN+1(x0)−f(x0)|

<
ε

3
+
ε

3
+
ε

3
= ε.

Wniosek 5.4. Jeśli ciąg funkcji ciągłych fn jest zbieżny punktowo do funkcji
f, ale f nie jest ciągła, to ciąg fn nie jest zbieżny jednostajnie.

Przykład. f(x) = xn, 0 ¬ x ¬ 1. Granica punktowa nie jest funkcją ciągłą.

Twierdzenie 5.5. Załóżmy, że istnieje ciąg liczb an > 0 taki, że an −→
n

0
oraz

|fn(x)− f(x)| ¬ an, x ∈ A.
Wtedy ciąg fn jest zbieżny do funkcji f jednostajnie na zbiorze A.
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Dowód. Dla ε > 0 istnieje próg N taki, że dla n > N mamy an < ε. Wtedy
dla n > N mamy

|fn(x)− f(x)| ¬ an < ε, x ∈ A.

Przykłady.

(a) fn(x) =
x

1 + nx
, x ­ 0. Mamy fn(0) = 0. Dla x > 0 szacujemy

0 ¬ fn(x) ¬ x

nx
=

1
n
.

Stąd fn ⇒ 0.

(b) fn(x) = xn − xn+1, 0 ¬ x ¬ 1. Dla 0 ¬ x ¬ 1− 1√
n

mamy

0 ¬ fn(x) = xn(1− x) ¬ xn ¬ (1− 1√
n
)n.

Z kolei dla 1− 1√
n
¬ x ¬ 1

0 ¬ fn(x) = xn(1− x) ¬ 1− x ¬ 1√
n
.

Zatem dla 0 ¬ x ¬ 1 uzyskujemy

0 ¬ fn(x) ¬ (1− 1√
n
)n + 1√

n
−→
n

0,

bo
(1− 1√

n
)n∗ =

[
(1− 1√

n
)
√
n
]√n

.

Twierdzenie 5.6 (warunek Cauchy’ego zbieżności jednostajnej). Ciąg funk-
cji fn(x) jest jednostajnie zbieżny na zbiorze A wtedy i tylko wtedy, gdy

∀ ε > 0 ∃N ∀x ∈ A ∀n,m > N {|fn(x)− fm(x)| < ε }.
∗Można też skorzystać z nierówności 0 ¬ x < 1

(1− x)n =
(
1 +

x

1− x

)−n
¬ 1
1 + n x

1−x
¬ 1− x

nx
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Uwaga 5.7. Intuicyjnie oznacza to, że jeśli n i m są duże, to wykresy funkcji
fn i fm leżą blisko siebie.

Dowód. (⇒). Niech fn ⇒ f. Dla liczby ε > 0 istnieje próg N taki, że dla
m,n > N mamy

|fn(x)− f(x)| < ε

2
, |fm(x)− f(x)| < ε

2

dla wszystkich x z A. Wtedy dla n,m > N mamy

|fn(x) − fm(x)| ¬ |fn(x) − f(x)| + |f(x) − fm(x)| < ε

2
+
ε

2
= ε.

(⇐). Z założenia dla każdego punktu x z A ciąg liczbowy fn(x) spełnia
warunek Cauchy’ego. Zatem fn(x) jest zbieżny. Oznaczmy f(x) = lim

n
fn(x).

Chcemy pokazać, że fn ⇒
n
f. Niech ε > 0. Z założenia istnieje próg N taki,

że dla n,m > N mamy

|fn(x)− fm(x)| < ε
2 , x ∈ A.

Wtedy dla n > N otrzymujemy

|fn(x)− f(x)| = lim
m
|fn(x)− fm(x)| ¬ ε

2 < ε.

Twierdzenie 5.8 (Dini). Niech fn(x) będzie monotonicznym ciągiem funk-
cji ciagłych określonych na przedziale [a, b], tzn. spełniony jest jeden z dwu
warunków:

(a) fn(x) ¬ fn+1(x) dla a ¬ x ¬ b, n ∈ N.

(b) fn(x) ­ fn+1(x) dla a ¬ x ¬ b, n ∈ N.

Załóżmy, że fn jest zbieżny punktowo do funkcji f ciągłej na [a, b]. Wtedy
zbieżność fn do f jest jednostajna.

Dowód. Załóżmy, że fn(x)↗
n
f(x). Oznaczmy gn(x) = f(x)− fn(x). Wtedy

gn(x) ↘
n

0. Trzeba pokazać, że gn ⇒
n

0. Załóżmy nie wprost, że gn 6⇒
n

0.

To oznacza, że istnieje liczba ε > 0 taka, że dla dowolnego wyboru liczby
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naturalnej N istnieje liczba naturalna nN > N oraz punkt xN w [a, b] takie,
że gnN (xN) ­ ε. Wtedy

gN+1(xN) ­ gnN (xN) ­ ε.

Na podstawie twierdzenia Bolzano-Weierstrassa możemy wybrać podciąg
zbieżny xNk . Oznaczmy x0 = lim

k
xNk . Wtedy dla m ¬ Nk otrzymujemy

gm(xNk) ­ gNk+1(xNk) ­ ε.

Przechodzimy do granicy, gdy k →∞ aby uzyskać gm(x0) = lim
k
gm(xNk) ­ ε.

Ale gm(x0) −→
m

0, co daje sprzeczność.

Przykład. fn(x) = xn − xn+1, 0 ¬ x ¬ 1. Mamy

fn(x) = xn(1− x) ­ xn+1(1− x) = fn+1(x)

zatem ciąg fn(x) jest malejący. Ponadto fn(1) = 0 oraz fn(x) = xn−xn+1 →
n

0
dla 0 ¬ x < 1. Z twierdzenia Dini’ego zbieżność jest jednostajna.

5.2 Szeregi funkcyjne

Definicja 5.9. Mówimy, że szereg
∞∑
n=1

fn(x) jest jednostajnie zbieżny dla

x ∈ A, jeśli ciąg sum częściowych sn(x) =
n∑
k=1

fk(x) jest jednostajnie zbieżny.

Przykład.
∞∑
n=1

xn, 0 ¬ x ¬ 1
2 . Mamy

sn(x) =
n∑
k=1

xk =
x− xn+1

1− x
−→
n

x

1− x
.

Sprawdzamy zbieżność jednostajną

∣∣∣∣sn(x)− x

1− x

∣∣∣∣ =
xn+1

1− x
¬

1
2n+1

1− 1
2

=
1
2n
−→
n

0.

Zatem
sn(x) ⇒

n

x

1− x
, 0 ¬ x ¬ 1

2
.
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Twierdzenie 5.10 (warunek Cauchy’ego). Szereg
∞∑
n=1

fn(x) jest jednostajnie

zbieżny wtedy i tylko wtedy, gdy

∀ ε > 0 ∃N ∀x ∈ A ∀n > m > N {|fm+1(x) + fm+2(x) + . . .+ fn(x)| < ε }.

Dowód.
sn(x)− sm(x) = fm+1(x) + fm+2(x) + . . .+ fn(x).

Zatem warunek sformułowany w twierdzeniu jest identyczny z warunkiem
Cauchy’ego zbieżności jednostajnej ciągu sn(x).

Twierdzenie 5.11 (kryterium Weierstrassa o majoryzacji). Jeśli szereg licz-

bowy
∞∑
n=1

an o wyrazach nieujemnych jest zbieżny oraz |fn(x)| ¬ an dla x ∈ A,

to szereg
∞∑
n=1

fn(x) jest zbieżny jednostajnie i bezwzględnie dla x ∈ A.

Dowód. Sprawdzamy warunek Cauchy’ego. Dla n > m mamy

|fm+1(x) + fm+2(x) + . . .+ fn(x)| ¬ |fm+1(x)|+ |fm+2(x)|+ . . .+ |fn(x)|
¬ am+1 + am+2 + . . .+ an.

Tezę uzyskujemy z warunku Cauchy’ego dla szeregu
∞∑
n=1

an.

Twierdzenie 5.12. Jeśli funkcje fn(x) są ciągłe na A† oraz szereg
∞∑
n=1

fn(x)

jest zbieżny jednostajnie na A, to suma szeregu s(x) =
∞∑
n=1

fn(x) jest funkcją

ciągłą na A.

Dowód. Funkcja

sn(x) =
n∑
k=1

fk(x)

jest ciągła jako suma skończonej ilości funkcji ciągłych. Ponadto sn(x) ⇒
n

s(x). Zatem funkcja s(x) też jest ciągła.
†Zwykle A jest przedziałem
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Przykład. Szereg
∞∑
n=0

xn

n!
= 1 +

∞∑
n=1

xn

n!

jest zbieżny dla wszystkich wartości x, np. z kryterium d’Alemberta. Roz-
ważmy |x| ¬ a. Rzeczywiście dla x 6= 0

|xn+1|
(n+ 1)!

· n!
|xn|

=
|x|
n+ 1

→
n

0.

Dalej ∣∣∣∣xnn!

∣∣∣∣ ¬ an

n!
.

Z kryterium Weierstrassa szereg jest zbieżny jednostajnie i bezwzględnie w
przedziale [−a, a]. Suma szeregu reprezentuje więc funkcję ciągłą na R, bo a
jest dowolną dodatnią liczbą. Oznaczmy

exp(x) = 1 +
∞∑
n=1

xn

n!
.

Wtedy exp(0) = 1 oraz

exp(1) = 1 +
1
1!

+
1
2!

+
1
3!

+ . . .+
1
n!

+ . . . = e.

Korzystając z mnożenia szeregów metodą Cauchy’ego otrzymamy

exp(x) exp(y) =
∞∑
n=0

xn

n!
·
∞∑
n=0

yn

n!
=
∞∑
n=0

n∑
k=0

xn−k

(n− k)!
yk

k!

=
∞∑
n=0

1
n!

n∑
k=0

(
n

k

)
xn−kyk =

∞∑
n=0

(x+ y)n

n!
= exp(x+ y).

Zauważmy, że dla t > 0 mamy

exp(t) = 1 +
∞∑
n=1

tn

n!
> 1.

Stąd
exp(t) exp(−t) = exp(0) = 1,
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czyli exp(−t) > 0. To oznacza, że funkcja exp(x) jest dodatnia. Ponadto dla
y > x przyjmując t = y − x > 0 uzyskamy

exp(y) = exp(t+ x) = exp(t) exp(x) > exp(x),

co oznacza, że exp(x) jest funkcją rosnącą.
W oparciu o podrozdział 4.6, z własności funkcji exp(x) wynika, że exp(x) =

ex. Udowodniliśmy więc, że

ex =
∞∑
n=0

xn

n!
.

Przykłady.

(a) f(x) =
∞∑
n=1

sinnx
n2

, x ∈ R.

∣∣∣∣sinnxn2

∣∣∣∣ ¬ 1
n2
.

Zatem f(x) jest funkcją ciągłą o okresie 2π.

(b) g(x) =
∞∑
n=1

sinnx
n

, x ∈ R. Szereg jest zbieżny dla x ∈ R z kryterium

Dirichleta. Można pokazać analizując dowód twierdzenia Dirichleta i
pierwszy przykład po tym twierdzeniu, że zbieżność jest jednostajna
dla |x− 2kπ| ­ ε > 0‡.

5.2.1 Szeregi potęgowe

Definicja 5.13. Szeregi postaci
∞∑
n=0

anx
n nazywamy potęgowymi§.

Przykład. Szereg
∞∑
n=1

xn jest zbieżny tylko dla |x| < 1. Mówimy wtedy, że

liczba 1 jest promieniem zbieżności tego szeregu.

Definicja 5.14. Promieniem zbieżności szeregu
∞∑
n=0

anx
n nazywamy kres gór-

ny wartości bezwględnych liczb x, dla których szereg jest zbieżny.
‡Szereg nie jest zbieżny jednostajnie w przedziale [−π, π]
§Przyjmujemy x0 = 1
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Przykłady.

(a)
∞∑
n=1

(−1)n+1

n
xn. Znajdziemy promień zbieżności z kryterium d’Alemberta.

∣∣∣∣∣(−1)n+2xn+1

n+ 1

∣∣∣∣∣
∣∣∣∣∣ n

(−1)n+1xn

∣∣∣∣∣ =
(

1 +
1
n

)−1

|x| −→
n
|x|.

Dla |x| < 1 szereg jest bezwzględnie zbieżny, a dla |x| > 1 jest rozbieżny.
Promień zbieżności wynosi zatem 1.

(b)
∞∑
n=0

xn

n!
. Promień zbieżności wynosi ∞.

(c)
∞∑
n=0

n!xn. Promień zbieżności wynosi 0. Rzeczywiście dla x 6= 0 mamy

(n+ 1)! |xn+1|
n! |xn|

= (n+ 1)|x| →
n
∞.

Twierdzenie 5.15. Jeśli R > 0 jest promieniem zbieżności szeregu
∞∑
n=0

anx
n,

to szereg jest zbieżny dla |x| < R i rozbieżny dla |x| > R. Ponadto zbieżność
jest jednostajna w każdym przedziale [−r, r] dla 0 < r < R.

Dowód. Z określenia liczby R szereg jest rozbieżny dla |x| > R. Każda liczba
|x| < R leży w pewnym przedziale [−r, r] dla r < R, (np. r = |x|). Z
określenia promienia zbieżności istnieje liczba x0 spełniająca r < |x0| < R

oraz szereg
∞∑
n=0

anx
n
0 jest zbieżny. Wtedy |anxn0 | −→n 0. Zatem |anxn0 | ¬ M

dla pewnej dodatniej liczby M. Niech Niech |x| ¬ r. Wtedy

|anxn| = |anxn0 |
∣∣∣∣ xx0

∣∣∣∣n ¬M

(
r

|x0|

)n
.

Ale
r

|x0|
< 1. Zatem z kryterium Weierstrassa uzyskujemy jednostajną i

bezwzględną zbieżność w przedziale [−r, r].
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Uwaga 5.16. Z dowodu wynika, że

R = sup
{
|x| :

∞∑
n=0

anx
n jest zbieżny

}
= sup{|x| : anxn jest ograniczony} (5.1)

Twierdzenie 5.17.

(i) R =
1

limn
n

√
|an|

, o ile granica wyrażenia w mianowniku istnieje.

(ii) R =
1

lim
n

|an+1|
|an|

, o ile granica wyrażenia w mianowniku istnieje.

W obu przypadkach dopuszczamy granicę równą 0 lub ∞. Wtedy R =∞ lub
R = 0, odpowiednio.

Przykłady.

(a)
∞∑
n=1

xn

n10
. Mamy

lim
n

n

√
1
n10

= 1.

(b)
∞∑
n=0

1
2n
xn
2
. Wtedy a2020 = 0. Nie możemy zastosować poprzedniego

twierdzenia, bo ciąg n

√
|an| nie jest zbieżny. Stosujemy kryterium Cau-

chy’ego dla szeregów liczbowych

n

√
1
2n
|x|n2 =

1
2
|x|n −→

n


0 |x| < 1,
1
2 |x| = 1,
∞ |x| > 1.

Zatem R = 1.

(c)
∞∑
n=0

xn!

n!
. Z kryterium d’Alemberta

∣∣∣∣∣ x(n+1)!

(n+ 1)!

∣∣∣∣∣
∣∣∣∣∣ n!
xn!

∣∣∣∣∣ =
1

n+ 1
|x|n·n! −→

n

0 |x| ¬ 1,
∞ |x| > 1.

Otrzymujemy R = 1.
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Uwaga 5.18. Można udowodnić, że

R =
1

lim sup n

√
|an|

.

Rzeczywiście, niech A = {|x| : ciąg anxn jest ograniczony}. Dla x ∈ A mamy
|anxn| ¬M dla pewnej liczby M > 0. Zatem

|x| ¬ M1/n

|an|1/n
.

Niech α oznacza największy punkt skupienia ciągu |an|1/n. Wtedy

|ank |1/nk −→
k

α

dla pewnego podciągu liczba naturalnych nk. Zatem

|x| ¬ M1/nk

|ank |1/nk
−→
k

1
α
.

Na podstawie (5.1) otrzymujemy

R ¬ 1
α

=
1

lim sup |an|1/n
.

Załóżmy, że

|x| < 1
lim sup |an|1/n

.

Tzn.
lim sup |anxn|1/n < 1.

Wybierzmy liczbę r spełniającą

lim sup |anxn|1/n < r < 1.

Z określenia granicy górnej wszystkie wyrazy ciągu |anxn|1/n (poza być może
skończoną ilością leżą poniżej r, tzn.

|anxn|1/n ¬ r, n ­ n0

dla pewnego wskaźnika n0. Równoważnie

|anxn| ¬ rn, n ­ n0.
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Z kryterium porównawczego szereg
∑

anx
n jest wtedy zbieżny bezwzględnie.

To oznacza, że R ­ |x|. Zatem

R ­ 1
lim sup |an|1/n

.

Twierdzenie 5.19. Suma szeregu s(x) =
∞∑
n=0

anx
n jest funkcją ciągłą w

przedziale (−R,R).

Dowód. sn(x) =
n∑
k=0

akx
k jest funkcją ciągłą. Wiemy, że sn(x) ⇒

n
s(x) dla

−r ¬ x ¬ r dla dowolnej liczby 0 < r < R. Stąd otrzymujemy tezę.

Przykłady. Szereg potęgowy może mieć różne zachowanie na brzegu prze-
działu zbieżności.

1. Szereg
∞∑
n=1

xn jest zbieżny tylko dla |x| < 1.

2. Szereg
∞∑
n=1

1
n2
xn jest zbieżny dla |x| ¬ 1.

3. Szereg
∞∑
n=1

(−1)n+1

n
xn jest zbieżny dla −1 < x ¬ 1. Można pokazać, że

suma szeregu wynosi log(1 + x).

Twierdzenie 5.20 (Abel). Jeśli szereg f(x) =
∞∑
n=0

anx
n jest zbieżny dla

x = a, to funkcja f(x) jest lewostronnie ciągła w punkcie x = a, jeśli a > 0
i prawostronnie ciągła, jeśli a < 0.

Dowód. Wystarczy rozważyć przypadek a = 1. Chcemy udowodnić, że

lim
x→1−

f(x) = f(1) =
∞∑
n=0

an.
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Oznaczmy sn =
n∑
k=0

ak i s =
∞∑
n=0

an. Wtedy (przyjmując s−1 = 0 otrzymujemy

n∑
k=0

akx
k =

n∑
k=0

(sk − sk−1)xk

=
n∑
k=0

skx
k −

n−1∑
k=0

skx
k+1 = (1− x)

n∑
k=0

skx
k + snx

n+1.

Dla 0 < x < 1 przechodzimy do granicy w podkreślonych wyrażeniach.
Ponieważ ciąg sn jest ograniczony, to snxn+1 −→

n
0. Zatem

f(x) =
∞∑
n=0

anx
n = (1− x)

∞∑
n=0

snx
n.

Dalej

f(x)− f(1) = (1− x)
∞∑
n=0

snx
n − s

= (1− x)
∞∑
n=0

snx
n − (1− x)

∞∑
n=0

sxn = (1− x)
∞∑
n=0

(sn − s)xn.

Otrzymujemy więc

|f(x)− f(1)| ¬ (1− x)
N∑
n=0

|sn − s|xn + (1− x)
∞∑

n=N+1

|sn − s|xn.

Dla ε > 0 istnieje liczba naturalna N taka, że dla n > N mamy |sn− s| <
ε

2
.

Ciąg sn jest ograniczony więc |sn| ¬M dla pewnej liczby M > 0. Wtedy

|f(x)− f(1)| ¬ 2M(1− x)
N∑
n=0

xn +
ε

2
(1− x)

∞∑
n=0

xn

¬ 2M(N + 1)(1− x) +
ε

2
.

Jeśli |x− 1| < ε

4M(N + 1)
, to |f(x)− f(1)| < ε.
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6 Pochodne

Przez punkt P i Q 6= P okręgu przeprowadzamy sieczną. Gdy punkt Q
zbliża się do punktu P, to przyjmujemy, że graniczne położenie siecznych
określa położenie stycznej do okręgu w punkcie P. Będziemy zajmować się
stycznymi do wykresów funkcji y = f(x). Chcemy znaleźć styczną do wykresu
w punkcie (a, f(a)). Wybierzmy inny punkt wykresu (x, f(x)). Nachylenie
(współczynnik kierunkowy) siecznej przechodzącej przez punkty (a, f(a)) i
(x, f(x)) wynosi

f(x)− f(a)
x− a

.

Zatem nachylenie stycznej wyraża się wzorem

lim
x→a

f(x)− f(a)
x− a

.

Wyrażenie pod granicą nazywamy ilorazem różnicowym.

Przykład. Dla f(x) = x2 i a = 1 oraz x 6= 1 mamy

f(x)− f(1)
x− 1

=
x2 − 1
x− 1

= x+ 1.

Zbliżamy się z x do 1. Nachylenie stycznej do wykresu w punkcie (1, 1) po-
winno być równe granicznemu nachyleniu siecznych, czyli

lim
x→1

(x+ 1) = 2.

Równanie stycznej ma postać y−1 = 2(x−1). Po przekształceniu otrzymamy
y = 2x− 1.

Ogólnie obliczamy granicę

m = lim
x→a

f(x)− f(a)
x− a

, o ile istnieje.

Wtedy równanie stycznej ma postać

y − f(a) = m(x− a).

Obiekt porusza się po linii pionowej i jego wysokość w chwili t wynosi
h(t). Chcemy obliczyć prędkość w chwili t = a. Wybieramy moment czasu t
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blisko a, ale t 6= a (np. t > a). Średnia prędkość w przedziale czasu od a do
t wynosi

h(t)− h(a)
t− a

.

Prędkość chwilowa określona jest wzorem

lim
t→a

h(t)− h(a)
t− a

.

Przykład. f(t) = t3 + 3t. Chcemy obliczyć prędkość obiektu w chwili t = 1.

f(t)− f(1)
t− 1

=
t3 + 3t− 4
t− 1

= t2 + t+ 4.

Zatem

lim
t→1

f(t)− f(1)
t− 1

= 6.

Definicja 6.1. Mówimy, że funkcja f(x) określona w pewnym przedziale wo-
kół punktu a ma pochodną w tym punkcie, jeśli istnieje granica

f ′(a) = lim
x→a

f(x)− f(a)
x− a

.

Uwaga 6.2. Liczba f ′(a) określa chwilowe tempo zmiany wartości funkcji w
punkcie a.

Jeśli f ′(a) istnieje, to równanie stycznej do wykresu funkcji y = f(x) w
punkcie (a, f(a)) ma postać

y − f(a) = f ′(a)(x− a).

Przykład. Chcemy znaleźć równanie stycznej do wykresu y =
√
x w punkcie

(2,
√

2). Mamy

√
x−
√

2
x− 2

=
√
x−
√

2
(
√
x−
√

2)(
√
x+
√

2)
=

1
√
x+
√

2
−→
x→2

1
2
√

2
.

Równanie stycznej to

y −
√

2 =
1

2
√

2
(x− 2).
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Definicja 6.3. Jeżeli funkcja f(x) jest określona w przedziale [a, a+ δ) (lub
(a− δ, a]) oraz istnieje granica

f ′+(a) = lim
x→a+

f(x)− f(a)
x− a

(
lub f ′−(a) = lim

x→a−
f(x)− f(a)

x− a

)
,

to mówimy, że istnieje pochodna prawostronna (lub lewostronna) w punkcie
a.

Przykład. Zrzucamy kamień z wysokości 20m. Jaka jest prędkość kamienia
w chwili uderzenia w ziemię ? Mamy

h(t) =

20− 5t2 0 ¬ t ¬ 2,
0 t > 2.

Trzeba obliczyć h′−(2).

h′−(2) = lim
t→2−

h(t)− h(2)
t− 2

= lim
t→2−

20− 5t2

t− 2
= lim

t→2−

−5(���t− 2)(t+ 2)
���t− 2

− 20.

Oczywiście h′+(2) = 0.

Przykład. Czy funkcja f(x) = |x| ma pochodną w punkcie x = 0 ? Obli-
czamy

f ′−(0) = lim
x→0−

|x|
x

= lim
x→0−

−x
x

= lim
x→0−

(−1) = −1,

f ′+(0) = lim
x→0+

|x|
x

= lim
x→0+

x

x
= lim

x→0+
1 = 1.

Zatem granica lim
x→0

|x|
x

nie istnieje.

Twierdzenie 6.4. Jeśli funkcja f(x) ma pochodną w punkcie a, to jest w
tym punkcie ciągła.

Dowód.

f(x)− f(a) =
f(x)− f(a)

x− a︸ ︷︷ ︸
↘
f ′(a)

(x− a)︸ ︷︷ ︸
↘ 0

−→
x→a

0.
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Przykład. Funkcja

f(x) =

x x 6= 0,
5 x = 0

nie jest ciągła w punkcie 0. Zatem nie jest w tym punkcie różniczkowalna.

Twierdzenie 6.5. Załóżmy, że f ′(a) i g′(a) istnieją. Wtedy

(i) (f ± g)′(a) = f ′(a)± g′(a).

(ii) (fg)′(a) = f ′(a)g(a) + f(a)g′(a).

(iii)
(
f

g

)′
(a) =

f ′(a)g(a)− f(a)g′(a)
g(a)2

, o ile g(a) 6= 0.

Dowód.
(i)

f(x) + g(x)− [f(a) + g(a)]
x− a

=
f(x)− f(a)

x− a
+
g(x)− g(a)
x− a

−→
x→a

f ′(a) + g′(a).

(ii)

f(x)g(x)− f(a)g(a)
x− a

=
[f(x)− f(a)] [g(x)− g(a)] + [f(x)− f(a)]g(a) + f(a)[g(x)− g(a)]

x− a

=
f(x)− f(a)

x− a
g(x)− g(a)
x− a

(x− a) +
f(x)− f(a)

x− a
g(a) + f(a)

g(x)− g(a)
x− a

−→
x→a

f ′(a)g(a) + f(a)g′(a).

(iii)

f(x)
g(x)

− f(a)
g(a)

x− a
=
f(x)g(a)− f(a)g(x)
g(x)g(a)(x− a)

=
1

g(x)g(a)
[f(x)− f(a)]g(a)− f(a)[g(x)− g(a)]

x− a
−→
x→a

f ′(a)g(a)− f(a)g′(a)
g(a)2

.
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Przykłady.

(a) f(x) ≡ c. f ′(a) = 0.

(b) fn(x) = xn, n ­ 1.

f ′n(a) = lim
x→a

xn − an

x− a
= lim

x→a
(xn−1+axn−2+a2xn−3+. . .+an−2x+an−1)

= an−1 + an−1 + . . .+ an−1︸ ︷︷ ︸
n składników

= nan−1.

(c) gn(x) = x−n =
1

fn(x)
, x 6= 0.

g′n(x) =
(

1
fn(x)

)′
=
−f ′n(x)
fn(x)2

=
−nxn−1

x2n
= −nx−n−1.

Uwaga 6.6. Przykłady (b) i (c) dają (xn)′ = nxn−1 dla n ∈ Z, n 6= 0.

Czasami stosuje się inny zapis dla pochodnej. Przyjmując h = x−a mamy

f ′(a) = lim
h→0

f(a+ h)− f(a)
h

.

Ile wynosi lim
n
n2
[
f(2 + 1

n2
)− f(2)

]
przy założeniu, że f ′(2) istnieje ? To

wyrażenie jest równe

lim
n

f(2 + 1
n2

)− f(2)
1
n2

= f ′(2).

Przykłady.

(a)

(ex)′ = lim
h→0

ex+h − ex

h
= ex lim

h→0

eh − 1
h︸ ︷︷ ︸

=1

= ex

Ostatnia granica była obliczona na podstawie zadania 9 z listy 6. Można
tę granicę obliczyć inaczej korzystając ze wzoru

ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+
x4

4!
+ . . . .
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Rzeczywiście
ex − 1
x
− 1 =

x

2!
+
x2

3!
+
x3

4!
+ . . . .

Załóżmy, że |x| ¬ 1. Wtedy∣∣∣∣ex − 1
x
− 1

∣∣∣∣ ¬ |x|
(

1
2!

+
|x|
3!

+
x2

4!
+ . . .

)

¬ |x|
( 1

2!
+

1
3!

+
1
4!

+ . . .
)

= (e− 2)|x| ¬ |x|.

(b) (sinx)′ = cosx. Rzeczywiście

sin(x+ h)− sinx
h

=
sinx(cosh− 1) + cos x sinh

h

= sinx
cosh− 1

h︸ ︷︷ ︸
→0 ?

+ cosx
sinh
h
−→
h→0

cosx.

cosh− 1
h

=
cos2 h− 1
h(cosh+ 1)

= −sin2 h

h2

h

cosh+ 1
−→
h→0

0.

Uwaga 6.7. Niech f(x) = g(x+ b). Wtedy f ′(x) = g′(x+ b). Istotnie

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

g((x+ b) + h)− g(x+ b)
h

= g′(x+ b).

(f) (cosx)′ = − sinx, bo cosx = sin
(
x+

π

2

)
zatem

(cosx)′ = sin′
(
x+

π

2

)
= cos

(
x+

π

2

)
= − sinx.

(g) (tg x)′ =
( sinx

cosx

)′
=

cos2 x+ sin2 x

cos2 x
=


1

cos2 x

1 + tg2 x

x 6= π

2
+ kπ.

(h) x > 0, (log x)′ =
1
x
. Uzasadnienie:

lim
h→0

log(x+ h)− log x
h

=
1
x

lim
h→0

log
(

1 +
h

x

)
h

x

=
1
x

lim
t→0

log(1 + t)
t
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Ostatnia granica wg zadania 1 z listy 6 wynosi 1. Ale możemy ją też
obliczyć na podstawie przykładu (a). Niech u = log(1 + t). Wtedy
u→ 0, gdy t→ 0. Rzeczywiście dla t > 0 mamy

et > 1 + t, zatem t > log(1 + t) > 0.

Z kolei dla −1 < t < 0 otrzymujemy

| log(1 + t)| = − log(1 + t) = log
1

1 + t
= log

(
1 +

−t
1 + t

)
<
−t

1 + t
.

Zatem dla −1
2
¬ t < 0 mamy

| log(1 + t)| ¬ −2t = 2|t|.

Reasumując

| log(1 + t)| ¬ 2|t|, dla |t| ¬ 1
2
.

Ostatecznie

lim
t→0

log(1 + t)
t

= lim
u→0

u

eu − 1
= 1.

Twierdzenie 6.8 (reguła łańcucha). Jeśli funkcja f(x) jest różniczkowalna
w punkcie x = a, natomiast funkcja g(y) jest różniczkowalna w punkcie b =
f(a), to funkcja złożona (g ◦ f)(x) = g(f(x)) jest różniczkowalna w punkcie
x = a oraz

(g ◦ f)′(a) = g′(b)f ′(a) = g′(f(a))f ′(a). (6.1)

Dowód. Nieścisłe, ale obrazowe uzasadnienie jest następujące.

g(f(x))− g(f(a))
x− a

=
g(f(x))− g(f(a)))

f(x)− f(a)
f(x)− f(a)

x− a
,

przy założeniu f(x) 6= f(a). Przyjmując oznaczenie y = f(x) otrzymamy

g(f(x))− g(f(a))
x− a

=
g(y)− g(b)
y − b

f(x)− f(a)
x− a

.

Dla x → a mamy y = f(x) → f(a) = b. Zatem pierwszy ułamek dąży do
g′(b), a drugi do f ′(a).
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Przejdziemy do ścisłego dowodu. Z założenia mamy

f(x)− f(a)
x− a

= f ′(a) + u(x), u(x) −→
x→a

0.

Podobnie
g(y)− g(b)
y − b

= g′(b) + v(y), v(y) −→
y→b

0.

Zatem

f(x)− f(a) = (x− a) [f ′(a) + u(x)],
g(y)− g(b) = (y − b) [g′(b) + v(y)].

W drugiej równości podstawmy y = f(x) i b = f(a). Otrzymamy

g(f(x))− g(f(a)) = [f(x)− f(a)][g′(b) + v(y)]
= (x− a) [f ′(a) + u(x)][g′(b) + v(y)].

Czyli
g(f(x))− g(f(a))

x− a
= [f ′(a) + u(x)][g′(b) + v(y)].

Gdy x→ a, to u(x)→ 0. Ponadto y = f(x) −→
x→a

f(a) = b. Zatem v(y)→ 0.
Ostatecznie w granicy otrzymujemy f ′(a)g′(b).

Uwaga 6.9. Wzór (6.1) można też zapisać w postaci

(g ◦ f)′(x) = g′(y)f ′(x), gdzie y = f(x).

Przykłady.

(a) Obliczyć (log sinx)′.

y = f(x) = sin x f ′(x) = cos x

g(y) = log y g′(y) =
1
y

Zatem
(log sinx)′ =

1
y

cosx =
1

sinx
cosx = ctg x.

(b) h(x) = cos(x5). h′(x) = − sin(x5) 5x4.
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6.1 Zapis Leibniza

∆y = f(x+ ∆x)− f(x).

Iloraz
∆y
∆x

reprezentuje stosunek zmiany wartości y do zmiany wartości x.

f ′(x) = lim
∆x→0

∆y
∆x

=
dy

dx
.

Prawa strona jest oznaczeniem pochodnej w zapisie Leibniza.
Zobaczmy jak wygląda reguła łańcucha w tym zapisie. Wprowadzamy

oznaczenia u = f(x), y = g(u). Wtedy

du

dx
= f ′(x),

dy

du
= g′(u) =

u=f(x)
g′(f(x)).

Dalej

y = g(f(x)),
dy

dx
= (g ◦ f)′(x).

Wzór (6.1) przyjmuje postać

dy

dx
=
dy

du

du

dx
, u = f(x).

Przykłady.

(a) y = sin8 x. Niech u = sinx, y = u8. Wtedy

dy

dx
=
dy

du

du

dx
= 8u7 cosx = 8 sin7 x cosx.

(b) y = log(cos(x2 + 1)). Niech u = x2 + 1, v = cosu, y = log v.

dy

dx
=
dy

dv

dv

du

du

dx
=

1
v

(− sinu) 2x = −2x sin(x2 + 1)
cos(x2 + 1)

.

Definicja 6.10. Mówimy, że funkcja f(x) jest różniczkowalna w przedziale
(a, b) jeśli f ′(x) istnieje w każdym punkcie x z (a, b). Mówimy, że funkcja
f(x) jest różniczkowalna w przedziale [a, b], jeśli dodatkowo istnieją f ′+(a)
oraz f ′−(b).
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Przykłady.

(a) f(x) =

x sin
1
x

x 6= 0,

0 x = 0.
Dla x 6= 0 pochodna istnieje i wynosi

f ′(x) = sin
1
x

+ x
−1
x2

cos
1
x

= sin
1
x
− 1
x

cos
1
x
.

Sprawdzimy istnienie pochodnej w 0.

f(x)− f(0)
x

= sin
1
x
.

Otrzymane wyrażenie nie ma granicy, gdy x→ 0.

(b) f(x) =

x
2 sin

1
x

x 6= 0,

0 x = 0.
Dla x 6= 0 mamy

f ′(x) = 2x sin
1
x
− cos

1
x
.

Dalej
f(x)− f(0)

x
= x sin

1
x
−→
x→0

0.

Zatem

f ′(x) =

2x sin
1
x
− cos

1
x

x 6= 0,

0 x = 0.

Zauważmy, że funkcja f ′(x) nie ma granicy w punkcie 0.

Twierdzenie 6.11. Załóżmy, funkcja f(x) jest ciągła w przedziale [c, d] i
g(y) jest funkcją odwrotną do funkcji f. Jeśli dla c < a < d pochodna f ′(a)
istnieje oraz f ′(a) 6= 0, to funkcja g jest różniczkowalna w punkcie b = f(a)
oraz

g′(b) =
1

f ′(a)
.

Uwaga 6.12. Przy oznaczeniach g = f−1, a = f−1(b) mamy

(f−1)′(b) =
1

f ′(f−1(b))
.
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Uwaga 6.13. Jeśli f(x) = y, to

g′(y) =
1

f ′(x)
.

Dowód. Z Twierdzenia 4.37 funkcja g(y) jest ciągła. Chcemy zbadać

g(y)− g(b)
y − b

gdy y → b. Oznaczmy x = g(y). Zatem y = f(x). Ponadto z f(a) = b mamy
g(b) = a. Otrzymujemy więc

g(y)− g(b)
y − b

=
x− a

f(x)− f(a)
.

Gdy y → b, to z ciągłości funkcji g w punkcie b wynika, że g(y)→ g(b), czyli
x→ a. Zatem

lim
y→b

g(y)− g(b)
y − b

= lim
x→a

1
f(x)− f(a)

x− a

=
1

f ′(a)
.

Przykład. y = f(x) = xn, x > 0. Wtedy x = g(y) = y1/n. Zatem

g′(y) =
1

f ′(x)
=

1
nxn−1

=
1
n
y
1
n
−1.

Znajdziemy postać wzoru na pochodną funkcji odwrotnej w zapisie Leib-
niza. Dla y = f(x) i x = g(y) mamy

dy

dx
= f ′(x),

dx

dy
= g′(y).

Zatem
dx

dy
=

1
dy

dx

.
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Przykłady.

(a) y = tg x, x = arctg y. Wtedy

dx

dy
=

1
dy

dx

=
1

1 + tg2 x
=

1
1 + y2

.

W szczególności

(arctg t)′
∣∣∣∣
t=1

=
1
2
.

(b) (arcsin x)′ =
1√

1− x2
. Rzeczywiście, niech y = sinx, −π

2 < x < π
2 .

Wtedy x = arcsin y, −1 < y < 1. Zatem

(arcsin y)′ =
1

sin′ x
=

1
cosx

=
1√

1− sin2 x
=

1√
1− y2

.

W szczególności (arcsinx)′
∣∣∣∣
x=0

= 1.

Jeśli α jest kątem nachylenia stycznej do wykresu funkcji y = f(x) w
punkcie (a, f(a)), to f ′(a) = tgα. Przy zamianie x i y rolami kąt β = π

2 − α
określa nachylenie wykresu x = g(y) (czyli tego samego wykresu) w punkcie
(g(b), b) = (a, f(a)). Zatem

g′(b) = tg β = tg (π2 − α) = ctgα =
1

tgα
=

1
f ′(a)

.

6.2 Maxima i minima

Definicja 6.14. Załóżmy, że funkcja f(x) jest określona w otoczeniu punktu
a i w pewnym przedziale (a − δ, a + δ) mamy f(x) ¬ f(a). Mówimy wtedy,
że f posiada lokalne maksimum w punkcie a. Jeśli nierówność jest ostra dla
x 6= a z przedziału (a− δ, a+ δ), to mamy do czynienia ze ścisłym lokalnym
maksimum. Podobnie określa się lokalne minimum i ścisłe lokalne minimum.

Twierdzenie 6.15. Załóżmy, że funkcja f(x) jest różniczkowalna i posiada
lokalne ekstremum w punkcie a. Wtedy f ′(a) = 0.
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Dowód. Załóżmy, że w a występuje lokalne minimum. Wtedy dla a < x <
a+ δ mamy

f(x)− f(a)
x− a

­ 0.

Zatem

f ′(a) = lim
x→a+

f(x)− f(a)
x− a

­ 0.

Dla a− δ < x < a mamy

f(x)− f(a)
x− a

¬ 0,

czyli

f ′(a) = lim
x→a−

f(x)− f(a)
x− a

¬ 0.

Stąd f ′(a) = 0.

Definicja 6.16. Punktami krytycznym funkcji nazywamy punkty, w których
pochodna nie istnieje lub istnieje i wtedy jest równa 0 (punkty stacjonarne).

6.3 Metoda znajdowania wartości największej i naj-
mniejszej funkcji ciągłej na przedziale [a, b]

Z twierdzenia Weierstrassa wiemy, że istnieją punkty c i d w przedziale [a, b]
takie, że

f(c) = min
a¬x¬b

f(x) =: m, f(d) = max
a¬x¬b

f(x) =: M.

Zajmiemy się położeniem punktu c. Mamy następujące możliwości.

1. c = a lub c = b, tzn. c jest jednym z końców przedziału.

2. a < c < b.

2(a) Pochodna w c nie istnieje.

2(b) Pochodna w c istnieje i f ′(c) = 0, bo c jest w szczególności mini-
mum lokalnym.

Reasumując, wartości m i M są przyjęte na końcach przedziału lub w jakichś
punktach krytycznych. Aby wyznaczyć m i M wykonujemy następujące czyn-
ności.
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(a) Znajdujemy wszystkie punkty krytyczne funkcji.

(b) Obliczamy wartości funkcji w punktach krytycznych i na końcach prze-
działu.

(c) Największa z otrzymanych wartości jest równa M, a najmniejsza to m.

Przykład. f(x) = x2/3 − x = (x2)1/3 − x, [−1, 1]. Obliczamy

f ′(x) = 1
3(x2)−2/3 2x− 1, x 6= 0.

Sprawdzamy istnienie pochodnej w 0.

f(x)− f(0)
x

=
x2/3 − x

x
= x−1/3 − 1

−→
x→0−

−∞
−→
x→0+

∞ .

Zatem 0 jest punktem krytycznym. Rozwiązujemy równanie f ′(x) = 0. Czyli

2
3

(x2)−2/3 x− 1 = 0.

Stąd x = 8
27 . Mamy

f(−1) = 2, f(1) = 0, f(0) = 0, f( 8
27) = 4

27 .

Zatem m = 0 i M = 2.

Uwaga 6.17. W przykładzie można pominąć sprawdzanie różniczkowalno-
ści w punkcie 0, przyjmując, że ten punkt jest potencjalnie krytyczny, więc
obejmuje go punkt (b) procedury.

Twierdzenie 6.18 (Rolle). Niech f(x) będzie funkcją ciągłą na [a, b] i róż-
niczkowalną w (a, b). Jeśli f(a) = f(b), to f ′(c) = 0, w pewnym punkcie
a < c < b.

Dowód. Jeśli f jest stała, tzn. f(x) ≡ f(a), to f ′(x) ≡ 0. Jeśli f nie jest
stała, to m < M. Zatem wartość m lub M jest przyjęta w pewnym punkcie
wewnętrznym c. Ale wtedy f ′(c) = 0.

Twierdzenie 6.19 (Cauchy). Funkcje f(x) i g(x) są ciągłe w [a, b] i róż-
niczkowalne w (a, b), przy czym g′(x) 6= 0, dla a < x < b. Wtedy

f(b)− f(a)
g(b)− g(a)

=
f ′(c)
g′(c)

dla pewnego punktu c, a < c < b.
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Dowód. Mamy g(a) 6= g(b), bo gdyby g(a) = g(b), to z twierdzenia Rolle’a
mielibyśmy g′(c) = 0 dla pewnego punktu a < c < b. Określmy funkcję

h(x) = f(a)− f(x) +
f(b)− f(a)
g(b)− g(a)

[g(x)− g(a)].

Wtedy h(a) = h(b). Z twierdzenia Rolle’a otrzymujemy h′(c) = 0 dla pewne-
go a < c < b. Tzn.

0 = −f ′(c) +
f(b)− f(a)
g(b)− g(a)

g′(c).

Po przekształceniu otrzymujemy tezę.

Twierdzenie 6.20 (Lagrange, o wartości średniej). Jeśli f(x) jest funkcją
ciągłą na [a, b] i różniczkowalną w (a, b), to dla pewnego punktu a < c < b
mamy

f(b)− f(a)
b− a

= f ′(c).

Dowód. Stosujemy twierdzenie Cauchy’ego dla g(x) = x.

Uwaga 6.21. Wyrażenie
f(b)− f(a)

b− a
jest współczynnikiem nachylenia siecz-

nej przechodzącej przez punkty (a, f(a)) i (b, f(b) wykresu funkcji y = f(x).
Z kolei f ′(c) jest współczynnikiem nachylenia stycznej do wykresu w punkcie
(c, f(c)). Twierdzenie Lagrange’a mówi zatem, że w pewnym punkcie pośred-
nim styczna do wykresu jest równoległa do siecznej.

Wniosek 6.22. Jeśli f ′(x) = 0 dla wszystkich a < x < b, to funkcja f(x)
jest stała.

Dowód. Niech a < x, y < b. Możemy przyjąć x < y. Wtedy

f(y)− f(x)
y − x

= f ′(z) = 0,

dla pewnego punktu x < z < y. Zatem f(x) = f(y).

Wniosek 6.23. Jeśli f ′(x) = g′(x) dla a < x < b, to f(x) = g(x) + c dla
pewnej stałej c.

Dowód. Dla h(x) = f(x)− g(x) mamy h′(x) = 0, zatem h(x) ≡ c.
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Twierdzenie 6.24. Jeśli f ′(x) ­ 0 dla a < x < b, to f(x) jest funkcją
rosnącą. Jeśli f ′(x) > 0 dla a < x < b, to f(x) jest ściśle rosnąca.

Uwaga 6.25. Podobne twierdzenie jest prawdziwe dla przeciwnej nierówno-
ści.

Dowód. Niech a < x < y < b. Wtedy z twierdzenia Lagrange’a mamy

f(y)− f(x)
y − x

= f ′(z) ­ 0

dla pewnego punktu x < z < y. Zatem f(y) ­ f(x). W przypadku f ′(z) > 0
otrzymujemy f(y) > f(x).

Uwaga 6.26. Jeśli f(x) jest ściśle rosnąca, to nie znaczy, że f ′(x) > 0 dla
każdego punktu x. Np. f(x) = x3 jest ściśle rosnąca, ale f ′(0) = 0.

Przykład. Udowodnić, że

(1 + x)α > 1 + αx, dla x > −1, x 6= 0, α > 1. (6.2)

Określamy
f(x) = (1 + x)α − αx− 1.

Pomocniczo obliczamy

(xα)′ = (eα log x)′ = eα log x α

x
= αxα−1, x > 0.

Zatem
f ′(x) = α(1 + x)α−1 − α = α[(1 + x)α−1 − 1].

Stąd f ′(x) > 0 dla x > 0 oraz f ′(x) < 0 dla −1 < x < 0. To oznacza,
że funkcja f(x) ściśle rośnie na półprostej [0,∞) i ściśle maleje na (−1, 0].
Wnioskujemy, że f(x) > f(0) dla x > −1, x 6= 0. Czyli (1 +x)α−αx− 1 > 0
dla x > −1, x 6= 0.

6.4 Wyższe pochodne

Definicja 6.27. Jeśli f ′(x) jest różniczkowalna w punkcie a, to jej pochodną
oznaczamy symbolem

f ′′(a) = lim
x→a

f ′(x)− f ′(a)
x− a

i nazywamy drugą pochodną w punkcie a.
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W zapisie Leibniza dla funkcji y = f(x) drugą pochodną oznaczamy

d2y

dx2
= f ′′(x).

Przykłady.

(a) f(x) = sinx, f ′(x) = cos x, f ′′(x) = − sinx.

(b) f(x) = x1/2, f ′(x) = 1
2 x
−1/2, f ′′(x) = −1

4 x
−3/2.

Podobnie określamy następne pochodne. Czyli n-ta pochodna funkcji jest
pochodną (n− 1)-tej pochodnej. Używamy symbolu f (n).

Przykłady.

f(x) = sinx f ′(x) = cos x f ′′(x) = − sinx
f ′′′(x) = − cosx f (4)(x) = sin x f (2014)(x) = − sinx.

Przyśpieszenie

Drugą pochodną położenia obiektu (poruszającego się po linii prostej) wzglę-
dem czasu nazywamy przyśpieszeniem, czyli chwilowym tempem zmiany pręd-
kości. Średnie przyśpieszenie od chwili t0 do chwili t wynosi

v(t)− v(t0)
t− t0

.

Wtedy

a(t0) = lim
t→t0

v(t)− v(t0)
t− t0

= lim
t→t0

f ′(t)− f ′(t0)
t− t0

= f ′′(t0),

gdzie f(t) oznacza położenie obiektu na prostej.

6.5 Różniczkowanie niejawne

Funkcje w dotychczasowych przykładach były podane jawnym wzorem y =

f(x), np. y =
x2

1 + x
, y = tg x. Załóżmy, że y jest związane z x poprzez

równanie, np.
x3 + y3 = 2xy, (6.3)
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przy czym y jest funkcją zmiennej x. Załóżmy, że y jest różniczkowalna.
Chcemy obliczyć y′. Różniczkujemy tożsamość (6.3), czyli nakładamy d/dx
pamiętając, że y = y(x). Otrzymamy

3x2 + 3y2 dy

dx
= 2y + 2x

dy

dx
,

czyli
dy

dx
=

2y − 3x2

3y2 − 2x
, 3y2 6= 2x.

Przykład. Załóżmy, że y jest różniczkowalną funkcją zmiennej x spełniającą
równanie

x3 = y4 + x2 sin y + 1,

oraz y = 0 dla x = 1. Chcemy obliczyć
dy

dx

∣∣∣∣
x=1

. Nakładamy pochodną d/dx

na tożsamość (obie strony tożsamości są funkcjami zmiennej x).

3x2 = 4y3 dy

dx
+ 2x sin y + x2 cos y

dy

dx
. (6.4)

Dalej
dy

dx
=

3x2 − 2x sin y
4y3 + x2 cos y

.

Zatem
dy

dx

∣∣∣∣
x=1

= 3. Różniczkując tożsamość (6.4) można obliczyć
d2y

dx2

∣∣∣∣x=1
y=0

.

Uwaga 6.28. Oznaczenie Leibniza na wyższe pochodne funkcji y = f(x)

f (n)(x) =
dny

dxn
.

Przykład. Znaleźć styczną do wykresu funkcji y zadanej równaniem

x2 + y2 = 1

w punkcie (−1
2 ,
√

3
2 ). Obliczamy

2x+ 2y
dy

dx
= 0.
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Zatem
dy

dx
= −x

y
.

Stąd
dy

dx

∣∣∣∣x=−1/2
y=
√
3/2

=
1√
3
. Styczna ma zatem równanie

y −
√

3
2

=
1√
3

(
x+

1
2

)
.

6.6 Related rates czyli dwa tempa zmiany powiązane
ze sobą

Pompujemy balon w kształcie sfery. Wtedy objętość V i promień r są funk-
cjami czasu t związanymi ze sobą równaniem

V =
4
3
πr3.

Różniczkując równanie względem t otrzymamy

dV

dt
= 4πr2 dr

dt
. (6.5)

Balon jest pompowany w tempie 10 cm3/s. Jakie jest tempo zmiany pro-
mienia w momencie, gdy r = 10 cm ? Niech t0 oznacza moment czasu, gdy
r = 10. Do wzoru (6.5) podstawiamy t = t0. Wtedy

10 =
dV

dt

∣∣∣∣
t=t0

= 4π102 dr

dt

∣∣∣∣
t=t0

.

Zatem
dr

dt

∣∣∣∣
t=t0

=
1

40π
(cm/s).

Przykłady.

1. Woda jest nalewana do stożkowego kubka w tempie tempie 20 cm3/s.
Kubek ma wysokość 15 cm i promień na brzegu równy 5 cm. Jaka jest
szybkość podnoszenia się poziomu wody, gdy poziom ten osiąga 10 cm?
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Niech V oznacza objętość nalanej wody w chwili t, natomiast h i r
oznaczają poziom wody i promień górnej warstwy wody, odpowiednio,
w chwili t. Mamy

V =
1
3
πr2h.

Z twierdzenia Talesa
r

h
=

5
15

=
1
3
,

czyli

r =
1
3
h.

Zatem
V =

π

27
h3.

Różniczkujemy obie strony względem czasu t.

dV

dt
=

π

27
3h2 dh

dt
=
π

9
h2 dh

dt
.

Niech t0 oznacza moment czasu, gdy h = 10 cm. Wtedy

20 =
dV

dt

∣∣∣∣
t=t0

=
π

9
102 dh

dt

∣∣∣∣
t=t0

.

Stąd otrzymujemy
dh

dt

∣∣∣∣
t=t0

=
9

5π
(cm/s).

2. Na odcinku drogi z ograniczeniem 60 km/h policja ustawiła radar 5 m
od drogi (za krzaczkami). Samochód jedzie z prędkością 90 km/h. Jaki
będzie odczyt na radarze, gdy samochód znajdzie się 20 m od miejsca na
drodze, w pobliżu którego ustawiono radar ? Niech y oznacza odległość
pojazdu od radaru a x odległość pojazdu od odpowiadającego miejsca

na drodze. Wtedy y2 = x2 + 52. Chcemy znaleźć
dy

dt
w momencie, gdy

x = 20 m. Różniczkujemy równanie względem t. Otrzymamy

2y
dy

dt
= 2x

dx

dt
.

Zatem
dy

dt
=
x

y

dx

dt
=

x√
x2 + 25

dx

dt
.
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Wiemy, że dx
dt

= −90. Niech t0 oznacza moment czasu, gdy x = 20.
Wtedy

dy

dt

∣∣∣∣
t=t0

= −90
20√

400 + 25
≈ −87, 3.

Jaki jest pomiar na radarze, gdy x = 4 ? Oznaczmy przez t1 ten moment
czasu.

dy

dt

∣∣∣∣
t=t1

= −90
4√
41
≈ −56, 22.

6.7 Aproksymacja za pomocą stycznej

Rozważamy funkcję f(x) = x1/3. Chcemy obliczyć 3
√

1, 1. Ogólnie załóżmy,
że f(x) jest różniczkowalna w punkcie a, czyli

f(x)− f(a)
x− a

−→
x→a

f ′(a).

To oznacza, że
f(x)− f(a)

x− a
≈ f ′(a),

gdy x leży blisko a. Otrzymujemy

f(x) ≈ f(a) + f ′(a)(x− a).

Prawa strona reprezentuje równanie stycznej do wykresu w punkcie a.Oznacz-
my h = x− a. Wtedy

f(a+ h) ≈ f(a) + h f ′(a). (6.6)

Aby obliczyć przybliżoną wartość 3
√

1, 1 przyjmujemy a = 1 i h = 0, 1. Mamy
f ′(x) = 1

3x
−2/3, zatem f ′(1) = 1

3 . Z (6.6) otrzymujemy

3
√

1, 1 ≈ 1 + 0, 1 · 1
3

= 1, 033 . . . .

Dla porównania dokładna wartość wynosi

3
√

1, 1 = 1, 0322 . . . .
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6.8 Reguła de l’Hospitala

Twierdzenie 6.29 (reguła de l’Hospitala). Załóżmy, że funkcje f(x) i g(x)
są ciągłe w [a, b) oraz różniczkowalne w (a, b). Ponadto f(a) = g(a) = 0 oraz
g′(x) 6= 0 dla a < x < b. Wtedy

lim
x→a+

f(x)
g(x)

= lim
x→a+

f ′(x)
g′(x)

,

o ile granica po prawej stronie istnieje.

Uwaga 6.30. Analogiczne twierdzenie jest prawdziwe dla granicy lewostron-
nej i dwustronnej.

Dowód. Niech x > a. Wtedy z Twierdzenia 6.19 otrzymujemy

f(x)
g(x)

=
f(x)− f(a)
g(x)− g(a)

=
f ′(ξ)
g′(ξ)

dla pewnego ξ, a < ξ < x. Gdy x→ a+, to ξ → a+. Zatem

lim
x→a+

f(x)
g(x)

= lim
ξ→a+

f ′(ξ)
g′(ξ)

.

Uwaga 6.31. Teza jest prawdziwa również dla granicy niewłaściwej.

Przykłady.

(a)

lim
x→0

1− cosx
sin2 x

(H)
= lim

x→0

sinx
2 sinx cosx

= lim
x→0

1
2 cosx

=
1
2
.

Lepszym wyjściem jest użycie wzorów trygonometrycznych

1− cosx
sin2 x

=
1− cosx
1− cos2 x

=
1

1 + cos x
−→
x→0

1
2
.

(b)

lim
x→1+

sinπx√
x2 − 1

= lim
x→1+

π cosπx
x√

x2 − 1

= lim
x→1+

π
√
x2 − 1 cosπx

x
= 0.

Można też obliczyć granicę bezpośrednio

sin πx√
x2 − 1

= −sinπ(x− 1)
π(x− 1)

· π
√
x− 1√
x+ 1

−→
x→1+

(−1) · 0√
2

= 0.
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(c)

lim
x→π−

√
sinx

log
x

π

= lim
x→π−

cosx

2
√

sinx
1
x

= lim
x→π−

x cosx
2
√

sinx
= −∞.

Wniosek 6.32. Załóżmy, że funkcje f(x) i g(x) są różniczkowalne w prze-
dziale (a,∞), g′(x) 6= 0 dla x > a, oraz lim

x→∞
f(x) = lim

x→∞
g(x) = 0. Wtedy

lim
x→∞

f(x)
g(x)

= lim
x→∞

f ′(x)
g′(x)

,

o ile druga granica istnieje.

Dowód. Możemy przyjąć, że a ­ 1. Określmy funkcje

F (y) =


f

(
1
y

)
0 < y <

1
a
,

0 y = 0,
G(y) =


g

(
1
y

)
0 < y <

1
a
,

0 y = 0.

Wtedy F i G są różniczkowalne w przedziale
(

0,
1
a

)
i ciągłe w punkcie 0.

Rzeczywiście

lim
y→0+

F (y) = lim
y→0+

f

(
1
y

)
= lim

x→∞
f(x) = 0.

Dalej

lim
x→∞

f(x)
g(x)

= lim
y→0+

f
(

1
y

)
g
(

1
y

) (H)
= lim

y→0+

− 1
y2
f ′( 1

y
)

− 1
y2
g′
(

1
y

) = lim
y→0+

f ′
(

1
y

)
g′
(

1
y

) = lim
x→∞

f ′(x)
g′(x)

.

Przykład.

lim
x→∞

x
(
π

2
− arctg x

)
= lim

x→∞

π
2 − arctg x

1
x

= lim
x→∞

− 1
1 + x2

− 1
x2

= lim
x→∞

x2

1 + x2
= 1.

Można też granicę obliczyć bezpośrednio stosując podstawienie

α =
π

2
− arctg x.
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Twierdzenie 6.33 (reguła de l’Hospitala dla ∞
∞). Funkcje f(x) i g(x) są

różniczkowalne w (a, b) oraz g′(x) 6= 0 dla a < x < b. Załóżmy, że

lim
x→a+

f(x) = lim
x→a+

g(x) =∞.

Wtedy

lim
x→a+

f(x)
g(x)

= lim
x→a+

f ′(x)
g′(x)

,

o ile granica po prawej stronie istnieje.

Uwaga 6.34. Analogiczne twierdzenie jest prawdziwe dla granic lewostron-
nych, obustronnych i granic w ±∞.

Uwaga 6.35. Przekształcenie

f(x)
g(x)

=
g(x)−1

f(x)−1

i użycie Twierdzenia 6.29 nie będzie skuteczne, bo

(g(x)−1)′

(f(x)−1)′
=
g′(x)
f ′(x)

(f(x))2

(g(x))2
.

Dowód. Idea dowodu polega na tym, że dla x blisko a wyrażenia
f(x)
g(x)

oraz

f(x)− f(x0)
g(x)− g(x0)

zachowują się podobnie. Niech a < x < x0. Wtedy

f(x)
g(x)

=
f(x)− f(x0) + f(x0)
g(x)− g(x0) + g(x0)

=

f(x)− f(x0)
g(x)− g(x0)

+
f(x0)

g(x)− g(x0)

1 +
g(x0)

g(x)− g(x0)

=

f ′(ξ)
g′(ξ)

+
f(x0)

g(x)− g(x0)

1 +
g(x0)

g(x)− g(x0)

dla pewnego punktu ξ położonego pomiędzy x i x0. Oznaczmy L = lim
x→a+

f ′(x)
g′(x) .

Wtedy

f(x)
g(x)

− L =

f ′(ξ)
g′(ξ)

− L+
f(x0)− Lg(x0)
g(x)− g(x0)

1 +
g(x0)

g(x)− g(x0)

.
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Ustalmy liczbę 0 < η < 1/2. Wybierzmy x0 tak, aby∣∣∣∣∣f ′(t)g′(t)
− L

∣∣∣∣∣ < η, dla a < t < x0.

Wtedy ∣∣∣∣∣f ′(ξ)g′(ξ)
− L

∣∣∣∣∣ < η,

bo a < x < ξ < x0. Ponieważ g(x) → ∞ dla x → a+, to możemy teraz
znaleźć a < x1 ¬ x0 tak, aby

|f(x0)− Lg(x0)|+ |g(x0)|
|g(x)− g(x0)|

< η, dla a < x < x1.

Niech a < x < x1. Otrzymamy

∣∣∣∣∣f(x)
g(x)

− L
∣∣∣∣∣ ¬

∣∣∣∣∣f ′(ξ)g′(ξ)
− L

∣∣∣∣∣+ |f(x0)− Lg(x0)|
|g(x)− g(x0)|

1− |g(x0)|
|g(x)− g(x0)|

<
2η

1− η
< 4η.

Przykłady.

(a) lim
x→∞

x

ex
= lim

x→∞

1
ex

= 0.

(b) lim
x→0+

x log x = lim
x→0+

log x
1
x

= lim
x→0+

1
x

− 1
x2

= lim
x→0+

(−x) = 0.

(c) lim
x→∞

x2

ex
= lim

x→∞

2x
ex

= 0. Można też uzasadnić inaczej: dla x > 0 mamy

0 <
xk

ex
¬ xk

xk+1

(k+1)!

=
(k + 1)!

x
−→
x→∞

0.

(d) lim
x→0+

xx = lim
x→0+

ex log x =
y=x log x

lim
y→0−

ey = 1.
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6.8.1 Nadużycia reguły de l’Hospitala

Wiemy, że

lim
x→0

sinx
x

= 1.

Jeśli użyjemy reguły de l’Hospitala, to otrzymamy

lim
x→0

cosx
1

= 1.

Zastosowanie reguły de l’Hospitala wymaga znajomości pochodnej funkcji
sinx. Ale wyjściowa granica, która obliczamy jest z definicji równa pochodnej
funkcji sinx w punkcie 0. Więc użycie reguły wymaga i tak informacji o
granicy, którą właśnie obliczamy.

Ogólnie, gdy obliczamy granicę postaci

lim
x→0

f(x)− f(0)
x

,

to jeśli granica istnieje, jest równa f ′(0). Użycie reguły de l’Hospitala prowa-
dzi do granicy

lim
x→0

f ′(x),

która wymaga znajomości pochodnej f ′(x). Czyli do obliczania granicy uży-
wamy narzędzi, które wymagają wiedzy, ile ta granica wynosi. Takie rozu-
mowanie traktuje się jako nadużycie.

Poza tym może się zdarzyć, że f ′(0) istnieje, ale ostatnia granica nie
istnieje. Na przykład

f(x) =

x
2 sin

1
x

x 6= 0,

0 x = 0.

Wtedy

lim
x→0

f(x)− f(0)
x

= lim
x→0

x sin
1
x

= 0.

Ale dla x 6= 0 mamy

f ′(x) = 2x sin
1
x
− cos

1
x
,

więc granica f ′(x) w punkcie 0 nie istnieje.
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Przykłady.

(a)

lim
x→0

ex − 1
x

= (ex)′
∣∣∣∣
x=0

= ex
∣∣∣∣
x=0

= 1.

(b)

lim
x→0

cosx− 1
x

= (cosx)′
∣∣∣∣
x=0

= − sinx
∣∣∣∣
x=0

= 0.

6.9 Pochodna ciągu i szeregu funkcyjnego

Twierdzenie 6.36. Funkcje fn(x) są ciągłe i różniczkowalne w sposób ciągły
w przedziale [a, b]. Załóżmy, że ciągi fn(x) i f ′n(x) są jednostajnie zbieżne
do f(x) i g(x), odpowiednio. Wtedy f ′(x) = g(x) (na końcach przedziału
f ′+(a) = g(a) i f ′−(b) = g(b)). Tzn.

(lim
n
fn(x))′ = lim

n
f ′n(x).

Czyli pochodna granicy ciągu funkcji jest granicą pochodnych tych funkcji.

Dowód. Niech a ¬ x0 ¬ b. Chcemy pokazać, że f ′(x0) = g(x0). Z założenia
dla ε > 0 istnieje prógN taki, że dla n > N mamy |f ′n(t)−g(t)| < ε/3, dla a ¬
t ¬ b. Wiemy, że funkcja g(x) jest ciągła, jako granica jednostajnie zbieżnego
ciągu funkcji f ′n(x). Zatem istnieje liczba δ > 0 taka, że dla |ξ−x0| < δ mamy
|g(ξ)− g(x0)| < ε/3. Niech 0 < |x− x0| < δ. Wtedy dla n > N otrzymujemy∣∣∣∣∣fn(x)− fn(x0)

x− x0
− g(x0)

∣∣∣∣∣ = |f ′n(ξ)− g(x0)|

¬ |f ′n(ξ)− g(ξ)|+ |g(ξ)− g(x0)| < ε

3
+
ε

3
=

2
3
ε,

dla pewnego punktu ξ leżącego pomiędzy x i x0. Zatem dla 0 < |x− x0| < δ
mamy∣∣∣∣∣f(x)− f(x0)

x− x0
− g(x0)

∣∣∣∣∣ = lim
n

∣∣∣∣∣fn(x)− fn(x0)
x− x0

− g(x0)

∣∣∣∣∣ ¬ 2
3
ε < ε.

To oznacza, że

lim
x→x0

f(x)− f(x0)
x− x0

= g(x0),

czyli f ′(x0) = g(x0).
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Uwaga 6.37. W dowodzie wykorzystana była jedynie zbieżność punktowa
ciągu fn.

Uwaga 6.38. Wystarczy założyć, że ciąg fn(x) jest zbieżny w jednym punk-
cie c przedziału [a, b]. Rzeczywiście, z tego warunku wynika jednostajna zbież-
ność ciągu fn(x). Sprawdzimy jednostajny warunek Cauchy’ego dla ciągu
funkcji fn(x).

|fn(x)− fm(x)| ¬ | [fn(x)− fm(x)]︸ ︷︷ ︸
h(x)

− [fn(c)− fm(c)]︸ ︷︷ ︸
h(c)

|+ |fn(c)− fm(c)|

= | f ′n(ξ)− f ′m(ξ)︸ ︷︷ ︸
h′(ξ)

| |x− c|+ |fn(c)− fm(c)|

¬ (b− a)|f ′n(ξ)− f ′m(ξ)|+ |fn(c)− fm(c)|.

Uwaga 6.39. Nie trzeba zakładać, że funkcje f ′n(x) są ciągłe. Wystarczy,
aby funkcja g(x) była ciągła.

Wniosek 6.40. Załóżmy, że funkcje fn są ciągłe i różniczkowalne w sposób

ciągły w przedziale [a, b]. Jeśli szereg
∞∑
n=1

fn(x) jest zbieżny przynajmniej w

jednym punkcie, natomiast szereg
∞∑
n=1

f ′n(x) jest zbieżny jednostajnie, to suma

szeregu s(x) =
∞∑
n=1

fn(x) jest funkcją różniczkowalną oraz

( ∞∑
n=1

fn(x)
)′

= s′(x) =
∞∑
n=1

f ′n(x), (6.7)

tzn. pochodna sumy szeregu funkcyjnego jest szeregiem pochodnych jego skład-
ników.

Dowód. Niech sn(x) =
n∑
k=1

fk(x). Wtedy

s′n(x) =
n∑
k=1

f ′k(x).

Ciąg funkcyjny sn(x) spełnia założenia poprzedniego twierdzenia, w z uwzględ-

nioną Uwagą 6.38. Zatem
(

lim
n
sn(x)

)′
= lim

n
s′n(x), co jest równoznaczne z
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(6.7), bo

lim
n
sn(x) =

∞∑
n=1

fn(x), lim
n
s′n(x) =

∞∑
n=1

f ′n(x),

czyli ( ∞∑
n=1

fn(x)
)′

=
∞∑
n=1

f ′n(x).

Przykład. s(x) =
∞∑
n=1

e−nx
2

n3
, 0 ¬ x ¬ 1. Przyjmujemy fn(x) =

e−nx
2

n3
.

Wtedy f ′n(x) = −2xe−nx
2

n2
, co daje |f ′n(x)| ¬ 2

n2
. Zatem szereg

∞∑
n=1

f ′n(x) jest

jednostajnie zbieżny z kryterium Weierstrassa o majoryzacji. Szereg
∞∑
n=1

fn(x)

też jest jednostajnie zbieżny, bo

0 ¬ e−nx
2

n3
¬ 1
n3
.

Czyli s′(x) = −2x
∞∑
n=1

e−nx
2

n2
.

Twierdzenie 6.41. Załóżmy, że liczba R > 0 jest promieniem zbieżności

szeregu potęgowego f(x) =
∞∑
n=0

anx
n. Wtedy funkcja f(x) jest różniczkowalna

w przedziale (−R,R) oraz f ′(x) =
∞∑
n=1

nanx
n−1.

Uwaga 6.42. Szereg potęgowy dla funkcji f ′(x) ma większe wartości bez-
względne współczynników, więc promień zbieżności nie może być mniejszy od
R. Jednak promienie zbieżności obu szeregów są takie same. Istotnie, niech

R′ oznacza promień zbieżności dla x−1
∞∑
n=1

nanx
n x 6= 0.

(a) Jeśli istnieje granica lim
n

|an+1|
|an|

=
1
R
, to

1
R′

= lim
n

(n+ 1)|an+1|
n|an|

= lim
n

|an+1|
|an|

=
1
R
.
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(b) Jeśli istnieje granica lim
n

n

√
|an| =

1
R
, to

1
R′

= lim
n

n

√
n|an| = lim

n

n
√
n lim

n

n

√
|an| = lim

n

n

√
|an| =

1
R
.

Ogólnie mamy

1
R′

= lim sup
n

n

√
n|an| = lim

n

n
√
n lim sup

n

n

√
|an| =

1
R
.

Dowód. Szereg pochodnych
∞∑
n=1

nanx
n−1 jest zbieżny w przedziale (−R,R).

Wiemy, że zbieżność jest jednostajna w każdym przedziale [−R+δ, R−δ], dla

δ > 0. Szereg
∞∑
n=0

anx
n jest też jednostajnie zbieżny w tym przedziale (wystar-

czy, że jest zbieżny w jednym punkcie x = 0). Z Wniosku 6.40 otrzymujemy
tezę, czyli ( ∞∑

n=0

anx
n

)′
=
∞∑
n=1

nanx
n−1.

Wniosek 6.43. Funkcja f(x) =
∞∑
n=0

anx
n dla −R < x < R, gdzie R jest

promieniem zbieżności, jest nieskończenie wiele razy różniczkowalna oraz

f (k)(x) =
( ∞∑
n=0

anx
n

)(k)

=
∞∑
n=k

n(n− 1) . . . (n− k + 1)anxn−k.

Dowód. Stosujemy wielokrotnie Twierdzenie 6.41 korzystając z faktu, że pro-
mień zbieżności nie zmienia się przy różniczkowaniu.

Przykłady.

(a) Rozważmy funkcję f(x) = log(1 + x), |x| < 1. Mamy

f ′(x) =
1

1 + x
=
∞∑
n=0

(−1)nxn, dla |x| < 1.
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Rozważmy szereg
∞∑
n=0

(−1)n

n+ 1
xn+1 =

∞∑
n=1

(−1)n+1

n
xn. Promień zbieżności

tego szeregu wynosi 1. Z Twierdzenia 6.41 mamy( ∞∑
n=1

(−1)n+1

n
xn
)′

=
( ∞∑
n=0

(−1)n

n+ 1
xn+1

)′
=
∞∑
n=0

(−1)nxn =
1

1 + x
= (log(1+x))′.

Zatem

log(1 + x) =
∞∑
n=1

(−1)n+1

n
xn + C, |x| < 1,

dla pewnej stałej C. Podstawiając x = 0 uzyskamy C = 0. Zatem

log(1 + x) =
∞∑
n=1

(−1)n+1

n
xn, dla − 1 < x < 1. (6.8)

Z kryterium Leibniza szereg po prawej stronie jest zbieżny również dla
x = 1. Zatem z Twierdzenia 5.20 otrzymujemy

log 2 =
∞∑
n=1

(−1)n+1

n
.

(b) f(x) = arctg x. Wtedy

f ′(x) =
1

1 + x2
=
∞∑
n=0

(−1)nx2n, |x| < 1.

Rozważmy szereg
∞∑
n=0

(−1)n

2n+ 1
x2n+1. Szereg ten jest zbieżny dla |x| < 1.

Wiemy, że ( ∞∑
n=0

(−1)n

2n+ 1
x2n+1

)′
=
∞∑
n=0

(−1)nx2n = (arctg x)′,

czyli

arctg x =
∞∑
n=0

(−1)n

2n+ 1
x2n+1 + C, |x| < 1.

Podstawiamy x = 0 i otrzymujemy C = 0. Zatem

arctg x =
∞∑
n=0

(−1)n

2n+ 1
x2n+1, |x| < 1. (6.9)

Podobnie jak w poprzednim przykładzie możemy podstawić x = 1 i
uzyskać

π

4
=
∞∑
n=0

(−1)n

2n+ 1
.
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6.10 Wzory Taylora i MacLaurina

Twierdzenie 6.44 (Wzór Taylora). Niech f(x) będzie funkcją n-krotnie róż-
niczkowalną w przedziale wokół punktu a. Wtedy dla liczb b z tego przedziału
mamy

f(b) = f(a) +
(b− a)

1!
f ′(a) +

(b− a)2

2!
f ′′(a) + . . .+

(b− a)n−1

(n− 1)!
f (n−1)(a) +Rn,

gdzie Rn ma jedną z dwu postaci:

(1) Rn =
(b− a)n

n!
f (n)(a + θ(b − a)), dla pewnej liczby 0 < θ < 1 (reszta

w postaci Lagrange’a),

(2) Rn =
(b− a)n

(n− 1)!
(1−θ′)n−1f (n)(a+θ′(b−a)), dla pewnej liczby 0 < θ′ < 1

(reszta w postaci Cauchy’ego).

Uwagi

1. Oznaczmy b− a = h. Wtedy

f(a+ h) = f(a) +
h

1!
f ′(a) +

h2

2!
f ′′(a) + . . .+

hn−1

(n− 1)!
f (n−1)(a) +Rn,

Rn =
hn

n!
f (n)(a+ θh) =

hn

(n− 1)!
(1− θ′)n−1f (n)(a+ θ′h).

2. Reszta Rn oraz θ i θ′ zależą od a, b i n.

Dowód. Oznaczmy

g(x) = f(b)−f(x)− (b− x)
1!

f ′(x)− (b− x)2

2!
f ′′(x)− . . .− (b− x)n−1

(n− 1)!
f (n−1)(x).

Wtedy

g′(x) = −���f ′(x) +���f ′(x)−�������(b− x)
1!

f ′′(x) +�������(b− x)
1!

f ′′(x)−��������(b− x)2

2!
f ′′′(x)

+ . . .+
�����������(b− x)n−2

(n− 2)!
f (n−1)(x)− (b− x)n−1

(n− 1)!
f (n)(x). (6.10)
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Mamy g(a) = Rn oraz g(b) = 0. Z twierdzenia Lagrange’a otrzymujemy

g(b)− g(a)
b− a

= g′(a+ θ′(b− a)),

dla pewnej liczby 0 < θ′ < 1. Zatem Rn = −(b− a)g′(a+ θ′(b− a)). Podsta-
wiamy x = a+ θ′(b− a) do wzoru (6.10). Wtedy

b− x = b− a− θ′(b− a) = (1− θ′)(b− a)

oraz

Rn =
(b− a)n

(n− 1)!
(1− θ′)n−1f (n)(a+ θ′(b− a)).

Rozważmy funkcję u(x) = (b− x)n. Mamy u(a) = (b− a)n oraz u(b) = 0.
Z twierdzenia Cauchy’ego otrzymujemy

g(b)− g(a)
u(b)− u(a)

=
g′(a+ θ(b− a))
u′(a+ θ(b− a))

,

dla pewnej liczby 0 < θ < 1. dalej

Rn = (b− a)n
g′(a+ θ(b− a))
u′(a+ θ(b− a))

.

Mamy u′(x) = −n(b− x)n−1. Z (6.10) wynika, że

g′(x)
u′(x)

=
f (n)(x)
n!

.

Ostatecznie

Rn =
(b− a)n

n!
f (n)(a+ θ(b− a)).

Uwaga 6.45. Przy dowodzie wzoru na resztę w postaci Lagrange’a sko-
rzystaliśmy z twierdzenia Cauchy’ego, natomiast przy postaci Cauchy’ego
skorzystaliśmy z twierdzenia Lagrange’a.

We wzorze Taylora przyjmijmy b = x i a = 0. Wtedy otrzymujemy wzór
McLaurina

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 + . . .+

xn−1

(n− 1)!
f (n−1)(0) +Rn, (6.11)
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Rn =
xn

n!
f (n)(θx) =

xn

(n− 1)!
(1− θ′)n−1f (n)(θ′x).

Uwagi.

1. Jeśli f(x) jest wielomianem, to Rn = 0, gdy n przekroczy stopień wie-
lomianu.

2. Z warunku Rn −→
n

0 wynika

f(x) = f(0) +
∞∑
n=1

f (n)(0)
n!

xn.

Jeśli |f (n)(t)| ¬M dla stałej niezależnej od n, to Rn −→
n

0, bo
xn

n!
−→
n

0

(np. z kryterium d’Alemberta). Można dopuścić też słabszy warunek
|f (n)(t)| ¬Mn.

3. Reszta Rn nie musi dążyć do zera nawet, gdy szereg jest zbieżny. Roz-
ważmy funkcję

f(x) =

e−1/x2 , x 6= 0,
0, x = 0.

Można udowodnić, że f jest różniczkowalna nieskończenie wiele razy
w punkcie 0 oraz f (n)(0) = 0. Rzeczywiście, w tym celu udowodnimy
przez indukcję, że dla n ­ 0 mamy

f (n)(x) =

pn (x−1) e−x
−2

x 6= 0,
0 x = 0.

(6.12)

gdzie pn(t) jest wielomianem. Dla n = 0 mamy

f (0)(x) = f(x),

czyli p0(t) = 1. Załóżmy, że równość (6.12) jest spełniona dla liczby
n ­ 0. Wtedy dla x 6= 0 otrzymamy

f (n+1)(x) = [f (n)(x)]′ =
d

dx

[
pn
(
x−1

)
e−x

−2]
= −x−2p′n(x−1)e−x

−2
+ 2x−3pn(x−1)e−x

−2

= x−2
[
2x−1pn(x−1)− p′n(x−1)

]
e−x

−2
= pn+1(x−1)e−x

−2
,
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dla
pn+1(t) = t2[2tpn(t)− p′n(t)].∗ (6.13)

Pozostaje sprawdzić, że f (n+1)(0) = 0. W tym celu rozważamy iloraz
różnicowy funkcji f (n)(x) w punkcie 0.

f (n)(x)− f (n)(0)
x

= x−1pn(x−1)e−x
−2
, x 6= 0.

Podstawmy t = x−1. Gdy x→ 0, to |t| → ∞. Zatem

lim
x→0

f (n)(x)− f (n)(0)
x

= lim
t→±∞

tpn(t)
et2

.

Mamy

lim
t→∞

tpn(t)
et2

= lim
t→∞

tpn(t)
et

1
et2−t

= 0

oraz

lim
t→−∞

tpn(t)
et2

= lim
t→∞

−tpn(−t)
et2

= lim
t→∞

−tpn(−t)
et

1
et2−t

= 0.

np. na podstawie reguły de l’Hospitala. Ostatecznie f (n+1)(0) = 0.

Ze wzoru (6.11) otrzymujemy f(x) = e−x
−2

= Rn dla x 6= 0, czyli reszta
nie dąży do zera.

4. Przypuśćmy, że szereg potęgowy f(x) =
∞∑
n=0

anx
n ma dodatni promień

zbieżności. Prawa strona jest wtedy automatycznie szeregiem McLauri-

na funkcji f(x), tzn. an =
f (n)(0)
n!

. Rzeczywiście, na podstawie Wniosku

6.43 mamy f (k)(0) = k!ak.

Przykład. f(x) = (1 + x)α, x > −1. Mamy

f (n)(x) = α(α− 1) . . . (α− n+ 1)(1 + x)α−n.

Zatem
f (n)(0)
n!

=
α(α− 1) . . . (α− n+ 1)

n!
=:
(
α

n

)
.

∗Można wykazać, że deg pn = 3n oraz p2n(t) = vn(t2), p2n+1(t) = twn(t2), gdzie vn i
wn są wielomianami.
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Ze wzoru McLaurina otrzymujemy, przy konwencji
(
α

0

)
= 1,

(1 + x)α =
n−1∑
k=0

(
α

k

)
xk +Rn.

Pokażemy, że Rn −→
n

0 dla |x| < 1. Skorzystamy z postaci Cauchy’ego reszty.

Rn =
xn

(n− 1)!
(1− θ)n−1f (n)(θx)

=
xn

(n− 1)!
(1− θ)n−1α(α− 1) . . . (α− n+ 1)(1 + θx)α−n

= n

(
α

n

)
xn(1− θ)n−1(1 + θx)α−n.

Wyrażenie n

(
α

n

)
xn dąży do 0 dla |x| < 1, np. z kryterium d’Alemberta.

Wystarczy udowodnić, że wielkość (1 − θ)n−1(1 + θx)α−n jest ograniczona.
Dla |x| < 1 i 0 < θ < 1 mamy 1− θ ¬ 1 + θx. Zatem

(1− θ)n−1(1 + θx)α−n ¬ (1 + θx)n−1(1 + θx)α−n = (1 + θx)α−1.

Zależność od n jest jeszcze ukryta w θ. Dalej

(1 + θx)α−1 ¬

2α−1, α ­ 1,
(1− |x|)α−1, α < 1,

przy czym dla α < 1 skorzystaliśmy z nierówności 1 + θx ­ 1 − |x|. Reasu-
mując otrzymaliśmy uogólniony wzór dwumianowy Newtona.

(1 + x)α =
∞∑
n=0

(
α

n

)
xn, |x| < 1. (6.14)

Przyjmijmy α = −1
2 . W miejsce x podstawmy −x2 dla |x| < 1. Wtedy

1√
1− x2

= 1 +
∞∑
n=1

(
−1

2

n

)
(−1)nx2n.
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Dalej

(
−1

2

n

)
= (−1)n

1
2

3
2
. . .

2n− 1
2

n!
= (−1)n

(2n)!
2nn!2nn!

=
(−1)n

4n

(
2n
n

)
,

bo (2n− 1)!! =
(2n)!
2nn!

. Ostatecznie uzyskaliśmy

1√
1− x2

= 1 +
∞∑
n=1

(
2n
n

)(
x

2

)2n

, |x| < 1.

Ale (arcsin x)′ =
1√

1− x2
dla |x| < 1. Zatem

arcsinx = x+
∞∑
n=1

2
2n+ 1

(
2n
n

)(
x

2

)2n+1

, |x| < 1. (6.15)

Dla x = 1
2 , po pomnożeniu przez 2 obu stron (6.15), otrzymamy

π

3
= 1 +

∞∑
n=1

1
2n+ 1

(
2n
n

)
1

16n
.

Podstawiając dla odmiany x =
√

2
2 i mnożąc (6.15) przez

√
2 uzyskamy

π

2
√

2
= 1 +

∞∑
n=1

1
2n+ 1

(
2n
n

)
1
8n
.

Zauważmy, że dla 0 < x < 1 mamy

π

2
= arcsin 1 > arcsinx =

∞∑
n=0

2
2n+ 1

(
2n
n

)(
x

2

)2n+1

­
N∑
n=0

2
2n+ 1

(
2n
n

)(
x

2

)2n+1

.

Przechodząc do granicy x→ 1− otrzymamy

π

2
­

N∑
n=0

1
2n+ 1

(
2n
n

)
1
4n
.
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Ponieważ liczba N jest dowolna, to

π

2
­
∞∑
n=0

1
2n+ 1

(
2n
n

)
1
4n
.

Dalej

arcsinx =
∞∑
n=0

2
2n+ 1

(
2n
n

)(
x

2

)2n+1

¬
∞∑
n=0

2
2n+ 1

(
2n
n

)(1
2

)2n+1

=
∞∑
n=0

1
2n+ 1

(
2n
n

)
1
4n
.

Przechodzimy do granicy x→ 1−, aby uzyskać

π

2
¬
∞∑
n=0

1
2n+ 1

(
2n
n

)
1
4n
.

Otrzymujemy zatem
π

2
=
∞∑
n=0

1
2n+ 1

(
2n
n

)
1
4n
. (6.16)

Uwaga. Zbieżność szeregu po prawej stronie (6.16) można też uzyskać ze
wzoru Stirlinga podającego przybliżoną wartość wielkości n! ∼ nne−n

√
2πn.

Twierdzenie 6.46 (Reszta Peano). Jeśli funkcja f(x) jest n-krotnie róż-
niczkowalna w punkcie a, to

f(a+ h) = f(a) +
h

1!
f ′(a) +

h2

2!
f ′′(a) + . . .+

hn

n!
f (n)(a) +Rn(h),

gdzie

lim
h→0

Rn(h)
hn

= 0,

tzn. wielkość Rn(h) jest mała w stosunku do hn dla małych wartości |h|.

Dowód. Zastosujemy wielokrotnie regułę de’Hospitala korzystając z

d

dh

(
hn

n!

)
=

hn−1

(n− 1)!
.
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lim
h→0

Rn(h)
hn

= lim
h→0

f(a+ h)− f(a)− h
1!f
′(a)− h2

2! f
′′(a)− . . .− hn

n! f
(n)(a)

hn

= lim
h→0

f ′(a+ h)− f ′(a)− h
1!f
′′(a)− h2

2! f
′′′(a)− . . .− hn−1

(n−1)!f
(n)(a)

nhn−1

= . . . = lim
h→0

f (n−1)(a+ h)− f (n−1)(a)− f (n)(a)h
n!h

=
1
n!

lim
h→0

[
f (n−1)(a+ h)− f (n−1)(a)

h
− f (n)(a)

]
= 0.

Ostatnia granica wynosi zero bezpośrednio z określenia pochodnej w punkcie
a.

Definicja 6.47. Punkt x0 nazywamy punktem przegięcia funkcji f, jeżeli

dla wszystkich punktów x 6= x0 w pobliżu x0 mamy
f(x)− f(x0)

x− x0
> f ′(x0),

lub dla wszystkich takich punktów mamy
f(x)− f(x0)

x− x0
< f ′(x0).

Uwaga. Geometrycznie oznacza to, że części wykresu funkcji dla x < x0

i dla x > x0 leżą po przeciwnych stronach stycznej do wykresu w punkcie

(x0, f(x0)). Rzeczywiście, niech
f(x)− f(x0)

x− x0
> f ′(x0). Wtedy

f(x) > f(x0) + f ′(x0)(x− x0), dla x > x0,

f(x) < f(x0) + f ′(x0)(x− x0), dla x < x0.

Twierdzenie 6.48. Funkcja f(x) jest n-krotnie różniczkowalna w przedziale
wokół punktu a oraz f (n) jest ciągła w a. Załóżmy, że

f ′(a) = f ′′(a) = . . . = f (n−1)(a) = 0, f (n)(a) 6= 0, n ­ 2.

Jeśli n jest liczbą parzystą, to funkcja posiada ścisłe ekstremum lokalne w
punkcie a. W przeciwnym wypadku a jest punktem przegięcia funkcji f.

Dowód. Rozważymy przypadek f (n)(a) > 0. Z ciągłości możemy przyjąć, że
f (n)(t) > 0 dla argumentów t blisko a. Niech x leży blisko a. Wtedy ze wzoru
Taylora z resztą w postaci Lagrange’a otrzymujemy

f(x) = f(a) +
f (n)(ξ)
n!

(x− a)n,
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dla pewnego punktu ξ pomiędzy a i x. Jeśli n jest liczbą parzystą, to drugi
składnik po prawej stronie wzoru jest dodatni. Zatem f(x) > f(a) dla x 6= a
w pobliżu a. To oznacza, że w a występuje ścisłe lokalne minimum. Jeśli n
jest liczbą nieparzystą, to

f(x)− f(a)
x− a

=
f (n)(ξ)
n!

(x− a)n−1 > 0 = f ′(a),

dla x blisko a. Wtedy a jest punktem przegięcia.

Uwagi.

1. W punkcie przegięcia nie może występować ekstremum lokalne.

2. Jeśli f ′′(a) > 0, to w a jest ścisłe minimum, a dla f ′′(a) < 0, ścisłe
maksimum.

Przykłady.

(a) Chcemy znaleźć ekstrema funkcji f(x) = x4 + 4x. Obliczamy f ′(x) =
4(x3 + 1). Zatem f ′(−1) = 0. Dalej f ′′(−1) = 12. Zatem w punkcie −1
występuje ścisłe lokalne minimum.

(b) f(x) = x3 + x4. Mamy f ′(x) = 3x2 + 4x3 = x2(3 + 4x). Pochodna
zeruje się w 0 i w −3

4 . Dalej f ′′(x) = 6x + 12x2 = 6x(1 + 2x). Zatem
f ′′(−3

4) > 0. Mamy f ′′(0) = 0. Ale f ′′′(0) > 0. W rezultacie w punkcie
−3

4 występuje ścisłe lokalne minimum, a w punkcie 0 przegięcie wykre-
su.

Definicja 6.49. Mówimy, że funkcja f(x) określona w przedziale (a, b) jest
wypukła w dół, jeśli dla dowolnych punktów a < x1 < x2 < b oraz liczb
α, β > 0, α + β = 1 mamy

f(αx1 + βx2) < αf(x1) + βf(x2). (6.17)

Podobnie, f(x) jest wypukła w górę jeśli

f(αx1 + βx2) > αf(x1) + βf(x2). (6.18)

Uwaga 6.50.
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1. Wypukłość w dół oznacza, że fragment wykresu pomiędzy punktami
(x1, f(x1)) i (x2, f(x2)) leży pod sieczną przechodzącą przez te punkty.
Rzeczywiście, jeśli u(x) jest funkcją liniową oraz u(x1) = f(x1), u(x2) =
f(x2), to u(αx1 + βx2) = αu(x1) + βu(x2) = αf(x1) + βf(x2).

2. Jeśli funkcja f(x) jest ciągła na przedziale (a, b), to z warunku

f
(
x1 + x2

2

)
<
f(x1) + f(x2)

2
, a < x1 < x2 < b

wynika wypukłość w dół. Bez warunku ciągłości teza nie jest prawdzi-
wa.

Twierdzenie 6.51. Jeśli f ′′(x) > 0 dla a < x < b, to funkcja f(x) jest
wypukła w dół. Natomiast jeśli f ′′(x) < 0 dla a < x < b, to funkcja f(x) jest
wypukła w górę.

Dowód. Udowodnimy pierwszą część twierdzenia. Zakładamy, że x1 < x2

oraz α, β > 0, α + β = 1. Z twierdzenia Lagrange’a mamy

f(αx1 + βx2)− αf(x1)− βf(x2)
= α[f(αx1 + βx2)− f(x1)]− β[f(x2)− f(αx1 + βx2)]

= αβ(x2 − x1)f ′(ξ1)− αβ(x2 − x1)f ′(ξ2)
= αβ(x2 − x1)[f ′(ξ1)− f ′(ξ2)] = αβ(x1 − x2)(ξ2 − ξ1)f ′′(η),

gdzie x1 < ξ1 < αx1 + βx2 < ξ2 < x2 oraz ξ1 < η < ξ2. Zatem

f(αx1 + βx2)− αf(x1)− βf(x2) < 0

dla α, β > 0 i α + β = 1.

Uwagi.

1. Twierdzenie odwrotne jest też prawdziwe, ale w tezie otrzymamy słabą
nierówność dla f ′′. Istotnie załóżmy, że f jest wypukła w dół. Dla x1 <
x2 i α, β > 0, z nierówności (6.17) otrzymujemy

α[f(αx1 + βx2)− f(x1)] < β[f(x2)− f(αx1 + βx2)].

Zatem
f(αx1 + βx2)− f(x1)

β(x2 − x1)
<
f(αx1 + βx2)− f(x1)

α(x2 − x1)
.
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Po przekształceniu dostajemy

f(αx1 + βx2)− f(x1)
(αx1 + βx2)− x1

<
f(x2)− f(αx1 + βx2)
x2 − (αx1 + βx2)

.

Gdy α→ 0+, to β → 1− oraz αx1 + βx2 → x2. Otrzymujemy więc

f(x2)− f(x1)
x2 − x1

¬ f ′(x2).

Podobnie, z β → 0+ wynika

f ′(x1) ¬ f(x2)− f(x1)
x2 − x1

.

Zatem f ′(x1) ¬ f ′(x2), czyli f ′ jest funkcją rosnącą. Tzn. f ′′ ­ 0.

2. Załóżmy, że f jest wypukła w dół. Wtedy funkcja f ′ jest ściśle rosnąca.
Istotnie, gdyby f ′(x1) = f ′(x2) dla pewnych x1 < x2, to funkcja f ′

byłaby stała w przedziale [x1, x2]. To by oznaczało, że f jest funkcją
liniową w tym przedziale.

7 Iloczyny nieskończone

Dla liczb an > −1 rozważamy ciąg iloczynów

Pn = (1 + a1)(1 + a2) . . . (1 + an) =
n∏
k=1

(1 + ak).

Mówimy, że iloczyn nieskończony

∞∏
n=1

(1 + an)

jest zbieżny, jeśli ciąg Pn (iloczynów częściowych) jest zbieżny do liczby do-
datniej P. Piszemy wtedy

∞∏
n=1

(1 + an) = P.

W przeciwnym wypadku, tzn. gdy ciąg Pn nie ma granicy lub jest zbieżny
do zera, mówimy, że iloczyn nieskończony jest rozbieżny.
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Przykład. Rozważmy iloczyn
∞∏
n=2

(
1− 1

n2

)
. Mamy

Pn =
n∏
k=2

(
1− 1

k2

)
=

n∏
k=2

k − 1
k

n∏
k=2

k + 1
k

=
1
n
· n+ 1

2
n−→ 1

2
.

Zatem ∞∏
n=2

(
1− 1

n2

)
=

1
2
.

Przykład. Iloczyny częściowe dla
∞∏
n=2

(
1− 1

n

)
. mają postać

Pn =
n∏
k=2

k − 1
k

=
1
n

n−→ 0.

Zatem iloczyn
∞∏
n=2

(
1− 1

n

)
jest rozbieżny (do zera).

Twierdzenie 7.1. Jeśli iloczyn
∞∏
n=1

(1 + an) jest zbieżny, to an
n−→ 0.

Dowód. Niech 0 < P = limn Pn. Wtedy

1 + an =
Pn
Pn−1

n−→ 1.

Stąd an
n−→ 0.

Definicja 7.2. Mówimy, że iloczyn
∞∏
n=1

(1+an) jest zbieżny bezwzględnie, jeśli

iloczyn
∞∏
n=1

(1 + |an|) jest zbieżny.

Lemat 7.3.

| log(1 + x)| ¬ 2|x| ¬ 4 log(1 + |x|), |x| < 1
2
.

Dowód. Dla 0 ¬ t < 1 mamy

1 + t ¬ et ¬ 1 +
∞∑
n=1

tn

2n−1
= 1 +

t

1− t
2

< 1 + 2t. (7.1)
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Stąd
log(1 + t) < t < log(1 + 2t), 0 < t < 1. (7.2)

Podstawiając t =
|x|
2

i mnożąc przez 4 otrzymamy drugą nierówność. Z kolei

dla t = x uzyskamy pierwszą nierówność dla nieujemnych wartości x (nawet
bez czynnika 2). Pozostaje udowodnić pierwszą nierówność dla x = −y, 0 ¬
y <

1
2
. Otrzymujemy

| log(1 + x)| = log
1

1− y
= log

(
1 +

y

1− y

)
¬ log(1 + 2y) < 2y = 2|x|,

gdzie ostatnia nierówność wynika z (7.2) poprzez podstawienie t = 2y.

Twierdzenie 7.4. Iloczyn bezwzględnie zbieżny jest zbieżny.

Dowód. Oznaczmy P̃n =
n∏
k=1

(1 + |ak|). Z Twierdzenia 6.1 wynika, że |an|
n−→

0. Zatem |ak| ¬ 1
2 dla k ­ k0. Wtedy dla n > m ­ k0 mamy

| logPn − logPm| = | log[(1 + am+1)(1 + am+2) . . . (1 + an)]|
¬ | log(1 + am+1)|+ | log(1 + am+2)|+ . . .+ | log(1 + an)|
¬ 4[log(1 + |am+1|) + log(1 + |am+2|) + . . .+ log(1 + |an|)]

= 4[log P̃n − log P̃m],

gdzie druga nierówność wynika z Lematu 6.3. Z założenia ciąg log P̃n jest
zbieżny, więc spełnia warunek Cauchy’ego. Zatem ciąg logPn też spełnia
warunek Cauchy’ego, czyli jest zbieżny. Oznaczmy g = lim logPn. Wtedy

Pn = elogPn n−→ eg > 0.

Twierdzenie 7.5. Dla an ­ 0 iloczyn
∞∏
n=1

(1 + an) jest zbieżny wtedy i tylko

wtedy, gdy zbieżny jest szereg
∞∑
n=1

an.
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Dowód. Załóżmy, że iloczyn
∞∏
n=1

(1 + an) jest zbieżny. Wtedy

1 + a1 + a2 + . . .+ an ¬ (1 + a1)(1 + a2) . . . (1 + an) ¬
∞∏
k=1

(1 + ak).

Stąd wynika zbieżność szeregu.

Załóżmy teraz, że szereg
∞∑
n=1

an jest zbieżny. Wtedy dla pewnego wskaź-

nika n0 mamy
∞∑

k=n0+1

ak <
1
2
.

Z nierówności Bernoulli’ego (zadanie 3, lista 1) otrzymujemy

(1− an0+1)(1− an0+2) . . . (1− an) ­ 1− an0+1 − an0+2 − . . .− an >
1
2
.

Zatem dla n > n0 mamy

Qn :=
n∏
k=1

(1− ak) =
n0∏
k=1

(1− ak)
n∏

k=n0+1

(1− ak) ­
1
2

n0∏
k=1

(1− ak).

Ciąg Qn jest malejący i ograniczony od dołu przez liczbę dodatnią. Zatem

iloczyn
∞∏
n=1

(1 − an) jest zbieżny. Zauważmy, że PnQn ¬ 1, czyli Pn ¬ Q−1
n .

Rosnący ciąg Pn jest więc ograniczony od góry, skąd wynika jego zbieżność.

Wniosek 7.6. Dla 0 ¬ an < 1 iloczyn iloczyn
∞∏
n=1

(1− an) jest zbieżny wtedy

i tylko wtedy, gdy zbieżny jest szereg
∞∑
n=1

an.

Dowód. Implikacja (⇐=) wynika z Twierdzeń 7.4 i 7.5 zastosowanych do
ciągu −an. Załóżmy, że iloczyn jest zbieżny. Wtedy zbieżny jest też iloczyn

∞∏
n=1

(1− an)−1 =
∞∏
n=1

(
1 +

an
1− an

)
.

Z poprzedniego twierdzenia otrzymujemy

∞ >
∞∑
n=1

an
1− an

­
∞∑
n=1

an.
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Następne twierdzenie przypomina kryterium Leibniza o szeregach naprze-
miennych, ale potrzebne jest dodatkowe założenie.

Wniosek 7.7. Załóżmy, że 1 > an ↘ 0. Iloczyn
∞∏
n=1

[1 + (−1)nan]

jest zbieżny wtedy i tylko wtedy, gdy
∞∑
n=1

a2
n <∞.

Dowód. Ponieważ an → 0, wystarczy badać zbieżność ciągu poniżej

2n∏
k=1

[1 + (−1)kak] =
n∏
k=1

(1− a2k−1)(1 + a2k)

=
n∏
k=1

[1− (a2k−1 − a2k + a2k−1a2k)]

Z Wniosku 7.6 zbieżność iloczynu
∞∏
k=1

[1 + (−1)kak]

jest równoważna zbieżności szeregu
∞∑
k=1

(a2k−1 − a2k + a2k−1a2k) =
∞∑
k=1

[(a2k−1 − a2k)(1 + a2k) + a2
2k].

Zbieżność ostatniego szeregu jest równoważna zbieżności szeregu
∞∑
k=1

a2
2k.

Z monotoniczności ciągu an ostatni warunek jest równoważny zbieżności sze-
regu

∑
a2
k.

7.1 Liczby pierwsze

Wiadomo, że zbiór liczb pierwszych jest nieskończony. Pokażemy, że liczb

pierwszych jest na tyle dużo, że szereg
∞∑
n=1

1
pn
, jest rozbieżny, gdzie pn oznacza

n-tą liczbę pierwszą,
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Rozważmy iloczyn
n∏
k=1

(
1− 1

pk

)−1

. Korzystając ze wzoru na sumę szere-

gu geometrycznego otrzymamy

n∏
k=1

(
1− 1

pk

)−1

=
n∏
k=1

(
1 +

1
pk

+
1
p2
k

+ . . .

)
.

Po wymnożeniu sum dostaniemy sumę odwrotności wszystkich liczb natu-
ralnych mających w rozkładzie na czynniki pierwsze liczby p1, p2, . . . , pn. W
szczególności w sumie pojawią się odwrotności wszystkich liczb od 1 do n,
bo pn > n. To oznacza, że

n∏
k=1

(
1− 1

pk

)−1

­
n∑
k=1

1
k
.

Stąd iloczyn
∞∏
k=1

(
1− 1

pk

)−1

jest rozbieżny do nieskończoności, więc iloczyn

∞∏
k=1

(
1− 1

pk

)

jest rozbieżny do zera. Z Wniosku 7.6 otrzymujemy rozbieżność szeregu
∞∑
n=1

1
pn
.

Dla liczby α > 1 rozważmy iloczyn
n∏
k=1

(
1− 1

pαk

)−1

. Otrzymujemy

n∏
k=1

(
1− 1

pαk

)−1

=
n∏
k=1

(
1 +

1
pαk

+
1
p2α
k

+ . . .

)
.

Po wymnożeniu sum dostaniemy sumę potęg rzędu α odwrotności wszyst-
kich liczb naturalnych mających w rozkładzie na czynniki pierwsze liczby
p1, p2, . . . , pn. W szczególności

∞∑
k=1

1
kα
­

n∏
k=1

(
1− 1

pαk

)−1

­
n∑
k=1

1
kα
.
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To oznacza, że iloczyn
∞∏
k=1

(
1− 1

pαk

)−1

jest zbieżny. Z twierdzenia o trzech

ciągach otrzymujemy tożsamość Eulera

∞∏
n=1

(
1− 1

pαn

)−1

=
∞∑
n=1

1
nα
, α > 1.

8 Ułamki łańcuchowe

Wykonamy dzielenie z resztą liczb 75 i 23.

75
23

= 3 +
6
23

= 3 +
1

3 +
5
6

= 3 +
1

3 +
1

1 +
1
5

.

Będziemy stosować zapis

75
23

= 3 +
1 |
| 3

+
1 |
| 1

+
1 |
| 5

.

Ogólnie, niech n0 i n1 będą liczbami naturalnymi bez wspólnych dzielników.
Wykonujemy dzielenie z resztą.

n0 = q1n1 + n2, gdzie 0 < n2 < n1.

Wtedy
n0

n1
= q1 +

n2

n1
= q1 +

1
n1

n2

.

Liczby n1 i n2 nie mają wspólnych dzielników. Tę sama czynność wykonujemy
dla liczb n1 i n2.

n0

n1
= q1 +

1

q2 +
n3

n2

, 0 < n3 < n2.

Powtarzamy tę czynność dopóki nk = 1. Wtedy qk =
nk−1

nk
oraz

n0

n1
= q1 +

1 |
| q2

+
1 |
| q3

+ . . .+
1 |
| qk

. (8.1)
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Wyrażenie postaci (8.1) nazywamy skończonym ułamkiem łańcuchowym .
Z rozumowania wynika, że każda liczba wymierna ma przedstawienie w po-
staci skończonego ułamka łańcuchowego.

Przykład.

1 +
√

2 = 2 + (
√

2− 1) = 2 +
1

1 +
√

2
= 2 +

1

2 +
1

1 +
√

2

= 2 +
1

2 +
1

2 +
1

2 + ...

To oznacza, że w pewnym sensie liczba 1 +
√

2 ma nieskończone przedsta-
wienie w postaci

1 +
√

2 = 2 +
1 |
| 2

+
1 |
| 2

+
1 |
| 2

+ . . . .

Ogólnie rozważmy dodatnią liczbę niewymierną x0. Wtedy

x0 = a0 + r0, gdzie a0 = [x0], r0 = {x0}.

Wtedy 0 < r0 < 1, czyli x1 :=
1
r0
> 1 oraz

x0 = a0 +
1
x1
.

Podobne czynności wykonujemy dla liczby x1. Wtedy

x1 = a1 +
1
x2
, a1 = [x1], x2 > 1.

Otrzymujemy

x0 = a0 +
1

a1 +
1
x2

.
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Postępując tak dalej otrzymamy

x0 = a0 +
1 |
| a1

+
1 |
| a2

+ . . .+
1 |
| an−1

+
1 |
|xn

, (8.2)

gdzie

xk−1 = ak−1 +
1
xk
, xk > 1.

W pewnym sensie otrzymujemy równość

x0 = a0 +
1 |
| a1

+
1 |
| a2

+ . . .+
1 |
| an

+ . . . . (8.3)

Naszym celem jest nadanie sensu wyrażeniu po prawej stronie wzoru, gdzie a0

jest nieujemną liczbą całkowitą, a liczby an są naturalne dla n ­ 1. Rozważmy
wyrażenia

Rn = a0 +
1 |
| a1

+
1 |
| a2

+ . . .+
1 |
| an−1

+
1 |
| an

.

Liczby Rk są wymierne. Nazywamy je reduktami ułamka łańcuchowego (8.3).
Pokażemy, że Rk

k−→ x0, co pozwoli uzasadnić wzór (8.3).
Przechodzimy do analizy wielkości Rn. Wyrażenia Rn są funkcjami wy-

miernymi zależnymi od liczb a0, a1, . . . an. Rn są dobrze określone również,
gdy a1, a2, . . . , an są dodatnimi liczbami rzeczywistymi. natomiast a0 jest
nieujemną liczbą rzeczywistą.

Określmy rekurencyjnie dwa ciągi liczb Pn i Qn zależnych od ciągu liczb
{an}∞k=0 wzorami

P0 = a0, Q0 = 1,
P1 = a0a1 + 1, Q1 = a1,

Pn = anPn−1 + Pn−2, Qn = anQn−1 +Qn−2.

Lemat 8.1. Rn =
Pn
Qn

.

Dowód. Wzór jest spełniony dla n = 0 i dla n = 1, bo

R0 =
a0

1
, R1 = a0 +

1
a1

=
a0a1 + 1

a1
.
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Wzór jest prawdziwy również dla n = 2:

P2

Q2
=

a2P1 + P0

a2Q1 +Q0
=

(a0a1 + 1)a2 + a0

a1a2 + 1

= a0 +
a2

a1a2 + 1
= a0 +

1

a1 +
1
a2

= R2.

Załóżmy, że wzór jest spełniony dla liczby n ­ 2 i dowolnego wyboru liczb
ak. Wtedy

Rn =
Pn
Qn

=
anPn−1 + Pn−2

anQn−1 +Qn−2
.

Przy zamianie liczby an na ãn = an+
1

an+1
otrzymamy nowy ciąg reduktów R̃k

przy czym R̃k = Rk dla k ¬ n−1 oraz R̃n = Rn+1. Z założenia indukcyjnego
otrzymujemy wtedy

Rn+1 = R̃n =
P̃n

Q̃n

=
ãnPn−1 + Pn−2

ãnQn−1 +Qn−2
=

(
an +

1
an+1

)
Pn−1 + Pn−2(

an +
1

an+1

)
Qn−1 +Qn−2

=
[anPn−1 + Pn−2]an+1 + Pn−1

[anQn−1 +Qn−2]an+1 +Qn−1
=

an+1Pn + Pn−1

an+1Qn +Qn−1
=
Pn+1

Qn+1
.

Lemat 8.2.

∆n :=

∣∣∣∣∣Pn−1 Pn
Qn−1 Qn

∣∣∣∣∣ = (−1)n, k ­ 1,

Rn−1 −Rn =
(−1)n

Qn−1Qn

.

Dowód. Mamy

∆1 =

∣∣∣∣∣P0 P1

Q0 Q1

∣∣∣∣∣ =

∣∣∣∣∣a0 a0a1 + 1
1 a1

∣∣∣∣∣ = −1.
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Dalej dla n ­ 2

∆n =

∣∣∣∣∣Pn−1 Pn
Qn−1 Qn

∣∣∣∣∣ =

∣∣∣∣∣Pn−1 anPn−1 + Pn−2

Qn−1 anQn−1 +Qn−2

∣∣∣∣∣ =

∣∣∣∣∣Pn−1 Pn−2

Qn−1 Qn−2

∣∣∣∣∣ = −∆n−1.

Stąd ∆n = (−1)n−1∆1 = (−1)n. Dalej

Rn−1 −Rn =
Pn−1

Qn−1
− Pn
Qn

=
∆n

Qn−1Qn

.

Uwaga 8.3. Z określenia ciągów Pn i Qn, dla naturalnych wartości liczb an
liczby Pn i Qn są naturalne. Z lematu 8.2 wynika, że liczby Pn i Qn nie mają

wspólnego dzielnika, czyli ułamek Rn =
Pn
Qn

jest nieskracalny.

Twierdzenie 8.4. Dla dodatniej liczby niewymiernej x0 ciąg reduktów Rn

jest zbieżny do x0. Co więcej ciąg R2n jest rosnący, ciąg R2n+1 jest malejący
oraz

|Rn+1 − x0| < |Rn − x0|.

Dowód. Z (8.2) otrzymujemy

x0 = a0 +
1 |
| a1

+ . . .+
1 |
| an

+
1 |

|xn+1
.

Niech R̃n+1 oznacza redukt rzędu n+ 1, gdzie liczba an+1 została zastąpiona
liczbą xn+1. Wtedy

x0 =
P̃n+1

Q̃n+1
=

xn+1Pn + Pn−1

xn+1Qn +Qn−1
.

Zatem

x0 −Rn =
xn+1Pn + Pn−1

xn+1Qn +Qn−1
− Pn
Qn

=
∆n

(xn+1Qn +Qn−1)Qn

=
(−1)n

(xn+1Qn +Qn−1)Qn

(8.4)
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Ponieważ an+1 = [xn+1], to xn+1 < an+1 + 1. Otrzymujemy więc

|Rn − x0| =
1

(xn+1Qn +Qn−1)Qn

>
1

[(an+1 + 1)Qn +Qn−1]Qn

=
1

(Qn +Qn+1)Qn

. (8.5)

Z ostatniej równości w (8.4) zastosowanej do n + 1 i z faktu, że xn+2 > 1
dostajemy

|Rn+1 − x0| =
1

(xn+2Qn+1 +Qn)Qn+1
<

1
(Qn +Qn+1)Qn

. (8.6)

Zestawiając (8.5) i (8.6) (oraz z (8.6) dla n := n− 1) otrzymujemy

|Rn+1 − x0| < |Rn − x0| <
1

(Qn−1 +Qn)Qn−1
. (8.7)

Z określenia ciągu Qn wynika, że Qn ­ Qn−1 + Qn−2 ­ Qn−1 + 1 dla n ­ 2.
Zatem Qn ­ n. To oznacza, że Rn

n−→ x0. Z (8.4) wynika, że ciąg R2n jest
rosnący a ciąg R2n+1 malejący.

Uwaga 8.5. Z Twierdzenia 8.4 wnioskujemy, że liczba x0 leży pomiędzy Rn

i Rn−1. Zatem z lematu 8.2 wynika, że

|x0 −Rn−1| < |Rn−1 −Rn| =
1

Qn−1Qn

.

Zatem
|x0 −Rn| <

1
QnQn+1

¬ 1
n(n+ 1)

. (8.8)

Przykład. Liczba
1 +
√

5
2

nazywana jest z łotą. Pojawia się przy złotym
podziale odcinka oraz występuje we wzorze na wyrazy ciągu Fibonacci’ego.
Mamy

1 +
√

5
2

= 1 +

√
5− 1
2

= 1 +
1

1 +
√

5
2

.

Zatem
1 +
√

5
2

= 1 +
1 |
| 1

+
1 |
| 1

+
1 |
| 1

+ . . . .



Ułamki łańcuchowe 132

Przeanalizujemy zagadnienie odwrotne. Niech a0 będzie nieujemną liczbą
całkowitą i an, n ­ 1 ciągiem liczb naturalnych. Używając metod użytych w
dowodzie ostatniego twierdzenia możemy wywnioskować, że liczby Rk okre-
ślone wzorem

Rk = a0 +
1 |
| a1

+
1 |
| a2

+ . . .+
1 |
| ak−1

+
1 |
| ak

spełniają

|Rm −Rn| <
1

n(n+ 1)
, m > n,

ponieważ liczba Rm leży pomiędzy Rn i Rn+1
∗. To oznacza, że ciąg Rn jest

zbieżny, bo spełnia warunek Cauchy’ego. Oznaczmy

x0 = lim
k
Rk.

Chcemy pokazać, że liczby a0, a1, . . . , an, . . . powstają z rozwinięcia liczby x0

w ułamek łańcuchowy.
Z argumentacji użytej wyżej wynika, że dla dowolnej liczby n ciągi

R
(n)
k = an +

1 |
| an+1

+
1 |
| an+2

+ . . .+
1 |

| an+k−1
+

1 |
| an+k

są zbieżne. Oznaczmy
xn = lim

k
R

(n)
k .

Ze związku

R
(n)
k = an +

1

R
(n+1)
k−1

wynika

xn = an +
1

xn+1
, n ­ 0. (8.9)

Stąd xn+1 > 0, czyli xn > an ­ 1 dla n ­ 1. Z (8.9) otrzymujemy zatem an =
[xn], czyli liczby an pochodzą z rozwinięcia liczby x0 w ułamek łańcuchowy.

Z przeprowadzonego rozumowania wynika, że rozwinięcie liczby dodatniej
x0 w ułamek łańcuchowy jest jednoznaczne. W szczególności nieskończone
ułamki łańcuchowe reprezentują liczby niewymierne.
∗Można zastosować rozumowanie z dowodu Twierdzenia 8.4 dla x0 := Rm i zauważyć,

że redukty rzędu n < m dla x0 są równe Rn.



Ułamki łańcuchowe 133

Twierdzenie 8.6 (prawo najlepszego przybliżenia). Załóżmy, że dla dodat-
niej liczby niewymiernej x0 i liczb naturalnych r i s mamy∣∣∣∣x0 −

r

s

∣∣∣∣ < |x0 −Rn|.

Wtedy s > Qn. Czyli spośród liczb wymiernych o mianownikach nie przekra-

czających Qn redukt Rn =
Pn
Qn

stanowi najlepsze przybliżenie liczby x0.

Dowód. Z Twierdzenia 8.4 mamy∣∣∣∣x0 −
r

s

∣∣∣∣ < |x0 −Rn| < |x0 −Rn−1|.

Z pierwszej części tezy Twierdzenia 8.4 wynika zatem, że liczba
r

s
leży po-

między liczbami Rn−1 i Rn. Otrzymujemy więc

0 <
∣∣∣∣rs −Rn−1

∣∣∣∣ < |Rn −Rn−1| =
|∆n|

Qn−1Qn

=
1

Qn−1Qn

.

Tzn.

0 <
|rQn−1 − sPn−1|

Qn−1s
<

1
Qn−1Qn

.

Stąd wynika, że s > Qn.

8.1 Okresowe ułamki łańcuchowe

Przypuśćmy, że rozwinięcie w ułamek łańcuchowy liczby x

x = b0 +
1 |
| b1

+
1 |
| b2

+ . . .+
1 |
| bn

+ . . .

jest okresowe, tzn.
bn+k = bn, dla n ­ n0.

Rozważmy część ułamka

y = bn0 +
1 |

| bn0+1
+ . . .+

1 |
| bn0+k−1

+ . . .+
1 |

| bn0+k
+ . . . .
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Wprowadźmy oznaczenia an = bn0+n. Wtedy an+k = an oraz

y = a0 +
1 |
| a1

+ . . .+
1 |
| ak−1

+ . . .+
1 |
| ak

+ . . . .

Z okresowości otrzymujemy więc

y = a0 +
1 |
| a1

+ . . .+
1 |
| ak−1

+
1 |
| y

.

Niech R̃k oznacza k-ty redukt, gdzie liczba ak została zastąpiona przez y.
Wtedy

y = R̃k =
P̃k

Q̃k

=
yPk−1 + Pk−2

yQk−1 +Qk−2
.

Liczba y jest dodatnim pierwiastkiem trójmianu kwadratowego

Qk−1y
2 + (Qk−2 − Pk−1)y − Pk−2 = 0,

z naturalnymi współczynnikami. Wyróżnik trójmianu jest równy

w = (Qk−2 − Pk−1)2 + 4Qk−1Pk−2

= (Qk−2 + Pk−1)2 + 4∆k−1 = (Qk−2 + Pk−1)2 − 4(−1)k.

Zatem
y =

Pk−1 −Qk−2

2Qk−1
+

1
2Qk−1

√
w.

Liczby x i y są związane wzorem

x = b0 +
1 |
| b1

+
1 |
| b2

+ . . .+
1 |

| bn0−1
+

1 |
| y

.

W związku z tym
x = u+ v

√
w,

dla pewnych wymiernych liczb u i v. To oznacza, że liczba x jest pierwiast-
kiem trójmianu kwadratowego

x2 − 2ux+ (u2 − v2w) = 0.

Stąd x jest pierwiastkiem trójmianu kwadratowego o współczynnikach cał-
kowitych.
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Implikacja odwrotna też jest prawdziwa. Poniższy dowód pochodzi od La-
grange’a. Załóżmy, że liczba dodatnia x jest pierwiastkiem trójmianu kwa-
dratowego, tzn.

ax2 + bx+ c = 0,

dla pewnych liczb całkowitych a, b i c, przy czym a, c 6= 0. Rozważmy macierz

M =
[
a b/2
b/2 c

]

i wektor v =
(
v1

v2

)
. Wtedy

〈Mv, v〉 = av2
1 + bv1v2 + cv2

2.

Dla wektora u =
(
x
1

)
otrzymujemy

〈Mu, u〉 = ax2 + bx+ c = 0.

Wyznacznik macierzy M jest równy ac − 1
4
b2. Niech ak oznaczają liczby z

rozwinięcia x0 := x w ułamek łańcuchowy. Ze wzoru (8.2) otrzymujemy

x = a0 +
1 |
| a1

+
1 |
| a2

+ . . .+
1 |
| an−1

+
1 |
|xn

=
xnPn−1 + Pn−2

xnQn−1 +Qn−2
.

Podstawiamy to wyrażenie do trójmianu kwadratowego i po przemnożeniu
przez (xnQn−1 +Qn−2)2

a(xnPn−1 + Pn−2)2 + b(xnPn−1 + Pn−2)(xnQn−1 +Qn−2)
+ c(xnQn−1 +Qn−2)2 = 0. (8.10)

Rozważmy macierz

U =
[
Pn−1 Pn−2

Qn−1 Qn−2

]

Dla wektora v =
(
xn
1

)
mamy

Uv =
(
xnPn−1 + Pn−2

xnQn−1 +Qn−2

)
,
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zatem równanie (8.10) ma postać

〈MUv,Uv〉 = 0.

Zatem
〈U tMUv, v〉 = 0.

Niech

U tMU =
(
An Bn/2
Bn/2 Cn

)
.

Wiemy, że xn jest pierwiastkiem trójmianu kwadratowego

Anx
2
n +Bnxn + Cn = 0,

gdzie

An = aP 2
n−1 + bPn−1Qn−1 + cQ2

n−1,

Bn = 2aPn−2Pn−1 + b[Pn−1Qn−2 + Pn−2Qn−1] + 2cQn−2Qn−1,

Cn = aP 2
n−2 + bPn−2Qn−2 + cQ2

n−2.

Liczby An, Bn i Cn są całkowite oraz An = Cn+1. Dalej

AnCn −
1
4
B2
n = det(U tMU) = detM = ac− 1

4
b2.

Z (8.8)† wynika, że

|xQn−1 − Pn−1| <
1
Qn

<
1

Qn−1
.

Zatem
Pn−1 = xQn−1 +

δ

Qn−1
,

dla pewnej liczby δ spełniającej |δ| < 1. Zatem

An = a

(
xQn−1 +

δ

Qn−1

)2

+ b

(
xQn−1 +

δ

Qn−1

)
Qn−1 + cQ2

n−1

= (ax2 + bx+ c)Q2
n−1 + (2ax+ b)δ +

aδ2

Q2
n−1

= (2ax+ b)δ +
aδ2

Q2
n−1

.

†|x−Rn−1| <
1

QnQn−1
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Dalej

|An| =
∣∣∣∣∣(2ax+ b)δ +

aδ2

Q2
n−1

∣∣∣∣∣ ¬ |2ax+ b|+ |a|.

To oznacza, że jest tylko skończenie wiele możliwości na wartość An. Ponadto

|Cn| = |An−1|, |Bn| =
√
b2 − 4ac+ 4AnCn,

więc jest tylko skończenie wiele możliwych trójek (An, Bn, Cn). W związku z
tym jakaś trójka (A,B,C) wystąpi trzykrotnie w ciągu (An, Bn, Cn). Wtedy
jeden z pierwiastków trójmianu kwadratowego

At2 +Bt+ C = 0,

pojawi się dwukrotnie w ciągu xn‡. Zatem dla pewnych liczb naturalnych n0

i k otrzymamy xn0 = xn0+k, czyli

xn0 = an0 +
1 |

| an0+1
+

1 |
| an0+2

+ . . .+
1 |

| an0+k−1
+

1 |
|xn0

Wtedy an = an+k dla n ­ n0, czyli ułamek łańcuchowy liczby xn0 , jak również
liczby x jest okresowy.

9 Całka Riemanna

9.1 Sumy dolne i górne

Definicja 9.1. Podziałem P przedziału [a, b] nazywamy skończoną rodzinę
punktów a = x0 < x1 < x2 < . . . < xn = b. Przyjmujemy oznaczenie
∆xi = xi − xi−1.

Dla ograniczonej funkcji f(x) na przedziale [a, b] określamy liczby mi oraz
Mi wzorami

mi = inf
xi−1¬x¬xi

f(x), Mi = sup
xi−1¬x¬xi

f(x).

Definiujemy sumy dolne i górne∗ wzorami

L(P , f) =
n∑
i=1

mi∆xi, U(P , f) =
n∑
i=1

Mi∆xi.

‡Jeśli (A,B,C) wystąpi dla n1, n2 i n3, to liczby xn1 , xn2 i xn3 nie mogą być różne.
∗Te pojęcia pochodzą od Jeana Darboux
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Uwaga. Jeśli f ­ 0, to liczba L(P , f) przybliża od dołu pole obszaru pod

wykresem funkcji, natomiast liczba U(P , f) przybliża to pole od góry.
Przypuśćmy, że m ¬ f(x) ¬M dla a ¬ x ¬ b. Wtedy

L(P , f) ­
n∑
i=1

m∆xi = m(b− a),

U(P , f) ¬
n∑
i=1

M∆xi = M(b− a).

Określamy całki dolną i górną wzorami

b∫
a

f(x) dx = sup
P
L(P , f),

b∫
a

f(x) dx = inf
P
U(P , f).

Definicja 9.2. Mówimy, że funkcja f(x) jest całkowalna w sensie Riemanna
na przedziale [a, b], jeśli całka dolna jest równa całce górnej. Wtedy wspólną

wartość oznaczamy symbolem
b∫
a

f(x) dx.

Uwaga. Pokażemy wkrótce, że funkcja ciągłe są całkowalne. Istnieją jednak
funkcje niecałkowalne.

Przykłady.

(a)

f(x) =

1 x ∈ Q,
0, x /∈ Q.

Dla przedziału [0, 1] mamy L(P , f) = 0 oraz U(P , f) = 1, bo w każdym
przedziale [xi−1, xi] znajdują się liczby wymierne i niewymierne. Zatem

1∫
0

f(x) dx = 0,
1∫

0

f(x) dx = 1.

(b)

f(x) =

1 0 ¬ x ¬ 1,
2 1 < x ¬ 2.
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Dla Pn = {0, 1, 1 + 1
n
, 2} mamy

L(Pn, f) = 1 + 1 · 1
n

+ 2
(

1− 1
n

)
= 3− 1

n
,

U(Pn, f) = 1 + 2 · 1
n

+ 2
(

1− 1
n

)
= 3.

Zatem
2∫

0

f(x) dx ­ 3,
2∫

0

f(x) dx ¬ 3.

Pokażemy wkrótce, że

b∫
a

f(x) dx ¬
b∫
a

f(x) dx,

zatem
2∫

0

f(x) dx =
2∫

0

f(x) dx = 3.

(c)

f(x) =


1
q

x = p
q
, p ∈ Z, q ∈ N, (p, q) = 1,

0, x /∈ Q.

Rozważamy przedział [0, 1]. Mamy L(P , f) = 0. Ustalmy liczbę natu-
ralną N ­ 2. Określimy specjalny podział P . Każdy ułamek nieskra-
calny postaci p

q
, dla q < N otaczamy przedziałem o promieniu 1

2N3 .

Takich ułamków jest mniej niż N2. Przedziałami podziału są wtedy[
p
q
− 1

2N3 ,
p
q

+ 1
2N3

]
, gdzie q < N, oraz przedziały pomiędzy nimi. Licz-

by wymierne znajdujące się w przedziałach z drugiej grupy mają mia-
nowniki niemniejsze niż N. Przedziały postaci

[
p
q
− 1

2N3
p
q

+ 1
2N3

]
są roz-

łączne. Rzeczywiście, rozważmy dwie różne liczby p
q

i p′

q′
, dla q, q′ < N.

Wtedy ∣∣∣∣∣pq − p′

q′

∣∣∣∣∣ =
|pq′ − p′q|

qq′
­ 1
qq′
­ 1
N2

>
1
N3

.

Gdyby przedziały odpowiadające p
q

i p′

q′
zachodziły na siebie, to∣∣∣∣∣pq − p′

q′

∣∣∣∣∣ ¬ 2 · 1
2N3

=
1
N3

.
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NiechA składa się z numerów i odpowiadającym przedziałom
[
p
q
− 1

2N3 ,
p
q

+ 1
2N3

]
.

Wtedy

U(P , f) =
n∑
i=1

Mi∆xi =
∑
i∈A

Mi∆xi +
∑
i/∈A

Mi∆xi

¬
∑
i∈A

∆xi +
∑
i/∈A

1
N

∆xi ¬ N2 · 1
N3

+
1
N

=
2
N
.

Ponieważ N jest dowolną liczbą naturalną, to
1∫
0
f(x) dx = 0.

Definicja 9.3. Podział P ′ przedziału [a, b] nazywamy rozdrobnieniem podzia-
łu P , jeśli P ⊆ P ′. Dla podziałów P1 i P2 podział P1∪P2 nazywamy wspólnym
rozdrobnieniem P1 i P2.

Twierdzenie 9.4. Jeśli P ⊆ P ′, to L(P , f) ¬ L(P ′, f) oraz U(P , f) ­
U(P ′, f), tzn. przy rozdrobnieniu sumy dolne się zwiększają a sumy górne
zmniejszają.

Dowód. Wystarczy rozważyć przypadek P ′ = P ∪ {x′}. Niech

P = {x0, x1, . . . , xi−1, xi, . . . , xn},
P ′ = {x0, x1, . . . , xi−1, x

′, xi, . . . , xn}.

Oznaczmy
ω1 = inf

xi−1¬x¬x′
f(x), ω2 = inf

x′¬x¬xi
f(x).

Wtedy ω1, ω2 ­ mi zatem

L(P ′, f)− L(P , f) = ω1(x′ − xi−1) + ω2(xi − x′)−mi∆xi
­ mi(x′ − xi−1) +mi(xi − x′)−mi∆xi = 0.

Podobnie pokazujemy, że U(P ′, f) ¬ U(P , f).

Wniosek 9.5.

(i) Dla dwu podziałów P1 i P2 mamy L(P1, f) ¬ U(P2, f).

(ii)
b∫
a

f(x) dx ¬
b∫
a

f(x) dx.
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Dowód. Mamy

L(P1, f) ¬ L(P1 ∪ P2, f) ¬ U(P1 ∪ P2, f) ¬ U(P2, f).

Biorąc kres górny względem P1 otrzymamy
b∫
a

f(x) dx ¬ U(P2, f).

Teraz bierzemy kres dolny względem P2 i otrzymujemy część (ii) wniosku.

Twierdzenie 9.6. Ograniczona funkcja f(x) na przedziale [a, b] jest cał-
kowalna wtedy i tylko wtedy, gdy dla dowolnej liczby ε > 0 można znaleźć
podział P , dla którego

U(P , f)− L(P , f) < ε. (9.1)

Dowód. (⇐) Załóżmy, że dla ε > 0 istnieje P spełniający (9.1). Wtedy

L(P , f) ¬
b∫
a

f(x) dx ¬
b∫
a

f(x) dx ¬ U(P , f) < L(P , f) + ε.

Czyli

0 ¬
b∫
a

f(x) dx−
b∫
a

f(x) dx < ε.

Ponieważ ε jest dowolną liczbą dodatnią, to
b∫
a

f(x) dx =
b∫
a

f(x) dx.

(⇒) Załóżmy, że

b∫
a

f(x) dx =
b∫
a

f(x) dx =:
b∫
a

f(x) dx.

Dla ustalonej liczby ε > 0 istnieją podziały P1 i P2 spełniające

− ε

2
+

b∫
a

f(x) dx < L(P1, f) ¬ L(P1 ∪ P2)

¬ U(P1 ∪ P2) ¬ U(P2, f) <
b∫
a

f(x) dx+
ε

2
.
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Zatem
U(P1 ∪ P2, f)− L(P1 ∪ P2, f) < ε.

Uwaga 9.7. Jeśli funkcja f(x) jest całkowalna na przedziale [a, b] oraz

U(P , f)− L(P , f) < ε,

to z nierówności

L(P , f) ¬
b∫
a

f(x) dx ¬ U(P , f)

wynika

0 ¬
b∫
a

f(x) dx− L(P , f) < ε, 0 ¬ U(P , f)−
b∫
a

f(x) dx < ε.

Tzn. L(P , f) i U(P , f) przybliżają wartość całki
b∫
a

f(x) dx z dokładnością

do ε od dołu i od góry, odpowiednio.

Przykłady.

(a) Rozważamy f(x) = x2 na [0, 1]. Niech

P =
{

0,
1
n
,

2
n
, . . . ,

n− 1
n

, 1
}
.

Wtedy

L(P , f) =
n∑
i=1

mi∆xi =
n∑
i=1

(
i− 1
n

)2 1
n

=
1
n3

n∑
i=1

(i− 1)2 =
1
n3

n−1∑
i=1

i2,

U(P , f) =
n∑
i=1

Mi∆xi =
n∑
i=1

(
i

n

)2 1
n

=
1
n3

n∑
i=1

i2.

Zatem

U(P , f)− L(P , f) =
n2

n3
=

1
n
,

co oznacza, że funkcja x2 jest całkowalna. Ile wynosi całka
1∫

0

x2 dx ?
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(b)

f(x) =

x x ∈ Q,
2x x /∈ Q

, 0 ¬ x ¬ 1.

Dla dowolnego podziału P przedziału [0, 1] mamy

U(P , f) =
n∑
i=1

Mi∆xi =
n∑
i=1

2xi∆xi,

L(P , f) =
n∑
i=1

mi∆xi =
n∑
i=1

xi−1∆xi ¬
n∑
i=1

xi∆xi

Zatem

U(P , f)− L(P , f) ­
n∑
i=1

xi∆xi

­
n∑
i=1

xi−1 + xi
2

(xi − xi−1) =
1
2

n∑
i=1

(x2
i − x2

i−1) =
1
2
.

Czyli f nie jest całkowalna.

Wniosek 9.8. Każda funkcja ciągła na przedziale [a, b] jest całkowalna. Po-
nadto dla dowolnej liczby ε > 0 można znaleźć liczbę δ > 0 taką, że dla
każdego podziału P = {x0, x1, . . . , xn}, jeśli

d(P) := max
1¬i¬n

∆xi < δ,

to dla dowolnego wyboru punktów pośrednich xi−1 ¬ ti ¬ xi mamy∣∣∣∣∣∣
n∑
i=1

f(ti)∆xi −
b∫
a

f(x) dx

∣∣∣∣∣∣ < ε.

Dowód. Ustalmy liczbę ε > 0. Z jednostajnej ciągłości można znaleźć liczbę
δ > 0 taką, że jeśli |x − x′| < δ, to |f(x) − f(x′)| < ε

b−a . Niech P będzie
podziałem spełniającym d(P) < δ. Wtedy

U(P , f)− L(P , f) =
n∑
i=1

(Mi −mi)∆xi <
ε

b− a
(b− a) = ε. (9.2)
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Stąd otrzymujemy całkowalność funkcji f. Ponadto

L(P , f) ¬
b∫
a

f(x) dx ¬ U(P , f),

oraz

L(P , f) ¬
n∑
i=1

f(ti)∆xi ¬ U(P , f),

bo mi ¬ f(ti) ¬ Mi. Z nierówności (9.2) liczby
n∑
i=1

f(ti)∆xi oraz
b∫
a

f(x) dx

leżą w przedziale o długości mniejszej niż ε.

Liczbę d(P) nazywamy średnicą podziału P . Wyrażenie

S(P , f) =
n∑
i=1

f(ti)∆xi

nosi nazwę sumy całkowej. Mamy następujące typy sum całkowych:

(a) ti = xi−1 - lewy koniec,

(b) ti = xi - prawy koniec,

(c) ti = 1
2(xi−1 + xi) - środek przedziału,

(d) indywidualnie dobierane punkty ti.

Wniosek 9.9. Niech f będzie funkcją ciągłą na przedziale [a, b]. Rozważmy
ciąg podziałów Pn takich, że d(Pn) −→

n
0 (np. Pn jest podziałem na n równych

części). Wtedy

S(Pn, f) −→
n

b∫
a

f(x) dx.

Dowód. Ustalmy liczbę ε > 0. Z poprzedniego wniosku istnieje liczba δ > 0
taka, że ∣∣∣∣∣∣S(P , f)−

b∫
a

f(x) dx

∣∣∣∣∣∣ < ε,
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dla d(P) < δ. Z założenia istnieje próg N taki, że jeśli n > N, to d(Pn) < δ.
Wtedy dla n > N mamy∣∣∣∣∣∣S(Pn, f)−

b∫
a

f(x) dx

∣∣∣∣∣∣ < ε.

Przykłady.

1. Rozważmy
1∫

0

x2 dx. Dla podziału P = {x0, x1, . . . , xn} przedziału

[0, 1] niech

ti =

√
x2
i−1 + xi−1xi + x2

i

3
.

Wtedy xi−1 < ti < xi. Dalej

S(P , x2) =
1
3

n∑
i=1

(x2
i−1 + xi−1xi + x2

i )∆xi =
1
3

n∑
i=1

(x3
i − x3

i−1) =
1
3
.

Stąd
1∫

0

x2 dx =
1
3
, bo możemy przyjąć d(Pn) = 1

n
, biorąc podział na n

równych części.

Znając wartość całki możemy obliczyć granicę wyrażenia
1
n3

n∑
k=1

k2. Ma-

my
1
n3

n∑
k=1

k2 =
1
n

n∑
k=1

(
k

n

)2

−→
n

1∫
0

x2 dx =
1
3
,

bo wyrażenie w środku jest sumą całkową typu prawy koniec dla funkcji
f(x) = x2 i dla podziału przedziału [0, 1] na n równych części.

2.

f(x) =

cos 1
x

0 < x ¬ 1,
0, x = 0.

Pokażemy, że funkcja f jest całkowalna. Rozważymy podział

P =
{

0,
1
n
,

1
n

+
1
n3
,

1
n

+
2
n3
, . . . ,

1
n

+
n3 − n2

n3

}
.
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Niech x, y ­ 1
n

oraz |x− y| ¬ 1
n3
. Wtedy

∣∣∣∣∣cos
1
x
− cos

1
y

∣∣∣∣∣ =

∣∣∣sin 1
ξ

∣∣∣
ξ2
|x− y| ¬ 1

1
n2

1
n3

=
1
n
,

bo ξ ­ 1
n
. Zatem największa rozpiętość wartości funkcji na przedziałach

podziału P , które mają długość 1
n3
, nie przekracza 1

n
. Otrzymujemy

więc

U(P , f)− L(P , f) = (M0 −m0)
1
n

+
n3−n2∑
i=1

(Mi −mi)
1
n3

¬ 2
n

+
n3 − n2

n

1
n3
¬ 3
n
.

Zadanie. Znaleźć funkcję f : [0, 1] 1−1−→
na

[0, 1], której wykres jest gęstym
podzbiorem w [0, 1]× [0, 1].

Zapis f ∈ R oznacza, że f jest całkowalna w sensie Riemanna.

Twierdzenie 9.10.

(i) Jeśli f, g ∈ R, to f ± g, cf ∈ R oraz

b∫
a

[f(x)± g(x)] dx =
b∫
a

f(x) dx±
b∫
a

g(x) dx,

b∫
a

cf(x) dx = c

b∫
a

f(x) dx.

(ii) Jeśli f, g ∈ R oraz f(x) ¬ g(x) dla a ¬ x ¬ b, to

b∫
a

f(x) dx ¬
b∫
a

g(x) dx.

(iii) Jeśli f ∈ R[a, b] oraz a < c < b, to f ∈ R[a, c] ∩R[c, b] oraz

b∫
a

f(x) dx =
c∫
a

f(x) dx+
b∫
c

f(x) dx.



Całka Riemanna 147

(iv) Jeśli f ∈ R oraz |f(x)| ¬M dla a ¬ x ¬ b, to∣∣∣∣∣∣
b∫
a

f(x) dx

∣∣∣∣∣∣ ¬M(b− a).

Dowód. Dla liczby ε > 0 można znaleźć podziały P1 i P2, dla których

U(P1, f)− L(P1, f) <
ε

2
, U(P2, g)− L(P2, g) <

ε

2
.

Wtedy dla podziału P = P1 ∪ P2 mamy

U(P , f)− L(P , f) <
ε

2
, U(P , g)− L(P , g) <

ε

2
.

W rezultacie

[U(P , f) + U(P , g)]− [L(P , f) + L(P , g)] < ε. (9.3)

Dalej

U(P , f + g) =
n∑
i=1

Mi(f + g)∆xi

¬
n∑
i=1

Mi(f)∆xi +
n∑
i=1

Mi(g)∆xi = U(P , f) + U(P , g).

Podobnie
L(P , f + g) ­ L(P , f) + L(P , g).

Reasumując otrzymujemy

L(P , f) + L(P , g) ¬ L(P , f + g) ¬ U(P , f + g) ¬ U(P , f) + U(P , g). (9.4)

W świetle (9.3) otrzymujemy

U(P , f + g)− L(P , f + g) < ε.

Stąd f + g jest całkowalna. Wartość całki
b∫
a

[f(x) + g(x)] dx leży pomię-

dzy liczbami L(P , f + g) i U(P , f + g). Z (9.4) wartość ta leży w przedzia-
le pomiędzy liczbami L(P , f) + L(P , g) i U(P , f) + U(P , g). Ale wielkość
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b∫
a

f(x) dx +
b∫
a

g(x) dx też leży w tym przedziale. Z (9.3) długość tego prze-

działu jest mniejsza niż ε. To oznacza, że∣∣∣∣∣∣
b∫
a

[f(x) + g(x)] dx−
b∫
a

f(x) dx−
b∫
a

g(x) dx

∣∣∣∣∣∣ < ε.

Stąd otrzymujemy

b∫
a

[f(x) + g(x)] dx =
b∫
a

f(x) dx+
b∫
a

g(x) dx.

Dla liczby c ­ 0 i podziału P mamy

mi(cf) = cmi(f), Mi(cf) = cMi(f).

Zatem
L(P , cf) = c L(P , f), U(P , cf) = c U(P , f).

Dalej

b∫
a

cf(x) dx = sup
P
L(P , cf) = sup

P
cL(P , f) = c sup

P
L(P , f) = c

b∫
a

f(x) dx,

b∫
a

cf(x) dx = inf
P
U(P , cf) = inf

P
cU(P , f) = c inf

P
U(P , f) = c

b∫
a

f(x) dx,

Stąd
b∫
a

c f(x) dx = c

b∫
a

f(x) dx.

Dla c < 0 otrzymujemy

mi(cf) = inf
xi−1¬x¬xi

cf(x) = c sup
xi−1¬x¬xi

f(x) = cMi(f),

Mi(cf) = sup
xi−1¬x¬xi

cf(x) = c inf
xi−1¬x¬xi

f(x) = cmi(f).

Stąd
L(P , cf) = c U(P , f), U(P , cf) = c L(P , f).
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Dalej

b∫
a

cf(x) dx = sup
P
L(P , cf) = sup

P
c U(P , f) = c inf

P
U(P , f) = c

b∫
a

f(x) dx.

Podobnie pokazujemy, że

b∫
b

cf(x) dx = c

b∫
a

f(x) dx.

Zatem f jest całkowalna oraz

a∫
b

cf(x) dx = c

a∫
b

f(x) dx.

Dalej

b∫
a

[f(x)− g(x)] dx =
b∫
a

f(x) dx+
b∫
a

[−g(x)] dx =
b∫
a

f(x) dx−
b∫
a

g(x) dx

Część (ii) twierdzenia jest oczywista, bo

mi(f) ¬ mi(g)

dla dowolnego podziału P i dowolnego odcinka podziału. Zatem

L(P , f) ¬ L(P , g)

oraz
b∫
a

f(x) dx =
b∫
a

f(x) dx ¬
b∫
a

g(x) dx =
b∫
a

g(x) dx.

Przechodzimy do dowodu (iii). Dla liczby ε > 0 można znaleźć podział
P0 przedziału [a, b] spełniający U(P0, f)−L(P0, f) < ε. Wtedy dla podziału
P = P0 ∪ {c} mamy

U(P , f)− L(P , f) < ε. (9.5)
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Podział P możemy zapisać jako sumą podziałów P1 i P2 przedziałów [a, c] i
[c, b], odpowiednio. Ponadto

U[a,b](P , f) = U[a,c](P1, f) + U[c,b](P2, f), (9.6)
L[a,b](P , f) = L[a,c](P1, f) + L[c,b](P2, f). (9.7)

Na podstawie (9.5) otrzymujemy więc

U[a,c](P1, f)− L[a,c](P1, f) < ε,

U[c,b](P2, f)− L[c,b](P2, f) < ε.

Stąd funkcja f jest całkowalna w przedziałach [a, c] i [c, b]. Wartość
b∫
a

f(x) dx

leży pomiędzy liczbami L[a,b](P , f) i U[a,b](P , f). Na podstawie (9.6) i (9.7)

wartość
c∫
a

f(x) dx +
b∫
c

f(x) dx też leży pomiędzy tymi liczbami. Wtedy z

(9.5) otrzymujemy∣∣∣∣∣∣
b∫
a

f(x) dx−
c∫
a

f(x) dx−
b∫
c

f(x) dx

∣∣∣∣∣∣ < ε.

Załóżmy, że |f(x)| ¬M. Wtedy −M ¬ f(x) ¬M. Zatem

− M(b − a) =
b∫
a

(−M) dx ¬
b∫
a

f(x) dx ¬
b∫
a

M dx = M(b − a).

Uwaga 9.11.

(a)
b∫
a

c dx = c(b− a), bo dla P = {a, b} mamy

L(P , c) = c(b− a) = U(P , c).

(b) Przyjmujemy, że
a∫
a

f(x) dx = 0 oraz dla b < a określamy

b∫
a

f(x) dx = −
a∫
b

f(x) dx.
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Wtedy wzór w Twierdzeniu 9.10(iii) jest prawdziwy niezależnie od kon-
figuracji liczb a, b i c.

Twierdzenie 9.12. Przypuśćmy, że funkcja f(x) jest całkowalna na prze-
dziale [a, b] oraz m ¬ f(x) ¬ M dla a ¬ x ¬ b. Niech h(y) będzie funkcją
ciągłą na [m,M ]. Wtedy funkcja złożona h(f(x)) jest całkowalna na [a, b].

Dowód. Ustalmy liczbę ε > 0. Istnieje liczba δ > 0 taka, że jeśli |y1−y2| < δ,
to |h(y1) − h(y2)| < ε. Z całkowalności funkcji f można znaleźć podział P
taki, że

U(P , f)− L(P , f) =
n∑
i=1

(Mi −mi)∆xi < δε.

Jeśli liczba Mi −mi jest duża, to liczba ∆xi musi być mała. Niech

A = {i : Mi −mi < δ}, B = {i : Mi −mi ­ δ}.

Dla i ∈ A maksymalna rozpiętość wartości funkcji f na przedziale [xi−1, xi]
jest mniejsza od δ. Zatem maksymalna rozpiętość wartości funkcji h(f(x))
na tym przedziale jest mniejsza od ε. Oznaczmy

M∗
i = sup

xi−1¬x¬xi
h(f(x)), m∗i = inf

xi−1¬x¬xi
h(f(x)), K = max

m¬y¬M
|h(y)|.

Maksymalna rozpiętość wartości funkcji h(y) nie przekracza zatem 2K. To
samo dotyczy więc rozpiętości wartości funkcji h(f(x)) na każdym przedziale
[xi−1, xi] dla i ∈ B, tzn.

0 ¬M∗
i −m∗i ¬ 2K, i ∈ B.

Wtedy

U(P , h ◦ f)− L(P , h ◦ f) =
n∑
i=1

(M∗
i −m∗i )∆xi

=
∑
i∈A

(M∗
i −m∗i )∆xi +

∑
i∈B

(M∗
i −m∗i )∆xi ¬ ε

∑
i∈A

∆xi + 2K
∑
i∈B

∆xi

¬ ε(b− a) +
2K
δ

∑
i∈B

(Mi −mi)∆xi ¬ ε(b− a) +
2K
δ

n∑
i=1

(Mi −mi)∆xi

¬ ε(b− a) +
2K
δ
δε = ε(b− a+ 2K).
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Wniosek 9.13. Jeśli funkcje f i g są całkowalne na przedziale [a, b], to
również funkcje |f |, f 2 oraz fg są całkowalne. Ponadto∣∣∣∣∣∣

b∫
a

f(x) dx

∣∣∣∣∣∣ ¬
b∫
a

|f(x)| dx.

Dowód. Dla funkcji |f | i f 2 stosujemy poprzednie twierdzenie z h(y) = |y| i
h(y) = y2. Dalej

fg =
1
4

(f + g)2 − 1
4

(f − g)2.

Stąd fg jest całkowalna. Mamy −|f(x)| ¬ f(x) ¬ |f(x)|. Całkując nierów-
ność otrzymamy

−
b∫
a

|f(x)| dx ¬
b∫
a

f(x) dx ¬
b∫
a

|f(x)| dx.

Uwaga 9.14. Metody szacowania wartości całek.

1. Obliczenie wartości całki.

2. m(b− a) ¬
b∫
a

f(x) dx ¬M(b− a), jeśli m ¬ f(x) ¬M dla a ¬ x ¬ b.

3. Znaleźć funkcje g(x) i h(x) takie, że g(x) ¬ f(x) ¬ h(x). Wtedy

b∫
a

g(x) dx ¬
b∫
a

f(x) dx ¬
b∫
a

h(x) dx.

3. L(P , f) ¬
b∫
a

f(x) dx ¬ U(P , f).

Przykład. Stosując metodę 2 otrzymamy

2 ¬
2∫

0

√
1 + x4 dx ¬ 2

√
17.
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Lepszy wynik uzyskamy rozdzielając całkę

2∫
0

√
1 + x4 dx =

1∫
0

√
1 + x4 dx+

2∫
1

√
1 + x4 dx.

Wtedy

1 +
√

2 ¬
2∫

0

√
1 + x4 dx ¬

√
2 +
√

17.

9.2 Całka jako granica sum całkowych

Mówimy, że sumy całkowe

S(P , f) =
n∑
n=1

f(ti)∆xi, xi−1 ¬ ti ¬ xi,

gdzie P = {x0, x1, . . . , xn} jest podziałem przedziału [a, b] są zbieżne do liczby
A, jeśli dla dowolnej liczby ε > 0 istnieje liczba δ > 0 taka, że z warunku
d(P) < δ wynika

S(P , f)− A| < ε.

To oznacza, że dla drobnych podziałów P sumy S(P , f) leżą blisko liczby A,
niezależnie od wyboru punktów pośrednich ti. Stosujemy wtedy zapis

lim
d(P)→0

S(P , f) = A.

Z Wniosku 9.9 wynika, że dla funkcji f(x) ciągłej na [a, b] mamy

lim
d(P)→0

S(P , f) =
b∫
a

f(x) dx.

Twierdzenie 9.15.

(a) Jeśli istnieje granica lim
d(P)→0

S(P , f), to funkcja f jest całkowalna na

[a, b] oraz

lim
d(P)→0

S(P , f) =
b∫
a

f(x) dx.
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(b) Jeśli funkcja f jest całkowalna na [a, b], to sumy całkowe są zbieżne.

Dowód. (a) Ustalmy ε > 0. Z założenia istnieje liczba δ > 0 taka, że jeśli
d(P) < δ, to

|S(P , f)− A| < ε

2
.

Równoważnie

A− ε

2
<

n∑
i=1

f(ti)∆xi < A+
ε

2
.

Nierówność jest spełniona dla dowolnego wyboru punktów ti, xi−1 ¬ ti ¬ xi.
Zatem

L(P , f) =
n∑
i=1

mi∆xi =
n∑
i=1

inf
xi−1¬ti¬xi

f(ti) ∆xi

= inf
t1,t2,...,tn

n∑
i=1

f(ti)∆xi = inf
t1,t2,...,tn

S(P , f) ­ A− ε

2
.

Podobnie
U(P , f) < A+

ε

2
.

Reasumując, otrzymaliśmy

A− ε

2
¬ L(P , f) ¬ U(P , f) ¬ A+

ε

2
.

Stąd
U(P , f)− L(P , f) ¬ ε.,

czyli funkcja f jest całkowalna. Wiemy, że

A− ε

2
¬ L(P , f) ¬¬

b∫
a

f(x) dx ¬ U(P , f) ¬ A+
ε

2
.

Zatem ∣∣∣∣∣∣
b∫
a

f(x) dx− A

∣∣∣∣∣∣ ¬ ε.

Ponieważ liczba ε > 0 jest dowolna, to

A =
b∫
a

f(x) dx.
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(b) Niech ε > 0. Z założenia całkowalności istnieje podział P∗, dla którego

U(P∗, f)− L(P∗, f) < ε.

Funkcja f jest ograniczona. Oznaczmy

M = sup
a¬x¬b

|f(x)|.

Niech N oznacza liczbę przedziałów podziału P∗. Przyjmijmy δ =
ε

4MN
.

Niech P = {x0, x1, . . . , xn} będzie podziałem spełniającym d(P) < δ. Po-
każemy, że U(P , f) − L(P , f) < ε. Część przedziałów podziału P zawiera
wewnątrz punkty podziału P∗. Niech i ∈ B jeśli (xi−1, xi) zawiera punkty
podziału P∗ oraz i ∈ A w przeciwnym wypadku. Zbiór B ma co najwyżej
N − 1 elementów. Mamy

U(P , f)−L(P , f) =
n∑
i=1

(Mi−mi)∆xi =
∑
i∈A

(Mi−mi)∆xi+
∑
i∈B

(Mi−mi)∆xi

Dalej ∑
i∈B

(Mi −mi)∆xi ¬
∑
i∈B

2Mδ ¬ 2MδN =
ε

2
,

bo
Mi −mi ¬ |Mi|+ |mi| ¬ 2M.

Jeśli i ∈ A, to przedział [xi−1, xi] jest zawarty w jakims przedziale [x∗j−1, x
∗
j ],

bo (xi−1, xi) nie zawiera punktów z P∗. Niech Aj oznacza zbiór tych liczb i,
dla których [xi−1, xi] ⊂ [x∗j−1, x

∗
j ]. Wtedy

Mi −mi ¬M∗
j −m∗j , gdzie M∗

j = sup
x∗j−1¬t¬x

∗
j

f(t), m∗j = inf
x∗j−1¬t¬x

∗
j

f(t).

Suma długości wszystkich przedziałów podziału P zawartych w [x∗j−1, x
∗
j ] nie

przekracza ∆x∗j . Zatem

∑
i∈A

(Mi −mi)∆xi =
N∑
j=1

∑
i∈Aj

(Mi −mi)∆xi ¬
N∑
j=1

∑
i∈Aj

(M∗
j −m∗j)∆xi

=
N∑
j=1

(M∗
j −m∗j)

∑
i∈Aj

∆xi ¬
N∑
j=1

(M∗
j −m∗j)∆x∗i = U(P∗, f)−L(P∗, f) <

ε

2
.
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Reasumując dla d(P) < δ zachodzi nierówność

U(P , f)− L(P , f(< ε.

Ponieważ

L(P , f) ¬ S(P , f) ¬ U(P , f),

L(P , f) ¬
b∫
a

f(x) dx ¬ U(P , f),

to ∣∣∣∣∣∣S(P , f)−
b∫
a

f(x) dx

∣∣∣∣∣∣ < ε,

co oznacza, że

lim
d(P)→0

S(P , f) =
b∫
a

f(x) dx.

9.3 Zasadnicze twierdzenie rachunku różniczkowego i
całkowego

Twierdzenie 9.16. Jeśli funkcja f(x) jest całkowalna na [a, b], to funkcja

F (x) =
x∫
a

f(t) dt jest ciągła na [a, b]. Jeśli f jest ciągła w punkcie x0, to F (x)

jest różniczkowalna w x0 oraz F ′(x0) = f(x0) dla a < x0 < b i F ′+(a) = f(a),
F ′−(b) = f(b).

Dowód. Załóżmy, że |f(x)| ¬M, czyli −M ¬ f(x) ¬M. Dla a ¬ x1 ¬ x2 ¬
b mamy

|F (x2)− F (x1)| =

∣∣∣∣∣∣
x2∫
a

f(t) dt−
x1∫
a

f(t) dt

∣∣∣∣∣∣ =

∣∣∣∣∣∣
x2∫
x1

f(t) dt

∣∣∣∣∣∣ ¬M(x2 − x1)

Jeśli f jest ciągła w a ¬ x0 < b, to dla liczby ε > 0 można znaleźć liczbę
δ > 0 taką, że dla x0 < t < x0 + δ mamy |f(t) − f(x0)| < ε. Załóżmy, że
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0 < x− x0 < δ. Wtedy

∣∣∣∣∣F (x)− F (x0)
x− x0

− f(x0)

∣∣∣∣∣ =

∣∣∣∣∣∣ 1
x− x0

 x∫
a

f(t) dt−
x0∫
a

f(t) dt

− f(x0)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1
x− x0

x∫
x0

f(t) dt− 1
x− x0

x∫
x0

f(x0) dt

∣∣∣∣∣∣ =
1

x− x0

∣∣∣∣∣∣
x∫

x0

[f(t)− f(x0)] dt

∣∣∣∣∣∣
¬ 1
x− x0

x∫
x0

|f(t)− f(x0)| dt

Ponieważ x0 ¬ t ¬ x, to x0 ¬ t < x0 + δ. Wtedy |f(t)− f(x0)| < ε. Funkcja
podcałkowa jest więc mniejsza niż ε. Stąd∣∣∣∣∣F (x)− F (x0)

x− x0
− f(x0)

∣∣∣∣∣ < ε.

To oznacza, że
F ′+(x0) = f(x0).

Dla pochodnej lewostronnej przeprowadzamy podobne rozumowanie przyj-
mując a < x0 ¬ b. Wtedy dla x0 − δ < x < x0 mamy∣∣∣∣∣F (x)− F (x0)

x− x0
− f(x0)

∣∣∣∣∣ =

∣∣∣∣∣F (x0)− F (x)
x0 − x

− f(x0)

∣∣∣∣∣
=

1
x0 − x

∣∣∣∣∣∣
x0∫
x

[f(t)− f(x0)] dt

∣∣∣∣∣∣ < ε.

Czyli F ′−(x0) = f(x0).

Wniosek 9.17. Dla funkcji f(x) ciągłej na przedziale [a, b] istnieje funkcja
F (x) taka, że F ′(x) = f(x) dla a < x < b oraz F ′+(a) = f(a) i F ′−(b) = f(b).
Funkcję F (x) nazywamy funkcją pierwotną do funkcji f(x).

Twierdzenie 9.18 (Zasadnicze twierdzenie rric). Jeśli funkcja f(x) jest cał-
kowalna na [a, b] oraz F (x) jest funkcją pierwotną do f(x), to

b∫
a

f(x) dx = F (b)− F (a) = F (x)
∣∣∣∣x=b

x=a
.
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Dowód. Dla liczby ε > 0 bierzemy podział P taki, że

U(P , f)− L(P , f) < ε.

Niech x0, x1, . . . , xn oznaczają punkty podziału P . Wtedy z twierdzenia La-
grange’a otrzymujemy

F (b)− F (a) = F (x1)− F (x0) + F (x2)− F (x1) + . . .+ F (xn)− F (xn−1)

=
n∑
i=1

[F (xi)− F (xi−1)] =
n∑
i=1

F ′(ti)∆xi =
n∑
i=1

f(ti)∆xi =: S(P , f),

dla pewnych punktów xi−1 < ti < xi. Mamy

L(P , f) ¬ S(P , f) = F (b)− F (a) ¬ U(P , f),

L(P , f) ¬
b∫
a

f(x) dx ¬ U(P , f).

Zatem ∣∣∣∣∣∣F (b)− F (a)−
b∫
a

f(x) dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣S(P , f)−
b∫
a

f(x) dx

∣∣∣∣∣∣ < ε.

Uwaga 9.19. Wzór w twierdzeniu jest prawdziwy również dla a ­ b, bo

b∫
a

f(x) dx = −
a∫
b

f(x) dx = −[F (a)− F (b)] = F (b)− F (a).

Przykłady.

(a)
1∫

0

xn dx =
1

n+ 1
xn+1

∣∣∣∣1
0

=
1

n+ 1
.

(b)
1∫

0

1
1 + x2

dx = arctg x
∣∣∣∣1
0

=
π

4
.

Twierdzenie 9.18 może być użyte do obliczania różnego rodzaju granic.
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Przykłady.

(a) Chcemy obliczyć

lim
n

( 1
n2

+
3
n2

+ . . .+
2n− 1
n2

)
.

Wyrażenie pod granicą możemy zapisać w postaci

1
n

( 1
n

+
3
n

+ . . .+
2n− 1
n

)
.

Przyjmijmy, że xi =
2i
n

oraz ti =
xi−1 + xi

2
. Mamy ∆xi =

2
n
. Zatem

wyrażenie pod granicą ma postać sumy całkowej dla całki
1
2

2∫
0

x dx = 1.

Stąd granica wynosi 1. Można zauważyć, że wyrażenie pod granicą jest
równe 1, niezależnie od wartości n.

(b) Mamy do obliczenia

lim
n

(
1√

n2 + 1
+

1√
n2 + 22

+ . . .+
1√

n2 + n2

)

= lim
n

1
n

 1√
1 + 1

n2

+
1√

1 + 22
n2

+ . . .+
1√

1 + n2

n2

 =
1∫

0

1√
1 + x2

dx

= log(x+
√
x2 + 1)

∣∣∣∣1
0

= log(1 +
√

2).

Twierdzenie 9.20 (Całkowanie przez podstawienie). Przypuśćmy, że funk-
cja f(u) jest ciągła, a funkcja ϕ(x) jest różniczkowalna w sposób ciągły na
przedziale [a, b] oraz zbiór wartości ϕ([a, b]) jest zawarty w obszarze określo-
ności funkcji f. Wtedy

b∫
a

f(ϕ(x))ϕ′(x) dx =
ϕ(b)∫
ϕ(a)

f(u) du. (9.8)

Dowód. Symbolem F oznaczymy funkcję pierwotną do f. Wtedy

[F (ϕ(x))]′ = F ′(ϕ(x))ϕ′(x) = f(ϕ(x))ϕ′(x).
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Z Twierdzenia 9.18 otrzymujemy zatem

b∫
a

f(ϕ(x))ϕ′(x) dx = F (ϕ(x))
∣∣∣∣b
a

= F (ϕ(b))− F (ϕ(a)) =
ϕ(b)∫
ϕ(a)

f(u) du.

Uwaga 9.21. Patrząc mechanicznie na wzór (9.8) widzimy, że nastąpiła
zamiana u = ϕ(x) i du = ϕ′(x) dx, oraz końce przedziału całkowania zostały
odpowiednio zmodyfikowane.

Przykłady.

(a) Dla całki
π/2∫
0

sin2 x cosx dx stosujemy podstawienie u = sin x =: ϕ(x),

f(u) = u2. Wtedy du = cosx dx. W wyniku otrzymujemy
1∫

0

u2 du =
1
3
.

(b) Wzór (9.8) może być zastosowany w przeciwną stronę. Tzn. punktem
wyjścia jest całka

d∫
c

f(u) du.

Stosujemy podstawienie u = ϕ(x). Aby zastosować wzór z twierdzenia
trzeba znaleźć punkty a i b spełniające

ϕ(a) = c, ϕ(b) = d.

Wtedy
d∫
c

f(u) du =
b∫
a

f(ϕ(x))ϕ′(x) dx.

Rozważmy całkę
1∫

0

du√
1 + u2

.

Zastosujemy podstawienie u = sinh x. Wtedy du = cosh x dx. Trzeba
znaleźć granice całkowania a i b odpowiadające liczbom 0 i 1. W tym
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celu rozwiązujemy równania sinh a = 0 i sinh b = 1. Otrzymujemy
a = 0. Drugie równanie przekształcamy do postaci

1
2
e2b − eb − 1

2
= 0.

Jedynym dodatnim pierwiastkiem trójmianu kwadratowego jest 1+
√

2.
Zatem eb = 1 +

√
2, czyli b = log(1 +

√
2). Otrzymujemy więc

1∫
0

du√
1 + u2

=
log(1+

√
2)∫

0

coshx√
1 + sinh2 x

dx =
log(1+

√
2)∫

0

dx = log(1 +
√

2),

bo coshx =
√

1 + sinh2 x.

Twierdzenie 9.22 (Całkowanie przez części). Załóżmy, że funkcje u i v są
ciągłe natomiast u′ i v′ są całkowalne w sensie Riemanna na przedziale [a, b].
Wtedy

b∫
a

u′(x)v(x) dx = u(x)v(x)
∣∣∣∣b
a
−

b∫
a

u(x)v′(x) dx.

Dowód. Mamy (uv)′ = u′v + uv′. Z Twierdzenia 9.18 otrzymujemy więc

u(x)v(x)
∣∣∣∣b
a

=
b∫
a

[u′(x)v(x) + u(x)v′(x)] dx =
b∫
a

u′(x)v(x) dx+
b∫
a

u(x)v′(x) dx.

Uwaga 9.23. Wzór z Twierdzenia 9.22 można zapisać w postaci

b∫
a

f(x)g(x) dx = F (x)g(x)
∣∣∣∣b
a
−

b∫
a

F (x)g′(x) dx, (9.9)

gdzie F (x) oznacza funkcję pierwotną do funkcji f(x).

Przykład. Przyjmując f(x) = sinx oraz g(x) = x otrzymamy

π∫
0

x sinx dx = −x cosx
∣∣∣∣π
0

+
π∫

0

cosx dx = π.
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Gdybyśmy zamienili rolami funkcje, tzn. f(x) = x i g(x) = sinx, to
π∫

0

x sinx dx =
1
2
x2 sinx

∣∣∣∣π
0
− 1

2

π∫
0

x2 cosx dx,

tzn. otrzymana funkcja do scałkowania byłaby bardziej złożona.

Uwaga 9.24. Często łatwiej znaleźć funkcję pierwotną zamiast stosować
całkowanie przez części. W przykładzie (−x cosx + sinx)′ = x sinx. Głów-
ną częścią funkcji pierwotnej jest składnik −x cosx. Po obliczeniu pochodnej
pojawia się dodatkowy składnik − cosx. Stąd w funkcji pierwotnej występu-

je korekta o sinx. Podobnie przy obliczaniu całki
1∫

0

x2ex dx możemy łatwo

znaleźć funkcję pierwotną metodą korekt. Otrzymamy

(x2ex − 2xex + 2ex)′ = x2ex.

Zatem
1∫

0

x2ex dx = (x2 − 2x+ 2)ex
∣∣∣∣1
0

= e− 2.

Wzór na całkowanie przez części można stosować wielokrotnie.

Wniosek 9.25. Załóżmy, że funkcja f jest ciągła natomiast funkcja g jest n-
krotnie różniczkowalna w sposób ciągły na przedziale [a, b]. Niech fk oznacza
funkcję pierwotną rzędu k dla funkcji f, tzn. f0 = u oraz f ′k = fk−1 dla k ­ 1.
Wtedy∫ b

a
f(x)g(x) dx =

n−1∑
k=0

(−1)kfk+1(x)g(k)(x)
∣∣∣∣b
a

+ (−1)n
b∫
a

fn(x)g(n)(x) dx.

Dowód. Dla n = 1 wzór sprowadza się do (9.9). Załóżmy, że wzór jest speł-
niony dla liczby n. Pokażemy, że jest prawdziwy dla liczby n+1. Rzeczywiście
stosując całkowanie przez części otrzymamy

(−1)n
b∫
a

fn(x)g(n)(x) dx = (−1)nfn+1(x)g(n)(x)
∣∣∣∣b
a

+ (−1)n+1
b∫
a

fn+1(x)g(n+1)(x) dx.
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Uwaga. † Jeśli g(x) jest wielomianem stopnia co najwyżej n, to∫ b

a
f(x)g(x) dx =

n∑
k=0

(−1)kfk+1(x)g(k)(x)
∣∣∣∣b
a
.

Ten wzór można zastosować do szybkiego obliczenia niektórych całek. Np.∫ 1

0
exx5 dx =

5∑
k=0

(−1)kex(x5)(k)
∣∣∣∣1
0

= (1− 5 + 20− 60 + 120)e− 120(e− 1) = 120− 44e = 0, 3955...

Twierdzenie 9.26 (Reszta we wzorze Taylora w postaci całkowej). Jeśli
funkcja h(x) jest n + 1-krotnie różniczkowalna w sposób ciągły w otoczeniu
punktu a, to dla punktów b z tego otoczenia mamy

h(b) = h(a) +
(b− a)

1!
h′(a) +

(b− a)2

2!
h′′(a) + . . .+

(b− a)n

n!
h(n)(a) +Rn+1,

gdzie

Rn+1 =
1
n!

b∫
a

(b− x)nh(n+1)(x) dx.

Dowód. Mamy

h(b)− h(a) =
b∫
a

1 · h′(x) dx.

Zastosujemy Wniosek 9.25 do całki przyjmując f(x) := 1 oraz g(x) := h′(x).

(−1)kfk(x) =
1
k!

(b− x)k, k ­ 1.

Zatem
b∫
a

h′(x) dx = −
n−1∑
k=0

1
(k + 1)!

(b−x)k+1h(k+1)(x)
∣∣∣∣b
a

+
1
n!

b∫
a

(b−x)nh(n+1)(x) dx

= −
n∑
k=1

1
k!

(b− x)kh(k)(x)
∣∣∣∣b
a

+
1
n!

b∫
a

(b− x)nh(n+1)(x) dx

=
n∑
k=1

1
k!

(b− a)kh(k)(a) +
1
n!

b∫
a

(b− x)nh(n+1)(x) dx.

†Wniosek 9.25 i Uwagę zawdzięczam Konradowi Izdebskiemu z kursu Analizy II (2020)
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Twierdzenie 9.27 (Twierdzenie o wartości średniej). Funkcje f i g są cał-
kowalne na [a, b], przy czym g(x) ­ 0 dla a ¬ x ¬ b. Wtedy

b∫
a

f(x)g(x) dx = λ

b∫
a

g(x) dx

dla liczby λ leżącej pomiędzy kresami dolnym m i górnym M funkcji f.

Dowód. Mamy mg(x) ¬ f(x)g(x) ¬Mg(x). Całkując otrzymamy

m

b∫
a

g(x) dx ¬
b∫
a

f(x)g(x) dx ¬M

b∫
a

g(x) dx.

Jeśli
b∫
a
g(x) dx = 0, to również

b∫
a
f(x)g(x) dx = 0. W przypadku

b∫
a
g(x) dx > 0

otrzymujemy

m ¬

b∫
a
f(x)g(x) dx

b∫
a
g(x) dx

¬M.

Przykład.
π∫

0

f(x) sinx dx = λ

π∫
0

sinx dx = 2λ

dla pewnej liczby m ¬ λ ¬M.

Wniosek 9.28. Jeśli funkcja f jest ciągła a funkcja g(x) nieujemna i cał-
kowalna, to

b∫
a

f(x)g(x) dx = f(ξ)
b∫
a

g(x) dx

dla pewnego punktu a ¬ ξ ¬ b.

Dowód. Z poprzedniego twierdzenia mamy m ¬ λ ¬M. Z własności Darbo-
ux można znaleźć ξ taki, że f(ξ) = λ.

Przykład. Jeśli f jest ciągła, to
π∫

0

f(x) sinx dx = 2f(ξ).
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Twierdzenie 9.29 (Drugie twierdzenie o wartości średniej). Jeśli f(x) jest
nieujemną funkcją malejącą a g(x) funkcją całkowalną na [a, b], to

b∫
a

f(x)g(x) dx = f(a)
ξ∫
a

g(x) dx (9.10)

dla pewnego punktu ξ z przedziału [a, b].

Dowód. Niech
Mg = sup

a¬x¬b
|g(x)|.

Rozważmy podział P przedziału [a, b] na n równych części. Wtedy

U(P, f)− L(P, f) =
b− a
n

n∑
i=1

[f(xi−1)− f(xi)] =
(b− a)[f(a)− f(b)]

n
.

Stąd wynika w szczególności całkowalność funkcji f. Wybierzmy n tak duże,
aby

U(P, f)− L(P, f) <
ε

Mg

.

Wtedy

b∫
a

f(x)g(x) dx =
n∑
i=1

xi∫
xi−1

f(x)g(x) dx

=
n∑
i=1

f(xi−1)
xi∫

xi−1

g(x) dx+
n∑
i=1

xi∫
xi−1

[f(x)− f(xi−1)] g(x) dx =: A+B.

Mamy

|B| ¬
n∑
i=1

xi∫
xi−1

[f(xi−1)− f(x)] |g(x)| dx ¬Mg

n∑
i=1

[Mi(f)−mi(f)]∆xi

¬Mg[U(P, f)− L(P, f)] < ε.

Dalej stosując oznaczenie

G(x) =
x∫
a

g(t) dt
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uzyskujemy ‡

A =
n∑
i=1

f(xi−1)[G(xi)−G(xi−1)] =
n∑
i=1

f(xi−1)G(xi)−
n−1∑
i=1

f(xi)G(xi)

=
n∑
i=1

[f(xi−1)− f(xi)]G(xi) + f(b)G(b).

Niech
M = max

a¬x¬b
G(x), m = min

a¬x¬b
G(x).

Wtedy

A ¬
[
n∑
i=1

[f(xi−1)− f(xi)] + f(b)
]
M = Mf(a).

Podobnie otrzymujemy
A ­ mf(a).

Reasumując dostajemy nierówności

mf(a)− ε <
b∫
a

f(x)g(x) dx < Mf(a) + ε.

Stąd

mf(a) ¬
b∫
a

f(x)g(x) dx ¬Mf(a).

Ponieważ funkcja G(x) jest ciągła, to z własności Darboux otrzymujemy

b∫
a

f(x)g(x) dx = f(a)G(ξ) = f(a)
ξ∫
a

g(x) dx

dla pewnego punktu a ¬ ξ ¬ b.

Uwaga 9.30. Jeśli f(x) jest nieujemna i rosnąca, to

b∫
a

f(x)g(x) dx = f(b)
b∫
ξ

g(x) dx.

‡G(x0) = G(a) = 0
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Rzeczywiście stosując podstawienie ϕ(x) = a+ b− x otrzymamy

b∫
a

f(x)g(x) dx =
b∫
a

f(a+ b− x) g(a+ b− x) dx

= f(b)
η∫
a

g(a+ b− x) dx = f(b)
b∫

a+b−η

g(x) dx.

Przykład. Dla 0 < a < b mamy

b∫
a

sinx
x

dx =
1
a

ξ∫
a

sinx dx =
cos a− cos ξ

a
.

Zatem ∣∣∣∣∣∣
b∫
a

sinx
x

dx

∣∣∣∣∣∣ ¬ 2
a
.

Uwaga 9.31. Dowód drugiego twierdzenia o wartości średniej znacznie się
upraszcza przy założeniu, że funkcja g(x) jest ciągła a funkcja f(x) jest róż-
niczkowalna w sposób ciągły. Rzeczywiście, określmy

G(x) =
x∫
a

g(t) dt.

Wtedy

b∫
a

f(x)g(x) dx = f(x)G(x)
∣∣∣∣b
a
−

b∫
a

f ′(x)G(x) dx

= f(b)G(b)−
b∫
a

f ′(x)G(x) dx = f(b)G(b) +
b∫
a

[−f ′(x)]G(x) dx

Niech
m = min

a¬x¬b
G(x), M = max

a¬x¬b
G(x).

Wtedy

b∫
a

f(x)g(x) dx ­ mf(b)−m
b∫
a

f ′(x) dx = mf(b)−m[f(b)− f(a)] = mf(a).
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Podobnie wyprowadzamy nierówność

b∫
a

f(x)g(x) dx ¬Mf(a).

Zatem
b∫
a

f(x)g(x) dx = f(a)G(ξ) = f(a)
ξ∫
a

g(x) dx

dla pewnego punktu a ¬ ξ ¬ b, bo funkcja G(x) jest ciągła.

9.4 Wzory Wallisa i Stirlinga

Dla dwu ciągów liczb dodatnich an i bn zapis an ≈ bn oznacza, że
an
bn
−→
n

1.

We wzorze (
2n
0

)
+ . . .+

(
2n
n

)
+ . . .+

(
2n
2n

)
= 4n

liczba
(

2n
n

)
jest największa. Wzór Wallisa podaje informację jaki jest stosu-

nek tej liczby do sumy wszystkich symboli, czyli do 4n.

Twierdzenie 9.32 (Wzór Wallisa).

lim
n

(n!)24n

(2n)!
√
n

=
√
π.

Tzn.
(

2n
n

)
≈ 4n√

πn
.

Dowód. Oznaczmy In =
π/2∫
0

sinn x dx. Mamy I0 =
π

2
oraz I1 = 1. Dalej dla
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n ­ 2 mamy

In =
π/2∫
0

(− cosx)′(sinx)n−1 dx

= − cosx (sinx)n−1
∣∣∣∣π/2
0

+ (n− 1)
π/2∫
0

cos2 x (sinx)n−2 dx

= (n− 1)
π/2∫
0

[1− sin2 x] (sinx)n−2 dx = (n− 1)In−2 − (n− 1)In.

Zatem
In =

n− 1
n

In−2. (9.11)

Poprzez iterację (9.11) otrzymujemy

I2n =
2n− 1

2n
I2n−2 = . . . =

(2n− 1)(2n− 3) . . . 3 · 1
2n(2n− 2) . . . 4 · 2

I0 =
(2n)!

4n(n!)2

π

2
,

(9.12)

I2n+1 =
2n

2n+ 1
I2n−1 = . . . =

(2n)(2n− 2) . . . 4 · 2
(2n+ 1)(2n− 1) . . . 5 · 3

I1 =
4n(n!)2

(2n+ 1)!
.

(9.13)

Ciąg In jest malejący, czyli I2n+2 ¬ I2n+1 ¬ I2n. Zatem na podstawie (9.11)
dostajemy

2n+ 1
2n+ 2

=
I2n+2

I2n
¬ I2n+1

I2n
¬ 1.

Wnioskujemy, że I2n+1/I2n −→
n

1. Stąd korzystając z (9.12) i (9.13) mamy

1←−
n

√
I2n+1

I2n
=

√√√√ 4n(n!)2

(2n+ 1)!
4n(n!)2

(2n)!
2
π

=
4n(n!)2

(2n)!
√
πn

√
2n

2n+ 1
.

Twierdzenie 9.33 (Wzór Stirlinga).

lim
n

n!
nne−n

√
2πn

= 1,

tzn. n! ≈ nne−n
√

2πn.
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Dowód. Udowodnimy następującą nierówność, z której wynika teza twierdze-
nia.

nne−n
√

2πn < n! ¬ nne−n
√

2πn e
1
4n . (9.14)

Oznaczmy

an =
n!

nn+ 12 e−n
=
n! en

nn+ 12
.

Wtedy
an
an+1

=
1

(n+ 1)e
(n+ 1)n+ 32

nn+ 12
=

1
e

(
1 +

1
n

)n+ 12
.

Dalej

log
an
an+1

=
(
n+

1
2

)
log

(
1 +

1
n

)
− 1.

Rozważmy fragment wykresu funkcji y = 1/x od punktu x1 = n do punktu
x2 = n + 1. Wykres jest wypukły w dół. Zatem pole trapezu pod sieczną
przechodzącą przez punkty (x1, 1/x1) i (x2, 1/x2) jest większe niż pole pod
wykresem funkcji. Z kolei to ostatnie pole jest większe niż pole trapezu pod
styczną do wykresu w punkcie (x3, 1/x3) dla x3 = (x1 + x2)/2 = n+ 1

2 . Pole
pod wykresem wynosi

n+1∫
n

1
x
dx = log(n+ 1)− log n = log

(
1 +

1
n

)
.

Zatem
1

n+ 1
2

< log
(

1 +
1
n

)
<

1
2

( 1
n

+
1

n+ 1

)
=

n+ 1
2

n(n+ 1)
.

Pomnóżmy nierówność przez n+ 1
2 i odejmijmy 1. Wtedy

0 <
(
n+

1
2

)
log

(
1 +

1
n

)
− 1 <

(
n+ 1

2

)2

n(n+ 1)
− 1 =

1
4n(n+ 1)

.

To oznacza, że

0 < log
an
an+1

<
1
4

( 1
n
− 1
n+ 1

)
,

czyli
1 <

an
an+1

< e
1
4( 1n− 1

n+1).
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Stąd ciąg an jest malejący. Niech α = lim
n
an. Mamy

1 <
an
an+k

=
an
an+1

· an+1

an+2
· . . . · an+k−1

an+k

< e
1
4( 1n− 1

n+1) · e
1
4( 1
n+1−

1
n+2) · . . . · e

1
4( 1
n+k−1−

1
n+k) = e

1
4( 1n− 1

n+k).

Ostatnia nierówność pociąga

1 <
an
an+k

< e
1
4n .

Przechodzimy do granicy, gdy k →∞. Otrzymujemy

1 <
an
α
¬ e

1
4n . (9.15)

To oznacza, że α > 0. Obliczymy teraz wartość liczby α. Mamy

a2
n

a2n
√

2
=

(n!)2e2n

n2n+1

(2n)2n+ 12

(2n)!e2n
√

2
=

(n!)24n

(2n)!
√
n
−→
n

√
π.

Ale
a2
n

a2n
√

2
−→
n

α2

α
√

2
=

α√
2
.

Stąd α =
√

2π. Z (9.15) uzyskujemy

1 <
an√
2π
¬ e

1
4n ,

co jest równoznaczne z (9.14).

9.5 Całkowanie ciągu funkcyjnego

Twierdzenie 9.34. Ciąg funkcji fn całkowalnych na przedziale [a, b] jest jed-
nostajnie zbieżny do funkcji f. Wtedy funkcja f jest całkowalna na przedziale
[a, b] oraz

lim
n

b∫
a

fn(x) dx =
b∫
a

f(x) dx.
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Uwaga 9.35. Twierdzenie mówi, że

lim
n

b∫
a

fn(x) dx =
b∫
a

lim
n
fn(x) dx,

tzn. można wejść z granicą pod znak całki, przy zbieżności jednostajnej.

Dowód. Dla ustalonej liczby ε > 0 można znaleźć próg N taki, że dla n ­ N
oraz a ¬ x ¬ b mamy

|fn(x)− f(x)| < ε

3(b− a)
. (9.16)

W szczególności

f(x)− ε

3(b− a)
< fN(x) < f(x) +

ε

3(b− a)
.

Niech P będzie dowolnym podziałem przedziału [a, b]. Wtedy

mi(f) ­ mi(fN)− ε

3(b− a)
, Mi(f) ¬Mi(fN) +

ε

3(b− a)
.

Po przemnożeniu przez ∆xi i zsumowaniu otrzymamy

L(P, fN)− ε

3
¬ L(P, f) ¬ U(P, f) ¬ U(P, fN) +

ε

3
.

Funkcja fN jest całkowalna, więc dla pewnego podziału P mamy

U(P, fN)− L(P, fN) <
ε

3
.

Z dwu ostatnich nierówności otrzymujemy

U(P, f)− L(P, f) < ε,

co dowodzi całkowalności funkcji f.
Dla n ­ N mamy∣∣∣∣∣∣

b∫
a

fn(x) dx−
b∫
a

f(x) dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
b∫
a

[fn(x)− f(x)] dx

∣∣∣∣∣∣ ¬ ε

3
.

Ostatnia nierówność wynika z (9.16) i Twierdzenia 9.10 (iv).
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Przykłady.

(a) fn(x) = xn(1 − x), 0 ¬ x ¬ 1. Można pokazać, że fn(x) ⇒ 0, Zatem
1∫

0

fn(x) dx −→
n

0.

(b) fn(x) = xn. Mamy

fn(x) −→
n

0 0 ¬ x < 1,
1 x = 1.

Zatem fn(x) nie jest zbieżny jednostajnie, ale
1∫

0

xn dx =
1

n+ 1
−→
n

0.

(c) fn(x) = n3xn(1− x). Mamy fn(x) −→
n

0, dla 0 ¬ x ¬ 1. Ale

1∫
0

n3xn(1− x) dx = n3
( 1
n+ 1

− 1
n+ 2

)
=

n3

(n+ 1)(n+ 2)
−→
n
∞.

9.6 Całka nieoznaczona

Definicja 9.36. Przypuśćmy, że funkcje f(x) i F (x) są określone na usta-
lonym przedziale i spełniają F ′(x) = f(x). Funkcję F (x) nazywamy funkcją
pierwotną do funkcji f(x) lub całką nieoznaczoną funkcji f(x) i zapisujemy∫

f(x) dx = F (x).

Uwaga 9.37. To nie jest równość funkcji. Zapis oznacza, że F ′(x) = f(x)
dla x z określonego przedziału.

Jeśli G(x) jest inną funkcją pierwotną do f(x), to G(x) = F (x) + C dla
pewnej stałej C. Rzeczywiście,

(G(x)− F (x))′ = G′(x)− F ′(x) = f(x)− f(x) = 0.

Zatem funkcja G(x) − F (x) jest stała na przedziale. Stwierdzenie nie jest
prawdziwe dla dwu przedziałów. Na przykład niech x ∈ (0, 1) ∪ (2, 3). Niech
F (x) = x2 oraz

G(x) =

x2 + 1 0 < x < 1,
x2 − 1 2 < x < 3.

Wtedy G′(x) = F ′(x) = 2x.
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Przykład. ∫ 1
x
dx =

log x x > 0,
log(−x) x < 0

= log |x|.

Zapis stosowany w wielu podręcznikach∫ 1
x
dx = log |x|+ C

jest mylący, bo sugeruje, że na obu półprostych dodatniej i ujemnej musimy
wziąć tę samą stałą.

Twierdzenie 9.38.∫
[f(x) + g(x)] dx =

∫
f(x) dx+

∫
g(x) dx,∫

cf(x) dx = c
∫
f(x) dx.

Dowód. Jeśli F (x) i G(x) są funkcjami pierwotnymi do f i g, to

[F (x) +G(x)]′ = F ′(x) +G′(x) = f(x) + g(x).

Czyli ∫
[f(x) + g(x)] dx = F (x) +G(x) =

∫
f(x) dx+

∫
g(x) dx.

Podobnie ze wzoru
(cF (x))′ = cF ′(x) = cf(x)

wynika, że ∫
cf(x) dx = cF (x) = c

∫
f(x) dx.

Twierdzenie 9.39 (Całkowanie przez podstawienie). Załóżmy, że funkcja
ϕ(x) jest różniczkowalna w sposób ciągły natomiast funkcja f(u) jest ciągła
na zbiorze wartości funkcji ϕ. Wtedy∫

f(ϕ(x))ϕ′(x) dx = F (ϕ(x)),

gdzie F (u) =
∫
f(u) du.



Całka Riemanna 175

Dowód.
d

dx
F (ϕ(x)) = F ′(ϕ(x))ϕ′(x) = f(ϕ(x))ϕ′(x).

Uwaga. Tezę możemy zapisać w postaci∫
f(ϕ(x))ϕ′(x) dx = F (u), gdzie u = ϕ(x).

Inaczej ∫
f(ϕ(x))ϕ′(x) dx =

∫
f(u) du, gdzie u = ϕ(x).

Stosowanie twierdzenia

1. Chcemy obliczyć
∫
f(ϕ(x))ϕ′(x) dx. Obliczamy

∫
f(u) du i po wyko-

naniu obliczeń podstawiamy u = ϕ(x). Formalnie wyrażenie ϕ′(x) dx
zamieniło się na du, tzn. du = ϕ′(x) dx. To jest zgodne z zapisem Le-

ibniza, bo ϕ′(x) =
du

dx
.

2. Chcemy obliczyć
∫
f(u) du. Podstawiamy u = ϕ(x).Obliczamy

∫
f(ϕ(x))ϕ′(x) dx.

Następnie pozbywamy się zmiennej x przez podstawienie u = ϕ(x). Po-
nownie du = ϕ′(x) dx.

Przykłady.

(a) ∫
e−
√
x dx =

∫
2
√
xe−

√
x 1
2
√
x
dx.

Stosujemy podstawienie u = ϕ(x) =
√
x, f(u) = 2ue−u. Zatem du =

1
2
√
x
dx. Otrzymujemy więc

∫
e−
√
x dx =

∫
2ue−u du = −2ue−u − 2e−u = −2

√
xe−

√
x − 2e−

√
x.

(b) ∫
sin
√
u du =

u=x2
x>0

∫
sinx 2x dx = −2x cosx+ 2 sinx

= −2
√
u sin

√
u+ 2 sin

√
u.
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Twierdzenie 9.40 (Całkowanie przez części).∫
f ′(x)g(x) dx = f(x)g(x)−

∫
f(x)g′(x) dx.

Dowód. Mamy (f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x). Zatem

f(x)g(x) =
∫
f ′(x)g(x) dx+

∫
f(x)g′(x) dx.

Przykłady.

(a)
∫
xe−x dx =

∫
(−e−x)′x dx = −xe−x +

∫
e−x dx = −xe−x − e−x.

(b)
∫

log x dx =
∫
x′ log x dx = x log x−

∫
x

1
x
dx = x log x− x.

(c)
∫
ex sinx dx = ex sinx−

∫
ex cosx = ex sinx−

[
ex cosx+

∫
ex sinx dx

]
.

Zatem ∫
ex sinx dx =

1
2
ex(sinx− cosx).

(d)
∫ cosx

sinx
dx =

sinx
sinx

−
∫

sinx
(
− cosx

sin2 x

)
dx = 1 +

∫ cosx
sinx

dx.

9.7 Całkowanie funkcji wymiernych

Będziemy się zajmowali obliczeniem
∫ p(x)
q(x)

dx, gdzie p(x) i q(x) są wielo-

mianami. Jeśli deg p ­ deg q, to wykonujemy dzielenie z resztą

p(x) = w(x)q(x) + r(x), deg r < deg q.

Wtedy
p(x)
q(x)

= w(x) +
r(x)
q(x)

.

Przykłady.

(a)
∫ 1
x
dx = log |x|. Zatem

∫ f ′(x)
f(x)

dx = log |f(x)|.
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(b) ∫ dx

(x− 2)(x− 3)
=
∫ ( 1

x− 3
− 1
x− 2

)
dx

= log |x− 3| − log |x− 2| = log
∣∣∣∣x− 3
x− 2

∣∣∣∣ .
Ogólnie przy całkowaniu r(x)/q(x) rozkładamy mianownik na czynniki

postaci (x− α)n oraz [(x− β)2 + γ2]m. Wtedy wyrażenie r(x)/q(x) rozkłada
się na sumę wyrażeń postaci

c1

x− α
+

c2

(x− α)2
+ . . .+

cn
(x− α)n

,

d1x+ e1

(x− β)2 + γ2
+

d2x+ e2

[(x− β)2 + γ2]2
+ . . .+

dmx+ em
[(x− β)2 + γ2]m

.

Każdy składnik nazywamy ułamkiem prostym.

Przykłady.

1. ∫ dx

x3 + 1
dx =

∫ dx

(x+ 1)(x2 − x+ 1)
.

Wiemy, że

1
(x+ 1)(x2 − x+ 1)

=
A

x+ 1
+

Bx+ C

x2 − x+ 1
. (9.17)

Chcemy znaleźć stałe A, B i C.
Sposób I.
Mnożymy obie strony równości przez x+ 1

1
x2 − x+ 1

= A+
(Bx+ C)(x+ 1)

x2 − x+ 1

i podstawiamy x = −1. Otrzymujemy A =
1
3
. Dalej

1
(x+ 1)(x2 − x+ 1)

− 1
3(x+ 1)

=
−x2 + x+ 2

3(x+ 1)(x2 − x+ 1)

= − (x+ 1)(x− 2)
3(x+ 1)(x2 − x+ 1)

= − x− 2
3(x2 − x+ 1)

.
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Ostatecznie otrzymaliśmy

1
(x+ 1)(x2 − x+ 1)

=
1

3(x+ 1)
− x− 2

3(x2 − x+ 1)
. (9.18)

Sposób II.
Mnożymy równość (9.17) przez (x+ 1)(x2 − x+ 1) i otrzymujemy

1 = A(x2−x+1)+(Bx+C)(x+1) = (A+B)x2 +(B+C−A)x+A+C.

Następnie rozwiązujemy układ równań

A+B = 0,
B + C − A = 0,

A+ C = 1.

Na podstawie (9.18) obliczamy∫ dx

3(x+ 1)
=

1
3

log |x+ 1|.

Dalej

x− 2
x2 − x+ 1

=
1
2

2x− 1
x2 − x+ 1

− 3
2

1
x2 − x+ 1

,

1
x2 − x+ 1

=
1(

x− 1
2

)2
+ 3

4

=
4
3

1[
2√
3

(
x− 1

2

)]2
+ 1

.

Ostatecznie otrzymujemy wynik∫ dx

x3 + 1
dx =

1
3

log |x+ 1| − 1
6

log(x2 − x+ 1) +
1√
3

arctg
2x− 1√

3
.

2.
∫ dx

(x− 1)2(x2 + 1)
.

Mamy

1
(x− 1)2(x2 + 1)

=
A

x− 1
+

B

(x− 1)2
+
Cx+D

x2 + 1
. (9.19)
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Jak najszybciej znaleźć stałe A, B, C iD ? Oznaczmy f(x) = 1/(x2+1).
Mnożymy równość przez (x− 1)2 i otrzymujemy

f(x) = A(x− 1) +B +
Cx+D

x2 + 1
(x− 1)2.

Wtedy

B = lim
x→1

f(x) = f(1) =
1
2
.

Przekształcamy równość do postaci

f(x)
(x− 1)2

− f(1)
(x− 1)2

=
A

x− 1
+
Cx+D

x2 + 1
.

Po pomnożeniu przez x− 1 otrzymujemy

f(x)− f(1)
x− 1

= A+ (x− 1)
Cx+D

x2 + 1
.

Czyli

A = lim
x→1

f(x)− f(1)
x− 1

= f ′(1) =
−2x

(x2 + 1)2

∣∣∣∣
x=1

= −1
2
.

Na podstawie (9.19) obliczamy

1
(x− 1)2(x2 + 1)

− 1
2

1
(x− 1)2

+
1
2

1
x− 1

=
2− (x2 + 1) + (x− 1)(x2 + 1)

2(x− 1)2(x2 + 1)
=

1− x2 + (x− 1)(x2 + 1)
2(x− 1)2(x2 + 1)

=
(x− 1)(x2 + 1− 1− x)

2(x− 1)2(x2 + 1)
=

x(x− 1)2

2(x− 1)2(x2 + 1)
=

x

2(x2 + 1)
.

Ostatecznie otrzymujemy∫ dx

(x− 1)2(x2 + 1)
= −1

2
log |x− 1| − 1

2(x− 1)
+

1
4

log(x2 + 1).

Ogólnie, rozważamy składnik postaci
f(x)

(x− a)k
, gdzie f(x) jest funkcją

nieskończenie wiele razy różniczkowalną w punkcie a. Ze wzoru Taylora mamy

f(x) = f(a) +
x− a

1!
f ′(a) + . . .+

(x− a)k−1

(k − 1)!
f (k−1)(a) +

(x− a)k

k!
f (k)(ξ),
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dla pewnego punktu ξ pomiędzy a i x. Wtedy

f(x)
(x− a)k

=
f(a)

(x− a)k
+

f ′(a)
(x− a)k−1

+ . . .+
f (k−1)(a)

(k − 1)!(x− a)
+Rk(x),

oraz

lim
x→a

Rk(x) = lim
ξ→a

f (k)(ξ)
k!

=
f (k)(a)
k!

,

co oznacza, że w mianowniku funkcji Rk(x) nie występuje czynnik x− a.
Każdy składnik postaci ck/(x− α)k całkujemy według wzorów∫ dx

(x− α)k
= − 1

k − 1
1

(x− α)k−1
, k ­ 2,∫ dx

x− α
= log |x− α|.

Składniki postaci
dkx+ ek

[(x− β)2 + γ2]k

przez podstawienie afiniczne x = β + γu sprowadzamy do wyrażeń postaci

d̃ku+ ẽk
(u2 + 1)k

.

Dalej
d̃ku+ ẽk
(u2 + 1)k

= d̃k
u

(u2 + 1)k
+ ẽk

1
(u2 + 1)k

.

∫ u

(u2 + 1)k
du =


1
2

log(u2 + 1) k = 1,

− 1
2(k − 1)

1
(u2 + 1)k−1

k ­ 2.

Oznaczy Ik =
∫ du

(u2 + 1)k
. Wtedy I1 = arctg u oraz

Ik =
∫
u′

1
(u2 + 1)k

du =
u

(u2 + 1)k
+ k

∫ 2u2

(u2 + 1)k+1
du

=
u

(u2 + 1)k
+ 2k

∫ [(u2 + 1)− 1]
(u2 + 1)k+1

du

=
u

(u2 + 1)k
+ 2kIk − 2kIk+1.
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Otrzymujemy więc

Ik+1 =
1
2k

u

(u2 + 1)k
+

2k − 1
2k

Ik, k ­ 1.

9.8 Podstawienie wykładnicze i trygonometryczne

Przykłady.

(a)
∫ √

1− ex dx. Podstawiamy u = ex, du = ex dx czyli dx =
du

u
, aby

otrzymać ∫ √
1− ex dx =

∫ √1− u
u

du.

Następnie podstawiamy v =
√

1− u. Wtedy 0 ¬ v < 1 oraz u = 1−v2,
czyli du = −2v dv.

∫ √1− u
u

du =
∫ v

1− v2
(−2v) dv =

∫ 2v2

v2 − 1
dv = 2

∫ (
1 +

1
v2 − 1

)
dv

= 2v +
∫ ( 1

v − 1
− 1
v + 1

)
dv = 2v + log(1− v)− log(1 + v)

= 2
√

1− ex + log(1−
√

1− ex)− log(1 +
√

1− ex)

= 2
√

1− ex + log
ex

1 +
√

1− ex
− log(1 +

√
1− ex)

= 2
√

1− ex + x− 2 log(1 +
√

1− ex).

(b) Przypomnimy podstawowe wzory dotyczące funkcji hiperbolicznych.

cosh2 t = sinh2 t+ 1,
sinh 2t = 2 sinh t cosh t,

cosh 2t = 2 cosh2 t− 1 = 2 sinh2 t+ 1.

W całce
∫ √

x2 + 1 dx wykonujemy podstawienie x = sinh t. Wtedy
√
x2 + 1 = cosh t oraz dx = cosh t dt. Zatem∫ √

x2 + 1 dx =
∫

cosh2 t dt =
1
2

∫
[cosh 2t+ 1] dt

=
1
2
t+

1
4

sinh 2t =
1
2
t+

1
2

sinh t cosh t
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Z równości

x =
et − e−t

2
,
√
x2 + 1 =

et + e−t

2

otrzymujemy et = x+
√
x2 + 1, i w konsekwencji t = log(x+

√
x2 + 1).

Zatem ∫ √
x2 + 1 dx =

1
2

log(x+
√
x2 + 1) +

1
2
x
√
x2 + 1.

(c) Przy całce
∫ √

x2 − 1 dx, x > 1, wykonujemy podstawienie x = cosh t,

t > 0. Wtedy
√
x2 − 1 = sinh t oraz dx = sinh t dt. Dalej

et = cosh t+ sinh t = x+
√
x2 − 1, t = log(x+

√
x2 − 1).

Zatem∫ √
x2 − 1 dx =

∫
sinh2 t dt =

1
2

∫
[cosh 2t− 1] dt

= −1
2
t+

1
4

sinh 2t = −1
2
t+

1
2

sinh t cosh t

= −1
2

log(x+
√
x2 − 1) +

1
2
x
√
x2 − 1.

(c) W całce
∫ √

1− x2 dx wykonujemy podstawienie x = sin t, |t| < π
2 .

Wtedy
√

1− x2 = cos t, dx = cos t dt oraz

∫ √
1− x2 dx =

∫
cos2 t dt =

1
2

∫
[cos 2t+ 1] dt =

1
4

sin 2t+
1
2
t

=
1
2

sin t cos t+
1
2
t =

1
2
x
√

1− x2 +
1
2

arcsinx.

Rozważamy wyrażenie postaci R(x,
√
ax2 + bx+ c), gdzie R(x, y) jest

funkcją wymierną dwu zmiennych. Poprzez podstawienie afiniczne x = αt+β
sprowadzamy wyrażenie do jednej z trzech postaci i wykonujemy podane w
tabeli podstawienia.

R(t,
√
t2 + 1) a > 0, ∆ < 0 t = sinhu

R(t,
√
t2 − 1) a > 0, ∆ > 0 t = coshu

R(t,
√

1− t2) a < 0, ∆ > 0 t = sinu
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Otrzymamy w wyniku wyrażenie postaci R(coshu, sinhu) lub R(cosu, sinu).
Jeśli nie potrafimy bezpośrednio wskazać funkcji pierwotnej na tym etapie
wykonujemy podstawienia v = eu lub v = tg u

2 , odpowiednio. Przy podsta-
wieniu v = eu mamy

coshu =
1
2

(v + v−1), sinhu =
1
2

(v − v−1), du =
dv

v
.

Przy podstawieniu v = tg u
2 otrzymujemy

cosu = cos2 u

2
− sin2 u

2
= cos2 u

2

[
1− tg2 u

2

]
= cos2 u

2
(1− v2),

sinu = 2 sin
u

2
cos

u

2
= 2 cos2 u

2
tg
u

2
= 2 cos2 u

2
v,

dv =
1
2

(
1 + tg2 u

2

)
du.

Korzystając ze wzoru

1 + tg2 u

2
=

1
cos2 u

2

otrzymamy

cosu =
1− v2

1 + v2
, sinu =

2v
1 + v2

, du =
2

1 + v2
dv.

Przy obu podstawieniach otrzymujemy funkcję wymierną zmiennej v.

Przykład. Nie zawsze warto sprowadzać obliczenie do całki z funkcji wy-
miernej. Czasami lepiej zastosować wzory trygonometryczne, aby szybciej
osiągnąć cel. Przy zastosowaniu podstawienia v = tg u

2 do całki
∫

cos2 u du

otrzymamy ∫
cos2 u du =

∫ (
1− v2

1 + v2

)2 2
1 + v2

dv.

Przy zastosowaniu wzorów trygonometrycznych otrzymamy∫
cos2 u du =

1
2

∫
(1 + cos 2u) du =

1
2
u+

1
4

sin 2u =
1
2
u+

1
2

sinu cosu.

Uwaga 9.41. Można uniknąć podstawienia trygonometrycznego. Np. w cał-
ce
∫ √

1− x2 dx dla x > 0 możemy zastosować podstawienie x = 1/u. Wtedy

dx = −du/u2. Zatem∫ √
1− x2 dx = −

∫ √
1− 1

u2

du

u2
= −

∫ √u2 − 1
u3

du.
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9.9 Zastosowanie całek oznaczonych do obliczania wiel-
kości fizycznych

Pole obszaru na płaszczyźnie

Jeśli y = f(x) jest nieujemną funkcją ciągłą na [a, b], to pole S obszaru pod
wykresem funkcji i nad osią x wynosi

Sf =
b∫
a

f(x) dx.

Pole obszaru pomiędzy wykresami dwu funkcji ciągłych 0 ¬ f(x) ¬ g(x),
a ¬ x ¬ b wynosi zatem

S = Sg − Sf =
b∫
a

g(x) dx−
b∫
a

f(x) dx. =
b∫
a

[g(x)− f(x)] dx.

Warunek nieujemności funkcji f(x) i g(x) nie jest konieczny.

Przykłady.

1. Znaleźć pole obszaru ograniczonego przez wykresy funkcji y = x2 oraz
y = x5.

Wykresy przecinają się w punktach (0, 0) i (1, 1), więc chodzi o obszar
pomiędzy wykresami dla 0 ¬ x ¬ 1. Otrzymujemy

S =
1∫

0

(x2 − x5) dx =
1
3
− 1

6
=

1
6
.

2. Obliczyć pole koła o promieniu r.

Chodzi o obszar położony pomiędzy wykresami funkcji y =
√
r2 − x2

oraz y = −
√
r2 − x2. Wtedy

Sr = 2
∫ r

−r

√
r2 − x2 dx.

Zastosujemy podstawienie x = r cos t i otrzymamy

S = 2r2
∫ π

0
sin2 t dt = r2

∫ π

0
(sin2 t+ cos2 t) dt = πr2.
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Pole wycinka koła o promieniu r i kącie θ jest proporcjonalne do kąta
θ, zatem jego pole wynosi

Sr,θ =
θ

2π
πr2 =

1
2
θr2.

Rozważmy fragment wycinka koła o promieniu r kącie θ powstałe przez
usunięcie wycinka o promieniu 0 < r0 < r. Pole wynosi

Sr,θ,r0 =
1
2
θr2 − 1

2
θr2

0 =
r0θ + rθ

2
(r − r0). (9.20)

(9.20) przypomina wzór na pole trapezu.

Środek masy obszaru

Zakładamy, że obszar mieści się pomiędzy wykresami funkcji f(x) i g(x), a ¬
x ¬ b, przy czym f(x) ¬ g(x). Przyjmujemy, że masa jest proporcjonalna do
powierzchni. Dzielimy przedział [a, b] na n równych części punktami xi, gdzie
i = 0, 1, . . . , n. Temu odpowiada podział obszaru na n wąskich pionowych
fragmentów związanych z przedziałami [xi−1, xi]. Masa fragmentu wynosi w
przybliżeniu

mi = [g(xi)− f(xi)]∆xi.

Środek masy tego fragmentu znajduje się w przybliżeniu w punkcie

Xi :=
(
xi,

1
2 [f(xi) + g(xi)]

)
.

Środek masy całego obszaru jest równy w przybliżeniu środkowi masy układu
punktów (Xi,mi) dla i = 1, 2, . . . , n. Środek masy tego układu znajduje się
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w punkcie §

X ≈


n∑
i=1

ximi

n∑
i=1

mi

,

n∑
i=1

1
2 [f(xi) + g(xi)]mi

n∑
i=1

mi

 .
Dalej

n∑
i=1

mi =
n∑
i=1

[g(xi)− f(xi)]∆xi −→
n

b∫
a

[g(x)− f(x)] dx,

n∑
i=1

ximi =
n∑
i=1

xi[g(xi)− f(xi)]∆xi −→
n

b∫
a

x[g(x)− f(x)] dx,

1
2

n∑
i=1

[f(xi) + g(xi)]mi =
1
2

n∑
i=1

[g(xi)2 − f(xi)2]∆xi −→
n

1
2

b∫
a

[g(x)2 − f(x)2] dx.

Zatem

X =


b∫
a
x[g(x)− f(x)] dx

b∫
a

[g(x)− f(x)] dx
,

1
2

b∫
a

[g(x)2 − f(x)2] dx

b∫
a

[g(x)− f(x)] dx

 .
Przeanalizujemy błąd występujący w obliczeniach. Dla funkcji h oraz liczby
δ > 0 określamy oscylację na przedziale [a, b] wzorem

osc (h, δ) = sup{|h(x)− h(x′)| : a ¬ x, x′ ¬ b, |x− x′| < δ }.

Podobnie dla dwu funkcji h1 i h2 oraz liczby δ > 0 określamy oscylację
poprzez

osc (h1, h2, δ) = sup{|h1(x)h2(y)−h1(x′)h2(y′)| : a ¬ x, x′, y, y′ ¬ b, |x−x′| < δ, |y−y′| < δ }.
§ Ogólnie, gdy w punktach Xi = (xi, yi), i = 1, 2, . . . , n, umieszczono masy mi, to

środek masy X = (x, y) tego układu spełnia

n∑
i=1

mi
−−→
XXi = 0.

Stąd

x =
1
m

n∑
i=1

mixi, y =
1
m

n∑
i=1

miyi, gdzie m =
n∑
i=1

mi.
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Przy obliczaniu pojedynczego składnika błąd nie przekracza

b− a
n

osc
(
h1, h2,

b− a
n

)
,

gdzie w roli funkcji h1 występuje funkcja g − f a w roli h2 funkcje x oraz
f + g. Po zsumowaniu błąd nie przekracza wielkości

(b− a) osc
(
h1, h2,

b− a
n

)
.

Mamy

h1(x)h2(y)− h1(x′)h2(y′) = [h1(x)− h1(x′)]h2(y) + h1(x′)[h2(y)− h2(y′)].

Zatem

osc
(
h1, h2,

b− a
n

)
¬M2 osc

(
h1,

b− a
n

)
+M1 osc

(
h2,

b− a
n

)
,

gdzie
Mi = sup

a¬x¬b
|hi(x)|, i = 1, 2.

Reasumując całkowity błąd nie przekracza

(b− a)
[
M2 osc

(
h1,

b− a
n

)
+M1 osc

(
h2,

b− a
n

)]
−→
n

0.

Długość krzywej

Krzywa na płaszczyźnie zadana jest poprzez parametryzację x = x(t), y =
y(t), a ¬ t ¬ b. Zakładamy, że funkcje x(t) i y(t) są różniczkowalne w
sposób ciągły. Chcemy obliczyć długość krzywej. Dzielimy przedział [a, b] na
n równych części punktami ti, i = 0, 1, . . . , n. Fragment krzywej pomiędzy
kolejnymi punktami (x(ti−1), y(ti−1)) i (x(ti), y(ti)) przybliżamy odcinkiem
dla każdej wartości i = 1, 2, . . . , n. Otrzymamy łamaną o długości

Ln =
n∑
i=1

√
[x(ti)− x(ti−1)]2 + [y(ti)− y(ti−1)]2.
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Z twierdzenia Lagrange’a mamy

x(ti)− x(ti−1) = x′(ci)∆ti,
y(ti)− y(ti−1) = y′(di)∆ti,

dla pewnych punktów ci i di pomiędzy ti−1 i ti. Zatem

Ln =
n∑
i=1

√
x′(ci)2 + y′(di)2 ∆ti.

Określmy wielkość

L̃n =
n∑
i=1

√
x′(ci)2 + y′(ci)2 ∆ti −→

n

b∫
a

√
x′(t)2 + y′(t)2 dt.

Dalej

|L̃n − Ln| ¬
n∑
i=1

∣∣∣∣√x′(ci)2 + y′(di)2 −
√
x′(ci)2 + y′(ci)2

∣∣∣∣∆ti.
Skorzystamy z nierówności trójkąta∣∣∣∣√a2

2 + b2
2 −

√
a2

1 + b2
1

∣∣∣∣ ¬ √(a2 − a1)2 + (b2 − b1)2.

Zatem

|L̃n − Ln| ¬
n∑
i=1

|y′(di)− y′(ci)|∆ti ¬ n
b− a
n

osc
(
y′,

b− a
n

)

= (b− a) osc
(
y′,

b− a
n

)
−→
n

0,

bo funkcja y′ jest jednostajnie ciągła. Reasumując otrzymaliśmy

Ln −→
n

b∫
a

√
x′(t)2 + y′(t)2 dt.

Przyjmujemy więc, że długość krzywej wynosi

L =
b∫
a

√
x′(t)2 + y′(t)2 dt.
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Przykład. Okrąg o promieniu r możemy sparametryzować przez x = r cos t,
y = r sin t, 0 ¬ t ¬ 2π. Wtedy

L =
2π∫
0

√
(−r sin t)2 + (r cos t)2 dt = 2πr.

Długość łuku okręgu o promieniu r i kącie θ jest proporcjonalna do θ
zatem

Lθ =
θ

2π
2πr = θr.

Uwaga 9.42. Porównując ze wzorem na pole fragmentu wycinka koła o
kącie θ złożonego z punktów oddalonych od środka koła o więcej niż r0 a
mniej niż r widzimy, że pole jest równe połowie iloczynu r− r0 (wysokości) i
średniej arytmetycznej długości łuków okręgów o promieniach r0 i r (podstaw
wycinka). To przypomina wzór na pole trapezu. Można tę zależność wykazać
bezpośrednio (zadanie).

Wracamy do sytuacji ogólnej. Niech s(t) oznacza długość krzywej, gdy
czas zmienia się od a do t. Wtedy

s(t) =
t∫
a

√
x′(u)2 + y′(u)2 du.

Zatem
s′(t) =

√
x′(t)2 + y′(t)2.

W zapisie Leibniza wzór ma postać

ds

dt
=

√√√√(dx
dt

)2

+
(
dy

dt

)2

.

Używa się też zapisu
ds =

√
(dx)2 + (dy)2.

Niech y = f(x) będzie funkcją różniczkowalną w sposób ciągły na [a, b].
Chcemy obliczyć długość wykresu. Stosujemy parametryzację x = t, y =
f(t). Wtedy

L =
b∫
a

√
1 + f ′(t)2 dt =

b∫
a

√
1 + f ′(x)2 dx.
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Przykład. y =
√

1− x2, −1 ¬ x ¬ 1. Wtedy

L =
1∫
−1

√
1 +

x2

1− x2
dx =

1∫
−1

1√
1− x2

dx = arcsinx
∣∣∣∣1
−1

= π.

Uwaga 9.43. Funkcja podcałkowa nie jest określona dla x = ±1, więc obli-
czenie nie jest do końca ścisłe. W celu uściślenia obliczeń można ograniczyć
się do −1 + δ ¬ x ¬ 1− δ dla δ > 0. W wyniku dostaniemy

arcsin(1− δ)− arcsin(−1 + δ).

Przy δ → 0+ otrzymamy π. Całkę z funkcji, która nie jest określona w niektó-
rych punktach przedziału całkowania, nazywamy całką niewłaściwą. Teorią
takich całek zajmiemy się w innej części kursu.

Długość krzywej we współrzędnych biegunowych

Dla punktu X(x, y) określamy współrzędne biegunowe (r, θ), gdzie r jest
odległością punktu od początku układu, natomiast θ jest kątem pomiędzy
dodatnią półosią x i półprostą OX. Zatem r =

√
x2 + y2. Ponadto x = r cos θ

i y = r sin θ.
Załóżmy, że krzywa jest zadana przez związek pomiędzy r i θ wzorem

r = f(θ), θ1 ¬ θ ¬ θ2. Wtedy

x = f(θ) cos θ, y = f(θ) sin θ, θ1 ¬ θ ¬ θ2.

Zatem

L =
θ2∫
θ1

√
[f ′(θ) cos θ − f(θ) sin θ]2 + [f ′(θ) sin θ + f(θ) cos θ]2 dθ.

Po uproszczeniu otrzymujemy

L =
θ2∫
θ1

√
f ′(θ)2 + f(θ)2 dθ.

Przykłady.
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(a) r = sin θ, 0 ¬ θ ¬ π. Można sprawdzić, że krzywa opisuje okrąg o
promieniu 1

2 i środku w (0, 1
2). Mamy

L =
π∫

0

√
cos2 θ + sin2 θ dθ = π.

(b) r = θ, 0 ¬ θ ¬ 4π. Krzywa opisuje dwa obroty spirali. Mamy

L =
4π∫
0

√
1 + θ2 dθ =

1
2
θ
√

1 + θ2 +
1
2

log(θ +
√

1 + θ2)
∣∣∣∣4π
0

= 2π
√

1 + 16π2 +
1
2

log(4π +
√

1 + 16π2).

Środek masy krzywej

Rozważamy krzywą x = x(t), y = y(t), a ¬ t ¬ b. Zakładamy, że masa
jest proporcjonalna do długości krzywej. Dzielimy przedział [a, b] na n rów-
nych części. Masa fragmentu krzywej odpowiadającego przedziałowi [ti−1, ti]
wynosi

mi =
ti∫

ti−1

√
x′(t)2 + y′(t)2 dt =

√
x′(ui)2 + y′(ui)2∆ti,

dla pewnego punktu ui pomiędzy ti−1 i ti. Całą masę tego fragmentu umiesz-
czamy w punkcie (x(ui), y(ui)). Otrzymamy układ n punktów z masami mi.
Środek masy otrzymanego układu znajduje się w punkcie

n∑
i=1

mix(ui)

n∑
i=1

mi

,

n∑
i=1

miy(ui)

n∑
i=1

mi

 .

Dalej

n∑
i=1

mi =
n∑
i=1

√
x′(ui)2 + y′(ui)2∆ti =

b∫
a

√
x′(t)2 + y′(t)2 dt,

n∑
i=1

mix(ui) =
n∑
i=1

x(ui)
√
x′(ui)2 + y′(ui)2∆ti −→

n

b∫
a

x(t)
√
x′(t)2 + y′(t)2 dt.
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Podobnie
n∑
i=1

miy(ui) −→
n

b∫
a

y(t)
√
x′(t)2 + y′(t)2 dt.

Środek masy znajduje się więc w punkcie
b∫
a
x(t)

√
x′(t)2 + y′(t)2 dt

b∫
a

√
x′(t)2 + y′(t)2 dt

,

b∫
a
y(t)

√
x′(t)2 + y′(t)2 dt

b∫
a

√
x′(t)2 + y′(t)2 dt

 .

Mamy s′(t) =
√
x′(t)2 + y′(t)2. Przyjmijmy oznaczenie ds = s′(t) dt. Środek

masy ma wtedy współrzędne
b∫
a
x ds

b∫
a
ds

,

b∫
a
y ds

b∫
a
ds

 .

Przykład. f(x) =
√

1− x2, −1 ¬ x ¬ 1. Wykres opisuje górny półokrąg o
promieniu 1. Obliczamy drugą współrzędną środka masy. Funkcja jest róż-
niczkowalna w sposób ciągły na (−1, 1). Mamy

1−δ∫
−1+δ

√
1− x2

√
1 +

x2

1− x2
dx =

1−δ∫
−1+δ

dx = 2(1− δ) −→
δ→0+

2.

Współrzędna ta wynosi zatem
2
π
.

Pole powierzchni figur obrotowych

Chcemy obliczyć pole powierzchni bocznej S figury otrzymanej przez obrót
krzywej x = x(t), y = y(t) ­ 0, a ¬ t ¬ b wokół osi x. Dzielimy prze-
dział czasu na n równych części punktami ti. Rozważamy fragment krzywej
odpowiadający przedziałowi [ti−1, ti]. Ten fragment zastępujemy odcinkiem
łączącym punkty (x(ti−1, y(ti−1)) i (x(ti), y(ti)). Obracając odcinek wokół
osi x otrzymamy fragment powierzchni stożka ściętego o promieniach y(ti−1)
oraz y(ti). Po rozcięciu i rozwinięciu otrzymamy fragment wycinka koła (por.
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Uwaga 9.42). Pole powierzchni fragmentu jest równe

Si =
2πy(ti−1) + 2πy(ti)

2

√
[x(ti)− x(ti−1)]2 + [y(ti)− y(ti−1)]2

≈ 2πy(ti)
√
x′(ti)2 + y′(ti)2∆ti.

Zatem

S ≈ 2π
n∑
i=1

y(ti)
√
x′(ti)2 + y′(ti)2∆ti.

Przechodząc do granicy, gdy n→∞ otrzymamy

S = 2π
b∫
a

y(t)
√
x′(t)2 + y′(t)2 dt.

Uwaga 9.44. Druga współrzędna środka masy krzywej wynosi

y0 =
1
L

b∫
a

y(t)
√
x′(t)2 + y′(t)2 dt,

gdzie L jest długością krzywej. Zatem

S = 2πy0 L.

Tzn. pole powierzchni obrotowej jest równe iloczynowi długości obracanej
krzywej i drogi jaką przebywa środek masy tej krzywej przy obrocie (reguła
Guldina).

Jeśli krzywa jest fragmentem wykresu funkcji y = f(x), a ¬ x ¬ b, to
pole powierzchni obrotowej wyraża się wzorem

S = 2π
b∫
a

f(x)
√

1 + f ′(x)2 dx.

Przykłady.

(a) Jakie jest pole powierzchni bocznej stożka ściętego o długości tworzącej
l i promieniach podstaw r i R ? Powierzchnię otrzymujemy przez obrót
odcinka o długości l, którego końce znajdują się na wysokościach r i R
nad osią x. Druga współrzędna środka masy wynosi (r +R)/2. Zatem

S = 2π
r +R

2
l = π(r +R)l.
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(b) Jakie jest pole powierzchni torusa, czyli figury powstałej przez obrót
okręgu o środku w (a, b) i promieniu r ¬ b ? Środek masy znajduje się
w (a, b). Zatem

S = 2πb 2πr = 4π2br.

(c) Rozważamy górny półokrąg f(x) =
√

1− x2, −1 ¬ x ¬ 1. Chcemy
obliczyć pole powierzchni otrzymanej przez obrót fragmentu wykresu
−1 < a ¬ x ¬ b < 1. Mamy

S = 2π
b∫
a

√
1− x2

√
1 +

x2

1− x2
dx = 2π(b− a).

Pole powierzchni zależy tylko od długości przedziału [a, b].

Objętość bryły obrotowej przy obrocie wokół osi x

Rozważamy wykres funkcji ciągłej i nieujemnej y = f(x), a ¬ x ¬ b. Chcemy
obliczyć objętość V bryły otrzymanej przez obrót obszaru pomiędzy wykre-
sem funkcji i osią x, przy obrocie wokół osi x. Dzielimy przedział [a, b] na
n równych części punktami xi. Symbolem Vi oznaczamy objętość fragmentu
bryły odpowiadającej przedziałowi [xi−1, xi]. Niech mi i Mi oznaczają mini-
mum i maksimum funkcji na przedziale [xi−1, xi]. Fragment bryły zawiera w
sobie walec o wysokości ∆xi i promieniu mi a sam jest zawarty w walcu o
wysokości ∆xi i promieniu Mi. Zatem

πm2
i∆xi ¬ Vi ¬ πM2

i ∆xi.

Z własności Darboux dla funkcji f(x)2 mamy Vi = πf(ti)2∆xi, dla pewnej
wartości xi−1 ¬ ti ¬ xi. Całkowita objętość wynosi więc

V = π
n∑
i=1

f(ti)2∆xi −→
n

π

b∫
a

f(x)2 dx.

Rozważamy obszar A pomiędzy wykresami dwu funkcji y = f(x), y =
g(x), a ¬ x ¬ b oraz 0 ¬ f(x) ¬ g(x). Objętość bryły otrzymanej przez
obrót wokół osi x wynosi

V = π

b∫
a

[
g(x)2 − f(x)2

]
dx.
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Uwaga 9.45. Druga współrzędna środka masy obszaru A jest równa

y0 =
1

2S

b∫
a

[
g(x)2 − f(x)2

]
dx,

gdzie S jest polem obracanego obszaru. Zatem

V = 2πy0S.

To oznacza, że objętość jest równa iloczynowi powierzchni obracanego obsza-
ru i drogi jaką przebywa środek masy obszaru przy obrocie (reguła Guldina).

Przykład. Rozważmy obszar ograniczony przez y =
√
R2 − x2, y =

√
r2 − x2,

dla 0 < r < R oraz −r ¬ a < b ¬ r i a ¬ x ¬ b. Objętość bryły obrotowej
jest równa

V = π

b∫
a

[
(
√
R2 − x2)2 − (

√
r2 − x2)2

]
dx = π(R2 − r2)(b− a).

Objętość zależy tylko od długości przedziału [a, b].

Objętość bryły obrotowej przy obrocie wokół osi y

Rozważamy ponownie wykres funkcji ciągłej i nieujemnej y = f(x), 0 ¬ a ¬
x ¬ b. Chcemy obliczyć objętość V bryły otrzymanej przez obrót obszaru
pomiędzy wykresem funkcji i osią x, tym razem przy obrocie wokół osi y.
Dzielimy przedział [a, b] na n równych części punktami xi i symbolem Vi
oznaczamy objętość fragmentu bryły odpowiadającej przedziałowi [xi−1, xi].
Ten fragment w przybliżeniu ma kształt walca o wysokości f(xi) i promie-
niu podstawy xi, w którym wydrążono walec o wysokości f(xi) i promieniu
podstawy xi−1. Zatem

Vi ≈ πx2
i f(xi)− πx2

i−1f(xi) = π(xi−1 + xi)f(xi)∆xi ≈ 2πxif(xi)∆xi.

Po zsumowaniu otrzymamy

2π
n∑
i=1

xif(xi)∆xi −→
n

2π
b∫
a

xf(x) dx.
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Całkowita objętość jest równa

V = 2π
b∫
a

xf(x) dx.

Rozważmy teraz obszar pomiędzy wykresami funkcji y = f(x), y = g(x),
a ¬ x ¬ b oraz 0 ¬ f(x) ¬ g(x). Objętość bryły przy obrocie wokół osi y
wynosi

V = 2π
b∫
a

x[g(x)− f(x)] dx.

Ale pierwsza współrzędna środka masy obracanego obszaru wyraża się wzo-
rem

x0 =
1
S

b∫
a

x[g(x)− f(x)] dx,

gdzie S jest polem obracanego obszaru. Zatem

V = 2πx0S.

To oznacza, że reguła Guldina jest spełniona przy obrocie wokół osi y.

Uwaga 9.46. Warunek nieujemności funkcji f(x) i g(x) jest nieistotny.

Przykłady.

1. y = 1− (x− 2)2, 1 ¬ x ¬ 3. Wtedy

V = 2π
3∫

1

x[1− (x− 2)2] dx.

2. Obracamy wokół osi y obszar zawarty pomiędzy wykresami y = 1− x2

oraz y = 3x− 3, 0 ¬ x ¬ 1. Wtedy

V = 2π
1∫

0

x[1− x2 − 3x+ 3] dx.
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Praca

Przypuśćmy, że przy przesuwaniu obiektu wzdłuż linii prostej od punktu a do
punktu b wywieramy stałą siłę c. Wtedy wykonana praca jest równa c(b−a).
W przypadku, gdy siła nie jest stała i wynosi f(x) dla a ¬ x ¬ b, to dzielimy
przedział [a, b] na n równych części. Praca potrzebna do przesunięcia obiektu
od xi−1 do xi wynosi w przybliżeniu f(xi)∆xi. Całkowita praca jest równa
w przybliżeniu

W ≈
n∑
i=1

f(xi)∆xi −→
n

b∫
a

f(x) dx.

Przyjmujemy więc

W =
b∫
a

f(x) dx.

Przykład. Pchamy cieknącą taczkę przez 100 m (tzn. od x = 0 do x = 100).
Z powodu wycieku siła wywierana na taczkę wynosi

f(x) = 60
(

1− x2

20000

)
(N).

Zatem

W =
100∫
0

60
(

1− x2

20000

)
dx (J).

W 1676 Robert Hooke sformułował prawo mechaniki: siła wywierana
przez sprężynę rozciągniętą o x jednostek poza naturalną długość sprężyny
jest proporcjonalna do x (dla małych wartości x). Tzn. g(x) = −kx, gdzie k
jest stałym współczynnikiem. Zatem praca potrzebna do rozciągnięcia sprę-
żyny od a do b jednostek poza naturalną długość wynosi

W =
b∫
a

kx dx.

Przykład. Praca potrzebna do rozciągnięcia sprężyny o 10 cm wynosi 10 J.
Ile wynosi praca potrzebna do rozciągnięcia o dodatkowe 20 cm ? Mamy

W10 =
0,1∫
0

kx dx = 10.
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Czyli k = 2000. Dalej

W10,30 =
0,3∫

0,1

2000x dx = 2000 · 0, 2 · 0, 2 = 80 (J).

Praca potrzebna do wypompowania pojemnika

Chcemy wypompować wodę z pojemnika przez odpływ znajdujący się na
pewnej wysokości. Jeśli mamy podnieść warstwę wody o objętości V (m3) o
l metrów w górę, to wykonana praca będzie równa

W = 9, 8 · 1000 · V · l.

Zakładamy, że woda mieści się pomiędzy poziomami x = a i x = b. Dzieli-
my przedział [a, b] na n równych części. Objętość warstwy wody pomiędzy
poziomami xi−1 i xi wynosi w przybliżeniu A(xi)∆xi, gdzie A(x) oznacza
pole powierzchni przekroju pojemnika na poziomie x. Praca potrzebna do
podniesienia warstwy wynosi Wi ≈ 9800A(xi)∆xi(l − xi). Całkowita praca
wynosi w przybliżeniu

W ≈ 9800
n∑
i=1

(l − xi)A(xi)∆xi.

Zatem

W = 9800
b∫
a

(l − x)A(x) dx.

Przykład. Pojemnik w kształcie dolnej półkuli o promieniu 10 m jest wy-
pełniony wodą. Chcemy wypompować wodę przez odpływ znajdujący się 1 m
nad poziomem wody. Umieszczamy skalę tak, że woda mieści się pomiędzy
poziomami −10 i 0. Przekrój pojemnika na wysokości x jest kołem o promie-
niu r(x) =

√
100− x2. Zatem A(x) = π(100− x2). Otrzymujemy więc

W = 9800
0∫

−10

(1− x)π(100− x2) dx.
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Objętości brył w R3

Przypuśćmy, że bryła mieści się pomiedzy płaszczyznami pionowymi x = a
i x = b. Niech A(x) oznacza pole przekroju bryły płaszczyzną pionową w
punkcie x. Aby obliczyć objętość bryły dzielimy przedział [a, b] na n równych
części. Objętość fragmentu bryły pomiędzy płaszczyznami x = xi−1 i x = xi
wynosi w przybliżeniu Vi ≈ A(xi)∆xi. Zatem całkowita objętość jest równa

V =
n∑
i=1

A(xi)∆xi.

Stąd

V =
b∫
a

A(x) dx.

Uwaga 9.47. Ze wzoru wynika, że dwie bryły mające te same pola przekro-
jów na każdym poziomie mają równe objętości.

Przykład. Jaka jest objętość piramidy o wysokości 4 m i podstawie 3 m na
3 m ? Umieszczamy oś x pionowo strzałką w dół. Zakładamy, że podstawa
piramidy znajduje się na poziomie 4, natomiast wierzchołek na poziomie
0. Przekrój piramidy płaszczyzną prostopadłą do osi x na poziomie x jest
kwadratem o boku a = 3

4x. Zatem A(x) = 9
16x

2 oraz

V =
9
16

∫ 4

0
x2 dx = 12.

9.10 Przybliżone obliczanie całek

Przy obliczaniu całek oznaczonych nie zawsze możliwe jest dokładne podanie
wartości liczbowej.

Przykłady.

(a) Chcemy obliczyć długość wykresu funkcji y = 1
3x

3 dla 0 ¬ x ¬ 1.
Wtedy

L =
1∫

0

√
1 + x4 dx.
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(b) Rozważmy elipsę o półosiach 1 i 2. Możemy użyć parametryzacji x =
cos t, y = 2 sin t, 0 ¬ t ¬ 2π. Wtedy długość elipsy wynosi

L =
2π∫
0

√
sin2 t+ 4 cos2 t dt =

2π∫
0

√
1 + 3 cos2 t dt.

Metoda trapezów

Mamy do obliczenia
b∫
a

f(x) dx, gdzie f(x) ­ 0. Dzielimy przedział na n

równych części. Kolejne punkty wykresu (xi−1, f(xi−1)) i (xi, f(xi)) łączymy
odcinkiem. Otrzymujemy łamaną, która przybliża wykres funkcji. Pole pod

tą łamaną przybliża pole pod wykresem funkcji, czyli liczbę
b∫
a

f(x) dx. Zatem

b∫
a

f(x) dx

≈ f(x0) + f(x1)
2

b− a
n

+
f(x1) + f(x2)

2
b− a
n

+. . .+
f(xn−1) + f(xn)

2
b− a
n

,

czyli

b∫
a

f(x) dx ≈ b− a
2n

[f(a) + 2f(x1) + 2f(x2) + . . .+ 2f(xn−1) + f(b)].

Przykład.
2∫

1

1
x
dx = log 2. Zastosujemy metodę trapezów dla n = 4. Wtedy

log 2 ≈ 1
8

[
1 + 2 · 4

5
+ 2 · 2

3
+ 2 · 4

7
+

1
2

]
= 0, 697023 . . .

Wiadomo, że log 2 = 0, 693147 . . . , więc dokładność obliczenia jest równa
około 0,4 procenta. Błąd w metodzie trapezów wynosi

ET
n (f) =

∣∣∣∣∣∣
b∫
a

f(x) dx− b− a
2n

[f(a) + 2f(x1) + . . .+ 2f(xn−1) + f(b)]

∣∣∣∣∣∣ .
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Można udowodnić, że

ET
n (f) ¬ (b− a)3

12n2
max
a¬x¬b

|f ′′(x)|.

Dla funkcji f(x) =
1
x
, 1 ¬ x ¬ 2, mamy f ′′(x) =

2
x3
. Zatem

ET
4

(1
x

)
¬ 1

12 · 16
2 =

1
96
.

Metoda Simpsona

Thomas Simpson (1710-61) był angielskim matematykiem, który w 1743
opracował metodę przybliżonego obliczania całek. Dzielimy przedział [a, b]

na parzystą liczbę n = 2k części o długości h =
b− a
n

. Trzy kolejne punkty

wykresu (x0, f(x0)), (x1, f(x1)) i (x2, f(x2)) łączymy parabolą p(x). Mamy
zatem

p(x) = f(x0)
(x− x1)(x− x2)

2h2
−f(x1)

(x− x0)(x− x2)
h2

+f(x2)
(x− x0)(x− x1)

2h2
.

Całkę
x2∫
x0

f(x) dx zastępujemy przez

x2∫
x0

f(x) dx ≈
x2∫
x0

p(x) dx =
h

3
[f(x0) + 4f(x1) + f(x2)].

Ostatnia równość wynika ze wzorów
x2∫
x0

(x− x0)(x− x1) dx =
x2∫
x0

(x− x1)(x− x2) dx =
2h3

3
,

x2∫
x0

(x− x0)(x− x2) dx = −4h3

3
.

Uzasadnimy jeden z nich. Podstawiając u = x− x1 otrzymamy

x2∫
x0

(x− x1)(x− x2) dx =
h∫
−h

u(u− h) du =
h∫
−h

u2 du = 2
h∫

0

u2 du =
2
3
h3.
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To samo wykonujemy dla wszystkich pozostałych przedziałów postaci
[x2, x4], [x4, x6], . . . , [x2k−2, x2k]. Tzn.

x2i∫
x2i−2

f(x) dx ≈
x2i∫

x2i−2

pi(x) dx =
h

3
[f(x2i−2) + 4f(x2i−1) + f(x2i)],

gdzie pi oznacza wielomian kwadratowy dla przedziału [x2i−2, x2i]. Reasumu-
jąc otrzymujemy

b∫
a

f(x) dx

≈ b− a
3n

[f(a) + 4f(x1) + 2f(x2) + . . .+ 2f(xn−2) + 4f(xn−1) + f(b)].

Przykład. Zastosujemy metodę Simpsona dla całki log 2 =
2∫

1

1
x
dx przy

n = 4. Wtedy

log 2 ≈ 1
12

[
1 + 4 · 4

5
+ 2 · 2

3
+ 4 · 4

7
+

1
2

]
= 0, 693253 . . .

Wiemy, że log 2 = 0, 693147 . . . , więc dokładność obliczenia jest ponad dzie-
sięciokrotnie lepsza niż przy metodzie trapezów, przy tej samej ilości włożonej
pracy.

Uwaga 9.48. Można udowodnić, że błąd w metodzie Simpsona spełnia

ES
n (f) ¬ (b− a)5

180n4
max
a¬x¬b

|f (4)(x)|.

10 Twierdzenie Weierstrassa i wielomiany Bern-
steina

Twierdzenie 10.1 (Weierstrass). Dla dowolnej funkcji ciągłej f(x) na prze-
dziale [0, 1] można znaleźć ciąg wielomianów pn(x) spełniający pn ⇒ f na
przedziale [0, 1]. To oznacza, że dla dowolnej liczby ε > 0 w pasie o promie-
niu ε wokół wykresu funkcji f(x) znajduje się wykres jakiegoś wielomianu.
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Uwaga. Teza twierdzenia jest prawdziwa dla dowolnego przedziału [a, b].
Rzeczywiście, dla f ∈ C[a, b] określamy f̃(x) = f((b − a)x + a). Wtedy

f̃ ∈ C[0, 1]. Jeśli p̃n ⇒ f̃ , to pn ⇒ f, gdzie pn(x) = p̃n

(
x− a
b− a

)
.

Dowód (wg S. Bernsteina (1880-1968)). Dla funkcji ciągłej f(x) i liczby n
określamy wielomiany Bernsteina wzorem

Bn(f)(x) =
n∑
k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k.

Bn(f) ma stopień niewiększy niż n. Współczynnik przy xn jest równy

(−1)n
n∑
k=0

(−1)k
(
n

k

)
f

(
k

n

)
,

więc stopień wielomianu Bn(f) może być niższy niż n, jeśli powyższa suma
zeruje się.

Mamy

Bn(1)(x) =
n∑
k=0

(
n

k

)
xk(1− x)n−k = [x+ (1− x)]n = 1.

Dalej

Bn(x)(x) =
n∑
k=0

k

n

(
n

k

)
xk(1− x)n−k = x

n∑
k=1

(
n− 1
k − 1

)
xk−1(1− x)n−k

=
l=k−1

x
n−1∑
l=0

(
n− 1
l

)
xl(1− x)(n−1)−l = xBn−1(1)(x) = x,

Bn(x2)(x) =
n∑
k=0

k2

n2

(
n

k

)
xk(1− x)n−k =

n∑
k=1

k

n

(
n− 1
k − 1

)
xk(1− x)n−k

=
n∑
k=1

k − 1
n

(
n− 1
k − 1

)
xk(1− x)n−k +

1
n

n∑
k=1

(
n− 1
k − 1

)
xk(1− x)n−k

=
n− 1
n

x
n−1∑
l=0

l

n− 1

(
n− 1
l

)
xl(1− x)n−1−l +

x

n

n−1∑
l=0

(
n− 1
l

)
xl(1− x)n−1−l

=
n− 1
n

xBn−1(x)(x) +
x

n
Bn−1(1)(x) =

n− 1
n

x2 +
1
n
x = x2 +

x− x2

n
.
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Rozważamy funkcję ciągłą f(x) na [0, 1]. Ustalamy liczbę ε > 0. Z jednostaj-
nej ciągłości można znaleźć liczbę δ > 0 taką, że

|t− s| < δ =⇒ |f(t)− f(s)| < ε

2
.

Ustalmy punkt x w przedziale [0, 1]. Liczby naturalne Nn = {0, 1, 2, . . . , n}
podzielimy na dwa podzbiory

A = {k ∈ Nn :
∣∣∣ k
n
− x

∣∣∣ < δ},
B = Nn \ A.

Wtedy

|Bn(f)(x)− f(x)|

=

∣∣∣∣∣
n∑
k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k −

n∑
k=0

f(x)
(
n

k

)
xk(1− x)n−k

∣∣∣∣∣
=

∣∣∣∣∣
n∑
k=0

[
f

(
k

n

)
− f(x)

](
n

k

)
xk(1− x)n−k

∣∣∣∣∣ ¬
n∑
k=0

∣∣∣∣∣f
(
k

n

)
− f(x)

∣∣∣∣∣
(
n

k

)
xk(1−x)n−k

=
∑
k∈A

∣∣∣∣∣f
(
k

n

)
− f(x)

∣∣∣∣∣
(
n

k

)
xk(1− x)n−k︸ ︷︷ ︸

||
SA

+
∑
k∈B

∣∣∣∣∣f
(
k

n

)
− f(x)

∣∣∣∣∣
(
n

k

)
xk(1− x)n−k︸ ︷︷ ︸

||
SB

.

Dalej

SA <
ε

2

∑
k∈A

(
n

k

)
xk(1− x)n−k ¬ ε

2

n∑
k=0

(
n

k

)
xk(1− x)n−k =

ε

2
.

Niech M = max
a¬x¬b

|f(x)|. Wtedy

SB ¬ 2M
∑
k∈B

(
n

k

)
xk(1− x)n−k ¬ 2M

δ2

∑
k∈B

(
n

k

)(
x− k

n

)2

xk(1− x)n−k

¬ 2M
δ2

n∑
k=0

(
n

k

)(
x− k

n

)2

xk(1− x)n−k

=
2M
δ2

[x2Bn(1)(x)− 2xBn(x)(x) +Bn(x2)(x)]

=
2M
δ2

[
x2 − 2x2 + x2 +

x(1− x)
n

]
=

2M
δ2n

(x− x2) ¬ M

2δ2n
.
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Dla n >
M

δ2ε
mamy SB < ε/2. Zatem |Bn(f)(x)− f(x)| < ε dla odpowiednio

dużych wartości n.

Uwaga 10.2. Z dowodu wynika, że wielkość wskaźnika n zależy tylko od
parametrów ε, δ > 0 i M.

Uwaga 10.3. Dla funkcji f i liczby x wielkość Bn(f)(x) jest średnią ważo-
ną liczb f

(
k
n

)
, dla k = 0, 1, 2, . . . , n, ze współczynnikami

(
n
k

)
xk(1 − x)n−k.

Suma współczynników jest równa 1. Sprawdzimy, który współczynnik jest
największy dla 0 < x < 1. W tym celu rozwiązujemy nierówność(

n

k − 1

)
xk−1(1− x)n−(k−1) ¬

(
n

k

)
xk(1− x)n−k.

Po uproszczeniu otrzymujemy

1− x
n− k + 1

¬ x

k
.

Dalsze przekształcenia dają warunek równoważny

k

n+ 1
¬ x.

Zatem największy współczynnik odpowiada wartości k0, dla której

k0

n+ 1
¬ x <

k0 + 1
n+ 1

.

Zauważmy, że
k0

n+ 1
<
k0

n
¬ k0 + 1

n+ 1
.

Zatem ∣∣∣∣∣k0

n
− x

∣∣∣∣∣ ¬ 1
n+ 1

.

Przykłady.

1. Prawdopodobieństwo sukcesu w jednej próbie wynosi p, gdzie 0 < p < 1.
Wykonujemy próbę n razy (niezależnie). Przy n próbach wygrana wy-
nosi f

(
k
n

)
, gdzie k jest liczbą sukcesów, a f jest ustaloną funkcją ciągłą
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na [0, 1]. Np. jeśli f
(

1
5

)
= 10, to przy 12 sukcesach w 60 próbach, wy-

płata wynosi 10. Wartość oczekiwana wygranej przy n próbach wyraża
się wzorem

En =
n∑
k=0

(
n

k

)
f

(
k

n

)
pk(1− p)n−k = Bn(f)(p) −→

n
f(p),

bo prawdopodobieństwo uzyskania k sukcesów w n próbach wynosi(
n

k

)
pk(1− p)n−k. ∗

2. Rzucamy kostką do gry. Sukcesem jest wypadnięcie szóstki. Funkcja
wypłaty f(x) spełnia

f(1) = 106, f
(1

6

)
= −0, 01.

Czy gra jest opłacalna przy dużej liczbie rzutów ?

∗Najpierw wybieramy k pozycji spośród n pozycji, gdzie ma wystąpić sukces. Możemy
dokonać wyboru na

(
n
k

)
sposobów. Dalej prawdopoodobieństwo sukcesów na wybranych k

pozycjach i porażki na pozostałych n− k pozycjach wynosi pk(1− p)n−k.


	Liczby rzeczywiste
	Liczby wymierne
	Własnosci liczb rzeczywistych
	Indukcja matematyczna

	Ciagi liczbowe
	Zbieznosc ciagów
	Liczba e

	Szeregi liczbowe
	Łacznosc i przemiennosc w sumie nieskonczonej
	Mnozenie Cauchy'ego szeregów.

	Funkcje i granice
	Wazna granica
	Granice jednostronne
	Granice niewłasciwe i granice w punktach niewłasciwych
	Działania na granicach
	Funkcje ciagłe
	Scisłe wprowadzenie funkcji wykładniczej

	Ciagi i szeregi funkcyjne
	Ciagi funkcyjne
	Szeregi funkcyjne
	Szeregi potegowe


	Pochodne
	Zapis Leibniza
	Maxima i minima
	Metoda znajdowania wartosci najwiekszej i najmniejszej funkcji ciagłej na przedziale [a,b]
	Wyzsze pochodne
	Rózniczkowanie niejawne
	Related rates czyli dwa tempa zmiany powiazane ze soba
	Aproksymacja za pomoca stycznej
	Reguła de l'Hospitala
	Naduzycia reguły de l'Hospitala

	Pochodna ciagu i szeregu funkcyjnego
	Wzory Taylora i MacLaurina

	Iloczyny nieskonczone
	Liczby pierwsze

	Ułamki łancuchowe
	Okresowe ułamki łancuchowe

	Całka Riemanna
	Sumy dolne i górne
	Całka jako granica sum całkowych
	Zasadnicze twierdzenie rachunku rózniczkowego i całkowego
	Wzory Wallisa i Stirlinga
	Całkowanie ciagu funkcyjnego
	Całka nieoznaczona
	Całkowanie funkcji wymiernych
	Podstawienie wykładnicze i trygonometryczne
	Zastosowanie całek oznaczonych do obliczania wielkosci fizycznych
	Przyblizone obliczanie całek

	Twierdzenie Weierstrassa i wielomiany Bernsteina

