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1 Ciagi liczbowe

Bedziemy rozwazali ciagi ztozone z liczb rzeczywistych. Liczby rzeczywiste
R maja wtasnos¢ cigglosci, z ktorej wielokrotnie bedziemy korzystac.

Podzbiér A C R nazywamy ograniczonym z gory jesli x < a dla pewnej
liczby a oraz dla wszystkich liczb x z A. Najmniejszg liczbe ograniczajaca
zbiér A z gbry nazywamy kresem gérnym (supremum) i oznaczamy sym-
bolem sup A. Podobnie okreslamy kres dolny (infimum) i oznaczamy przez
inf A. Wtlasnosé ciagtosci liczb rzeczywstych oznacza, ze kazdy ograniczony
podzbiér A C R posiada kresy dolny i gorny.

Przyktad. Zbiér liczb wymiernych Q nie ma wtasnosci ciggltosci. Rozwazmy
A={zecQ:2°<2}={zeQ: —V2<z<V2}.

Definicja 1.1. Ciggiem {a,} nazywamy odwzorowanie liczb naturalnych w
liczby rzeczywiste. Liczby ay, as, as, ... nazywamy wyrazami ciggu.

Przyktady.
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(a) 1,2,3,4,5,. ...
(b) 2,4,6,8,10,....

(¢) ap=5n+3,b,=2"+1.

1 1
(d) a1 =2, apyy = 5 (an—|—>.

an
(e) 2,3,5,7,11,..., - ciag liczb pierwszych.
Ciag {a,} nazywamy rosngcym (Scisle rosngcym) jesli
Qp < An41 (an < an—i—l)

dla wszystkich n. Podobnie okreslamy ciagi malejace i $cisle malejace.

Przyktad. Ciag z przyktadu (d) jest Scisle malejacy. Rzeczywiscie, pokazemy
najpierw, ze a, > 1 dla wszystkich n. Mamy a; = 2 > 1. Dalej

1 1 a:l+1-2a, (a,—1)>
(an + ) —-1= .
2a, 2a,

an+1_1:§ a =
n

Jesli a,, > 1, to a1 > 1. Dalej
ot ) =) <o
Ap+1 ap = 2 ap Qp = 9 Qp, )

bo a, > 1.
1.1 Zbieznos¢ ciggow
Przyktady.

(a) Wyrazy ciagu a, = % zblizajg sie do zera, gdy n rosnie.

(b) Dla b, = (=1)" + # wyrazy o numerach parzystych zblizajg sie do 1,
a te o numerach nieparzystych do —1.

Definicja 1.2 (intuicyjna). Moéwimy, Ze cigg a, jest zbiezny do liczby g
jesli wyrazy ciggu lezg coraz blizej liczby g dla duzych wskaznikow n. Tzn.
jesli checemy, aby liczba a, znalazta sie odpowiednio blisko g, to wskaznik n
powinien byé odpowiednio duzy. Stosujemy zapis li1£n an = g.



4 Analiza matematyczna ISIM I

Definicja 1.3 (Scista). Dla dowolnej liczby € > 0 (ktora okresla, jak blisko
granicy majq znajdowad sie wyrazy ciggu) istnieje liczba N (prog okreslajqcy
jak duzy powinien byé wskaznik ciqgu) taka, Ze dlan > N mamy |a, —g| < €.

Ostatni warunek oznacza, ze dla n > N wyrazy ciagu a, leza w przedziale
(g—e,g+¢), tzn. w przedziale tym lezg prawie wszystkie wyrazy ciagu {a, }.

Przyktady.

(a) a, =21 =1— 1 Mamy |a, — 1| = 2. Wida¢, ze ciag a, jest zbiezny
do 1 na podstawie intuicyjnej definicji. Prze¢wiczymy Scisty definicje.
Ustalmy liczbe & > 0. Niech N = [lf Wtedy dla n > N otrzymamy

£
n>1 Zatem 1 <e.
€ n

(b) a, = (—1)". Jedli a, dazy do g, to wyrazy o duzych numerach powinny
lezeé blisko siebie. Ale |a, 41 — a,| = 2.

Twierdzenie 1.4. Zbieiny ciqg posiada tylko jedng granice.

Dowdd. Zatézmy nie wprost, ze liqgn Gy = ¢, lign a, = ¢, oraz g < ¢'. Okredl-

my ¢ = (¢’ — g)/2. Przedzialy (g —e,9 + ¢) oraz (¢ — ¢,¢' + ¢) sa wtedy
roztaczne. Nie jest mozliwe wiec, aby prawie wszystkie wyrazy lezaly zaréwno
w pierwszym jak i drugim przedziale. 0

/

Twierdzenie 1.5. Kazdy cigg monotoniczny (rosngcy lub malejacy) i ogra-
niczony jest zbieziny.

Dowdd. Zatézmy, ze a, jest rosngcy oraz niech g = supa,. Pokazemy, ze
liczba g jest granica ciggu a,,. Ustalmy liczbe € > 0. Liczba g—e nie ogranicza
ciagu a, od goéry. Tzn. ay > g — € dla pewnego wskaznika N. Wtedy dla
n > N mamy

g—e<an < a,<g<g-+e.

]

Twierdzenie 1.6. Zaloimy, ze liqgn a, = g oraz liran b, = h. Wtedy ciqgi po
lewej stronie wzorow ponizej sq zbieine oraz:

(a) lign(an +b,) = lim ay, + lim b,.

(b) liTILn(anbn) = limay, - lim b,,.
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i & lima,
(c) lr{nEZM’Olleh%nb”%o’

n

Dowdd. Udowodnimy tylko (c). Zaczniemy od wersji

! 1 1

im— = :

n b, h%nbn

Oznaczmy e1 = |h|/2. Z zalozenia istnieje prog Ny taki, ze dla n > N; mamy
|b, — h| < |h|/2. Stad |b,| > |h|/2. Dla n > N; otrzymujemy zatem

1 1 |b, — h|  2|b, — hl

= . 1.1
b Rl I < P (L)

Ustalmy e > 0. Istnieje prog N taki, ze dla n > N mamy

2
b, — B < h; (1.2)

Niech n > max(Ny, N). Wtedy z (1.1) i (1.2) uzyskamy

1o
R
Z (b) mamy wtedy
. 1 lima,
lign(;l = liﬁnan . b = li}Lnan . liqgna = li?nbn'

Uwaga: Przy dowodzie (b) mozna skorzystaé ze wzoru

anbn — gh = (an — g)(by — B) + (an — g)h + g(b, — h).

Whniosek 1.7. Jesli lirrln an, =g, to liqgncan =cg.
Twierdzenie 1.8. Jesli ciggi a, i b, sq zbiezne, to
(a) \lirrln a,| = lim ||

(b) Jesli a, > 0, to lim a, > 0.
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(c) Jesli a,, < by, to lign ay < 1irrln by,.

(d) (twierdzenie o trzech ciqgach) Jesli a, < ¢, < b, oraz lima, =
lign b, to cigg ¢, jest zbieiny oraz 1i71;n Cpn = li;bn Q-

Dowdd. (a) Oznaczmy li7rln a, = g. Wtedy teza wynika natychmiast z nier6w-
nosci

anl = Ig1] < lan gl

(d) Z zalozenia mamy
0<¢,—a, <b, — a,. (1.3)
Dalej

li;ln(bn —a,) = li7rln by, + liTILrl(—an) = lirrln b, — li7rln a, = 0.

Ustalmy liczbe € > 0. Istnieje prog N taki, ze dlan > N mamy 0 < b, —a,, <
e. Wtedy z (1.3)
0<c,—a,<e, dlan>N.

Stad lign(cn — ap) = 0. Ciag ¢, jest zbiezny jako suma ciagdéw ¢, — a, oraz
a,. Ponadto liﬁn Cp = liTILn Q. O

Definicja 1.9. Dia ciggu {a,} i Scisle rosnacego ciagu liczb naturalnych m,
cigg {am, } nazywamy podciagiem.

Przyklady. a,:, a,, a,,, gdzie p, jest n-tg liczba pierwsza.
Dla rosnacego ciaggu m,, liczb naturalnych mamy m,, > n.

Twierdzenie 1.10. Podcigg ciggu zbieznego jest zbieiny do tej samej liczby
co pelny ciqg.

Dowdéd. Oznaczmy g = ligbn a,. Dla liczby € > 0 rozwazamy przedzial (g —
e,9 + €). Z zalozenia prawie wszystkie wyrazy ciagu a, znajduja sie w tym

przedziale. Tym bardziej prawie wszystkie wyrazy podciagu a,,, tam sie
znajduja. O]

Uwaga. Prawdziwe jest twierdzenie odwrotne: jesli kazdy podciag ciggu a,
zawiera podcigg zbiezny do liczby g, to caly ciag jest zbiezny do g.
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Twierdzenie 1.11 (Bolzano, Weierstrass). Kazdy cigg ograniczony zawiera
podcigg zbiezny.

Dowdd. Zatézmy, ze wyrazy ciagu ¢, znajduja sie w przedziale [ay, b;]. Be-
dziemy konstruowac¢ podciag d,, ciagu ¢,. Niech d; := ¢;. Przynajmniej jeden
z przedziatow [ay, (a1 +b1)/2], [(a1+b1)/2, b1] zawiera nieskonczenie wyrazow
ciagu ¢,. Oznaczmy ten przedzial przez [ag, by]. Niech my oznacza najmniej-
szy wskaznik, wiekszy niz 1, dla ktérego ¢,,, =: dy lezy w [az, bs]. Dalej jeden
z przedzialéw [ag, (as+b2)/2], [(as+b2)/2, by zawiera nieskonczenie wyrazéw
ciggu ¢,. Konce tego przedziatu oznaczmy przez as i b3. Podobnie jak wcze-
$niej wybieramy najmniejszy wskaznik ms > ms, dla ktérego c,,, =: ds lezy
w [as, bs]. Postepujac tak dalej otrzymamy nieskoficzony ciag przedziatéw
[a,, b,] oraz podciag d,, := ¢,,, o wlasnosciach

dn € [Cbn, bn] C [an—lv bn—l]a bn — Qn = %(bn—l - an—l)-

Mamy
ay < an—1 < ap < bn < bnfl < bl'

Ciag a, jest rosnacy i ograniczony, natomiast ciag b, jest malejacy i tez
ograniczony. Zatem ciggi te sa zbiezne. Z rownosci
1
b, —a, = F@l - @1)
wynika liTILn(bn — ap) = 0. Zatem lign b, = li}Ln a,. Poniewaz a, < d, < b,, to
z twierdzenia o trzech ciggach otrzymujemy, ze ciag d,, jest zbiezny. ]

Czasami chcemy rozpoznaé, czy dany ciag jest zbiezny, ale nie potrafimy
wskazaé granicy. Wtedy mozemy uzy¢ warunku Cauchy’ego.

Definicja 1.12. Mowimy, ze cigg spetnia warunek Cauchy’ego jesli dla du-
zych wskaznikow wyrazy ciggu lezg blisko siebie. Scisle: dla dowolnej liczby
e > 0 istnieje prog N taki, Ze dla m,n > N mamy |a, — an,| < €.

Przyktady.

(a)
1 1 1
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Zatozmy, ze n > m. Wtedy:

1 1 1
an_am—<m+1)2+(m+2)2++ﬁ
<Ly ! T
m(m+1)  (m+1)(m+2) ~ (n—1)n

1 1 1 1 1 1 1 1 1
— (— )+( - )+...+( —) _ .1
m m+1 m+1 m+2 n—1 n m n m

Chcemy, aby 1/m < e. Niech N = [1/¢]. Wtedy dla n > m > N mamy

1/m < g, zatem

1
O<a,—a, <— <ec.
m

(b)

1 1 1
bp=1+—-4+=+...4+—.
totg ot
Obliczamy

T n+1 n+2 T 'om T 20 2n T o 27

n sktadnikéw

b2n - bn

Zatem warunek Cauchy’ego nie jest spetniony.

Twierdzenie 1.13. (igg jest zbiezny wtedy 1 tylko wtedy, gdy spetnia waru-
nek Cauchy’ego.

Dowéd. (=) Niech g = lim a,. Wtedy
|an — am| = [(an — g) = (am — 9)| < lan — gl + [am — gl

Z zalozenia dla liczby € > 0 istnieje prég N, dla ktérego |a — g| < § dla
k > N. Niech n,m > N. Wtedy

la, —an| < e.

(<) Pokazemy, ze ciag a, jest ograniczony. Dla e = 1 istnieje prog N (liczba

naturalna) taki, ze |a, — a,,| < 1 dla n,m > N. Niech
M = max{|a1|, |as|, ..., |an]|, |ans1] + 1}.

Wtedy |a,| < M dla wszystkich n. Rzeczywiscie:
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(1) Dlan=1,2,..., N mamy |a,| < M w oczywisty sposéb.
(2) Dlan > N mamy |a, —ay4+1| < 1 zatem

lan| = |(an — ani1) + any1] < lan — ani1| + |lani1| < 14 |ang1| < M.

7 twierdzenia Bolzano-Weierstrassa ciag a, posiada podciag zbiezny. Niech
g = lign G, . Pokazemy, ze lign a, = g. Ustalmy liczbe ¢ > 0. Istnieje prog
Ny taki, ze |ap, — a,| < § dla n,m > Nj. Dalej istnieje prog N taki, ze dla
n > Ny mamy |apm, —g| < 5. Okredlmy N = max(Ni, Na). Wtedy dlan > N
otrzymujemy m,, = n > N, zatem

g 19
an — 9| = [(an — am,,) + (@m, — 9)| < |an — am, | + |am, —g| < 5""5 =&

]
Definicja 1.14. Mowimy, Ze cigg a,, jest rozbiezny do nieskonczonosci (o00)

jesli dla dowolnej liczby M istnieje prog N taki, zZe dlan > N mamy a,, > M,
tzn. w przedziale (M, 00) znajdujq sie prawie wszystkie wyrazy ciggu.

Przyktad.

by= 14+ b s
w=ldg gt

Wiemy, ze by, — b, > % Zatem
n
b2n — (an - bzn—l) —|— (an—l - b2n—2) + e —|— (b2 - bl) + b1 > 5 + 1
Dla liczby naturalnej & > 2 mamy 2" < k < 2""! dla pewnej wartodci n.

Wtedy n + 1 > log, k oraz

n_n+1 1

Definicja 1.15. Liczbe a nazywamy punktem skupienia ciggu a, jesli mozna
znaleZé podciqg ay, zbieiny do a.

Uwaga. Zbiezny cigg posiada tylko jeden punkt skupienia.
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Przyktady.
(a) ap, = (=1)". Wtedy ag, =11 ag,r1 = —1.
(b) an = sinn. Zbiér punktéow skupienia jest réwny [—1, 1].
(¢) Rozwazmy ciag
111119111
7399199939459 3y g
Wtedy zbiér punktéw skupienia jest réwny {0, 1, %, %, .

Twierdzenie 1.16. Dla ograniczonego ciggu a, istniejg najmniejszy i naj-
wiekszy punkt skupienia nazywane granicq dolng i gorng ciggu i oznaczane
symbolams lim inf a,, oraz limsup a,,.

Dla ciagu z przyktadu (c) granica dolna wynosi 0, a gérna 1.

Uwaga. Mozna udowodni¢, ze

liminf a,, = sup inf a,,, limsupa, = inf sup a,,.
n mzn " om>n

1.2 Liczba e

Rozwazmy dwa ciggi

1 n 1 n+1
xn:(l—l—) , yn:(1+> )
n n

Mamy x,, < ¥,. Obliczamy

sl )= (65) 7 0

T, (1 + l)nH n (n+1)2 n

n

(o) el () e

W ostatniej linii skorzystaliémy z nieréwnosci Bernoulli’ego (14 x)" > 1+nx
dla x > —1. Udowodnilismy, ze ciag z,, jest rosnacy. Dalej

n+1
Yn—1 (1 + ﬁ) L n? "1
(n+1)(n—-1) n

Yn (1—{—%)n+1 1+ﬁ

1 ntlpy 1 n—1
<+n2—1) n (+n—1> n
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Zatem y,, jest ciagiem malejacym. Mamy zatem
2= <2< ... <2, <Y <...<y2 <y =4
Oba ciagi sa wiec zbiezne. Oznaczmy
1 n
e =limz, = lim (1+ ) .
n n n
Wtedy
1
yn—xn<1+> — e.
n
Zmajdziemy teraz inng przydatng postac liczby e. Mamy
N & fn\ 1
n = 1 — — _
’ ( * n> kz:% (k) nk
B “nn—1)(...n—k+1) 1 "1
=1+ K pr Sl

k=1

Ustalmy liczbe naturalng m. Dla n > m mamy

I\" “nn—-—1)(..(n—k+1)1
S=(1+2) >1 Bl
v ( +n) +,;1 nk k!

:1+I§<1_;> (1—2)...(1_’?;1);!

Przechodzimy z n do nieskonczonosci i otrzymujemy

Reasumujgc mamy

1\" "1
1+—-) <1 — <
( + n) + 1?:21 o S ©
Zatem
—tim (1 1 1 1 1
Twierdzenie 1.17. Liczba e ma przedstawienie
PR IR R VIR B ()
= o203 7l nln’

gdzie 0 < 0(n) < 1.
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Dowdd. Dla m > n mamy

—1+1+1+1+ R
TTRPTRNET n!

_ 1 1 1 1
~ T ) [ +n+2+(n+2)(n+3>+'“+(n+2>(n+3)-....m]
1 1 1 ]

< c,+ +

1 R e v—
(n—f—l)![ +n+2+(n—|—2)2 +(n+2)m—n—1

1
1 I (n+2)mn<c X 1 n+2

(n+1)! 1-—5 (n+1)!n+1

:CTL+ 1
n+

Przechodzac do granicy, gdy m — oo otrzymujemy

1+1+1+1+ +1< cipty 11, 1 nlnt?)
e < — 4=t 4. =+ —
o203l 20 3l n!  nln (n+41)2

Zatem

1 1)< 1 n(n+2)< 1'
nln (n+1)2 " nln

1 1
O<e—(1+1|+2|+3|+ -+

n!
Stad otrzymujemy teze twierdzenia. O

Whniosek 1.18. Liczba e jest niewymierna.

p
q’

dla liczby naturalnych p i ¢, to {qle} = 0. Ale z poprzedniego twierdzenia

Dowdd. Symbolem {z} oznaczamy cze$¢ utamkowa liczby z. Gdyby e =

mamy
0(n)
le} =¢——= 0.
ey = {121
m
Wiemy, ze
1\" 1 n+1
<1+> <e<<1—|—> .
n n
Zastosujmy logarytm przy podstawie e do nieréwnosci. Otrzymamy
1 1 1
<1 (1 ) < —. 1.4
ntl 8 * n n (1.4)



Szeregi liczbowe 13

Rozwazmy ciag
1+ L +...+ ! log(n+ 1)
Uy = —+...+ — —log(n .
2 n &
Mamy
1 1 1
Up — Up_1 = — —log(n+ 1) + logn = —10g(1—|—> > 0,
n n n
na podstawie pierwszej nieréwnosci w (1.4). Rozwazmy inny ciag
1 1
Up=14+—-4+... 4+ — —logn.
2 n
Mamy
! log(n +1) +1 ! 1 <1+1><0
Ups1 — Uy = —— — log(n ogn =———1o — ,
i n+1 & & n+1 & n
na podstawie drugiej nieréwnosci w (1.4). Dla n > 1 otrzymujemy

U < Up < Uy < V1.

Zatem oba ciagi sa zbiezne jako ciagi monotoniczne i ograniczone. Poniewaz
Up = Up—1 + %, to granice obu ciagdéw sg rowne. Oznaczmy symbolem c te
granice. Wtedy

0<l—=log2=u3<c<wv =1

Reasumujac

1 1
(1+2+...+—10gn>:c, 0<c< 1. (1.5)
n

Liczbe ¢ nazywamy stata FEulera.

2 Szeregi liczbowe

Dla ciggu a,, okreslamy cigg sum cze$ciowych s, wzorem
Sp=a1+as+ ...+ ay.

W szezegblnosci s5 = ay + ag + asz + a4 + as. Jesli ciag s, jest zbiezny (do
granicy s), to méwimy, ze szereg jest zbiezny i zapisujemy

00
Z anp = S.
n=1

Przyktady.
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(a) Rozwazmy ciag geometryczny a, = ¢" dla |¢| < 1. Wtedy

_q_qn—H q
= —_— ,
l1—q n» 1—g¢q

Sn=q+ ¢+ .. "

bo ¢" — 0, dla |¢| < 1." Zatem

00 . q
nz::lq l—q

(b) Rozwazmy szereg harmoniczny o wyrazach a, = =. Wiemy, ze

1 1
Sn=14+—-+...4+—>logn.
2 n
Szereg »  — jest rozbiezny (do nieskoriczonosei).
n=1

Twierdzenie 2.1 (Warunek Cauchy’ego dla szeregu). Szereg Zan jest

n=1
zbiezny wtedy 1 tylko wtedy, gdy spetnia warunek, ze dla dowolnej liczby € > 0
istnieje prog N taki, ze dla n > m > N mamy

|a/m+1 + am+2 + R an| < €.
Dowéd. Dla n > m mamy
IS0 — Sm| = |@me1 + oo + ...+ a,| < e.

To oznacza, ze warunek w twierdzeniu jest identyczny z warunkiem Cau-

chy’ego dla ciggu s,. O]
o

Twierdzenie 2.2. Jesli szereg Z a, jest zbiezny, to liTan a, = 0.
n=1

Dowod. Mamy a,, = s, — s,_1. Oznaczmy s = lim a,,. Wtedy
n
lima, =lims, —lims,_1 =s—s=0.
n n n

]

*Wystarczy pokazaé |g|" — 0, czyli rozwazaé¢ 0 < ¢ < 1. Niech 1/g =1+ a, dla a > 0.
Wtedy 1/¢" = (1+a)” > 1+ na. Czyli 0 < ¢" < 1/(1 + na).
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Uwaga. Warunek w tezie nie wystarcza do zbieznosci szeregu. Na przyktad
szereg o wyrazach

7§7§a§7§7§7”'
nie jest zbiezny. Ile wynosi wyraz szeregu o numerze 2014 7 Ktére numery
maja wyrazy szeregu o wartosci 1/2014 7

Twierdzenie 2.3. Dla kazdego szeregu zbieznego ciqg sum cze$ciowych jest
0gTraniczony.

Dowdd. Ciag s, spelia warunek Cauchy’ego wigc jest ograniczony. [

Twierdzenie 2.4. Zalozimy, Ze szeregi Z Qp 1 Z b, sq zbiezne. Wtedy zbiez-

n=1 n=1

ne sq szeregi Z a, +by,) Z @, 010z

n=1

Zani—b = Zani—an,
n=1 n=1 n=1
Z)\an = )\Zan.
n=1 n=1

Definicja 2.5. Szereg Z a, jest bezwzglednie zbiezny jesl szereg Z la,| jest
n=1 n=1
zbiezny.

Twierdzenie 2.6. Szereg bezwzglednie zbiezny jest zbieziny.
Dowdéd. Teza wynika z nieréwnosci dla n > m

|am+1%—am+2+m..%—an|<|am+1y+|am+gy+...+¢anL

[e.e]

Zatem warunek Cauchy’ego dla szeregu Z la,| pociaga ten warunek dla
n=1

oo
szeregu Z Q. O]

n=1

Uwaga. Zbiezny szereg nie musi by¢ bezwzglednie zbiezny. Na przyktad
szereg o wyrazach

=
| =
D
D
=
[ I

1
Y 47

[\

| —
e~ =
e~ =
e~ =
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jest zbiezny do liczby 0, ale nie jest zbiezny bezwglednie.

Uwaga. Zbieznos¢ ciggu a, i szeregu Z a, nie zalezy od zachowania sie
n=1
skonczonej liczby poczatkowych wyrazéw. Tzn. jesti a, = b, dlan > N to

ciagi a, i b, sa jednocze$nie zbiezne lub jednoczes$nie rozbiezne. To samo

dotyczy szeregbéw Z Gy 1 Z by,

n=1 n=1

Twierdzenie 2.7 (Kryterium Dirichleta). Zalézmy, Ze cigg a,, jest malejacy
014z Ay — 0. Zalozmy rowniez, ze sumy czeSciowe ciggu b, sq ograniczone
(tzn. cigg o wyrazach s, = by + by + ...+ b, jest ograniczony). Wtedy szereg
Z anby, jest zbiezny.

n=1

Dowdd. Sprawdzimy warunek Cauchy’ego. Z zalozenia |s,| < M. Niech n >
m. Wtedy

|Gt 10ma1 + Qmg2bmaz + ..+ anby|

+ .ot an(sn — Sno1)|

= |=Gm115m+(@mi1—mi2) Smi1+ (Amy2—ma3)Smiot. . A (An_1—0p)Spn—_1F0, 5,

< @1 |Sml+(@ms1—mi2) [Sm1 [ (@mi2—amas) [Smro|+ A (an—1—an)[Sn1|+an| 0]
< M [ami1 + (ms1 — Ama2) + (@ — Amas) + oo+ (a1 — @) + an] = 2Mag, 1.

- |am+1 (Sm—i-l - Sm) + am+2(sm—|—2 — Sm+1

~— —

Dla € > 0 istnieje liczba naturalna mg taka, ze a,,, < 53;- Wtedy dlam = mq
mamy

|@ms10ms1 + @miobmaos + ..+ apby| < 2May, 1 < 2Mag,, < €.

O
) X sinnx ) ..
Przyklad. Rozwazamy szereg Z . Dla © = k7 szereg jest zbiezny,
n=1

1
bo kazdy wyraz sie zeruje. Zatézmy, ze x # 2kn. Przyjmujemy a,, = — oraz
n

b, = sinnx. Bedziemy korzysta¢ ze wzoru trygonometrycznego

cosa — cos 3 = 2sin’6’Tasin

Bta
5
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Badamy sumy czesciowe ciagu b,,.

sinx +sin2x + ...+ sinnx

= (281n§sin$+281n§sin2x+...—l—ZSingsinnx)

2sin g 2 2 2

1 T 3z 3z 5z (2n—1)z (2n+1)z

= — [(0085 —0087) + (cos? —cosg> + ...+ (COST — COS “—5——
2sin %
nT (n+1):p
1 z (2n+1)x S 5~ S1N ~—
= (cos 5 —cos~—; = — .
2sin 5 sin 5
Otrzymujemy
. . ) 1
|sinz +sin2x + ... +sinnz| < ———.
| sin |

Whniosek 2.8 (kryterium Leibniza o szeregu naprzemiennym). Jesli cigg a,,

jest malejgcy oraz a, — 0, to szereg Z(—l)

n=1

"a, jest zbieiny.

Dowéd. Przyjmujemy b, = (—1)""!. Wtedy sumy czedciowe ciagu b, maja
postac sg, = 01 So,01 = 1. Zatem szereg jest zbiezny. O

00 (_ )n—l—l
Przyklad Szereg Z —_—

n=1 n
(1.5) mozna wykazaé, ze szereg jest zbiezny do liczby log 2.

jest zbiezny z kryterium Leibniza. Ze wzoru

Whniosek 2.9. Jesl a,, jest zbieznym ciggiem monotonicznym a szereq Z by,

n=1
oo
jest zbiezny, to zbieiny jest szereg Z by,

n=1

Dowdéd. Mozemy zatozyé, ze ciag a, jest malejacy. Oznaczmy a = 1irrln Q.-

Wtedy a, —a \, 0. Z twierdzenia Dirichleta szereg » (a, —a)b, jest zbiezny.

n=1
Ale
anb, = (a, — a) + ab,,

zatem szereg Z anb, jest zbiezny. ]

n=1

)
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Twierdzenie 2.10 (Kryterium poréwnawcze). Zatéimy, ze 0 < a, < by,.

Jesli szereg Z b, jest zbiezny, to zbieiny jest szereq Z (.-

n=1 n=1
oo
Whniosek 2.11. Jesli 0 < a,, < b, oraz szereg Z a, jest rozbiezny, to szereg
n=1

Z b, tez jest rozbiezny.

n=1

e nt* + 8n
Przyklad. Bad _—
rzykta adamy szereg ; R

n* +8n nt 1

mS+n2+47 2P+ nd4+4n5  Tn’
1
Wiemy, ze Z — = 00, wiec badany szereg jest rozbiezny.
n
Twierdzenie 2.12 (Kryterium Cauchy’ego). Zalézmy, Ze

a = lim 1/|a,|.
n

(i) Jesli a < 1, to szereg Z a, jest bezwglednie zbieziny.

n=1

(it) Jeslia > 1, to szereg > a, jest rozbiezny.

n=1

Uwaga. Kryterium nie rozstrzyga zbieznosci, gdy a = 1. Dla szeregow 3 #
Z% mamy a = 1. Pierwszy z szeregéw jest zbiezny a drugi rozbiezny.
Dowdd. (i) a < 1. Niech r = 1. Wtedy a < r < 1. Istnieje prog N taki, ze
dla n > N mamy {/|a,| < r. Zatem |a,| < r* dlan > N + 1. Z kryterium
poréwnawczego szereg Z |a,| jest zbiezny.

n=1

(ii) @ > 1. Dlar = “t istnieje prog N taki, ze dlan > N mamy {/|a,| > r >
1. Tzn. |a,| > ™ dla n > N, czyli a, jest rozbiezny do nieskonczonosci. [




Szeregi liczbowe 19

Twierdzenie 2.13 (Kryterium d’Alemberta). Zaldzmy, ze

(1) Jesli a < 1, to szereg Z a, jest bezwglednie zbieiny.

n=1
(it) Jeslia > 1, to szereg > a, jest rozbiezny.
n=1
Dowdd. Zastosujemy oznaczenia z dowodu kryterium Cauchy’ego.

(i) Istnieje N takie, ze dla n > N mamy lansi]l . Wiedy

+
|an|

|@n]  lan-] |an sl n—N-1 lanal
= : S < = (21
i || |an—2] |an 1] anal < lail PN (2.1)
oo
Z kryterium poréwnawczego szereg »  |a,| jest zbiezny.
n=1

1l > r > 1. Ze wzoru (2.1)

la
\

(ii). Istnieje N takie, ze dla n > N mamy 7
otrzymujemy wtedy

Zatem |a,| — 0. O

|an+1|
|an|

Uwaga. Mozna udowodni¢, ze z istnienia granicy lim wynika
n

a,| = lim @11
n ag]

\ |

lim
n

Whniosek 2.14. Je$li cigg a,, spetnia zatozenia kryterium Cauchy’ego lub
d’Alemberta, to dla a < 1 cigg ten jest zbieiny do zera, a dla a > 1 wartosci
bezwzgledne wyrazow dgzg do nieskonczonosci.

Przyktady.
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(a) > —- Stosujemy kryterium d’Alemberta
= n!
4y, ML on 9
ap (m+1)! n!l n+1 »
o k

(b) > g—n, dla k € N. Uzywamy kryterium Cauchy’ego.

n=1
LA 1

|
() Y . Wygodniej bedzie uzy¢ kryterium d’Alemberta.
nn

n=1

anp1 _ (n+ 1! n" n" _ 1 _}1<1

a, (n+ 1)+ n (n+ 1)+ (1+%> n e

Zatem szereg jest zbiezny.

Twierdzenie 2.15 (Cauchy’ego o zageszczaniu). Zaldzmy, Ze cigg a, jest
[e.e]

malejgcy oraz a, — 0. Szereg Z a, jest zbieiny wtedy i tylko wtedy, gdy
n=1

zbiezny jest szereq Z 2" agn .

n=1
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Przyktady.
(a) Rozwazmy szereg » —, dla o > 0. Szereg zaggszczony ma postac
n=1 n

002n

e 2 ()

Szereg ten jest zbiezny tylko jedli 227! > 1, czyli dla o > 1.

1

nlog®n’

(b) Niech a,, = , dlan > 2 oraz a > 0. Wtedy

7;2 aon = nz::l 2n(10g Zn)a = Z

= nlog*2’

Zatem szereg jest zbiezny tylko dla o > 1.

(¢) Mozna pokazaé, ze szereg o wyrazach

1
nlogn(loglogn)®’

Ap —

jest zbiezny tylko dla a > 1.

Dowdd twierdzenia o zageszczaniu. (=) Mamy

Z 2k(l2k = ay + 2ay + dag + ...+ 2" tay

B
Il
—

1
2
< ag + (a3 + aq) + (a5 + ag + a7 + ag) + .. —|—(a2n_1+1—|—...+a2n)

<En< Lo

(o9}

Zatem Z 2% aqr < 25. To oznacza, ze sumy czesciowe szeregu Z 2k G
k=1 k=1

sg ograniczone od géry. Stad szereg jest zbiezny, bo sumy czesciowe

tworzg ciag rosnacy.



22 Analiza matematyczna ISIM I

(<) Obliczamy

n on 1
dap < Y a

k=1 k=1

=ay+ (ay+az) + (ags +as +ag +ar) + ...+ (agn-1 + ...+ agn_q)

oo
<ap+2ay +4ag+ ...+ 2" ager < ay + Y 2Fagp =1 3.

k=1
o0
Sumy czesciowe szeregu Z a, Sa ograniczone przez s, zatem szereg jest
. . n:1
zbiezny.
O
oo
Dla zbieznego szeregu s = Z a, okreslamy ciag n-tych ogonéw wzorem
n=1
o
r, = Z ap. Mamy
k=n+1
Spt+Tpn =38, Th =35 S,
zatem

limr, = lim(s — s,) = 0.

2.1 L3acznosé i przemienno$¢ w sumie nieskonczonej

o0
Jesli szereg Z a, jest zbiezny, to zbiezny jest szereg postaci

n=1

(a1 +as+ ...+ ap) + (@1 + apygo + .o+ apy)
+ oo F (1 F A2 Ay ) o (22)

Sumy czesSciowe szeregu (2.2) maja postaé
Snys Sngs -y Smps -y

zatem ciag s,, jest podciggiem ciggu s,.
Uwaga. Wynikanie odwrotne nie jest spelnione. Szereg (2.2) po otworzeniu

nawiaséw moze by¢ rozbiezny:

(14+ D+ (=14 D)+ (=1+1)+...
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Jesli w kazdym nawiasie szeregu wyrazy maja ten sam znak i szereg (2.2)
jest zbiezny (do s), to szereg bez nawiaséw tez jest zbiezny. Rzeczywiscie,
zauwazmy, ze jesli ngy < n < ngyq, to suma s, lezy pomiedzy s, 1 sy, . Dla
duzych wskaznikow k liczby sy, 1 sy, , leza blisko liczby s. Wtedy wielkosci
s, dla ng < n < ngyq réwniez leza blisko s.

Permutacja zbioru liczb naturalnych nazywamy ciag o, o9, ..., 0n, ... zto-
zony z liczb naturalnych, w ktérym kazda liczba wystepuje doktadnie raz, np.

2,1,4,3,....2n,2n — 1,. ..

[e.e]

Twierdzenie 2.16. Jesli szereqg Z a, jest bezwglednie zbieiny, to szereg
n=1

Z a,, jest zbieiny dla dowolnej premutacji o oraz

n=1

[e's) 00
o= 0
n=1 n=1

Uwaga. Zalozenie bezwzglednej zbieznosci jest istotne. Rozwazmy szereg
00 (_1)n+1

. Mamy
n=1 n
2 3 4 5 6 7 2 3
1—1—1 1—1—(1—1—1 1)—1— —1—( L + L 1>—|— >1+1
3 2 in—3 4dn—1 2n 3 ’

5 7 8
—_———

>0 >0

Dowdd. Oznaczmy s = Z a,. Ustalmy liczbe € > 0. Istnieje liczba naturalna

n=1
[e.e]
N, dla ktoérej Z lan| < 5. Rozwazamy permutacj¢ {o,, }. Istnieje liczba na-
n=N+1
turalna M taka, ze wsérod liczb a,,, a4y, - - ., ay,, Wystepuja wszystkie wyrazy

ai,as,...,ay. Niech n > M. Wtedy

m m N o0
ZGUk_‘S:(ZaUk_Zak)_ Z Q-
k=1 k=1 k=1

k=N+1

1

2
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W nawiasie wyrazy si¢ uproszcza i pozostana tylko wyrazy o numerach wick-
szych od N. Zatem

oo o
+ ) anl <2 D |a] <e.
k=N+1 k=N-+1

<

m N
Z Qg — Z Q.
k=1 k=1

m
Z Qg — S
k=1

Twierdzenie 2.17 (Riemann). Jesli szereg jest zbiezny warunkowo, tzn. jest
zbiezny, ale Y |a,| = oo, to poprzez zamiane kolejnosci wyrazéw mozna uzy-
skac szereg zbiezny do z gory ustalonej liczby, rozbiezny do —oo, 400 lub
szereq rozbiezny.

2.2 Mnozenie Cauchy’ego szeregow.

o0 o0
Rozwazmy dwa wielomiany Z a,x" oraz Z b,x" (zaktadamy, ze a, = b, =

0 dla duzych n). Mnozymy te wielomiany i grupujemy wyrazy z ta sama
potega przy x:

(ap + a1z + agx® + ...+ apa™ + .. ) (bo + by 4+ box® + ..+ b 4. )
= (Iobo + (albo + agbl)l‘ + (a2b0 + (llbl + aon)ZL'2 + ...

+ (anbo + apn_1b1 + ... + a1b,—1 + agby)z™ + ... = Z <Z ankbk) "

n=0 \k=0

Podstawmy x = 1 aby otrzymac

o o) [e.e] n

Z (7% Z: bn = Z Z an_kbk. (23)

n=0 k=0
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o] [o¢]
Wzér (2.3) mozna uzasadni¢ w inny sposéb. Chcemy pomnozy¢ > a,i ) | by.

n=0 n=0
Tworzymy tabele mnozenia

bo by by ... by b,
Qo aobo Qo b1 Qo bg Qo bn
ai a, by a1 by a1bp—1
a2 asby
Ap—1 Ap—1b1
(07% anbO

Nastepnie sumujemy wyrazy na przekatnych i wyniki dodajemy.

o0 o
Twierdzenie 2.18. Jesli szeregi Z Ay 0 Z b, sa zbiezne, przy czym co-

n=0 n=0

najmniej jeden z nich bezwzglednie, to szereg o wyrazach c, = Z by jest
k=0
zbiezny oraz

) o0 o)
Z an Z b, = Z Cp-
n=0 n=0 n=0

Uwaga. Zalozenie bezwglednej zbieznosci jest istotne. Niech ag = by = 0
oraz

Wtedy

=1 ) (n—k)k

Korzystajac z nieréwnosci 2ab < a? + b? otrzymamy

(n—k)+k n
_ < Y1
(n—k)k 5 5
Zatem )
= 1 2(n —1
k=11/(n —k)k n

To oznacza, ze ciag c, nie jest zbiezny do 0, czyli szereg o wyrazach c, nie
moze by¢ zbiezny.
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3 Funkcje i granice

Jesli kazdej liczbie z pewnego podzbioru E C R przyporzadkowana jest jakas
liczba rzeczywista, to mamy do czynienia z funkcja. Funkcja sktada sie z
dziedziny E oraz przepisu, ktory mowi jakie liczby nalezy przyporzadkowaé
liczbom z E. Zwykle przepis podany jest wzorem y = f(x).

Przyktady.
(a) £E=1(0,1), f(z) = .
(b) E'=(0,00), f(x) = V.

sinx —1<xz<0,
(c) E=(-11), f(z) = {5 r =0,
x? 0<z<l.

Definicja 3.1 (intuicyjna). Zalézmy, Ze funkcja f(z) jest okreslona wokol
punktu a (ale niekoniecznie w punkcie a). Méwimy, Ze liczba g jest grani-
cq funkcji f(x) w punkcie a, jesli wartosci f(x) lezqg coraz blizej liczby g
dla argumentow x lezgcych coraz blizej liczby a, ale x # a. Piszemy wtedy

lim f(z) = g.

T—a
Powyzsza definicja wystarcza do obliczenia wickszosci granic. Uscislenia tej
definicji mozna wykonaé¢ na dwa sposoby.

Definicja 3.2 (Heine). Zatézmy, ze funkcja f(x) jest okreslona wokét punktu
a (ale niekoniecznie w punkcie a). Mowimy, Ze liczba g jest granicq funkcji
f(z) w punkcie a jesli dla kazdego ciggu x, zbieinego do a, ale x, # a, cigg
f(z,) jest zbiezny do liczby g.

Przyktlady.

(a) E =R, f(z) = 2% Wtedy hII(l) 2? = 0. Rzeczywiscie, niech x, — 0,
Ty # 0. Wtedy 23 — 0.

(b) E = (=1,0) U (0,1), f(z) = 913 _ :c:51-+1 Tle wynosi lim f(x) ?

1 1 r+1—-1 T 1
v oavr+l  ave+l  arrl(We+l+1) Vet l(WVe+1+1)

Gdy z, — 0, to f(zy) — 3
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Definicja 3.3 (Cauchy). Mowimy, Ze liczba g jest granicqg funkcji f(x) w
punkcie a jesli dla dowolnej liczby € > 0 istnieje liczba 6 > 0 taka, Ze jesli
0<|z—al<d,to]|f(x)—g|l<e.

Uwaga. Definicja Cauchy’ego odpowiada definicji intuicyjnej. Osoba wat-
piaca, ze f(x) moze znalezé sie blisko g, wyraza zadanie, aby odlegtosé¢ f(x)
i g byta mniejsza niz ¢, np. dla ¢ = 0,0001. Naszym zadaniem jest wskazanie
liczby 6 > 0, ktora zagwarantuje, ze jesli odlegtos¢ argumentu x # a od a
jest mniejsza niz 4, to faktycznie odlegtosé f(z) od g bedzie mniejsza niz
. Po wykonaniu zadania osoba watpigca moze zmniejszy¢ wartos¢ € np. do
0,00001. Wtedy my musimy znalezé nowa (zwykle znacznie mniejsza) war-
tos¢ dla liczby 9, aby zaspokoi¢ zadanie. Jesli potrafimy to zrobié¢ dla dowolnej
wartosci €, to faktycznie granica funkcji w punkcie a jest rowna liczbie g.

—1
Przyktad. f(z) = Ve T Chcemy obliczy¢ granice w punkcie 1 z definicji

Cauchy’ego. Mamy f(z) = . Z definicji intuicyjnej widaé, ze granica

1
Vo +1

w 1 wynosi % Mamy

|z —1].

‘f(x)_;:‘ 1 1|_y1—\/§|_ o1 _1

+1 2| 2(Jz+1) 2(/z+1)? 2
Dla liczby € > 0 niech 6 = 2e. Wtedy dla 0 < |z — 1| < 2¢ mamy
|fz) — 3| <ilz—1|<e.

Uwaga. Zapis kwantyfikatorowy definicji Cauchy’ego ma postac

Ve>030>0Vae{0<|z—a|<d = |f(x)—yg|<e}.

Twierdzenie 3.4. Definicje granicy wedtug Cauchy’ego © Heinego sq¢ row-
nowazne.

Dowéd. Udowodnimy tylko implikacje (H) = (C). Zalézmy nie wprost, ze
liczba ¢ nie jest granica funcji f(z) w punkcie a w sensie Cauchy’ego. To
oznacza, ze istnieje liczba € > 0 taka, ze dla dowolnej liczby 6 > 0 mozna
znalez¢ argument x spelniajacy 0 < |z—a| < 0, ale | f(x)—g| > €. Przyjmijmy
Op = % i niech z,, oznacza argument odpowiadajacy liczbie 6,,. Otrzymujemy
0 < |z, —a| < L oraz |f(z,) — g| > e. Wtedy =, — a, ale f(zy) -9 U
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Co zrobi¢, gdy nie wida¢ kandydata na wartosé¢ granicy funkcji ? Do tego
stuzy warunek Cauchy’ego. Intuicyjnie oznacza on, ze jesli dwa argumenty
x i 2’ leza blisko liczby a, ale z,2" # a, to wartosci f(z) i f(z') leza blisko
siebie. Sciste okreslenie znajduje sie w nastepnym twierdzeniu.

Twierdzenie 3.5 (Warunek Cauchy’ego). Funkcja f(x) posiada granice w
punkcie a wtedy 1 tylko wtedy, gdy dla dowolnej liczby € > 0 mozna znalezé
liczbe 6 > 0 takq, Ze

0<|z—allz’—al <d = |f(x)—f(2)|<e. (3.1)

Dowdd. Udowodnimy tylko implikacje (<). Niech x, — a, ale x, # a.
Wtedy ciag f(x,) spelnia warunek Cauchy’ego dla ciagéw. Rzeczywiscie, dla
e > 0 istnieje J spetniajaca (3.1). Poniewaz x,, —a,t00 < |z, —a| < § dla
duzych wartosci n, np. dla n > N. Wtedy dla n,m > N na podstawie (3.1)
otrzymamy |f(z,) — f(xn,)| < €. Zatem ciag f(x,) jest zbiezny. Oznaczmy
g = li1£n f(z,). Wtedy 2l}g{l1 f(z) = g w sensie Heinego. Rzeczywiscie, niech
x —al x! # a. Z poprzedniego rozumowania wiemy, ze ciag f(z!,) jest
zbiezny, np. do liczby ¢'. Rozwazmy nowy cigg postaci

/

/ /
.T1,1‘1,$2,$2,...,Qj‘n,xn,...

Ten ciag dazy do a. Zatem odpowiadajacy ciag wartosci funkcji

fQ@r), f(@h), f@2), f(a), - flan), f(a7),
jest zbiezny. To jest mozliwe tylko dla g = ¢'. O

3.1 Wazna granica

Twierdzenie 3.6. )
. sinxz
lim =1.
z—0

Dowdd. Dla kata 0 < x < 7 rozwazmy trojkat prostokatny o kacie x i przy-
prostokatnej dhugosci 1 przy tym kacie. Trojkat ten zawiera w sobie wycinek
kota o kacie x i promieniu 1, ktory z kolei zawiera trojkat réwnoramienny
o kacie wierzchotkowym z i ramionach dtugosci 1. Porownujac pola figur
otrzymamy nieréwnosé '
sinx
2

tgx
< < —.
2

N8
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Zatem i
sin x

sine < x < )
CoS ¥

2 3
1—2(‘75) —r—
2 2

7, drugiej nieréwnosci otrzymujemy

. Lo T
SINT > TCOST =2 {1—2s1n2 2] >z

Uzyskujemy wiec

3
x T
x—?<sinx<x, 0<x<§. (3.2)
7 nieréwnosci wynika, ze
. sinx

lim =1

z—0t X
7 parzystosci funkcji otrzymujemy teze. [

3.2 Granice jednostronne

Przyktad. Z wysokosci 20 m upuszczamy kamien. Chcemy znalezé¢ predkosé
kamienia w chwili uderzenia w ziemie. Przed uderzeniem wysokos¢ wynosi
h(t) = 20 — 1gt*. Przyjmijmy g = 10m/s>. Wtedy h(t) = 20 — 5t*>. Kamien
spadnie po 2 sekundach. Srednia predkosé¢ kamienia od momentu ¢ < 2 do
momentu uderzenia w ziemie wynosi

h(t) —h(2) 20 — 5t (t—2)(t+2)
= = —b5—"—— = 5(t+2).
t—2 t—2 t—2 (t+2)
Predkos¢ chwilowa w momencie uderzenia wynosi zatem
h(t) — h(2

lim hit) = 1(2) = —20m/s.

t—2 t—2

t<2

Definicja 3.7. Zalézmy, Ze funkcja f(x) jest okreslona w pewnym przedziale
a <z <a+n (naprawo od punktu a). Mowimy, Ze funkcja f(x) ma granice
lewostronng w punkcie a rowng liczbie g, jesli dla kazdego ciggu x, — a,

x, < a, mamy f(z,) — 9. Réwnowaznie

Ve>030>0Ve {a—d<zx<a = |f(z)—yg|<e}.



30 Analiza matematyczna ISIM I

Podobnie okresla si¢ granice prawostronna.

Twierdzenie 3.8. Granica glcllrlll f(x) istnieje wtedy i tylko wtedy, gdy istniejq
granice jednostronne lim f(x) i lim, f(z) i sq sobie réwne.

Dowdd. (<) Zatézmy, ze lim f(x) = lim+ f(x) = g. Dlaliczby € > 0 istnieja
liczby 01,02 > 0 speliajace warunek: dlaa — 0y <z <aluba <z <a -+ d
mamy |f(z) —g| < e. Przyjmijmy 6 = min(dy, d2). Wtedy jesli 0 < |z —al < 0
toalboa—d; < a—d <x <aalboa <z <a+d < a+dy. W obu przypadkach
uzyskujemy |f(z) — g| < e. O

Przyktad.

3.3 Granice niewlasciwe i granice w punktach niewta-
Sciwych

Definicja 3.9. Funkcja f(x) ma granice oo w punkcie a jesli dla kazdego

ciQgu T, — a, Tn # a, mamy f(x,) — 0. Rownowaznie, dla dowolnej

liczby M istnieje liczba 6 > 0, dla ktérej warunek 0 < |z — a|] < 0 pocigga
f(z) > M.

Definicja 3.10. Zaldimy, ze funkcja f(z) jest okreslona w przedziale (a, 00).
Moéwimy, ze liczba g jest granicg funkcji f(x) w oo jesli dla dowolnego ciggu

Ty — 0O mamy f(zn) — 9. Rownowaznie

Ve>03IMVe{z>M = |f(z)—g|<e}

Podobnie okresla si¢ granice —oo i granice w —oo0.
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3.4 Dzialania na granicach

Twierdzenie 3.11. Zaldimy, Ze lim f(z) = A oraz lim g(xz) = B. Wtedy

(i) lim[f(x) + g(z)] = A+ B.

r—a

(i1) lim f(x)g(x) = AB.

r—a

. ey A
(117) lim —— = — o ile B # 0.
ag(z) B
Dowdd. Teza wynika z odpowiedniego twierdzenia o ciagach. ]

Uwaga. Twierdzenie jest prawdziwe dla granic jednostronnych i granic w
punktach niewtasciwych.

Twierdzenie 3.12 (Reguta podstawienia). Jesli lim f(z) = b, 111111) g(y) = ¢,
r—a y—

oraz funkcja f(x) nie przyjmuje wartosci b w poblizu punktu a, to lim g(f(x)) =
c.

Dowdd. Niech z, — a, In # a. Wiemy, ze f(z) # b w pewnym przedziale
(a —n,a+n)\ {a}. Wtedy z,, lezy w tym przedziale dla duzych wartosci n,
np. dla n > N. Zatem y,, := f(z,) # b dlan > N oraz y, = f(x,) — b.

Otrzymujemy g(f(z,)) = 9(yn) — O
Uwaga. Przy zastosowaniu regulty podstawienia postugujemy sie zapisem

limg(f(z)) = limg(y)=c

r—a y=f(z) y—b

. / 1
lim ¢/ + —.
x—2 X

1
Przyjmujemy f(z) = x+—, g(y) = /y. Wtedy b = g oraz ¢ = \/g W innym
T

zapisie mamy
/ 1 5
limy/x4+—- = lim =4/=.

Przyktad.
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1
Trzeba sie upewnié, ze x + — # g, gdy = # 21 x lezy blisko 2. Rownanie
x

+1 > 2—|—1
€T —_— = = = —
x 2 2

1
ma dwa rozwigzania r = 2ix = % Dla 0 < |r—2| < 1 mamy wiec x+— # g
x

3.5 Funkcje ciggle

Definicja 3.13. Mowimy, Ze funkcja f(x) jest ciggla w punkcie a, jesli f(x)
jest okreslona w pewnym przedziale wokol punktu a, wigcznie z punktem a,
oraz

(1) istnieje granica lim f(z),

(2) lim f(z) = f(a).

r—a

Przy zastosowaniu definicji Cauchy’ego granicy funkcji, ciagtos¢ w zapisie
kwantyfikatorowym ma postac

Ve>030>0Ve{|r—al]<d = |f(z)— fla)| <e}.

Mozna pomina¢ warunek 0 < |z — a|, bo dla x = a mamy |f(z) — f(a)| =
0<e.

Przyktady.
(a) .
sinx
) x 07
f) = 7
1 rz=0
. . sinz
lig f(@) = limg 2 = 1 = (0)

lim f(z) = 0= f(0), bo |zsin 2| < |z|.

x—0
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()

in 1
o= A

Granica w punkcie 0 nie istnieje. Niech z, = n—lﬂ oraz ¥, =

Wtedy f(z,) =0 oraz f(z]) = 1.

1
2nm+73

Twierdzenie 3.14. Jesli funkcje f(x) i g(x) sq ciggle w punkcie a, to funkcje

) £ gle), flalglo) i 10
przypadku zakladamy, Ze g(a) # 0.

sa rowniez ciggle w a, przy czym w ostatnim

Uwaga. Jedli g(a) # 0, to z ciagtoéci wynika, ze g(x) # 0 dla x w poblizu
punktu a. Rzeczywiscie, przyjmijmy ¢ = “"(2—“)‘. Wtedy istnieje liczba 6 > 0

taka, ze dla |z — a| < 6 mamy |g(z) — g(a)| < |g(2a)|' Dalej

()| — lo(a)] < lg(@) — gla)] < L
Zatem |g(x)| > ‘g(;)’_

Przyktady.
(a) Kazdy wielomian jest funkcja ciagta w kazdym punkcie.

(b) Iloraz dwu wielomianéw jest funkcja ciagta poza miejscami zerowymi
mianownika.

Twierdzenie 3.15. Jesli funkcja f(x) jest ciggla w punkcie a, a funkcja
g(z) jest ciggla w punkcie b = f(a), to funkcja ztozona g(f(x)) jest ciggla w
punkcie a.

Dowéd. Niech z, — a. Wtedy y,, := f(zn) — f(a) = b. Zatem g(y,) —
g(b). To omacza, 76 g(f(2n)) — g(f(@)). n

Przyktad. Zatézmy, ze f : (0,1) — R oraz lim f(z) istnieje dla wszystkich
punktow 0 < a < 1. Okreslmy f(w) = }gré f(z). Czy funkcja f jest ciagla w
kazdym punkcie przedziatu (0,1) 7
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Definicja 3.16. Méwimy, Ze funkcja f(x) jest ciagla w przedziale (a,b), jesl
jest ciagla w kazdym punkcie tego przedziatu. Mowimy, Ze funkcja f(x) jest
ciaglta w przedziale [a,b], jesli dodatkowo lim f(z) = f(a) oraz liril_ fz) =

f(b).

Przyktady.
1
(a) f(x) wi=2) 0<z<

(b) A(y) =y, y > 0.
Sprawdzenie: dla yo > 0 mamy

v — ol 1
’\/_ \/_0‘ \/g_i_\/go \/@0’ |

Dla yo = 01ie > 0 niech 0 <y < e®. Wtedy /y <e.
(¢) flz)=/z(1—2),0< x < 1.

Twierdzenie 3.17 (Jednostajna ciaglos¢ funkcji). Funkcja f(x) ciggla na
przedziale domknietym [a, b] jest jednostajnie cigglta, tzn. dla dowolnej licz-
by € > 0 istnieje liczba § > 0 taka, Ze dla z, 2’ z |a,b], jesli |x — 2’| < 6, to

[f(x) = f(a)] <e.
Uwaga. Zapis kwantyfikatorowy cigglosci jednostajnej ma postaé
Ve>036>0Vx € [a,b V' €la,b{|lz—2"|<d = |f(x)—f(2')| <e}.

Dla poréwnania zapis kwantyfikatorowy ciaglodci w kazdym punkcie x prze-
dziatu [a, b] ma postac

Ve>0Va€la,b]30>0Va €la,b] {|lz—2'| <0 = |f(x)—f(a")] <e}.

Przy jednostajnej cigglosci liczba 6 > 0 jest uniwersalna dla wszystkich punk-
téw z € [a,b], gdy przy ciaglosci punktowej ta liczba jest dobierana indywi-
dualnie dla kazdego punktu z € [a, b].

Intuicyjnie jednostajna ciagto$¢ oznacza, ze jesli dwa argumenty funkcji
leza blisko siebie, to odpowiadajace im wartosci funkcji sa roéwniez potozone
blisko siebie, niezaleznie od potozenia tych argumentow.
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Dowéd. (nie wprost). Zaldézmy, ze warunek jednostajnej ciagtosci nie jest
spetniony. Tzn., ze istnieje liczba ¢ > 0 taka, ze dla dowolnego wyboru liczby
d > 0 znajda sie punkty =, 2’ w przedziale [a,b] takie, ze |z — 2/| < § oraz
|f(z) — f(2)] > e. W szczegolnosci dla 6, = & istnieja punkty z,, 2}, w

przedziale [a, b] spelniajace

o =) < 1f(m) — ()] > (33)

7 twierdzenia Bolzano-Weierstrassa z ciagu x,, mozna wybraé¢ zbiezny pod-
ciag ,,. Oznaczmy x = lilgn Tp,. Z plerwszego warunku w (3.3) mamy

/
Tp, — — < X < Xy, +—.
k N Tk k N

7 twierdzenia o trzech ciggach wnioskujemy, ze x = lilgn x;k 7 ciggtosci w

/

punkcie z otrzymujemy f(z,,) e flx)i f(x,,) — f(x). To oznacza, ze

f(n,)—f(y,) — 0, co stoi w sprzecznosci z drugim warunkiem w (3.3). O

Przyktady.

(a) Domknigtosé przedziatu jest istotna. Rozwazmy f(z) = I na przedziale

(0,1]. Dla @,, = & i @), = + mamy f(z,) = 2n, f(z},) = n. Zatem

Ty — o — 0, flag) — flay,) — oo
(b) Funkcja w poprzednim przykladzie byla nieograniczona. Rozwazmy
f(x) = sini na na przedziale (0,1]. Dla x, = 57— i @], = m
mamy
/

dy g — 0, f(a) = fle) = 1
(c) Jesli nachylenie wykresu funkcji jest ograniczone, tzn.

f@1) = fla2)

X1 — T2

< L7 g 7é1'27

to funkcja jest jednostajnie ciggta. Istotnie mamy wtedy

|f(z1) = f(z2)] < Llzy — 2],
Np. f(z) = z jest jednostajnie ciggta na catej prostej. Z kolei f(z) = =
nie jest jednostajnie ciggla na catej prostej, bo dla z,, = n + %, x=n
mamy &, — &, — 0 oraz flah) — f(z,) > 2.

2
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(d) Ograniczone nachylenie wykresu nie jest warunkiem koniecznym dla
jednostajnej ciagtosci. Np. funkcja f(z) = \/Mjest jednostajnie ciggta
na calej prostej mimo, ze nachylenie wykresu w poblizu punktu 0 jest
nieograniczone.

Twierdzenie 3.18 (Weierstrass). Funkcja ciggla f(x) na przedziale do-
mknietym |a, b] jest ograniczona oraz osigga swoje kresy gorny M i dolny m.
Tzn. istniejg punkty ¢ © d w przedziale |a,b] takie, ze f(c) =m i f(d) = M.

Uwaga.
m = inf f(x), M = su x).
it f(a) M= s f(z)
Dowdd. Dla liczby e = 1 istnieje liczba § > 0 taka, ze jesli |[x — 2/| < ¢,
to |f(z) — f(z')] < 1. Wybierzmy liczbe naturalng n tak, aby >~ < §. Np.
niech n = [I’TT“] + 1. Dzielimy przedzial [a,b] na n réwnych czesci punktami
ap =a+ =% dla k =0,1,...n. Oznaczmy

C =max{|f(a)|+ 1, |f(ax)| + 1, ..., |f(an)| + 1}.

Niech a < z < b. Wtedy a1 < = < a; dla pewnej liczby £ = 1,2,...,n.
Zatem

b—a
< 0.

2 —ar] < ap — a1 =

Wtedy
[f(@)| = [f(ar)] < |f(z) = flap)] < 1.

Otrzymujemy wiec

|f(@)] <[f(a)] +1<C,

czyli funkcja f jest ograniczona.
Zalézmy, nie wprost, ze f(z) < M dla wszystkich a < z < b. Rozwazmy

funkcje g(x) . Funkcja g(x) jest ciagta na przedziale [a,b]. Z

T M= fl@) T |
pierwszej czesci dowodu wynika, ze g jest ograniczona z gory, tzn.
! (r) <N
= — gz :
M=)~ T
dla pewnej statej N. Po przeksztalceniu otrzymamy
M~ f(@) > 5. cayli flx) < M-+
- xr =z 1 CZ 1 T XX e
N N
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Dalej

1
M= sup f(x)<M——

)
a<z<h N

O

co daje sprzecznosc.

Twierdzenie 3.19 (Wlasnos¢ Darboux). Funkcja ciggla na przedziale [a, b]
przyjmuje wszystkie wartosci posrednie, tzn. wartosci pomiedzy liczbami f(a)

i £(b).

Dowéd. Rozwazymy przypadek f(a) < f(b). Niech f(a) <1 < f(b). Chcemy
udowodnié, ze f(zo) = [ dla pewnego punktu z w [a, b]. Zat6zmy, nie wprost,
ze f(x) # 1 dla wszystkich x. Rozwazymy funkcje

1
9@ = =1

7 twierdzenia Weierstrassa mamy

1 —
[f(@) 1]

dla pewnej statej N. Zatem

g(xr) < N,

7 jednostajnej ciagtosci dla ¢ = % mozna znalez¢ liczbe 4, dla ktorej

-] <8 = |f(e) ~ fo)] < 1

Dzielimy przedzial na n réwnych czesci punktami ax, = a + b’T‘lk tak, aby
bea < 4. Zatem |f(ay) — flap-1] < %. Mamy f(ao) < | < f(a,). Niech k
bedzie najmniejszym wskaznikiem, dla ktorego [ < f(ax). Wtedy f(ar_1) <
[ < f(ax). Poniewaz |f(ay) — f(ar—1| < w, to |f(ar) — ] < %. Otrzymujemy

sprzecznosé z (3.4). O

Whniosek 3.20. Funkcja cigglta na przedziale domknietym przyjmuje wszyst-
kie wartosci pomiedzy swoimi kresami dolnym @ gornym.
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Dowdéd. 7 twierdzenia Weierstrassa istniejg punkty c i d takie, ze f(c¢) =m i
f(d) = M. Z wlasnosci Darboux zastosowanej do przedzialu pomiedzy ¢ i d
funkcja przyjmuje wszystkie wartosci pomiedzy m i M. O]

Przyktady.
(a) Chcemy rozwigzaé réwnanie
w(r) = 2®+22° + 2 — 3 =0.

Mamy w(0) = —3 1 w(l) = 1. Z wlasnosci Darboux w(xy) = 0 dla
pewnego punktu zy pomiedzy 0 i 1. Poniewaz w(%) < 0, to mozna
znalez¢ rozwigzanie pomiedzy % il.

(b)

sint 0<|z| <1,
T) = r
/(@) {0, x = 0.

Funkcja ma wlasno$¢ Darboux mimo, ze nie jest ciagta w punkcie 0.

Twierdzenie 3.21. Funkcja monotoniczna w przedziale [a, b] jest ciggla wte-
dy i tylko wtedy, gdy ma wtasnosé Darbouz.

Lemat 3.22. Funkcja monotoniczna posiada granice jednostronne w kazdym
punkcie.

Dowadd. Pokazemy, ze

lim f(x) = inf f(x)

r—ct x>c
dla dowolnej funkcji rosnacej. Dla x > ¢ mamy f(x) > f(c), zatem a :=
ir>1f f(z) > f(c). Dla liczby € > 0 istnieje argument xy > ¢ spelniajacy
f(xg) < a+e. Wtedy dla ¢ < < xg mamy a < f(x) < f(zg) < a+e.
Zatem |f(x) — al < e. O

Dowdd twierdzenia. Rozwazmy funkcje rosnaca f(x) i punkt ¢ wewnatrz [a, b].
Nieciagtos¢ oznacza, ze przynajmniej jedna z nieréwnosci

lim f(z) < f(c) < lim f(x)

Tr—c

jest ostra. W kazdym przypadku funkcja nie miataby wtedy wtasnosci Dar-
boux. 0
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Definicja 3.23. Méwimy, Ze funkcja f(x) jest réznowartosciowa na podzbio-
rze E C R, jesli dla dwu argumentow x1 # xo z E mamy f(x1) # f(x2).

Niech F' = {f(x) : € E} dla funkcji r6znowartosciowej. Wtedy dla
wartosci y € F' istnieje jedyny element = € FE taki, ze f(x) = y. Mozemy
okresli¢ g(y) = x. Wtedy g(f(x)) =z oraz f(g(y)) = v.

Twierdzenie 3.24. Funkcja ciggla i réznowartosciowa jest monotoniczna.

Dowaod. Zatézmy, ze f nie jest monotoniczna. To oznacza, ze mozna zna-
lez¢ trzy argumenty x; < xo < xz spetniajace f(z1) < f(z2) > f(x3) albo
f(z1) > f(x2) < f(x3). Tzn. f(x2) nie lezy pomiedzy f(z1) i f(x3). Rozwaz-
my przypadek f(z;) < f(z2) > f(z3). Oznaczmy a = max{f(z1), f(x2)}.
Z wtasnosci Darboux wartosci z przedziatu [« f(z2)] sa przyjete dwukrotnie
przez funkcje f, raz w przedziale (z1, x5) i drugi raz w przedziale (xq, z3). O

Twierdzenie 3.25 (o funkcji odwrotnej). Jesli funkcja f(x) jest ciggla i
réznowartosciowa na przedziale |a, b], to funkcja odwrotna g(y) jest ciggla na
przedziale [m, M|, gdzie m = inf f(x) oraz M = sup f(z).
a<z<h aLz<h

Dowdd. Wiemy, ze f(x) jest SciSle monotoniczna. Przyjmijmy, ze f(x) jest
rosngca. Wtedy funkcja odwrotna tez jest rosnaca na przedziale [m, M]. Dla
ciagtosci wystarczy zatem pokazaé¢ wlasnos¢ Darboux. Niech y; < yo oraz
9(y1) < ¢ < g(y2). Trzeba znalezé argument y taki, ze g(y) = c¢. Naktadamy
na nier6wnos¢ funkcje f i otrzymujemy

= flaly)) < fle) < fg(2)) = 2.

~——
Y

O

Dalej g(y) = g(f(c)) = c.

Przyktad. Dla funkcji f(z) = 2™, 0 < x < M funkcja odwrotna jest g(y) =
VY, 0 <y < VM. Poniewaz M jest dowolng dodatnig liczba, to g(y) = /¥y
jest ciagta na [0, 00).
3.6 Scisle wprowadzenie funkcji wyktadniczej
Ustalmy liczbe a > 1. Dla liczb wymiernych w € Q okreslamy

a“’:(ap)é, jes’liwzg, qgeN,peZ.

Wynik nie zalezy od przedstawienia liczby w tej postaci.
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Definicja 3.26. Podzbior E C R nazywamy gestym jesl dla dowolnej liczby
x € R istnieje ciqg liczb a, € E zbiezny do x.

Zbior liczby wymiernych jest gesty w R. Rzeczywiscie, dla x € R mamy
nr — 1 < [nz] < nx. Zatem

_ 1 _ [na]
x n<n<x.

To oznacza, ze [n—f] — .
n

Lemat 3.27. Jesli funkcje g(x) i h(x) sq ciggle na R oraz g(a) = h(a) dla
punktow a z gestego podzbioru E C R, to g(x) = h(x).

Dowadd. Dla x € R bierzemy ciag a, punktéow z E zbiezny do x. Wtedy

g(x) = li};ﬂg(an) = lim h(a,) = h(z).

Okreslamy
F(z) = supa®.

weQ
w<x

Wtedy F(x) jest funkcja $cisle rosnaca. Istotnie, niech x; < z5. Mozna zna-
lezé liczby wymierne wq, ws takie, ze x1 < wy; < we < x9. Wtedy

F(z1) < a™ < a" < F(x,).

Zbadamy ciaglosé funkcji F'(z). Dla liczby x istnieje ciag liczb wymiernych
w, spetniajacy
Wy, < Ty < Wy, + %
_ [nzo]

Np. w,, = — % Obliczamy

n

2
lim F(z) = lim F(w, + 2) = lim a’tn

I—>$g

= lim a™" lign(cﬂ)% = lima"" = lim F(z).

T—T

Lemat 3.28. F(z +y) = F(x)F(y).
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Dowdd. Niech w, T, Uy —— Y, gdzie wy,, v, € Q. Wtedy
F(z +y) = lim F(w, +v,) = lima"" ™" = lima"”"a™
= lim a*" lim ¢ = lim F(w,) lim F(v,) = F(z)F(y).
UJ

F(z) nazywamy funkcja wyktadnicza. Funkcja wyktadnicza ma nastepu-
jace wlasnosci (dla a > 1).

(1) Fz+y) = F(z)F(y).
(2) F(z) < F(y), dla = < y.
(3) F(1) = a.

(4) F(z) jest ciagha.

Mozna udowodnié, ze powyzsze wlasnosci okreslajg funkcje wyktadniczg w
sposéb jednoznaczny. Przyjmujemy oznaczenie F(x) = a®. Mamy

= 0.

: . ) 1
lim ¢* =00, lim o= lim

T—00 T——00 r——00 %

Funkcje odwrotna, okreslona na potprostej (0,00) nazywamy logarytmem
przy podstawie a i oznaczamy symbolem log, .
4 Ciagi i szeregi funkcyjne
Definicja 4.1. Niech f,, bedzie ciggiem funkcji okreslonych na A C R, np.
A =[a,b], [a,00), (a,b). Méwimy, Ze cigg f, jest zbiezny punktowo do funkcji
f, jesli dla kazdego punktu x ze zbioru A mamy f,(z) — f(z).

W zapisie kwantyfikatorowym definicja przybiera postaé

Ve>0Vexe AINVn>N{|f.(z) - f(x)] <e}

Prog N zalezy od punktu z i od e.
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Definicja 4.2. Mowimy, Ze cigg f, jest zbieiny jednostagnie do funkcji f
na zbiorze A, jesli

Ve>03aNVee AVn> N {|fu(z) — f(z)] <e}.
Uzywamy zapisu f, = f.

Tym razem prog N nie zalezy od x, jest uniwersalny dla wszystkich punk-
tow ze zbioru A.
Co oznacza warunek

Vee AVn> N{|f.(zx) = f(x)|<e}?
Po przeksztatceniu otrzymamy
Vee AVn> N {f(x) —e < fulz) < f(x) +£}.

Tzn. od pewnego miejsca (dla n > N) wykresy funkcji f,(z) leza w pasie o
promieniu € wokol wykresu funkcji f(z).

Przyktlad. f,(z) =2", 0 <z < 1.

limz" =
n

{0 0<x<1u:f@»

1, z=1.

Czy mozliwa jest zbieznos¢ jednostajna ? Niech ¢ = % W pasie o promieniu
% wokot wykresu funkeji f nie ma wykresu zadnej funkcji ciagte;j.

Niech f,(z) = 2™, 0 < z < a < 1. Wtedy ciag f, jest jednostajnie zbiezny
do 0. Rzeczywidcie, dla ¢ > 0 istnieje liczba naturalna N, dla ktérej oV < e.
Wtedy dlan > N i0 <z < a mamy

0< fulz) =2"<a" <ad" <e.

Przyktad.
nx 0<z< %,
fa@)=12—nz L<z<2
0 2<r< L

Mamy f,(x) — 0 dla 0 < x < 1. Nie ma jednak zbieznosci jednostajnej,

bo f.(1) = 1. W pasie o promieniu ; wokol zera nie ma wykresu zadnej z

2
funkcji f,.
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Twierdzenie 4.3. Granica jednostajnie zbieinego ciggu funkcyi ciggtych jest
funkcjq cigglq.

Dowdd. Zalézmy, ze ciag f.(z) jest zbiezny jednostajnie do funkcji f(x).
Sprawdzamy ciaglos¢ funkcji f w punkcie xg. Ustalmy liczbe € > 0. Z za-
tozenia istnieje prog N, taki, ze dla n > N mamy |f.(z) — f(z)] < 5. W
szczegblnosci .

(@) = fl@)] < 5

Z ciagtosci funkcji fy 1 istnieje liczba § > 0 taka, ze dla |x — 2| < 6 mamy

’fNJrl(x) - fN+1($U0)| < %

Zatem dla |z — xo| < § otrzymujemy

|f(z)=f(zo)| < |f (@)= (@) [+ v (@) = v (@o) [+ fva (o) = fvra (o)

<§—|—E—|—E—5
3 3 3 7

]

Whniosek 4.4. Jesli cigg funkcji cigglych f,, jest zbiezny punktowo do funkcji
f, ale f nie jest ciggla, to cigg f, nie jest zbieiny jednostagnie.

Przyktad. f(z) = 2", 0 < x < 1. Granica punktowa nie jest funkcja ciagla.

Twierdzenie 4.5. Zatozmy, Ze istnieje cigg liczb a, > 0 taki, Ze a, — 0
oraz
\fulz) = f(2)] < a,, xc€A.

Wtedy ciqg f, jest zbiezny do funkcji f jednostajnie na zbiorze A.

Przyktady.
1
(a) fu(z) = T s’ z > 0. Mamy f,(0) = 0. Dla x > 0 szacujemy
nx
1
falz) < L~ 2 Zatem
nr n

0< fulz) <
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(b) fn(x):x”—x"+1,0<x<1.D1a0<x<1—ﬁmamy

)"

0< fulz)=2"(1—2) <2" < (1-—

S

Zkoleidlal— L <z<1

n

o 9

< falz) =2"(1—-2)<1—-2<

5

Zatem dla 0 < x < 1 uzyskujemy

0< fale) (1= )"+ 7 — 0,

n

bo
(1= = [ - v

Twierdzenie 4.6 (warunek Cauchy’ego zbieznosci jednostajnej). Cigg funk-
cji fn(x) jest jednostajnie zbieiny na zbiorze A wtedy i tylko wtedy, gdy

Ve>03INVaexe AVn,m> N {|fu(z) — f(x)] <e}.
Uwaga. Intuicyjnie oznacza to, ze jesli n i m sg duze, to wykresy funkcji f,
i fn leza blisko siebie.

Dowdd. (<). Z zalozenia dla kazdego punktu x z A ciag liczbowy f,(z)
spelia warunek Cauchy’ego. Zatem f,(x) jest zbiezny. Oznaczmy f(r) =
ligbn fa(z). Checemy pokazaé, ze f, = f. Niech € > 0. Z zalozenia istnieje prog

N taki, ze dla n,m > N mamy
|fu(z) = fm(@)] <5, z €A
Wtedy dla n > N otrzymujemy
[fn(2) = f(2)] = lim [ fo(2) = fm(2)] < § <e.
O

Twierdzenie 4.7 (Dini). Niech f,(x) bedzie monotonicznym ciggiem funk-
cji ciaglych okreslonych na przedziale [a,b], tzn. spelniony jest jeden z dwu
warunkow:
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(a) fo(z) < froy1(z) dlaa <z <b neN.
(b) fu(z) = fori(z) dlaa <x<b néeN.

Zalozmy, ze f, jest zbieiny punktowo do funkcji f cigglej na [a,b]. Wtedy
zbieinosé f, do f jest jednostajna.

Dowdd. Zatézmy, ze f,(x) / f(z). Oznaczmy g, (x) = f(x) — fu(x). Wtedy
gn(2) \ 0. Trzeba pokazac ze gn :; 0. Zal6zmy nie wprost, ze g, ﬁ 0.

To oznacza ze istnieje liczba € > 0 taka ze dla dowolnego wyboru hczby
naturalnej N istnieje liczba naturalna n > N oraz punkt xy w [a, ] takie,
ze gn(zy) = €. Wtedy

gnii(en) > galan) > ¢, dlan> N,

Na podstawie twierdzenia Bolzano-Weierstrassa mozemy wybra¢ podciag
zbiezny zy, . Oznaczmy o = lilgn zy,. Wtedy dla m < Nj, otrzymujemy

Im(TN,) 2 gns1(TN,) = €.

Przechodzimy do granicy, gdy k — oo aby uzyskac g,,(x¢) = lilgn gm(znN,) > €.

Ale g (7o) — 0, co daje sprzecznosc.

Definicja 4.8. Mowimy, Ze szereg an(x) jest jednostajnie zbiezny dla

n=1

x € A, jesli cigg sum czesSciowych s, (z Z fr(x) jest jednostajnie zbiezny.

Przyktad. Z ", 0 <z < 5. Mamy

n=1

<L
2"

n
p =T
= [ h—

Sprawdzamy zbiezno$¢ jednostajng

1 1
T ™t on+1 1

S(I) 11—z 11—z 1-— N
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Twierdzenie 4.9 (Warunek Cauchy’ego). Szereg Y fo(z) jest jednostajnie
n=1

zbiezny wtedy 1 tylko wtedy, gdy

Ve>03INVr e AVn>m >N {|frs1(2) + frnsa(z) + ... + fulz)| < e}

Dowad.
$n(T) = sm(2) = frns1(2) + frpa(z) + .. 4 ful2).
O

Twierdzenie 4.10 (kryterium Weierstrassa o majoryzacji). Jesli szereg licz-
oo

bowy > a, o wyrazach nieujemnych jest zbiezny oraz | fo(2)| < a, dlax € A,
n=1

to szereg Z fu(z) jest zbiezny jednostajnie i bezwzglednie dla x € A.
n=1

Dowadd. Sprawdzamy warunek Cauchy’ego. Dla n > m mamy

| frm41(@) + fint2(@) + .+ ful@)] < [frr (@) + frs2(@)] + ...+ [ful2)]
S Umt1 + Ay + ..o+ Ay

Teze¢ uzyskujemy z warunku Cauchy’ego dla szeregu Z Q. [

n=1

[e.e]
Twierdzenie 4.11. Jesli funkcje f,(x) sq ciggle oraz szereq Y fo(x) jest

n=1
zbiezny jednostajnie na A, to suma szeregu s(xr) = Z ful(z) jest funkcjq
n=1

cigglq na A.

n

Przyktad. Z x—| Szereg jest zbiezny dla wszystkich wartosci x np. z kry-
“— n!

terium d’Alemberta. Rozwazmy |z| < a. Wtedy

n n

i a

ol

n!
7, kryterium Weierstrassa szereg jest zbiezny jednostajnie i bezwzglednie w
przedziale [—a, a]. Suma szeregu reprezentuje wiec funkcje ciagta na R, bo a
jest dowolng dodatnig liczbg. Oznaczmy

OO:L,TL

exp(z) =) —.
= n!
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Wtedy exp(0) = 1 oraz

1 1 1 1
eXp(l):1+ﬂ+i+§+...+m+...—

|
o

Korzystajac z mnozenia szeregéw metoda Cauchy’ego otrzymamy

expl)exply) =3 13 =3 >
(

n=0 = n=0 k=0
=33 (Ve = S ey
n=0 """ k=0 n=0 )

W oparciu o podrozdziat 3.6 z whasnosci funkeji exp(z) wynika, ze exp(z) =
e”. Udowodnilismy wiegc, ze

- o mn
e’ = —.
— n!
Przyktlady.
> sin nx
(o) fa) =3 "5 w e R
n=1
sin nx 1
n2 | S p2

Zatem f(x) jest funkcja ciagla.

>, sinnx
(b) g(z) = >
n=1
Dirichleta. Mozna pokazaé¢ analizujac dowod twierdzenia Dirichleta i
pierwszy przyktad po tym twierdzeniu, ze zbieznos¢ jest jednostajna
dla |z — 2k7| > ¢ > 0.

, x € R. Szereg jest zbiezny dla x € R z kryterium

o0
Definicja 4.12. Szeregi postaci Z a,x" nazywamy potegowymi.

n=0

Przyklad. Szereg ) z" jest zbiezny tylko dla |z| < 1. Méwimy wtedy, ze
n=1
liczba 1 jest promieniem zbieznosci tego szeregu.
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[e.o]

Definicja 4.13. Promieniem zbiezZnosci szerequ Z a,x" nazywamy kres gor-
n=0
ny wartosci bezwglednych liczb x, dla ktorych szereg jest zbiezny.

= (—1)!

(a) >

n=1

. Znajdziemy promien zbieznosci z kryterium d’Alemberta.

n
(_1)n+1xn

—1)nt2entl 1
s = (14 2) bl o lal.
n+1 n n

Dla |z| < 1 szereg jest bezwzglednie zbiezny a dla |z| > 1 jest rozbiezny.
Promien zbiezno$ci wynosi 1.

e} n

(b) > — - Promien zbieznosci wynosi oo.
n=0 """
o
(¢) Y nlz™. Promieni zbieznosci wynosi 0.
n=0
o
Twierdzenie 4.14. Jesli R > 0 jest promieniem zbieznosci szerequ Z apx",
n=0

to szereg jest zbiezny dla |x| < R i rozbiezny dla |z| > R. Ponadto zbieznosé
jest jednostajna w kazdym przedziale [—r,r] dla 0 < r < R.

Dowdd. 7 okredlenia liczby R szereg jest rozbiezny dla |z| > R. Kazda liczba
|| < R lezy w pewnym przedziale [—r,r] dla r < R, (np. r = |z|). Z

okreslenia promienia zbieznosci istnieje liczba g spelniajaca r < |zg] < R
oo
oraz szereg Y  a,xy jest zbiezny. Wtedy |a,zf| — 0. Zatem |a,zf| < M
n
n=0

dla pewnej dodatniej liczby M. Niech Niech |z| < r. Wtedy

" (T) |
i |JZO|
Ale IJTI < 1. Zatem z kryterium Weierstrassa uzyskujemy jednostajng i bez-

wzgledna zbiezno$é¢ w przedziale [—r, r]. O

|anxn| = |anxg|

Uwaga. Z dowodu wynika, ze

R = sup {|a:] : Z a,x" jest zbieZny}

n=0

= sup{|z| : a,z" jest ograniczony} (4.1)
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‘ 1 , : o ,
Twierdzenie 4.15. (i) R = ————, 0 ile granica wyraZenia w mia-
lim,, {/|a,|

nowniku istnieje.

(i) R =

, 0 tle granica wyrazenia w mianowniku istnieje.

W obu przypadkach dopuszczamy granice rowng 0 lub oo. Wtedy R = oo
lub R = 0, odpowiednio.

Przyktlady.
o x?’l/ . . T B
(a) T;ﬁ Mamy lim (/-5 = 1.
=1 2 . . , .
(b) Z Q—nx” . Wtedy ag914 = 0. Nie mozemy zastosowaé¢ poprzedniego
n=0

twierdzenia. Stosujemy kryterium Cauchy’ego

1 . 0 |zl <1,
\n/27\$’"2 = glal* = 3 lzl=1

oo x| > 1.
Zatem R = 1.
oo .nl
(c) Y I—' Z kryterium d’Alemberta
L
DL || ! L 0 |z <1,
(n+ 1! | n+1 noloo x| > 1.

Uwaga. Mozna udowodni¢, ze R = Rzeczywiscie, niech A =

1
lim sup 1Y |an|.
{]z| : apx™ jest ograniczony}. Dla z € A mamy |a,z"| < M dla pewnej liczby
M > 0. Zatem
Ml/n
S fe
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Niech o oznacza najwiekszy punkt skupienia ciagu |a, |*/". Wtedy |a,, |*/™ —

a dla pewnego podciagu liczba naturalnych ny. Zatem

MY/ 1
<—— — =
’x‘ X |a/nk‘1/nk T Q

Na podstawie (4.1) otrzymujemy

1 1
R —=——"7-—"-—.
S o limsup|a,|V/"
7 kolei jesli
1
> e —
= lim sup |a,|'/™’

to lim sup |anx”|1/" > 1. To oznacza, ze ciag a,x" nie jest ograniczony.

Twierdzenie 4.16. Suma szeregu s(x Zana: jest funkcjg ciggle w
n=0

przedziale (—R, R).
Dowaéd. s,(z) = Zakxk jest funkcja ciagla. Wiemy, ze s, () :i s(z) dla

—r <x<rdla dowolneJ liczby 0 < r < R. Stad otrzymujemy teZQ O

Twierdzenie 4.17 (Abel). Jesli szereg f(x Zanx jest zbiezny dla

n=0
xr = a, to funkcja f(x) jest lewostronnie ciggla w punkcie x = a jesli a > 0 1
prawostronnie ciggta, jesli a < 0.

Dowéd. Wystarczy rozwazy¢ przypadek a = 1. Chcemy udowodni¢, ze

lim f(x Z .-

rz—1—

Oznaczmy s, = Z apis= Z a,. Wtedy (przyjmujac s_; = 0 otrzymujemy
k=0 n=0

n n

n n—1 n
= Z spt — Z spat = (1 —2) Z spr® + s,z
k=0 k=0

k=0
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Dla 0 < x < 1 przechodzimy do granicy w podkreslonych wyrazeniach.
Poniewaz ciag s, jest ograniczony, to s,z" ! — 0. Zatem

o0 o
=> apz" =(1—xz)) spa”
n=0 n=0

Dalej
@)= f1) = (1=0) 3 s = s
(1—2) anx —(1—-2) st =(1—x) i

Otrzymujemy wiec

N o0
|f(@) = fOI< A=) [sp—sla" +(1—x) > |sn—s|a
n=0 n=N+1
Dla ¢ > 0 istnieje liczba naturalna N taka, ze |s, — s| < /2. Ciag s, jest
ograniczony wiec |s,| < M dla pewnej liczby M > 0. Wtedy

[e.e]

|f<x)—f(1)|<2M(1—$)Z_:0$"_|_%(1_$)Z‘;xn
<2M(N +1)(1 —x) +

£
2°

Jesli o — 1] < s to [F(@) — F(D)] <e. O

5 Pochodne

Przez punkt P i Q # P okregu przeprowadzamy sieczng. Gdy punkt @)
zbliza si¢ do punktu P, to przyjmujemy, ze graniczne polozenie siecznych
okresla potozenie stycznej do okregu w punkcie P. Bedziemy zajmowaé sie
stycznymi do wykresow funkcji y = f(z). Checemy znalezé styczng do wykresu
w punkcie (a, f(a)). Wybierzmy inny punkt wykresu (z, f(x)). Nachylenie
(wspo6tezynnik kierunkowy) siecznej przechodzacej przez punkty (a, f(a)) i

(z, f(x)) wynosi
f(&) - fla)

r—a
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Zatem nachylenie stycznej wyraza si¢ wzorem

i 1@) = )

r—a T — Q

Wyrazenie pod granicg nazywamy ilorazem réznicowym.

Obiekt porusza sie po linii pionowej i jego wysoko$¢ w chwili ¢t wynosi
h(t). Chcemy obliczy¢ predkosé w chwili t = a. Wybieramy moment czasu ¢
blisko a, ale t # a (np. t > a). Srednia predko$é w przedziale czasu od a do
t wynosi

h(t) — h(a)
t—a
Predkos¢ chwilowa okreslona jest wzorem
h(t) —h
lign 70 = @)

t—ma  t—a

Definicja 5.1. Mdéwimy, Ze funkcja f(z) okreslona w pewnym przedziale wo-
kot punktu a ma pochodng w tym punkcie, jesli istnieje granica

) — tim 1) = 1@

e —q

Uwaga. Liczba f’(a) okresla chwilowe tempo zmiany wartosci funkcji w
punkcie a.

Jedli f'(a) istnieje, to rownanie stycznej do wykresu funkcji y = f(z) w
punkcie (a, f(a)) ma postaé

y— fla) = f(a)(z — a).
Przyktad. Chcemy znalezé réwnanie stycznej do wykresu y = /& w punkcie

(2,4/2). Mamy

N R e S S U
v=2 (Ve V2(Vrt+v2)  VEtv2 e 2v2

Roéwnanie stycznej to
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Definicja 5.2. Jezeli funkcja f(x) jest okreslona w przedziale [a,a + ) (lub
(a — 0,a)) oraz istnieje granica

(@) = tim 12 =10 ( lub f/(a) = lim fo)"j(a)>,
T—a~ r—a
to mowimy, Ze istnieje pochodna prawostronna (lub lewostronna) w punkcie

a.

Przyktad. Zrzucamy kamien z wysokosci 20m. Jaka jest predkos¢ kamienia
w chwili uderzenia w ziemie 7 Mamy

20 — 512 0<t<2,
h(t) =
0 t>2.
Trzeba obliczyé¢ b’ (2).
2 20 — 5¢t? — 2
B (2) = lim h(t) — n(2) _ 0—5¢ _ lim 5(t—2)(t + )_20'
t—2— t— 2 t—2— — t—2— f/—/?

Oczywiscie b/, (2) = 0.

Twierdzenie 5.3. Jesli funkcja f(x) ma pochodng w punkcie a, to jest w
tym punkcie ciggla.

Dowad.
fo) — fa) = TOTO o o) g
No
N i)

Twierdzenie 5.4. Zaldzmy, ze f'(a) i ¢'(a) istniejg. Wtedy
(1) (f £9)(a) = f'(a) £ g'(a).
(i) (fg9)'(a) = f'(a)g(a) + f(a)g (a).
NGAY o) = £ (@g(a) — fa)g'(a)
@i (1) (o




54 Analiza matematyczna ISIM I

Dowad. (iii)

Przyktlady.
(a) f(@)=c. f'(a)=0.
(b) fulx)=2"n> 1.

" —a”

fr(a) = lim = lim (2" ' +az" 2 ++a’2" P+ 4" Prta )
=ad"'+ad" '+, +ad" =na"
n skladnikéw
(©) gule) =27 = ——, 2 £0
¢) gp(z)=a"=——
fu()
1\ —fix) —na"!
/ n —n—1
gn(ﬂf = = = = —Nnx .
) (fn<x>> Jule? ~ am

Uwaga. Przyktady (b) i (c) daja (z") = na" ! dlan € Z.
Czasami stosuje si¢ inny zapis dla pochodnej. Przyjmujac h = x—a mamy
h) —
f(a) = pim O T10)

h—0

Ile wynosi lim n? [f(2 + %) — f(2)} ? To wyrazenie jest réwne
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(d)

6achh —e* eh -1
T\ __ 12 — LT — T
(e7) = fim — clim— =
-1
(e) (sinz) = cosz. Rzeczywiscie
sin(z +h) —sinz _ sinz(cosh —1) 4 coswsinh
h - h
. cosh—1 sin b
=S8Ny ———— +COsT —> COS X.
h h h—0
—_————
—0 7
cosh—1  cos?h—1 sinh  h
pr— = — _
h h(cosh +1) h? cosh+1 h—0

Uwaga. Niech f(z) = g(x +b). Wtedy f'(x) = ¢'(x + b). Istotnie

() = lim L@ EO) Fh) =gl +0)

o
lim . =g (x+0).
(f) (cosz)' = —sinx, bo cosx = sin(z + §) zatem
(cosx) = sin'(z + g) = cos(z + g) = —sinuz.
sinz\’ cos’z +sin’z b s
(g) (tgz) = ( ) = 5 =4 cos?x T # — +kn.
cos T cos® x 1+te2a 2

1
(h) z >0, (logz)" = —. Uzasadnienie:
T

. log(z4+h)—logz 1 . log(1+2) 1 log(l+t)
lim = — lim ———*= lim ———~+
h—0 h T h—O0 b T t—0

Niech u = log(1 +t). Wtedy v — 0, gdy ¢t — 0. Zatem

log(1+t¢
limM = lim v 1.
t—0 t u—0 g% — 1
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Twierdzenie 5.5 (Reguta tancucha). Jesli funkcja f(x) jest rézniczkowalna
w punkcie x = a, natomiast funkcja g(y) jest rézniczkowalna w punkcie b =
f(a), to funkcja ztoZona (g o f)(z) = g(f(x)) jest rozniczkowalna w punkcie
T =a oraz

(g0 f)(a) =g'(b)f (a) = g'(f(a))['(a). (5.1)

Dowdd. Niesciste, ale obrazowe uzasadnienie jest nastepujace.

g(f(x)) —9(f(a)) _ g(f(x)) = 9(f(a)) f(z) - f(a)7

r—a f(x) = f(a) r—a

przy zatozeniu f(z) # f(a). Dla x — a mamy f(z) — f(a). Zatem pierwszy
utamek dazy do ¢'(f(a)) a drugi do f'(a).
Przejdziemy do $cistego dowodu. Z zatozenia mamy

Jw = f(@) +ul), u(z) =0
Podobnie b
PZI) — (1) + olw). o) — 0.

Mamy zatem

f@) = fla) = (x — a) [f'(a) +

9(y) —g(b) = (y =) [g'(b) + v(y)]-
Podstawmy y = f(x) i b= f(a).

9(f(x)) = g(f(a)) = [f(z) = f(a)llg'(f(a)) + v(f(x))]
= (z = a)[f(a) + u(@)]lg'(f(a)) + v(f(2))].

Otrzymamy

Czyli

D = ITEO _ () 4 ()l () + ()]
Gdy = — a, to u(x) — 0. Ponadto y = f(z) — f(a) = b. Zatem v(f(z)) —
0. Ostatecznie w granicy otrzymujemy f’(a)g'(f(a)). O

Uwaga. Wzor (5.1) mozna tez zapisa¢ w postaci

(go f)(z) =g () f'(x), gdzey=f(z).

Przyktady.
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(a) Obliczy¢ (logsinx)’.

y= f(zr) =sinz  f'(xr) =cosz
1
9(y) = logy 9 =
Zatem
Y 1
(logsinz) = —— cosx = ctg .

(b) h(x) = cos(z®). h'(x) = — sin(x°) 5z*.
5.1 Zapis Leibniza

Ay = f(z + Az) — f(z).

Ay
Iloraz A reprezentuje stosunek zmiany wartosci y do zmiany wartosci x.
T

Ay dy
/
f'(z) = lglﬁm0 T dy

Prawa strona jest oznaczeniem pochodnej w zapisie Leibniza.
Zobaczmy jak wyglada reguta tancucha w tym zapisie. Wprowadzamy
oznaczenia u = f(x), y = g(u). Wtedy

du_

) Y _ gy = g(f()).

du y=f(z)
Dalej

Wzér (5.1) przyjmuje postaé
dy dy du B
de  du dx’ u=f(z)

Przyktady.

(a) y = sin®z. Niech u = sinz, y = u®. Wtedy
dy dy du

2 =2 —8u"cosx = 8sin’ rcoszx.

dr  du dx
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(b) y = log(cos(z?* + 1)). Niech u = 2*> + 1, v = cosu, y = log v.

dy _dydvdu_1

dr  dvdudx v

2z sin(z? + 1)
cos(z2+1)

(—sinu) 2z =

Definicja 5.6. Mowimy, Ze funkcja f(x) jest réiniczkowalna w przedziale
(a,b) jesli f'(x) istnieje w kazdym punkcie x z (a,b). Méwimy, Ze funkcja
f(x) jest rézniczkowalna w przedziale [a,b] jesli dodatkowo istniejq f', (a) oraz

JL(b).
Przyktady.

o1
rsin x#0,

(a) fx) =

0 x = 0.
Dla x # 0 pochodna istnieje i wynosi
1 —1 1 1 1 1
f'(x) =sin ~ + 2 — cos — = sin — — ~ cos —.
T T T r x

Sprawdzimy istnienie pochodnej w 0.

f@)—f0) _ 1

Otrzymane wyrazenie nie ma granicy, gdy x — 0.

(b) flz) = {gQSini x%g, Dla = # 0 mamy
r=0.
f'(z) = 2xsin i oS ;
Dalej
f(x) — f(0)

= zsin — — 0.
xr xr x—0

Zatem

2rsinlcost x#0
/Q? — T T )
/(@) {0 x=0.

Zauwazmy, ze funkcja f'(z) nie ma granicy w punkcie 0.
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Twierdzenie 5.7. Niech g oznacza funkcje odwrotng do funkcy f. Zaloz-
my, ze f'(a) istnieje oraz f'(a) # 0. Wtedy funkcja g jest rézniczkowalna w
punkcie b = f(a) oraz

s 1
70 = pay
Uwaga. Przy oznaczeniach g = =% a = f~1(b) mamy
—1\/ o 1
Oy
Dowdd. Dla y = f(z) mamy
9ly) —gb) _ xz—a

y=b  fl@) = fla)

Gdy y — b, to z ciagltosci funkeji g w punkcie b otrzymujemy g(y) — g(b),
czyli © — a. Zatem

i 9W) —9(0) _ 1 _ 1
yb o y—b ema flr) = fla)  fla)’

70 PN S S

Znajdziemy posta¢ wzoru na pochodng funkcji odwrotnej w zapisie Leib-
niza. Dla y = f(x) i z = ¢g(y) mamy

dy o dx o
7=/ (z), a9 (y)
Zatem
de _ 1
dy dy”
dx

Przyktady.
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(a) y =tgx, x = arctgy. Wtedy

de 1 1 1
dy dy  1+4+tg?x  1+y*
dx
W szczegdlnosci
(arctst)| =
arc =—.
& t=1 2
(b) (arcsinz)’ = —=—==. Rzeczywiicie, niech y = sinz, —§ < x < 7.

V1—a?

Wtedy o = arcsiny, —1 < y < 1. Zatem

1 1 1 1
(arcsiny) = —— = = = ‘
sinfx  cosx /1 —sin?z V1-—192

W szczegélnosei (arcsinz)’| = 1.
=0
Jesli a jest katem nachylenia stycznej do wykresu funkcji y = f(x) w
punkcie (a, f(a)), to f'(a) = tg a. Przy zamianie z i y rolami kat 8 = § — «
okresla nachylenie wykresu x = ¢(y) (czyli tego samego wykresu) w punkcie
(9(b),) = (a, f(a)). Zatem

1Y — t0 B — to (T — o) — N
g'(b) =tg B =tg (5 a)—ctgoz—tga—f,(a>

5.2 Maxima 1 minima

Definicja 5.8. Zaldimy, ze funkcja f(x) jest okreslona w otoczeniu punktu
a i w pewnym przedziale (a — 0,a + §) mamy f(x) < f(a). Mowimy wtedy,
ze [ posiada lokalne maksimum w punkcie a. Jesli nierownosé jest ostra dla
x # a z przedziatu (a — 0,a + 0), to mamy do czynienia ze Scistym lokalnym
maksimum. Podobnie okresla sie lokalne minimum @ Sciste lokalne minimum.

Twierdzenie 5.9. Zalézmy, Ze funkcja f(x) jest rézniczkowalna i posiada
lokalne ekstremum w punkcie a. Wtedy f'(a) = 0.

Dowdéd. Zatézmy, ze w a wystepuje lokalne minimum. Wtedy dla a < z <

a + 0 mamy
f(z) — f(a)

r —a

> 0.
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Zatem

z—a™t r—a
Dla a — 6 < x < a mamy

fo) - @) _
r—a

czyli

z—at Tr—a
Stad f'(a) = 0. O

Definicja 5.10. Punktami krytycznym funkcji nazywamy punkty, w ktorych
pochodna nie istnieje lub istnieje i wtedy jest réwna 0 (punkty stacjonarne).

5.3 Metoda znajdowania wartosci najwiekszej i naj-
mniejszej funkcji ciaglej na przedziale [a, b]
Z twierdzenia Weierstrassa wiemy, ze istnieja punkty c i d w przedziale [a, b]
takie, ze
fle)= min fz),  f(d) = max f(z).

Zajmiemy si¢ potozeniem punktu c. Mamy nastepujace mozliwosci.
1. ¢=a lub ¢ = b, tzn. ¢ jest jednym z koncow przedziatu.
2.a<c<hb.

2(a) Pochodna w ¢ nie istnieje.
2(b) Pochodna w ¢ istnieje i f'(c) = 0, bo ¢ jest w szczegdlnosci mini-

mum lokalnym.

Reasumujac, wartosci m i M sa przyjete na koncach przedziatu lub w jakichs
punktach krytycznych. Aby wyznaczy¢ m i M wykonujemy nastepujgce czyn-
nosci.

(a) Znajdujemy wszystkie punkty krytyczne funkcji.

(b) Obliczamy wartosci funkcji w punktach krytycznych i na konicach prze-
dziatu.
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(c) Najwieksza z otrzymanych wartosci jest rowna M, a najmniejsza to m.

Przyktad. f(z) = 2%/3 — 2 = (2*)'/3 — z, [~1,1]. Obliczamy
f(z) = $(z*) 7232z — 1, x # 0.

Sprawdzamy istnienie pochodnej w 0.

f@) = fO) _ P -z Ty T

X X — 0. ¢]
z—0t

Zatem 0 jest punktem krytycznym. Rozwiazujemy réwnanie f'(z) = 0. Czyli

?)(1:2)2/39(: —1=0.

Stad x = %. Mamy
F(=1) =2, f(1) =0, f(0) =0, f() =3

Zatem m =01 M = 2.

Twierdzenie 5.11 (Rolle). Niech f(x) bedzie funkcjq ciggle na [a,b] i 16z
niczkowalng w (a,b). Jesli f(a) = f(b), to f'(c) = 0, w pewnym punkcie
a<c<hb.

Dowdd. Jedli f jest stala, tzn. f(z) = f(a), to f'(x) = 0. Jedli f nie jest stala,
to m < M. Zatem warto$¢ m lub M jest przyjeta w punkcie wewnetrznym
c. Ale wtedy f’(c) = 0. O

Twierdzenie 5.12 (Cauchy). Funkcje f(x) i g(z) sq ciggle w [a,b] i 16z
niczkowalne w (a,b), przy czym ¢'(x) # 0, dla a < x < b. Wtedy

f(b) = fla) _ f'(¢)

g(b) —g(a)  g(c)

dla pewnego punktu c, a < ¢ < b.
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Dowdd. Mamy g(a) # g(b), bo gdyby g(a) = g(b), to z twierdzenia Rolle’a
mielibysmy ¢'(¢) = 0 dla pewnego punktu a < ¢ < b. Okre$lmy funkcje

—oi— < lg(x) — g(a)].

Wtedy h(a) = h(b). Z twierdzenia Rolle’a otrzymujemy h'(c) = 0 dla pewngo
a<c<b Tzn.

f(0) = f(a) ,
0=—f"(c)+ J(c).
ANTORFOR
Po przeksztateceniu otrzymujemy teze. O]

Twierdzenie 5.13 (Lagrange, o wartosci sredniej). Jesli f(x) jest funkcjg
ciggle na [a,b] i rézniczkowalng w (a,b), to dla pewnego punktu a < ¢ < b

mamy
f(b) B f(a) _ f/(C)
b—a ‘
Dowéd. Stosujemy twierdzenie Cauchy’ego dla g(x) = z. O
Uwaga. Wyrazenie w jest wspotezynnikiem nachylenia siecznej prze-

chodzacej przez punkty (a, f(a)) i (b, f(b). Z kolei f'(c) jest wspolezynnikiem
nachylenia stycznej do wykresu w punkcie (¢, f(c¢)). Twierdzenie Lagrange’a
mowi zatem, ze w pewnym punkcie styczna do wykresu jest roéwnolegta do
siecznej.

Whniosek 5.14. Jesli f'(z) = 0 dla wszystkich a < x < b, to funkcja f(x)
jest stata.

Dowdéd. Niech a < x,y < b. Mozemy przyja¢ z < y. Wtedy

y—x
dla pewnego punktu x < z < y. Zatem f(z) = f(y). O

Whniosek 5.15. Jesli f'(z) = ¢'(z) dlaa <z < b, to f(z) = g(x) + ¢ dla
pewnej stalej c.

Dowéd. Dla h(zx) = f(z) — g(z) mamy h'(x) = 0, zatem h(x) = c. O
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Twierdzenie 5.16. Jesli f'(z) > 0 dla a < x < b, to f(x) jest funkcjq
rosngcq. Jesli f'(x) > 0 dla a < x < b, to f(x) jest Scisle rosngca.

Uwaga. Podobne twierdzenie jest prawdziwe dla przeciwnej nieréwnosci.

Dowéd. Niech a < z <y < b. Wtedy z twierdzenia Lagrange’a mamy

y—x
dla pewnego punktu z < z < y. Zatem f(y) > f(z). W przypadku f'(z) > 0
otrzymujemy f(y) > f(z). O

Uwaga. Jedli f(x) jest Scisle rosnaca, to nie znaczy, ze f'(x) > 0 dla kazdego

punktu z. Np. f(z) = 3.

Przyktad. Udowodnié, ze
(1+2)*>14ar, dlazx>-1, 2#0, a>1. (5.2)
Okreslamy
fle)=(142)* —azx —1.

Pomocniczo obliczamy

(ma)/ — (ealogx)/ — eocloga:g — Oz:L‘a_l, x> 0.

x

Zatem

fllo)=a(l+z)*  —a=all+2)""" 1]

Stad f'(z) > 0 dla z > 0 oraz f'(x) < 0 dla —1 < = < 0. To oznacza,
ze funkcja f(z) Scisle rosnie na poélprostej [0, 00) i $cisle maleje na (—1,0].
Whioskujemy, ze f(z) > f(0) dlaz > —1,2 # 0. Czyli (1+2)*—az—1>0
dla x > —1, z # 0.

5.4 Wyzsze pochodne

Definicja 5.17. Jesli f'(x) jest rézniczkowalna w punkcie a, to jej pochodng
oznaczamy symbolem

f”(a) — lim f/($) _ f/(a)

1 nazywamy drugg pochodng w punkcie a.
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Przyktady
(a) f(x) =sinz, f'(z) =coszx, f"(z) = —sinz.

(b) fla) = a2, f(x) = ba/2, f(a) = — Lo

Podobnie okreslamy nastepne pochodne. Czyli n-ta pochodna funkeji jest
pochodna (n — 1)-tej pochodnej. Uzywamy symbolu f™),

Przyktad
f(z) =sinzx f(x)=cosz  f'(z)=—sinzx
f"(x) = —cosx fW(x)=sinz [fC1) =sinax.
Przyspieszenie

Druga pochodng potozenia obiektu (poruszajacego sie po linii prostej) wzgle-
dem czasu nazywamy przyspieszeniem, czyli chwilowym tempem zmiany pred-
kosci. Srednie przys$pieszenie od chwili ¢ty do chwili ¢ wynosi

vu(t) — v(to)
t—ty
Wtedy
a(ty) = tlgg U@i : :O(to) = tli_)r% f,(ti : i:(to) = f"(to),

gdzie f(t) oznacza potozenie obiektu na prostej.

5.5 Robzniczkowanie niejawne
Funkcje w dotychczasowych przyktadach byty podane jawnym wzorem y =
2

f(z), np. y = o2 y = tgx. Zatézmy, ze y jest zwiagzane z x poprzez
x
roOwnanie, np.

23 4+ 3 = 2zy, (5.3)

przy czym y jest funkcja zmiennej x. Zatdézmy, ze y jest rozniczkowalna.
Chcemy obliczy¢ y'. Rézniczkujemy tozsamosé (5.3), czyli naktadamy d/dx
pamietajac, ze y = y(x). Otrzymamy

dy

dy dy
dx’

322 + 3y
x+ydx

=2y + 2z
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czyli
dy 2y —3a2?
dr 3y — 2z’

Przyktad. Zatozmy, ze y jest rézniczkowalng funkcjg zmiennej x spetniajaca

3y? # 2.

roOwnanie
3_ .4 2
' =y +x°siny + 1,

d
oraz y = 0 dla x = 1. Chcemy obliczy¢ d—y . Naktadamy pochodna d/dx
Tlz=1
na tozsamosc.

d d
3z% = 4y373J + 2z siny + 2° cosy—y. (5.4)
dz dx
Dalej
dy 3x? — 2xsiny
dr  4y3 + 22cosy’
dy e y . . dPy
Zatem —— = 3. Rézniczkujac tozsamosé (5.4) mozna obliczy¢ i

y=0

Uwaga. Oznaczenie Leibniza na wyzsze pochodne funkcji y = f(z)

F ) =

g w.
Przyktad. Znalez¢ styczng do wykresu funkcji y zadanej réwnaniem
Py =1

w punkcie (—%, ?) Obliczamy

d
2x+2yd—i —0.

Zatem
dy  x
dr vy’
dy 1 , :
Stad — Styczna ma zatem réwnanie

rz=—1/2 = :
dx y=v3/2 \/3

BLed)
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5.6 Related rates

Pompujemy balon w ksztalcie sfery. Wtedy objeto$¢ V' i promien r sa funk-
cjami czasu t zwigzanymi ze soba réwnaniem

4
V = mrd,
37T
Rézniczkujac réwnanie wzgledem ¢ otrzymamy
av dr
— =dmr® —. 5.5
at — "t (5:5)

Balon jest pompowany w tempie 10cm?/s. Jakie jest tempo zmiany pro-
mienia w momencie, gdy r = 10cm ? Niech ¢, oznacza moment czasu, gdy
r = 10. Do wzoru (5.5) podstawiamy ¢t = t,. Wtedy

dV dr
10 = — =4710° —| .
dt li=t, dt li=¢,
Zatem p )
r
il = 307 (cm/s).

Na odcinku drogi z ograniczeniem 60 km /h policja ustawita radar 5m od
drogi (za krzaczkami). Samochéd jedzie z predkoscia 90 km/h. Jaki bedzie
odczyt na radarze, gdy samochod znajdzie si¢ 20m od miejsca na drodze,
w poblizu ktorego ustawiono radar ? Niech y oznacza odlegto$¢ pojazdu od
radaru a x odlegtos$¢ pojazdu od odpowiadajacego miejsca na drodze. Wtedy

y? = 22+ 5% Chcemy znalezé d—gz w momencie, gdy x = 20 m. Rézniczkujemy

rownanie wzgledem ¢. Otrzymamy

dy dx
2y —= =21 —.
Yar =
Zatem
@ B x dx T dx

dt _Qazx/x2+5a.

Wiemy, ze fl—f = —90. Niech ty oznacza moment czasu, gdy =z = 20. Wtedy

dy 20

= —90——m=xxs ~ —87,3.
dt lt=t, v400 + 25
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Jaki jest pomiar na radarze, gdy x = 4 7 Oznaczmy przez t; ten moment
czasu.

dy 4
— = —90—= ~ —56, 22.
dt l1=t, V4l

5.7 Aproksymacja za pomocg stycznej

Rozwazamy funkcje f(x) = z'/3. Chcemy obliczy¢ /T, 1. Ogdlnie zatézmy,
ze f(x) jest rézniczkowalna w punkcie a, czyli

f(x) — f(a)

— f'(a).
r—a r—a
To oznacza, ze
f(l’) : f(a) ~ f’(a),
T —a

gdy x lezy blisko a. Otrzymujemy
f(@) = f(a) + f'(a)(x — a).

Prawa strona reprezentuje rownanie stycznej do wykresu w punkcie a. Oznacz-
my h =x — a. Wtedy

fla+h)= f(a)+h f'(a). (5.6)
Aby obliczy¢ przyblizong wartosé /1, 1 przyjmujemy a = 11 h = 0, 1. Mamy
fi(x) = 2723 zatem f'(1) = 1. Z (5.6) otrzymujemy
1
31,1%1+O,1~§:1,033....

Dla poréwnania doktadna wartos¢ wynosi

J1=1032....

5.8 Reguta de ’Hospitala

Twierdzenie 5.18 (Reguta de 'Hospitala). Zaldzmy, ze funkcje f(x) i g(x)
sq ciggle w [a,b) oraz rézniczkowalne w (a,b). Ponadto f(a) = g(a) =0 oraz
g (z) #0 dla a < x <b. Wtedy
/!
lim —f(x) = lim J'@)

it g(@)  emat g(a)

Y

o ile granica po prawej stronie istnieje.
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Uwaga. Analogiczne twierdzenie jest prawdziwe dla granicy lewostronnej i
dwustronne;j.

Dowéd. Niech x > a. Wtedy
f@) _ flx) = fla) _ f'(E)

g(x)  g(x)—gla)  g(§)
dla pewnego &, a < £ < z. Gdy x — a™, to £ — a™. Zatem

o 1@ 1)

2o g(z)  ema g(€)

Uwaga. Teza jest prawdziwa rowniez dla granicy niewtasciwe;j.

Przyktady.
(a)

. l—cosz m ,. sin x , 1 1
lim ——— = lim ———— = lim = —.
z—0 sin“zx z—02sinxcosx =—02cosx 2

Lepszym wyjsciem jest uzycie wzoréw trygonometrycznych

1 —cosz 1 —-cosz 1 1

N 2 pr— pr— _ —.

sin® x 1—cos?2z 14+ cosx z—0 2

(b)
. sin Tz . T COS T ’ V1 —2%cosTx 0
im —— = lim —— = — lim =
— _ 2 - _—T _
z—1= 4/1 x r—1 Vil r—1 x

vVsin x . Ccos T . T COoST

lim —— =

im ——— = lim =
z—n— log % T 2\/311195% z—n~ 2¢/sinx

Whiosek 5.19. Zalézmy, Ze funkcje f(x) i g(x) sq rozniczkowalne w prze-
dziale (a,00), ¢'(x) # 0 dla x > a, oraz lim f(z) = lim g(x) = 0. Wtedy

fl) . f(x)
9

—0Q.

lim —~% = lim

B gla) T g(a)

o ile druga granica istnieje.
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Dowdd. Mozemy przyjac, ze a > 1. Okreslmy funkcje
f <1> O<y< L <1> O<y< !
- Yy ) gl\—- Yy )
F(y) = Y a Gly)=4{" \¥ a
0 y=0, 0 y=

Wtedy F' i G sa rézniczkowalne w przedziale (0, %) i ciagte w punkcie 0.
Rzeczywiscie

Jim F(y) = lim f(3) = lim f(z)=0.
Dalej
1 _ 1 el 11 ,
lim @) = lim f(i) D im yfif(i’) = lim f(i/) = lim f<$>
= g(x) w0t g(y) w0t = d'(y) w0t () e gl(@)
O

Twierdzenie 5.20 (Regula de I'Hospitala dla 22). Funkcje f(x) i g(z) sq
rozniczkowalne w (a,b) oraz ¢'(x) # 0 dla a < x < b. Zalézmy, zZe

lim f(x)= lim g(z) = occ.

z—at z—at

Wtedy

lim M = lim (@)

o gl@)  ema ¢(2)

o ile granica po prawej stronie istnieje.

Uwaga. Analogiczne twierdzenie jest prawdziwe dla granice lewostronnych,
obustronnych i granic w +oc.
Uwaga. Przeksztaltcenie

@) gla)!
g@)  fl)

i uzycie Twierdzenia 5.18 nie bedzie skuteczne, bo
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f(x)
g9(z)

Dowadd. Idea dowodu polega na tym, ze dla x blisko a wyrazenia

f (@) — f(xo)
9(x) = g(xo)

oraz

zachowuja sie podobnie. Niech a < z < x5. Wtedy

fx)  flx) = flxo) + flxo)
g(x)  g(z) — g(xo) + g(xo)
f($)—f($o)+ f(Io) f/(ﬁ) 4 f(xo)
_ g(x) = g(x0o) (g()x) —g(xo) _ g(€)  g(x) — g(zo)
g(zo g(xo
Y5 — g(o) Y9G — g(awo)

dla pewnego punktu & potozonego pomiedzy x i xy. Oznaczmy L = lim L&

pgt 9 (@)
Wtedy
8, Iao) ~ Ly(x)

flo) o _ g g(x) — g(x0)
g(fE) 1+ ﬂ ‘
9(x) — g(xo)
Ustalmy liczbe 0 < n < 1/2. Wybierzmy x, tak, aby
g;gz;_L <, dlaa<t<x0.
Wtedy
J'(€)
~L
g

Poniewaz g(x) — oo dla  — a™, to mozemy teraz znalezé a < x; < xy tak,

aby
| f(x0) — Lg(wo)| + |g(w0)|

<n, dlaa<zx<uz.

l9(x) — g(0)|
Niech a < x < x7. Otrzymamy
f'(©) | |f o) — Lg(o)
f(x) g — g(%0) 2n
|9(9€) b 1_‘ g(xo) Ty <
9(x) — g(o)
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Przyktady.
1
(a) lim L= lim — =o0.
r—00 et r—o00 %
1
: . logx : x .
(b) Jip, wlogx = Jip, =1~ =i, =1 = Jip (=) =
x x?
.2t . 2z . . L, :
(¢) lim — = lim — = 0. Mozna tez uzasadni¢ inaczej: dla x > 0 mamy
r—00 et r—o00 T
k k
x x E+1)!
0<7\xk+1:( )x?oéo‘
€ (k1)1 v
(d) lim 2° = lim €6 = lim ¥ = 1.
r—0+ r—0+ y=zlogx y—0—

5.9 Pochodna ciggu i szeregu funkcyjnego

Twierdzenie 5.21. Funkcje f,(x) sq ciggle i rézniczkowalne w sposdb ciggly
w przedziale [a,b]. Zalézmy, zZe ciggi fn(x) i f.(x) sq jednostajnie zbieine
do f(x) i g(x), odpowiednio. Wtedy f'(x) = g(x) (na koricach przedziatu
#1(a) = gla) i 1) = 9(b)). Ten

(lim fu(2))’ = lim f(z).
Czyli pochodna granicy ciggu funkcji jest granicg pochodnych tych funkcy.

Dowdéd. Niech a < xy < b. Chcemy pokazaé, ze f'(xo) = g(xo). Z zalozenia
dlae > 0 istnieje prog N taki, ze dlan > N mamy | f/,(t)—g(t)| < £/3,dlaa <
t < b. Wiemy, ze funkcja g(x) jest ciagta, jako granica jednostajnie zbieznego
ciagu funkcji f! (z). Zatem istnieje liczba 6 > 0 taka, ze dla | —xo| < § mamy
lg(§) — g(xo)| < &/3. Niech 0 < |z — x| < 6. Wtedy dla n > N otrzymujemy

() = fnl0)

r — X9

— g(zo)| = |£,(§) — g(xo)]

<1208 = 9O +19(6) = glwa)| < 5 + 5 = 32,
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dla pewnego punktu ¢ lezacego pomiedzy = i xy. Zatem dla 0 < |x — xo| <
mamy

K fle) |l e
T — T " T ’
To oznacza, ze
lim f(:E) — f(I‘J) - g($0),
T—T0 T — 2o
czyli f'(zo) = g(o). -

Uwaga. W dowodzie wykorzystana byta jedynie zbieznos¢ punktowa ciagu

Jo-

Uwaga. Wystarczy zalozy¢, ze ciag f,(x) jest zbiezny w jednym punkcie ¢
przedziatu [a, b]. Rzeczywiscie, z tego warunku wynika jednostajna zbieznosé
ciagu f,(x). Sprawdzimy jednostajny warunek Cauchy’ego dla ciagu f,(z).

() = fn(2)] < [fn(2) = fn(@)] = [fn(e) = fm(O)] | + [fu(€) = fin(c)]

h(zx) h(c)
= [ f2(&) = [ (&) |z = c| + | fule) = fin(c)]
R’ (£)

< (0= a)l[f(&) = Fr(O] + |fule) = fm()]-

Whniosek 5.22. Zatozimy, zZe funkcje f, sq ciggle i rozniczkowalne w sposob

ciggly w przedziale [a,b]. Jesli szereg > fu(x) jest zbiezny przynajmniej w

n=1

o0
jednym punkcie, natomiast szereq Z fn(x) jest zbiezny jednostajnie, to suma

n=1

szerequ s(x) = Y _ fo(x) jest funkcig rézniczkowalng oraz
n=1

(i fn(:v)>/ = s'(z) = nil ful@)', (5.7)

tzn. pochodna sumy szerequ funkcyjnego jest szeregiem pochodnych.
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Dowdd. Niech s,(z) = fi(x). Ciag funkeyjny s, (z) spelnia zalozenia po-
k=1

!/
przedniego twierdzenia. Zatem (hyrln sn(:c)> = lim s! (), co jest rébwnoznacz-

ne z (5.7). O
o 6—n$2 e—nl'2
Przyklad. s(z) = Z - 0 < z < 1. Przyjmujemy folz) = 2
n n
nil ) -
, 2ze™ " , 2 , )
Wtedy f)(r) = ————, zatem [f(z)| < —;. Zatem szereg > fi(x) jest
n n

n=1

jednostajnie zbiezny. Szereg Z fa(z) tez jest jednostajnie zbiezny. Zatem

(o] e*?’LwQ =t
/
— 2
s'(x) x;::l e

Twierdzenie 5.23. Zalozmy, ze liczba R > 0 jest promieniem zbieznoSci

szeregu potegowego f(x) = Z ap,x". Wtedy f(x) jest rézniczkowalna w prze-
n=0

dziale (—R, R) oraz f'(x) =Y na,z™ .
n=1

Uwaga. Szereg dla f'(r) ma wicksze wartosci bezwzgledne wspétczynni-

kow, wiec promien zbieznosci nie moze by¢ wiekszy od R. Jednak promienie

zbieznosci obu szeregbéw sa takie same. Istotnie, niech R’ oznacza promien
o0

zbieznosci dla z7' > na,a™ x # 0.

n=1

P . . ‘anJrl‘ 1
a) Jesli istnieje granica lim = —, to
(a) je g m ol TR
L D] el 1
R~ n nla W e R

1
b) Jesli istnieje gramica lim \/|a,| = —, to
(b) i istnieje grami 1TILn\/|a| 7

1 1
= lim § nla,| = lim Un lim lan| = lim § la,| = o5
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Ogélnie mamy

1

1
e limnsup M = lim Vn limnsup lan| = R

Dowdd. Szereg pochodnych Z na,z"" ' jest zbiezny w przedziale (—R, R).
n=1

Wiemy, ze zbieznosé jest jednostajna w kazdym przedziale [—R + , R — ¢,
dla 6 > 0. Z Wniosku 5.22 otrzymujemy teze, czyli

0o / 0
(Z anx"> = Z na,x"
n=0 n=1
O

Whiosek 5.24. Funkcja f(x Zanx dla —R < = < R, gdzie R jest
=0
promieniem zbieznosci, jest m’eskonczenie wiele razy rozniczkowalna oraz

(k) o0
f*) (@ <Zan ) =Y n(n—-1)...(n—k+aza"".

n=~k

Dowdéd. Stosujemy wielokrotnie Wniosek 5.22, korzystajac z faktu, ze pro-
mien zbieznosci nie zmienia sie przy roézniczkowaniu. [

Przyktady.
(a) Rozwazmy funkcje f(x) = log(l + z), z > 1. Mamy

f(z) = => (=1)"2", dlaz| <1
n=0
EU" o s~ D™ ot Zbicinode
Rozwazmy szereg Z T = Z x". Promien zbieznosci

n+1 =oon
tego szeregu Wyn081 1 Z Twierdzenia 5.23 mamy

(i H)"Hmn> _ (fj (_1>nx”+1>, _ 3 (1) — 1; — (log(14+2))

n=1 n n=0 n+ 1

Zatem

log(1+x):i(_1n "
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dla pewnej statej C. Podstawiajac x = 0 uzyskamy C' = 0. Zatem

00 (_1)n+1 .
log(1+xz) =) ~——2a" dla -1<z<Ll (5.8)
n=1 n

Z kryterium Leibniza szereg po prawej stronie jest zbiezny réwniez dla
x = 1. Zatem z Twierdzenia 4.17 otrzymujemy

00 (_1)n+1
log2 = .

og nz::l .

(b) f(z) = arctgx. Wtedy
@) = —— = S (1, e <L
1+ x? n=0 7
: o~ (1" oni1 - o
Rozwazmy szereg »  ——a""*!. Szereg ten jest zbiezny dla |z| < 1.

—2n+1
Wiemy, ze

(i ;;i_)nlxzml) = i(—l)":ﬁzn = (arctgz)’,

n=0 n=0
czyli
- (_1)n 2n+1
tgr =) ——a™" C < 1.
arctg x ;:0 11" +C, ||

Podstawiamy = = 0 i otrzymujemy, ze C' = 0. Zatem

— <_1)n 2n+1
tgr =Y >t <1. 5.9
arctg x 2 1" || (5.9)

Podobnie jak w poprzednim przyktadzie mozemy podstawi¢ z = 1 i

uzyskaé
n

T i (1)
4 Z2n+1
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5.10 Wzory Taylora i MacLaurina

Twierdzenie 5.25 (Wzor Taylora). Niech f(x) bedzie funkcjg n-krotnie réz-
niczkowalng w przedziale wokot punktu a. Wtedy dla liczb b z tego przedziatu
mamy

_ (b — CL) / (b — a>2 " (b — a)nil (n—1)
1) = fa)+ @+ E @)+ S @)+ R,
gdzie R, ma jedng z dwu postaci:

(b—a)" (n) .
(1) R, = — /" (a+0(b—a)), dla pewnej liczby 0 < 0 < 1 (reszta
n

w postac'zf Lagrange’a),

(2) R, = Ei__af)' (1= "™ (a+6'(b—a)), dla pewnej liczby 0 < §' < 1

(reszta w postacti Cauchy’ego).

Uwagi
1. Oznaczmy b — a = h. Wtedy

hn—l
(n—1)!

flatB) = f(@) + 1 f(@) + o S a) + ok

f(a) + R,

(1= (a+60'h).

hTL
= fm Oh) =
Fin n! f7a+6h) (n—1)!

2. Reszta R, oraz 01 0’ zalezg od a, b i n.

Dowdd. Oznaczmy

(b—=)*
2l

(b—a)"
(n—1)!

f'@)—. .= Fo ().
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Mamy g(a) = R, oraz g(b) = 0. Z twierdzenia Lagrange’a otrzymujemy
9(b) — g(a)
b—a

dla pewnej liczby 0 < 6" < 1. Zatem R,, = —(b—a)g¢'(a + 6'(b — a)). Podsta-
wiamy © = a + 0'(b — a) do wzoru (5.10). Wtedy

=g (a+0(b—a)),

b—x=b—a—00b—-a)=1-6)b—a)
oraz
(o)
(n—1)!
Rozwazmy funkcje u(x) = (b —x)". Mamy u(a) = (b —a)™ oraz u(b) = 0.
7 twierdzenia Cauchy’ego otrzymujemy

g(b) —gla) _ g'(a+0(b—a))

u(b) —u(a)  w(a+00b—a))
dla pewnej liczby 0 < 6 < 1. dalej

R, = (1 =)L (a+6(b—a)).

ng'(a+0(b—a))
u(a+60(b—a))

Mamy u'(z) = —n(b— x)"'. Z (5.10) wynika, ze

g@) _ ")

R, = (b—a)

Ostatecznie

]

Uwaga. Przy dowodzie wzoru na reszte w postaci Lagrange’a skorzystaliSmy
z twierdzenia Cauchy’ego, natomiast przy postaci Cauchy’ego skorzystalisémy
z twierdzenia Lagrange’a.

We wzorze Taylora przyjmijmy b = x i a = 0. Wtedy otrzymujemy wzér
McLaurina
f7(0) a"!

o x +"'+(n—1)!

f) = f(0) + f'(0)x + FOV0) + Ray - (5.11)
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n

CE] (1 —0) " (0').

_ T g
R, = oy " (0x) =
Uwagi.

1. Jedli f(z) jest wielomianem, to R, = 0, gdy n przekroczy stopiefi wie-
lomianu.

2. 7 warunku R,, — 0 wynika

10)

n!

f(x) = £(0) + ff

n

Jesli | f™(¢)| < M dla statej niezaleznej od n, to R, — 0, bo x—' — 0
n n! n
(np. z kryterium d’Alemberta). Mozna dopusci¢ tez stabszy warunek

[FO )] < M.
3. Reszta R, nie musi dazy¢ do zera nawet, gdy szereg jest zbiezny. Roz-
wazmy funkcje
e VT x40,
flz) =
0, z = 0.

Mozna udowodnié¢, ze f jest rézniczkowalna nieskonczenie wiele razy

1/t
c _ —o).

oraz f™(0) = 0 (w tym celu wystarczy pokazaé, ze lix(l]q+ ;
t— n
Wtedy ze wzoru (5.11) otrzymujemy f(z) = R,,.

4. Przypus$émy, ze szereg potegowy f(z) = Z a,x™ ma dodatni promien
n=0
zbieznosci. Prawa strona jest wtedy automatycznie szeregiem McLauri-
f(n)(0)
n!
sku 5.24 mamy f%*(0) = kla.

na funkcji f(x), tzn. a, = . Rzeczywiscie, na podstawie Wnio-

Przyktad. f(z) = (1 +2)%, v > —1. Mamy
f(”)(q;) =ala—=1)...(a—=n+ 1)1 +x)* "™

Zatem

n! n!

fM0O0) ala—1).. . (a—n+1) <a>.

n
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@
Ze wzoru McLaurina mamy, przy konwencji <0> =1,

(14 2)*= nil (Z)xk + R,.

k=0

Pokazemy, ze R, — 0 dla |z| < 1. Skorzystamy z postaci Cauchy’ego reszty.

I, = (1—0)"'f")(0x)

= ‘(1 —0)" tala—1)...(a —n+1)(1+0x)* "

n

= n(o‘> 2"(1— )" (1 + Ox)> "

Wyrazenie n<a> " dazy do 0 dla |z| < 1, np. z kryterium d’Alemberta.
n

Wystarczy udowodnié, ze wielkogé (1 — 6)"1(1 + 0z)*™" jest ograniczona.
Dla || <1i0<6<1mamy 1—0 <1+ 60z. Zatem

(1—0)"114+02)* " < (14 02)" 11+ 02)*" = (14 2)* !
Zaleznosé od n jest jeszcze ukryta w 6. Dalej

9a-1 a>1,
(L= fa)t, a<1,

(1+62)* ' < {

przy czym dla o < 1 skorzystaliSmy z nieréwnosci 1 4 6z > 1 — |z|. Reasu-
mujac otrzymalismy uogélniony wzér dwumianowy Newtona.

42 =3 (O‘)x”, 2] < 1. (5.12)

n=0 n

Przyjmijmy o = —%. W miejsce z podstawmy —z? dla |z| < 1. Wtedy

\/117—1+Z< §> 1) ",
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Dalej
13 2n —1
-1 595 - 2n)! (—=1)" (2n
2\ _(_q)n22 2 _qn ( _
( n ) (=1) n! (=1) 2nn12nn! 4n \'n )’

(2n)! . .

bo (2n — !l = Sl Ostatecznie uzyskali$my
!

1 2 (2n) [\

— =1 = < 1.
R O

1
i

© 9 [9p\ /g 20l
inz = s l , <1. 5.13
arcsin x $+;2n+1<n>(2> || (5.13)

Ale (arcsinz)’ = dla |z| < 1. Zatem

Dla x = %, po pomnozeniu przez 2 obu stron (5.13), otrzymamy
s > 1 2n\ 1
—=1 e — —.
3 +§:12n—|—1<n>16”
Podstawiajac dla odmiany x = ? i mnozac (5.13) przez v/2 uzyskamy
s > 1 2n\ 1
—= =1+ —_— —.
2v/2 T; 2n +1 ( n ) 8"

Zauwazmy, ze dla 0 < z < 1 mamy

0 2 2 2n+1
g = arcsin 1 > arcsinz = Z ST ( n) (g)

n=0 n
N
2 2n T 2n+1
> — )
Z 2n + 1<n> <2>

n=0

Przechodzac do granicy  — 17 otrzymamy

N
T 1 2n\ 1
2 22n+1<n>4”

n=0
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Poniewaz liczba N jest dowolna, to

T o= 1 2n\ 1
2 /7;)271+1<n>4”

Dalej

e} 2 2 2n+1
aurcsina::z:2 +1<n> (;)
= 2n n
> 2 2n 1\ 27t © 1 2n\ 1
< —= = —.
ZQn—Fl(n)(?) ;::02n+1<n>4”

n=0

Przechodzimy do granicy x — 17, aby uzyska¢

T o= 1 2n\ 1
- K .
2 \§2n+1<n>4”

n

Otrzymujemy zatem
> 1 2n\ 1
Ty — (")~ (5.14)
2 =2n+1\n /4"
Uwaga. Zbiezno$¢ szeregu po prawej stronie (5.14) mozna tez uzyskaé ze

wzoru Stirlinga podajacego przyblizona wartos¢ wielkosci n! ~ n"e™"v/2mn.

Twierdzenie 5.26 (Reszta Peano). Jesli funkcja f(x) jest n-krotnie roz-
niczkowalna w punkcie a, to

Flath) = f(a)+ 50 (a) + o /(@) 4 o f )+ Ra(h),
gdzie
R _
T

tzn. wielkosé R, (h) jest mata w stosunku do h™ dla matych wartosci |h.
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Dowdd. Zastosujemy wielokrotnie regute de’Hospitala.

oo Bah) L flath) = fla) = §f'(a) = 5 f"(0) = .. = B F" ()
h—0 hn h—0 hn
. f/(a + h) — f/(a) _ %f”(a) _ gfm(a) - %f(n)(a)
= lim
h—0 nhnfl
o U@ h) = 0 @) — S a)
h—0 n'h
1 (n—1) h) — (n—1)
] e e RG] B

Ostatnia granica wynosi zero bezposrednio z okreslenia pochodnej w punkcie
a. O

Definicja 5.27. Punkt x¢ nazywamy punktem przegiecia funkcji f, jezeli
@) — [z
D) piay),

dla wszystkich punktow x # xo w poblizu xo mamy

flz) = f(zo)

lub dla wszystkich takich punktéw mamy po—— < f(xo).
— Zo

Uwaga. Geometrycznie oznacza to, ze czesci wykresu funkcji dla =z < xg
idla x > xg leza po przeciwnych stronach stycznej do wykresu w punkcie

f(ZE) B f(l‘()) > f/(l'()>. Wtedy

(xo, f(z0)). Rzeczywiscie, niech
T — Tg
f(x) > f(xo) + f(wo)(x —x0), dlax> x,
fx) < f(xo) + f(xo)(x —x0), dlaz < .
Twierdzenie 5.28. Funkcja f(x) jest n-krotnie réiniczkowalna w przedziale
wokdt punktu a oraz f™ jest ciggla w a. Zaldimy, Ze

(@)= f'@) = ... = f" (@) =0, f™(a) £0, 0> 2.
Jesli n jest liczbg parzystq, to funkcja posiada Sciste ekstremum lokalne w

punkcie a. W przeciwnym wypadku a jest punktem przegiecia funkcji f.

Dowdd. Rozwazymy przypadek f(™(a) > 0. Z ciaglosci mozemy przyjaé, ze
f™(t) > 0 dla argumentéw ¢ blisko a. Niech x lezy blisko a. Wtedy ze wzoru
Taylora z reszta w postaci Lagrange’a otrzymujemy

()

n!

f(@) = fla) + (z —a)",
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dla pewnego punktu £ pomiedzy a i x. Jedli n jest liczbg parzysta, to drugi
sktadnik po prawej stronie wzoru jest dodatni. Zatem f(x) > f(a) dlax # a
w poblizu a. To oznacza, ze w a wystepuje Sciste minimum. Jesli n jest liczba
nieparzysta, to

f@) = fa) _ f"™()

L S @0 > 0= ),

dla x blisko a. Wtedy a jest punktem przegiecia. O]

Uwagi.
1. W punkcie przegiecia nie moze wystepowac ekstremum lokalne.

2. Jedli f"(a) > 0, to w a jest Sciste minimum, a dla f”(a) < 0, Sciste
maksimum.

Przyktady.

(a) Chcemy znalez¢ ekstrema funkcji f(z) = x* + 4z. Obliczamy f'(z) =
4(x® +1). Zatem f'(—1) = 0. Dalej f”(—1) = 12. Zatem w punkcie —1
wystepuje Sciste lokalne minimum.

(b) f(z) = 2* + 2*. Mamy f'(z) = 32% + 423 = 2*(3 + 4x). Pochodna
zeruje sie w 0 1 w —%. Dalej f"(x) = 6z + 1222 = 6x(1 + 2z). Zatem
f(=32) > 0. Mamy f”(0) = 0. Ale f”(0) > 0. W rezultacie w punkcie
—% wystepuje $ciste lokalne minimum, a w punkcie 0 przegiecie wykre-
su.

Definicja 5.29. Méwimy, ze funkcja f(x) okreslona w przedziale (a,b) jest
wypukla w dét, jesli dla dowolnych punktow a < x1,x9 < b oraz liczb o, B >
0, a+ G =1 mamy

f(OéJZ'l + ﬁmg) < Oéf(ib’l) + ﬂf(x2> (515)
Podobnie, f(x) jest wypukta w gore jesli
flax + Bra) > af (v1) + Bf(x2). (5.16)

Uwaga. Wypuktos¢ w dot oznacza, ze fragment wykresu pomiedzy punktami
(21, f(x1)) 1 (22, f(x2)) lezy pod sieczna przechodzaca przez te punkty. Rze-
czywiscie, jesli u(x) jest funkcja liniows oraz u(z1) = f(x1), u(xs) = f(x2),
to u(azy + Brz) = au(wr) + Pulzz) = af (z1) + Bf(z2).
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Twierdzenie 5.30. Jesli f/(x) > 0 dla a < x < b, to funkcja f(x) jest
wypukia w dét. Natomiast jesli f"(x) < 0 dla a < x < b, to funkcja f(x) jest
wypukta w gore.

Dowdéd. Udowodnimy pierwsza czes¢ twierdzenia. Zaktadamy, ze xy < xo
oraz «, >0, a + 3 = 1. Z twierdzenia Lagrange’a mamy

flaxy + Brg) — af(z1) — Bf(22)
= af(ax1 + Bra) — f(z1)] — Blf(22) — flax1 + Bx)]
= af(zy —21)f'(&) — af(@2 — 21) f'(&2)
= af(z2 — 21)[f' (&) — (&) = aB(z1 — 22)(&2 — &) ' (n),

gdzie 1 < & < awy + Bry < & < xq oraz & < n < &. Zatem

flawy + Bry) — af(x1) — Bf(x2) <0

dlaa,6>0ia+ (=1 ]

Uwagi.

1. Twierdzenie odwrotne jest tez prawdziwe, ale w tezie otrzymamy staba
nieréwnosé dla f”. Istotnie zalézmy, ze f jest wypuklta w dot. Dla x; <
x9 1, f > 0, z nieréwnosci (5.15) otrzymujemy

alf(axy + Bra) — f(21)] < B[f(22) — flaxs + Baa)].

Zatem
flaxy + o) — f(21) < flaxy + Bxs) — f(1)
5(302 - $1) h Oé($2 - x1) ‘

Po przeksztatceniu dostajemy

flaxy + Bry) — f(1) < f(x2) — flaz, + Bxg)
(wy + Bxg) — 1 S pg— (axy + Brg)

Gdy a — 07, to § — 1~ oraz axy + Bres — x9. Otrzymujemy wiec

f22) = fla1)

T2 —T1

< fl(z2).
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Podobnie, z 3 — 07 wynika
f(@2) — f(x1)
To — Iq ’

Zatem f'(x1) < f'(x2), czyli f’ jest funkcja rosnaca. Tzn. f” > 0.

f(w1) <

2. Zalozmy, ze f jest Scisle wypukta w dét. Wtedy funkcja f’ jest Scisle ro-
sngca. Istotnie, gdyby f’'(z1) = f'(x2) dla pewnych x; < xs, to funkcja
f’ bytaby stata w przedziale [z, z5]. To by oznaczato, ze f jest funkcja
liniowa w tym przedziale.

6 Calka Riemanna

Definicja 6.1. Podzialem P przedzialu [a,b] nazywamy skoticzong rodzine
punktow a = x9 < r1 < T2 < ... < x, = b. Przyjmujemy oznaczenie
A.I'Z' =T — Tj—1.

Dla ograniczonej funkcji f(z) okreslonej w [a, b] okreslamy liczby m; oraz
M; wzorami

mi= inf_ f(@), Mi= suwp f(2).

Ti—1STET; xi_1<a<a;

Definiujemy sumy dolne i gbrne wzorami

i=1
Uwaga. Jesli f > 0, to liczba L(P, f) przybliza od dotu pole obszaru pod

wykresem funkcji, natomiast liczba U (P, f) przybliza to pole od goéry.
Przypusémy, ze m < f(z) < M dla a < x < b. Wtedy
L(P,f) =2 > mAz; =m(b— a),
i=1
UP,f) <> MAz; = M(b—a).

i=1

Okreslamy catki dolng i gorng wzorami

x)dr = 1nfU(P f).

\o-\

b
/ da:—supLPf
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Definicja 6.2. Mowimy, ze funkcja f(z) jest catkowalna w sensie Riemanna

na przedziale [a,b], jesli catka dolna jest rowna calce gornej. Wtedy wspding
b

wartos$é oznaczamy symbolem /f(m) dx.

a

Uwaga. Pokazemy wkrétce, ze funkcja ciggle sg catkowalne. Istniejg jednak
funkcje niecatkowalne.

Przyktady
(a)

0, =¢Q.
Dla przedziatu [0, 1] mamy L(P, f) = 0 oraz U(P, f) = 1. Zatem

(@) = {1 T

jf(x)dxz(), /lf(x)dle.

1 0<z<1,

f(z)_{2 1<z<2.

Dla P ={0,1,1+ +,2} mamy
1 1 1
n n n
1 1
UP,. f) = 1+2-+2(1—>:3.

n n

Zatem

2 2
/f(x) dr >3, /f(a;) dr < 3.
0 0

Pokazemy wkroétce, ze

\e-\
(g
—
=
QU
8

a
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zatem

)i v=%p€ZgeEN, (pg =1,
o-{s ook

Rozwazamy przedziat [0, 1]. Mamy L(P, f) = 0. Ustalmy liczbe natu-

ralng N > 2. Okredlimy specjalny podziat P. Kazdy utamek nieskra-
calny postaci g, dla ¢ < N otaczamy przedzialem o promieniu ﬁ

Takich utamkéw fest mniej niz N?. Przedzialami podziatu sg wtedy

E— ol E+ 53 | » gdzie ¢ < N oraz przedzialy pomiedzy nimi. Prze-
dziaty postaci [% — ﬁ} , [% + ﬁ} sa roztgczne. Rzeczywiscie, rozwaz-

my dwie rézne liczby § i Iql:, dla q,¢ < N. Wtedy

o
i = 1 1]

—_ > —.
qq qq = N2 N3

‘pp’
q

Gdyby przedzialy odpowiadajace g i % zachodzily na siebie, to

p_ Vi, 1 _ 1
¢ ¢| 7 2N3  N¥
Niech A sktada sie z numeréw odpowiadajacym przedziatom [% — ﬁ, % +
Wtedy
=1 i€A i¢A
1 1 1 2
z’ze;l ’ +i% N MTNTN

1
Poniewaz N jest dowolng liczba naturalna, to [ f(x)dz = 0.
0

Definicja 6.3. Podzial P’ przedziatu P nazywamy rozdrobnieniem podziatu
P, jesli P C P'. Dla podziatow Py i Py podzial Py U Py nazywamy wspdlnym
rozdrobnieniem Py ¢ Po.



Catka Riemanna &9

Twierdzenie 6.4. Jesli P C P’ to L(P,f) < L(P',f) oraz U(P, f) >
U(P', f), tzn. przy rozdrobnieniu sumy dolne si¢ zwickszajg a sumy gorne
2Mmniejszajq.

Dowdd. Wystarczy rozwazy¢ przypadek P’ = P U {z'}. Niech

P = {'%1071‘17"'7'%‘727171:1'7"‘7$n}7
Pl . /
= {xo,x1,...,xim1, 2 2, T )
Oznaczmy

w1 = mlilll’glzft‘gm/ f(x), Wy = x/él;ixl f(a:)

Wtedy wy,ws > m; zatem

L(P', f) = L(P, f) = wi(2' — ;1) + wo(z; — ') — myAx;
> my(x — xi 1) +my(z; — 2') — miAx; = 0.

Podobnie pokazujemy, ze U(P’, f) < U(P, f). O
Whiosek 6.5. (i) Dla dwu podziatéw Py i Py mamy L(Py, f) < U(Pa, f).

(ii) /bf(a;)d:c</bf(a:)dx.

Dowod. Mamy
L(Pl)f) < L(Pl UPZaf) < U(Pl UPQaf) < U(PQ)f)

Biorac kres gorny wzgledem P; otrzymamy
b
[ f@) de <UPs. ).

Teraz bierzemy kres dolny wzgledem P, i otrzymujemy czesé (ii) wniosku. [

Twierdzenie 6.6. Ograniczona funkcja f(x) na przedziale [a,b] jest cal-
kowalna wtedy 1 tylko wtedy, gdy dla dowolnej liczby ¢ > 0 mozna znaleZé
podziat P, dla ktorego

UP,f)—L(P,f) <e. (6.1)
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Dowéd. Udowodnimy tylko implikacje («<=). Zalézmy, ze dla € > 0 istnieje P
speliajacy (6.1). Wtedy

P.h) < [ fla)de /f UP. f) < L(P.f) +
Czyli 7

x)dr < e.

\@

0</bf(

Whiosek 6.7. Kazda funkcja ciggla na przedziale [a,b] jest catkowalna. Po-
nadto dla dowolnej liczby € > 0 mozna znaleZé liczbe & > 0 takq, zZe dla
kazdego podziatu P = {xg,x1,...,x,}, jesli

d(P) := max Az; <9,

<is<n

]

to dla dowolnego wyboru punktéow posrednich x; 1 < t; < x; mamy

n

S° f(t) Ay — /f(:c) da

i=1

<eE.

Dowdd. Ustalmy liczbe € > 0. Z jednostajnej ciggtosci mozna znalezé liczbe
d > 0 taka, ze jesli |z — 2’| < 0, to [f(z) — f(2')] < ;5. Niech P bedzie
podziatem speliajacym d(P) < 5. Wtedy

n

UP,f)—L(P.f) = Z:(M mi)Ax; < b%(b —a)=c¢.

Stad mamy catkowalno$¢ funkeji f. Ponadto

L(P.f) < [ f(x)dz <U(P. f).

oraz
n

L(P, f) < ij(ti)A:ci <U(P,f),
b

bo m; < f(t;) < M;. Z nieréwnosci (6.1) liczby Zf )JAx; oraz /f(a:) dx

i=1 a
leza w przedziale o dtugosci mniejszej niz e. ]
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Liczbe d(P) nazywamy $rednica podziatu P. Wyrazenie

Z flt)Ax;
nosi nazwe sumy catkowej. Mamy nastepujace typy sum catkowych:
(a)
(b)
()

(d) indywidualnie dobierane punkty ;.

t; = x;_1 - lewy koniec,
t; = prawy koniec,

t; = %(mz 1 + x;) - $rodek przedziatu,

Whiosek 6.8. Niech [ bedzie funkcjq cigglq na przedziale |a,b]. Rozwazmy
ciqgg podziatow P, takich, ze d(Py,) — 0 (np. P, jest podziatem nan réwnych
czesci). Wtedy

S(Pusf) = [ fla)da

Dowaéd. Ustalmy liczbe € > 0. Z poprzedniego wniosku istnieje liczba § > 0
taka, ze

<,

S(P.f)— [ fla)de

dla d(P) < 4. Z zalozenia istnieje prog N taki, ze jesli n > N, to d(P,) < 4.
Wtedy dla n > N mamy
b

S(Puf) = [ f(x)da

a

< E.

O
1
Uwaga. Wkrétce udowodnimy, ze / w2 dr = ; Chcemy obliczy¢ granice
. 0
wyrazenia nlg Z k% Mamy
k=1

1
o

w
()=

=N

(V)

Il
S|
()=
7N
| o
N~
(V)

-
O\H

S

[\

QL

8

I
W =
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bo wyrazenie w $rodku jest suma catkows typu prawy koniec dla funkcji
f(x) = 2* i dla podzialu przedziatu [0, 1] na n réwnych czesci.

Przyktad.

cos= 0<ax<1,
T) = L
/(@) {0, xz=0.

Pokazemy, ze funkcja f jest catkowalna. Rozwazymy podziat

11 1 1 2 1 n®—n?
P:{Oaa+3v+37"'a+ 3 }
n'n n¥n n n n
Niech z,y > + oraz |z — y| < 25. Wtedy

1| |sin] 11 1
COS — — COS — ziglx—y]<T—:—,
x &2 =n® n

bo & > % Zatem najwieksza rozpietos¢ wartosci funkcji na przedziatach
podziatu P, ktére maja dtugosé 111—3, nie przekracza % Otrzymujemy wiec

3 2

1 "= 1
U(P,f)—L(P,f)Z(Mo—WO)ﬁ+ > (Mi—mi)ﬁ
i—1
2 ndP-n?1 3
< —+ — < —.
n n nd n

Zadanie. Znalez¢é funkcje f @ [0,1] % [0, 1], ktérej wykres jest gestym

podzbiorem w [0, 1] x [0, 1].

Zapis f € R oznacza, ze f jest catkowalna w sensie Riemanna.

Twierdzenie 6.9. (i) Jesli f,g € R, to f £g,cf € R oraz
b b b
i)+ g(@))de = [ f@)do+ [ g(2) de,
b

/cf(x) dx:c/f(a:)dx.

a
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(ii) Jesli f,g € R oraz f(z) < g(x) dlaa <z <b, to

/bf(x) dr < /bg(x) dx

(111) Jesli f € Rla,b] oraza < c <b, to f € Rla,c] NR]c,b] oraz

/b f() dz = / f() d + / f(x) da

(i) Jesli f € R oraz |f(z)] < M dlaa <z <b, to

M —a).

Dowdd. Dla liczby € > 0 mozna znalez¢ podziaty Py i P, dla ktoérych

UPLf) = L(PLf) < 5. UPag) = L(Pa.g) < .
Wtedy dla podzialu P = P; U P, mam
UP.f) = L(P.J) < 5. U(P.g) = L(P.g) < .
W rezultacie
U(P. 1)+ U(P.g)] = [L(P. f) + L(P.g)] < = (62)

Dalej

n

UP,f+g) = Z:Mi(f + g) Az,
<Y M(f)Aws+ Y Mi(g)Aa; = U(P, f) + U(P.g). (6.3

=1 =1

Podobnie
L(P,f+9) =2 L(P,f) + L(P.g). (6.4)
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W $wietle (6.2) otrzymujemy

b
Stad f + g jest catkowalna. Wartos$¢ catki /[f(x) + g(x)] dz lezy pomiedzy

liczbami L(P, f+g¢g) i U(P, f+g). Z (6. 331 i (6.4) wartos¢ ta lezy w prze-
dmale pormegdzy liczbami L(P, f)+ L(P,q) i U(P, f)+U(P,g). Ale wielkos¢

/f ) dx + /g ) dx tez lezy w tym przedziale. Z (6.2) dtugos¢ tego prze-

dmalu jest mmejsza niz €. To oznacza, ze

b b b

JUr@) + g@)de - [ @) dw~ [ g(w)da

a a a

< €.

Stad otrzymujemy
b

JUr@) + g@) dz = / fla)do + / g(x) da

a

Dla liczby ¢ > 0 i podziatu P mamy
mi(cf) =cemi(f),  Mi(cf) = cMi(f),

natomiast dla ¢ < 0
m;(cf) = cM;(f), M;(cf) = cmy(f).

b b
To wystarcza do przeprowadzenia dowodu réwnosci [ cf (x)dx = ¢ [ f(z) dx

Czesé (ii) twierdzenia jest oczywista. Przechodzimy do dowodu (iii). Dla
liczby € > 0 mozna znalezé podzial Py przedziatu [a, b] spetniajacy U(Po, f)—
L(Po, f) < e. Wtedy dla podziatu P = Py U {c} mamy

Podzial P mozemy zapisaé jako suma podzialéw Py 1 Py przedziatéw [a, ] i
[¢, b], odpowiednio. Ponadto

ab](P f>_ ac](Plaf)+U[c,b](7)27f)7

L[ab](P f) L[ac<P1af)+L[c,b](P27f)‘

~—~
&
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Na podstawie (6.5) otrzymujemy wiec
U[a,c] (Plv f) - L[a,c] (Pla f) <g,
U[c,b} (P27 f) - L[c,b] (P27 f) <Eé&.

b
Stad funkcja f jest catkowalna w przedziatach [a, c] i [¢, b]. Wartosé / f(z)dx

lezy pomlqdzy 11czbam1 Liap) (P, f) 1 Uy (P, f). Na podstawie (6. 6) (6.7)

wartos$é / flx)dx + / f(x)dx tez lezy pomiedzy tymi liczbami. Wtedy z

(6.5) otrzymujemy
< E.

x)dx—/cf(x)da:—/bf(x)da:

Zatozmy, ze | f(z)| < M. Wtedy —M < f(x) < M. Zatem

b

MO -a) = /b(—M)dx < [fw)dr < /bde — M® - a).

a

Uwaga. Przyjmujemy, ze / f(z)dx = 0 oraz dla b < a okreslamy

/bf(x)d:v——/af(x)d:c.

Wtedy wzér w Twierdzeniu 6.9(iii) jest prawdziwy niezaleznie od konfiguracji
liczb a, b1i c.

Twierdzenie 6.10. Przypusémy, ze funkcja f(x) jest catkowalna na prze-
dziale [a,b] oraz m < f(x) < M dla a < x < b. Niech g(y) bedzie funkcjg
cigglta na [m, M|. Wtedy funkcja ztozona g(f(x)) jest calkowalna na [a,b].
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Dowéd. Ustalmy liczbe € > 0. Istnieje liczba § > 0 taka, ze jesli |y; —ya| < 0,
to |g(y1) — g(y2)|] < e. Z catkowalnosci funkeji f mozna znalezé podziat P

taki, ze
n

U(P,f) = L(P, f) = > _(M; — m;)Az; < de.

i=1

Jesli liczba M; — m; jest duza, to liczba Ax; musi by¢ mata. Niech

Dla ¢ € A maksymalna rozpieto$¢ wartosci funkeji f na przedziale [x; 1, 7]
jest mniejsza od §. Zatem maksymalna rozpieto$é wartosci funkeji g(f(z))
na tym przedziale jest mniejsza od €. Oznaczmy

Mj= sup g(f(z)), mi= —inf g(f(x)), K= max |g(y).

i1 << ;-1 <TLT; m<y<M

Wtedy
U(P7gof) Pgo Z _m sz
=Y (M —m])Az; + Z F—mi)Ar; <e ) Az +2K ) Auw,
€A i€EB €A 1€EB
2K 2K &
1€B =1

2K
6(6—&)—}-758:8(5—(14—2}().

]

Whniosek 6.11. Jesli funkcje f i g sq calkowalne na przedziale [a,b], to
réwniez funkcje |f|, f? oraz fg sq calkowalne. Ponadto

< [1r@las

Dowéd. Dla funkcji |f| i f? stosujemy poprzednie twierdzenie z g(y) = |y| i
9(y) = y*. Dale]

1 1
fo=3(f+9°=5(f =9
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Stad fg jest catkowalna. Mamy —|f(x)| < f(z) < |f(z)|. Catkujac nieréw-
nos$¢ otrzymamy

- / (@) de < / fw)dr < / f(@)) da.

a a

Uwaga. Metody szacowania wartosci catek.

1. Obliczenie wartosci catki.
b
2. m(b—a) < /f(x)dx < M(b—a).

3. Znalez¢ funkcje g(x) i h(x) takie, ze g(x) < f(z) < h(z). Wtedy

b

/bg@:) dz < /bf(:c) dr < [ h(x)dz.

b
3. L(P.J) < [ fla)dz <U(P, f).
Przyktad. Stosujac metode 2 otrzymamy
2
2< [Vitatde <2v1T.
0
Lepszy wynik uzyskamy rozdzielajac catke
2 1 2
/\/1+x4d:)3 = /\/1+x4d93+/\/1+:v4d:v.
0 0 1

Wtedy
2
1+\/§</\/1+x4daz<\/§+\/ﬁ.
0
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6.1 Zasadnicze twierdzenie rachunku rézniczkowego i
catkowego

Twierdzenie 6.12. Jesli funkcja f(x) jest calkowalna na [a,b] to funkcja
F(z) = /f(t) dt jest ciggla na [a,b]. Jesli f jest ciggla w punkcie xo, to F(x)

jest rézniczkowalna w xo oraz F'(xg) = f(xo) dla a < xo <b i F'(a) = f(a),
FL(b) = f()

Dowdéd. Zatézmy, ze |f(z)| < M, czyli —M < f(z) < M. Dlaa < 77 < 23 <

b mamy
— L/ £(t) dt

Jesli f jest ciagla w xg, to dla liczby € > 0 mozna znalez¢ liczbe 6 > 0 taka,
ze dla |t — x| < d mamy |f(t) — f(xo)| < e. Zalézmy, ze 0 < |z — x| < 0.
Wtedy

|F () = Fa1)] = < M(zz — 1)

72f(t) dt — 7f(t) dt

|w_f($o)| = x_lxo Uf(t)dt—]of(t)dt} — f(zo)
_ x_lxo/xf(t)dt—x_lxo/xf(xo)dt _ I_l%/x[f(t>_f<xo)]dt
x_lxo/zv(t)_f(ﬂfo”dt dla z > ,
) xol_x xo’f(t)—f(azo)\dt dlax<x0.'

W obu przypadkach argument catkowania ¢ lezy pomiedzy xy i . Zatem
|t — x| < |z — 29| < 0. Wtedy |f(t) — f(z0)] < e. W obu przypadkach
funkcja podcatkowa jest mniejsza niz . Zatem niezaleznie od przypadku
otrzymujemy oszacowanie przez €. W przypadku x > o dostajemy F (xq) =
f(zo) a z x < xg wnioskujemy, ze F” (zo) = f(z0). ]

Whiosek 6.13. Dla funkcji f(x) cigglej na przedziale |a,b] istnieje funkcja
F(x) taka, e F'(x) = f(x) dla a < x < b oraz F (a) = f(a) i F'.(b) = f(b).
Funkcje F(x) nazywamy funkcjg pierwotng do funkcji f(x).
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Twierdzenie 6.14 (Zasadnicze twierdzenie rric). Jesli funkcja f(x) jest cal-
kowalna na [a,b] oraz F(z) jest funkcjq pierwotng do f(x), to

[ f@)dz = F) ~ Fla) = F(2) )

Dowéd. Dla liczby € > 0 bierzemy podzial P taki, ze
UP,f)—L(P, f) <e

Niech g, x1, ..., x, oznaczaja punkty podziatu P. Wtedy z twierdzenia La-
grange’a otrzymujemy

FO) = F(0) = () = F(ao) & Flaz) = F(an) + . Fn) = F(oo)
= ZF’ JAx; = Zf Az, =: S(P, f),

dla pewnych punktow z;_; < t; < ;. Mamy

L(P,f) < S(P,f) <U(P, f),

\@

f P, ).

Zatem

Uwaga. Wzér w twierdzeniu jest prawdziwy réowniez dla a > b.

Przyktady.

1 1

1 1
(a) /x” dr = ——a"* —
4 0 n-+1

n—+1

1

0

1
1
(b) / 5 dx = arctgx
0
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Twierdzenie 6.14 moze by¢ uzyte do obliczania réznego rodzaju granic.

Przyklady.

(a) Chcemy obliczy¢

) 1 3 2n —1

Wyrazenie pod granicg mozemy zapisa¢ w postaci

1/1 3 2n — 1
(++...+ )

n \n n n

- . 2i i1+ @ 2
Przyjmijmy, ze ©; = — oraz t; = IT Mamy Ax; = —. Zatem
n n
2
1
wyrazenie pod granicg ma posta¢ sumy catkowej dla catki 3 / rdr =1.

0
Stad granica wynosi 1. Mozna zauwazy¢, ze wyrazenie pod granica jest

rowne 1, niezaleznie od wartosci n.

(b) Mamy do obliczenia

1 1 1
lim -+ T e ———————
n (x/n2+1 \/712—1-22 \/n2+n2>

1 1
O S B [ i

= log(z + V% + 1)’0 = log(1 +V/2).

Twierdzenie 6.15 (Calkowanie przez podstawienie). Przypusémy, Ze
funkcja f(u) jest ciggla, a funkcja p(z) jest réozniczkowalna w sposéb
ciggly na przedziale [a,b] oraz zbior wartosci ¢([a,b]) jest zawarty w
obszarze okreslonosci funkcji f. Wtedy

b ©(b)
[ @)@ @ de = [ flw)du (6.5)

a v(a)
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Dowdd. Symbolem F' oznaczymy funkcje pierwotng do f. Wtedy
[F(e())] = F'(p(x))¢'(z) = flp(@))¢' ().

7 Twierdzenia 6.14 otrzymujemy zatem

Uwaga. Patrzac mechanicznie na wzor (6.8) widzimy, ze nastapita za-
miana u = () i du = ¢'(x)dzx, oraz konce przedziatu catkowania
zostaly odpowiednio zmodyfikowane.

Przyktady.

w/2
(a) Dla catki / sin x cos z dx stosujemy podstawienie u = sinz =: (),
0

1
f(u) = u. Wtedy du = cosx dz. W wyniku otrzymujemy /u du = 3
0

(b) Wzér (6.8) moze by¢ zastosowany w przeciwna strone. Rozwazmy catke

/1 du
) V1t u?
Zastosujemy podstawienie u = sinh z. Wtedy du = cosh x dz. Trzeba
znalez¢ granice catkowania a i b odpowiadajace liczbom 01 1. W tym
celu rozwigzujemy réwnania sinha = 0 i sinhb = 1. Otrzymujemy
a = 0. Drugie rownanie przeksztalcamy do postaci

Loy 5 1

e —e’' — - =0.

2" T T3
Jedynym dodatnim pierwiastkiem tréjmianu kwadratowego jest 14++/2.
Zatem e’ = 1+ /2, czyli b = log(1 + v/2). Otrzymujemy wiec

log(1++/2) log(1++/2)

/ _ coshz / dr = log(1 + v/2),

1
O/V1+u2 \/1+ sinh?z 0
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bo coshx = /1 + sinh? z.

Twierdzenie 6.16 (Catkowanie przez czesci). Zalozmy, Ze funkcje u i v sq
ciggle natomiast v’ i v’ sq calkowalne w sensie Riemanna na przedziale [a, b].

Wtedy
b

- /u(x)z/(x) dx.

a

b

a

/u/(x)v(x) dx = u(x)v(x)

Dowdd. Mamy (uv)’ = vw'v + uv'. Z Twierdzenia 6.14 otrzymujemy wiec

b

Z = /b[u’(:p)v(x) +u(z)v(x)] doe = /u'(x)v(x) dr + /bu(x)v'(x) d.

a

]

Przyktad.

™ m

iy
/xsinxdx:—xcosx +/COSl‘dZL’:7T.
0 9

Uwaga. Czesto tatwiej znalez¢ funkcje pierwotna zamiast stosowaé catkowa-

nie przez czesci. W przyktadzie (—x cosx + sinz)’ = xsinz. Gléwna czescia

funkcji pierwotnej jest sktadnik —x cosx. Po obliczeniu pochodnej pojawia

sie¢ dodatkowy sktadnik — cosz. Stad w funkcji pierwotnej wystepuje korek-
1

ta o sinz. Podobnie przy obliczaniu caltki / 22e® dr mozemy latwo znalezé
0
funkcje pierwotng metoda korekt. Otrzymamy
(22" — 2ze” 4 2¢%) = 2",
Zatem
L 1

/:U%xdx = (2 — 22 +2)e"| =e—2.

J 0
Twierdzenie 6.17 (Reszta we wzorze Taylora w postaci catkowej). Jesli

funkcja f(x) jest n + 1-krotnie rézniczkowalna w sposéb ciggly w otoczeniu
punktu a, to dla punktéow b z tego otoczenia mamy

(b—a) (b—a)? N (b—a)"

(n)

f(b) = f(a) +

f'(a) +

f(a) +
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gdzie
;¢

Rpp1 = ol /(b - 37)nf(n+1)($) dz.

a

Dowad. Zastosujemy wielokrotne catkowanie przez czesci.

b

f) = fl)+ [ f(@)dw = f(a) = [(6—2)f(2)da

a

= f@) - - 2) )| + [0 2 ) o

Pt P oy R,
]

Twierdzenie 6.18 (Twierdzenie o wartosci Sredniej). Funkcje f i g sq cal-
kowalne na [a,b], przy czym g(z) > 0 dla a < x < b. Wtedy

/bf(l’)g(x) dv = A/bg(flr) dx

dla liczby X lezgcej pomiedzy kresami dolnym m i gornym M funkcyi f.
Dowéd. Mamy mg(z) < f(z)g(z) < Mg(zx). Catkujac otrzymamy

m/bg(x) dzr < /bf(a:)g(x) dx < M/bg(x) dzx.

b b b
Jedli [ g(x) dx = 0, to réwniez [ f(z)g(z) dx = 0. W przypadku [ g(z)dz > 0

otrzymujemy
b
[ f@)g(w) do

(x) dz

m <

S —
Q
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O

Przyklad.

St~

f(x)sinzdr = )\/Sinxd$ =2\
0

dla pewnej liczby m < A < M.

Whniosek 6.19. Jesli funkcja f jest ciggla a funkcja g(x) nieujemna i cal-

kowalna, to
b

ff@M@szﬂ@/m@mr

N
N
N
>

dla pewnego punktu a

Dowdd. 7 poprzedniego twierdzenia mamy m < A < M. Z wtasnosci Darbo-
ux mozna znalez¢ € taki, ze f(§) = . ]

Przyktad. Jesli f jest ciggla, to
/f(a:) sinx dr = 2f(&).
0

Twierdzenie 6.20. Jesli g(x) jest nieujemnq funkcjg rosngeq a f(x) funkcjq
catkowalng na [a,bl, to

b b
[ f@g)de = g(v) [ f@)do (6.9)
a 3

dla pewnego punktu & z przedziatu |a, b].

Dowadd. Zatozymy, ze g jest rézniczkowalna w sposob ciagly i ze f jest ciagta.
Okreslmy
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Wtedy F'(z) = —f(z). Zatem
[ @) dz = [(~F(@))g(x)dz

= —F(z)g()

"t [ F@ @) de = Fag(a) + [ P e

Niech m i M oznaczaja kresy dolny i gorny funkcji F. Z Twierdzenia 6.18
otrzymujemy

| F@)g(@)de > mg(a) +m [ g(x) dw = mg(®).
Podobnie ,
| F@glx) dw < Mg(b).

a

Jesli g(b) > 0, to
b
m < g(lb)/f(:c)g(x) dr < M.

Z wlasnosci Darboux dla funkeji F(x) dostajemy

1 b b
ﬂ@!ﬂ@ﬂ@¢w:ﬂ8=!7wwx

dla pewnego punktu & w [a, b]. ]

Uwaga. Jesli g(z) jest nieujemna i malejaca, to

]f@mmezm@/fqu

a

Przyktad. Dla 0 < a < b mamy

b . £

sin x 1 7. cosa — cos

de = — [ sinxdr = ——.

x a a
a

a
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Zatem

6.2 Wzory Wallisa i Stirlinga

Qp,
Dla dwu ciagéw liczb dodatnich a,, i b, zapis a, ~ b, oznacza, ze T 1.

2n . n 2n n n 2n _
0 N o) =

n
liczba jest najwieksza. Wzér Wallisa podaje informacje jaki jest stosu-
n

We wzorze

nek tej liczby do sumy wszystkich symboli, czyli do 4™.

Twierdzenie 6.21 (Wzor Wallisa).

124n
lim (n)

B omi VT

w/2
Dowéd. Oznaczmy I, = /sin”:cd:v. Mamy [, = g oraz [; = 1. Dalej dla

0
n 2 2 mamy

w/2
I, = /(— cosx) (sinz)" ! dx
0

)n—l

w/2
/2
= —cosz (sinx +(n—1) / cos® z (sinx)" 2 dx
0

0

/2
=(n-1) /[1 —sin®z] (sinz)" ?dr = (n — 1)I,_y — (n — 1)1,,.
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Zatem !
I, ="

Lo, (6.10)

Poprzez iteracje (6.10) otrzymujemy

2n —1 (2n—1)(2n—3)...3-1 (2n)! =«
IQn: -[271—2:‘--: ]0: )
2n 2n(2n—2)...4-2 4n(nl)? 2
(6.11)
2n (2n)(2n —2)...4-2 47(n!)?
Lo = -1 = ... = 1= o
2n+1 2n+1)2n—1)...5-3 (2n + 1)!
(6.12)

Ciag I, jest malejacy, czyli Io,io < Iopy1 < Io,. Zatem na podstawie (6.10)

dostajemy
2n + 1 . Ign+2 I2n+1

= < < L
2n + 2 [211 = IZn =

Whioskujemy, ze Io,11/1Io, — 1 Stad korzystajac z (6.11) i (6.12) mamy
1 Iopia 4n(nl)? 4n(n!)? 2 4n(nl)? | 2n
— —= —_— = .
n Iy, Cn+1! 2n)! © (2n)lymn | 2n+1

Twierdzenie 6.22 (Wzor Stirlinga).

|
lim ———— = 1,

nonlte="\/2mn
tzn. n! =~ n"e "/ 2mn.

Dowdd. Udowodnimy nastepujaca nierownosc, z ktorej wynika teza twierdze-
nia.

n_—n n _—n 1
n"e "V2mn < n! < n"e "V2mn emn (6.13)

Oznaczmy
n! nlem
an = =
n"tze n  pta
Wtedy
an 1 (n+1)rt2 1 1\""2
- e
anr1 (n+1)e  prta e n
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Dalej

an 1 1
log :<n+)log(1+)—1.
[ 2 n
Rozwazmy fragment wykresu funkcji y = 1/x od punktu x; = n do punktu
x9 = n + 1. Wykres jest wypukly w doét. Zatem pole trapezu pod sieczna
przechodzaca przez punkty (x1,1/x1) i (x2,1/x9) jest wieksze niz pole pod
wykresem funkcji. Z kolei to ostatnie pole jest wieksze niz pole trapezu pod
styczna do wykresu w punkcie (z3,1/x3) dla z3 = (21 + 22)/2 =n + % Pole
pod wykresem wynosi

n+1

1 1
/ dleog(n+1)—logn:10g(1+).
T n

n

Zatem
1/1 1 n+ 3

1 1
<tog(1+) < 5 ) - |
+1 ©8 +n 2 n+n—i—1 n(n+1)
Pomno6zmy nierownosé przez n + % i odejmijmy 1. Wtedy
2
0<< +1>1 <1+1) 1<(n+%) 1 !
n+ —]lo -] - - =
2) %8 n n(n+1) dn(n +1)

To oznacza, ze
0<1 Qy, <1<1 1 )
O J— —_—
gan+1 4\n n+1/)’

czyli
1
a ein
1< = < —.
An41 e 4(n+1)

Stad ciag a, jest malejacy. Niech a = li7rln a,. Ostatnia nierownos¢ pocigga

réowniez )
an ein
1< <

—.
An4k e 4(n+k)

Przechodzimy do granicy, gdy & — oo. Otrzymujemy
Qp, 1
1< = < e, (6.14)
a
To oznacza, ze a > 0. Obliczymy teraz wartos¢ liczby . Mamy

a2 _(n!)262n (2n)2n+% B (n!)24m

n

w2 n2 (2n)lern/a . 2n)lvn

Jr
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Ale

2 2
n N -

agV2 " a2 V2
Stad o = v/2m. Z (6.14) uzyskujemy

Qp, 1

V2™

co jest rébwnoznaczne z (6.13). O

1<

Twierdzenie 6.23. Cigg funkcji f,, cigglych na przedziale [a,b] jest jedno-
stagnie zbiezny do funkcjyi f. Wiedy

b

117£n/bfn(x) dx:/f(a:) dzx.

a

Uwaga. Twierdzenie méwi, ze

b b
117rln/fn(x) dx = /li7rln fu(z) dz,

tzn. mozna wejs¢ z granica pod znak calki, przy zbieznosci jednostajne;j.

Dowdéd. Dla ustalonej liczby € > 0 mozna znalez¢ prog N taki, ze dlan > N
oraz a < x < b mamy |f,(z) — f(z)| <e/(b—a), czyli

9 9

< fulz) < f(2) +

b—a b—a

fx) =

Catkujac otrzymamy

b

[ s0o e < [ farto < [ storao e

a

tzn.
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Przyktady.

(a) fo(x) =2™(1 —2), 0 < z < 1. Mozna pokazaé, ze f,(z) = 0, Zatem

1
/fn(x) dz — 0.
0

(b) fu(x) = 2™ Mamy

0 0<xz <1,
n\L) —
Ja(@) n {1 =1
i 1
Zatem f,(x) nie jest zbiezny jednostajnie, ale /x" dz = | — 0.
n n
0

(¢) fu(z) =n’2"(1 —z). Mamy f,(z) — 0, dla 0 <z < 1. Ale

1 1 n3

n+1 n+2 n+1)(n+2) »

1
/n?’:p”(l —x)dr =n® (
0

6.3 Calka nieoznaczona

Definicja 6.24. Przypusémy, Ze funkcje f(x) i F(x) sq okreslone na usta-
lonym przedziale i spelniajq F'(x) = f(x). Funkcje F(x) nazywamy funkcjg
pierwotng do funkcji f(x) lub calkq niecoznaczong funkcji f(x) i zapisujemy

/f(:v) dx = F(x).

Jesli G(z) jest inna funkcja pierwotna do f(z), to G(z) = F(z) + C dla
pewnej stalej C. Rzeczywiscie,

(G(x) = F(x))' = G'(x) = F'(x) = f(z) = f(z) = 0.

Zatem funkcja G(x) — F(x) jest stala na przedziale. Stwierdzenie nie jest
prawdziwe dla dwu przedzialéw. Na przyktad niech = € (0,1) U (2, 3). Niech

F(x) = 2? oraz
?+1 0<x<l,
Gx) =1 ,
-1 2<z<3.
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Wtedy G'(z) = F'(x) = 2.
Przyktad.

log x x>0,
/ dx = = log |x|.
log(—z) z<0

Zapis stosowany w wielu podrecznikach
1
/—dleog]xH-C
x

jest mylacy, bo sugeruje, ze na obu potprostych dodatniej i ujemnej musimy
wzigl¢ te sama stata.

Twierdzenie 6.25.

Jir@ +g@dr = [ f@)de+ [ g()da

/cf(x)d:z; = c/f(:r;)dx

Twierdzenie 6.26 (Catkowanie przez podstawienie). Zalézmy, ze funkcja
o(x) jest rozniczkowalna w sposdb ciggly natomiast funkcja f(u) jest ciggla
na zbiorze wartosci funkcyi . Wtedy

/f@@»d@ﬂszw@»

gdzie F(u / f(u

Dowod.
d

() = Fl(p(@)¢' () = fo(2))#'(2)-

Uwaga. Teze mozemy zapisa¢ w postaci

[ Flela)¢ @) de = Flu),  gdzie u = p(a).

Inaczej
[ Fe@)@ @ de = [ f(u)du,  gdzie u = ().

Stosowanie twierdzenia



112 Analiza matematyczna ISIM I

1. Cheemy obliczy¢ [ f(¢(x))¢'(z)dzx. Obliczamy [ f(u)du i po wyko-
naniu obliczen podstawiamy u = ¢(z). Formalnie wyrazenie ¢'(z) dx
zamienito sie na du, tzn. du = ¢'(z) dx. To jest zgodne z zapisem Le-

du

%.

2. Chcemy obliczy¢ [ f(u) du. Podstawiamy u = ¢(x). Obliczamy [ f(p(z))¢'(x) dx.
Nastepnie pozbywamy sie zmiennej x przez podstawienie u = ¢(z). Po-
nownie du = ¢'(z) dz.

ibniza, bo ¢(x) =

Przyktady.
(a)

1
/e*‘/5 dr = /2\/56\/52\/5 dx.

Stosujemy podstawienie u = p(z) = /x, f(u) = 2ue ™. Zatem du =

1 . .
7z dz. Otrzymujemy wiec

/e’ﬁ der = /2ue’“ du = —2ue™ — 2¢ = —2y/ze V¥ — 27 VT,

/sin\/ﬂdu :2/8111:6 2vdr = —2xcosx + 2sinx
= —2y/usin /u + 2sin /.

Twierdzenie 6.27 (Calkowanie przez czesci).
[ f@)g(@)dz = f@)g@) - [ f@)g (@) do.
Dowéd. Mamy (f(x)g(x)) = f'(x)g(x) + f(x)g (z). Zatem

f@)g@) = [ f@)g@)dz+ [ fa)g (@) do.
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Przyktady.
(a) /xe’x dx = /(—e’”)'a: de = —ze " + /e*“” de = —ze * —e °.

1
b) /logxdx:/x’logxdx:xlogx—/x—dx:xlogx—x.
x

(c) /exsinxdx:exsinx—/excosx:exsinx— excosx+/exsina:da: :

COS x sin x CcosS T COS T
(d) / = — —/Slnx< )dx—l / dx.
sin x sin x sin? sin x

6.4 Catkowanie funkcji wymiernych

Bedziemy sie zajmowali obliczeniem / M dx, gdzie p(z) i q(x) sa wielo-

()

mianami. Jedli deg p > deg ¢, to wykonujemy dzielenie z resztg
p(x) = w(x)q(z) +r(x), degr < degg.

Wtedy

Przyktady.

1
) /—dx = log |z|. Zatem
x

G
| Fap e =817l

/(x—?cjfx—S):/(xl—S_miQ) e
T —3
.

= log |z — 3] — log |z — 2| = log
r—2
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Ogolnie przy catkowaniu r(x)/q(z) rozktadamy mianownik na czynniki
postaci (z — )" oraz [(x — §) +7*]™. Wtedy wyrazenie r(z)/q(x) rozklada
si¢ na sume¢ wyrazen postaci

1 Co Cn
—a (x —a)? ot (x —a)"’

dix + ey dyx + €3 P A + €,
(@=082+7 [@=82+2P =02+

Przyktad.

/ dx p _/ dx
Bl (x+1D)(22—2+1)

1 A Bx +C
= + . (6.15)
(x+1)(x2—2z+1) z+1 22—z+1
Chcemy znalez¢ state A, B i C.
Sposéb I.
Mnozymy obie strony réwnosci przez x + 1 i podstawiamy x = —1. Otrzy-

Wiemy, ze

mujemy A = 3 Dalej

1 1 B 2?4+ +2
(z+1)(22—z+1) 3x+1) 3@+1)@22—z+1)
(x+ 1)z —2) B r—2

3rx+D)(x2—x+1) 3@Z—z+1)
Ostatecznie otrzymaliSmy
1 1 xr—2

(z+ 1)@ —z+1) - 3(x+1) 3@*—z+1) (6.16)

Sposéb II.
Mnozymy réwnosé (6.15) przez (x + 1)(z? — z + 1) i otrzymujemy
=A@ —2+1)+(Br+C)x+1)=(A+B)2*+(B+C - A)x+ A+ C.
Nastepnie rozwigzujemy uktad réwnan
A+B = 0,
B+C—-A = 0,
A+C = 1
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Na podstawie (6.16) obliczamy

/3x+ log|x+1|
Dalej
T — 2 1 2x—-1 3 1
22 —x+1 5 —x+1_§ —x+1
1 B 1 4 1
"3

2 1 1\?, 3
Ostatecznie otrzymujemy wynik

d 1 1 1 20 — 1
/idx:—log]x—l—ll—élog(x2—x+1)+—arctgx7

3+ 1 3 V3 V3
dx
Przykl d./ .
YRR ] e )
Mamy
1 A B Cx+D

G122 11) 1-1 @12 2yl (6.17)

Jak najszybciej znalez¢ stale A, B, C' i D ? Oznaczmy f(z) = 1/(2? + 1).
Mnozymy réwnosé przez (z — 1) i podstawiamy x = 1. Dostajemy B =
f(1) = L. Przeksztalcamy réwnosé do postaci
fl@)  f@1) _Cx+D
(x—12 (x—1)2 2241

Po pomnozeniu przez x — 1 otrzymujemy

f@) S ., CotD
T =A+(z 1)$2+1.
Czyli
e S@) = 2 _ 1
A_alcl—»n} r—1 _f(1>_(:v2—|—1)233:1_ 2
Na podstawie (6.17) obliczamy
1 B 1 1 n 1 1
(x—1)2(x2+1) 2(x—-1)2 2z-1
C2—-@+ D)+ (-1 +1) x(zx —1)? B x

2(x —1)2(x2 + 1) 2@ —1)2(22+1)  2(2241)
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Ostatecznie otrzymujemy

dz 1 1 1
= Zloglr—1] — ——— + - log(z + 1).
/(a;—1)2(:c2+1) 3 logle =1l =go—y + ploele” + 1)

x
Ogoélnie, rozwazamy sktadnik postaci f())k, gdzie f(x) jest funkcja
—a
nieskonczenie wiele razy rézniczkowalng w punkcie a. Ze wzoru Taylora mamy

)k—l

(x—a (x —a)*

fle) = fla) + S @) o S ) + S ),
dla pewnego punktu £ pomiedzy a i z. Wtedy
flx) _ [fla) f'(a) f*(a)
(x—a)*k  (x—a) + (x —a)k—1 et (k— D!z —a) + Ril@),

oraz

(k) (k)
iy Rute) = iy £ =

co oznacza, ze w mianowniku funkcji Rj(x) nie wystepuje czynnik = — a.
Kazdy sktadnik postaci ¢;/(x — ) catkujemy wedtug wzoréw

dx 1 1
=— k>0,
/(x—oz)k k—1 (x—a)k1’
dx
/ =log |z — .
r—a«
Sktadniki postaci
(dkx + €k)
[(z = B)* + )

przez podstawienie afiniczne sprowadzamy do wyrazen postaci

(u?2+ 1)k

Dalej
(dpu+e,)  ~ u _ 1

@+ )F - R TR e
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1
5 log(u® 4+ 1) k=1,

u
N 1 1
/ (u? + 1)* _ k> 2.
2(k — 1) (u? + 1)kt

du
- Wtedy I; = arctg u oraz

OZnaCZy [k = /<U/2—i_1)

1 u 2u? du
o= [u o du= ek [
k u (u2 + 1)k u (u2 + 1)k - (u2 4 1)k+1
u [(u?+1) — 1] du
-

(u2+ 1) + 1)k+
u
= m + 2kl — 2k 1.
Otrzymujemy wiec
1 u 2k — 1

1.

b = o v Tk
6.5 Podstawienie wykladnicze i trygonometryczne

Przyktady.

d
(a) /\/1 — e* dx. Podstawiamy u = e*, du = e*dx czyli dx = —u, aby
u

otrzymagé
J1 =
/\/l—exdx:/ udu.
U

Nastepnie podstawiamy v = /1 —u. Wtedy u = 1 — v?, czyli du =

—2v dv.
V1—u v 202 1
/ U du /1—1}2( v) dv /vz—ldv /( +'02—1)dv
1 1
:20/<U—1_v—|—1> dv =2v+log|v — 1| —log |v + 1|

=2V1—e*+log(l —v1—e*)—log(l++v1—e*)

e"l]
=21 —-e*+log ——n— —log(l + V1 — ¢~
v B i sl vize)

=2v1—e*+ 2 —2log(l +v1—e).
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(b) Przypomnimy podstawowe wzory dotyczace funkcji hiperbolicznych.

cosh? x = sinh?z + 1,
sinh 2z = 2sinh x cosh z,

cosh 2z = 2cosh?x — 1 = 2sinh? z + 1.

W calce / Va2 4+ 1dx wykonujemy podstawienie x = sinht. Wtedy
dx = coshtdt. Zatem

1
/\/x2 + 1ldx = /costhdt = 5/[cosh2t+ 1] dt
1 1 1 1
= §t + Zsinth = 515 + 5 sinh t cosh t
Z réwnosci z = (e' — e7") /2 otrzymujemy
Lo o1

26 xe—§:O.

Wtedy €' = x4+ Va2 + 1 oraz t = log(z + va? + 1). Zatem
1 1
/\/xQ + ldx = ilog(x +Va2+1)+ §m\/x2 + 1.

(c) Przy calce / Va2 — 1dx x > 1 wykonujemy podstawienie & = cosht,
t > 0. Wtedy V22 — 1 = sinh t. Zatem

1
/\/x2—1dx:/sinh2tdt:5/[cosh2t—1]dt
1 1 1 1
:—§t+§sinhtcosht:Elog(ﬂv+\/x2—1)+§x\/x2—1.

(¢) W calce /\/1 — 22 dr wykonujemy podstawienie z = sint, —5 < x <
5. Wtedy

1 1 1
/\/1—x2dx:/c082tdt: 5/[0052t+1]dt: Zsith—l—it

1 1 1 1
= §sintcost+ §t = 51‘\/1 — 22+ §arcsin:v.
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Rozwazamy wyrazenie postaci R(x,vaz? + bx + ¢), gdzie R(x,y) jest
funkcja wymierna dwu zmiennych. Poprzez podstawienie afiniczne x = at+ (3
sprowadzamy wyrazenie do jednej z trzech postaci i wykonujemy podane w
tabeli podstawienia.

R(t,vt? +1) a>0, A<0 t = sinhu
R(t,/t> —1) a>0, A>0 t = coshu
Vi

R(t, /1 —1t?) a<0, A>0 t =sinu

Otrzymamy w wyniku wyrazenie postaci R(cosh u,sinhu) lub R(cos u, sinu).
Jesli nie potrafimy bezposrednio wskaza¢ funkcji pierwotnej na tym etapie
wykonujemy podstawienia v = e* lub v = tg 3, odpowiednio. Przy podsta-
wieniu v = e* mamy

dv

1
coshu = —(v+ov? sinhu = =(v—ov~* du = —.
Przy podstawieniu v = tg 5 otrzymujemy

cosu = coszg - sin2g = coszg [1 — tg? g] = cos? % (1—v?),

Uu u u u u
SN u Sin 9 COS 9 COS 9 g B COS 9 v,

1 U
=—(1+1tg? > .
dv 5 < tg 5 du

Korzystajac ze wzoru

o U 1
I+te 5_(:082%

otrzymamy

1—0? _ 20 2
cosu=-——, sinu=-——, du=-——dv.
1+ v? 1+ v? 1+ v?
Przy obu podstawieniach otrzymujemy funkcje wymierng zmiennej v.

Przyktad. Nie zawsze warto sprowadzaé obliczenie do calki z funkcji wy-
miernej. Czasami lepiej zastosowaé¢ wzory trygonometryczne, aby szybciej

osiagna¢ cel. Przy zastosowaniu podstawienia v = tg 3 do catki cos® x dx

1—02 2
/COS :1:—/ 52 1+U2dv.

otrzymamy
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Uwaga. Mozna uniknaé¢ podstawienia trygonometrycznego. Np. w catce / V1—22dx

dla z > 0 mozemy zastosowaé¢ podstawienie z = 1/u. Wtedy dr = —du/u?.
Zatem

6.6 Zastosowanie calek oznaczonych do obliczania wiel-
kosci fizycznych

Pole obszaru na ptaszczyznie

Jedli y = f(x) jest nieujemna funkcja ciagla na [a, b], to pole S obszaru pod
wykresem funkcji i nad osig x wynosi

S = /bf(x) dx.

N

Pole obszaru pomiedzy wykresami dwu funkcji ciagtych f(x) < g(z), a
x < b wynosi zatem

S = [lglw) - f(@)] da.

Srodek masy obszaru

Zaktadamy, ze obszar miesci sie¢ pomiedzy wykresami funkeji f(z) i g(z), a <
x < b, przy czym f(z) < g(x). Przyjmujemy, ze masa jest proporcjonalna do
powierzchni. Dzielimy przedzial [a, b] na n réwnych czesci punktami x;, gdzie
1 =0,1,...,n. Temu odpowiada podzial obszaru na n waskich fragmentow
zwiazanych z przedziatami [x;_1, x;]. Masa fragmentu wynosi w przyblizeniu

m; = [g(x:) — f(x:)]Az;.
Srodek masy tego fragmentu znajduje sie w przyblizeniu w punkcie
X; o= (s, 5[f (@) + g(x)])

Srodek masy catego obszaru jest réwny w przyblizeniu §rodkowi masy uktadu
punktow (X;,m;) dlai=1,2,... n. Srodek masy tego ukladu znajduje sie



Catka Riemanna 121

w punkcie
dowimi 3 5(f (@) + glza)m;
X ~ 277:5, ? L n
R
Dalej
n b
S = Ylaw) = S@ldn — [lo@) - f@)]d
Smm = 3 alale) - fe))An o [ #lole) - )] de
UG +aledm = 53 lo(a? = S 1an - g [l = s
Zatem
[ 2lg(a) = f@)]dr } [lg(a)* — f(@)?)do
X=15 » T
Jlg() ~ f@] e [lgle) ~ f(@))da

Przeanalizujemy btad wystepujacy w obliczeniach. Dla funkcji A iliczby 6 > 0
okreslamy oscylacje wzorem

osc (h,0) = sup{|h(z) = h(y)| - a <z,y <b, |z —y[ <0}

Przy obliczaniu pojedynczego sktadnika btad nie przekracza

b— b—
6Losc (h, a),
n n

gdzie w roli funkcji h wystepuja funkcje g — f, x(g — f) oraz ¢*> — f2. Po
zsumowaniu btad nie przekracza wielkosci

n

b—
(b —a)osc (h, na> — 0.
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Dlugosé krzywej

Krzywa na plaszczyznie zadana jest poprzez parametryzacje © = x(t), y =
y(t), a < t < b. Zaktadamy, ze funkcje x(t) i y(t) sa rézniczkowalne w
sposéb ciagly. Cheemy obliczyé¢ dtugos$é krzywej. Dzielimy przedziat [a, b] na
n réownych czesci punktami ¢;, ¢+ = 0,1,...,n. Fragment krzywej pomiedzy
kolejnymi punktami (x(t;—1),y(t;—1) i (z(t;), y(t;) przyblizamy odcinkiem dla
kazdej wartosci ¢ = 1,2, ..., n. Otrzymamy tamang o dtugosci

Ln= 3 vie(t) = ol P+ ly(e) — ulte )P

7 twierdzenia Lagrange’a mamy

z(t;) —x(ti) = 2'(¢;)Aty,
y(ti) —y(tic) = y'(di)At,

dla pewnych punktow ¢; i d; pomiedzy t;_; i t;. Zatem

Z\/x (d;)? At;.

Okredlmy wielkos¢

L, —Z\/x )2+ (c;)? Aty —>/\/ )2+ y/(t)? dt.

Dalej

|En—Ln \/x (¢i)?+y'(d \/x 12+ o' (c;)?

= 1
Skorzystamy z nieréwnosci trojkata

Wag 03— Ja2 + 5| < \J(as — an)? + (b — 1)

Zatem

- n b— b—
Lo Ll < 3010/ (d) — v/ At < 1% ose (y)
=1 n
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bo funkcja 3y’ jest jednostajnie ciggta. Reasumujac otrzymalismy

L, — / JE (2 + (D)2 dt.

Przyjmujemy wiec, ze dtugos¢ krzywej wynosi

L= / JE (2 + (02 dt.

Przyktad. Okrag o promieniu r mozemy sparametryzowaé przez x = r cost,

y =rsint, 0 <t < 2m. Wtedy

2m
L= / \/(—r sint)? + (r cost)? dt = 27r.
0

Wracamy do sytuacji og6lnej. Niech s(t) oznacza dtugo$¢ krzywej, gdy czas
zmienia sie od a do t. Wtedy

Zatem
s'(t) = 2! (t)? + i/ (¢)2.

W zapisie Leibniza wzoér ma postaé
ds _ [(dx\" (v’
dt  \\dt dt )

ds = /(dz)? + (dy)?.

Niech y = f(x) bedzie funkcja rézniczkowalna w sposob ciagly na [a, b].
Chcemy obliczy¢ dtugosé wykresu. Stosujemy parametryzacje x = t, y =

f(t). Wtedy
L= /«/1+f’(t)2dt: /\/1+f’(x)2d:c.

Uzywa sie tez zapisu
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Przyktad. y = v1 — 22, —1 < z < 1. Wtedy

1 1 L
L= /1\/ 1—x2 [m—arcsinx_lzw.

Uwaga. Funkcja podcatkowa nie jest okreslona dla x = 41, wiec obliczenie

nie jest do konca $ciste. W celu uscislenia obliczen mozna ograniczy¢ sie do
—1+6 <z < 1-0. W wyniku dostaniemy arcsin(1—J)—arcsin(—1+4). Przy
0 — 07 otrzymamy . Calke z funkcji, ktéra nie jest okreslona w niektérych
punktach przedziatu catkowania, nazywamy catka niewtasciwa. Teorig takich
catek zajmiemy sie w drugiej czesci kursu.

Dtugosé krzywej we wspotrzednych biegunowych

Dla punktu X(z,y) okreslamy wspolrzedne biegunowe (r,6), gdzie r jest
odlegtoscig punktu od poczatku uktadu, natomiast € jest katem pomiedzy
dodatnig pélosig x i péiprosta OX. Zatem r = y/x? + y?. Ponadto z = r cos 6
iy=rsinf.

Zatozmy, ze krzywa jest zadana przez zwiazek pomiedzy r i § wzorem
r= f(0), 0, <0 <6, Wtedy

x = f(0)cosh, y= f(0)sind, 6 <6< 0.

Zatem

L::/\Afmmcmww—fw)anm2+¢fmmsmﬂ-fw)amepda

Po uproszczeniu otrzymujemy

L:/wﬁwy+fwyw.
01

Przyktady.

(a) r = sinf, 0 < 6 < 7. Mozna sprawdzi¢, ze krzywa opisuje okrag o
promieniu £ i §rodku w (0, ). Mamy

L:/\/00529+sin29d9:7r.
0
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(b) r =0, 0 < 0 < 4r. Krzywa opisuje dwa obroty spirali. Mamy

47
L= [VITPd = 0VTT + 3 log(0+ VI T P)
0

4m
0
1
=2mvV1+ 1672 + ) log(4m + V14 1672).

Srodek masy krzywej

Rozwazamy krzywa x = z(t), y = y(t), a < t < b. Zaktadamy, Ze masa jest
proporcjonalna do dtugosci krzywej. Dzielimy przedzial na n réwnych czesci.
Masa fragmentu krzywej odpowiadajacego przedziatowi [t;_1,t;] wynosi

t;
m; = / V()2 +y/(t)2dt = \/x’(ui)Q + 9/ (u;)2 At
ti—1

dla pewnego punktu u; pomiedzy ¢;_; i t;. Cata mase tego fragmentu umiesz-
czamy w punkcie (x(u;), y(u;)). Otrzymamy uktad n punktéw z masami m,.
Srodek masy tego uktadu znajduje sie w punkcie

Dalej

imi _ Zl Vol + g wpas = [ e +y2 .

n n

> mr(ug) =) yc(uz)\/yc’(uz)2 + ' (u)? Aty — /:L’(t)\/l"(t)Z + /(1) dt.

i=1 i=1

Podobnie
b

imiy(ui) — /y(t) 2/ (1)2 + o/ ()2 dt.

a
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Srodek masy znajduje sic wiec w punkcie

Falt) (0P + g @R de [y(0)/(0F + (27 de

NGO

Mamy s'(t) = \/a/(t)? + /(t)2. Przyjmijmy oznaczenie ds = s'(t) dt. Srodek
masy ma wtedy wspotrzedne

JJe 0 1 (02 dt

b b
Jxds [yds

)

b b
[ds [ ds

Przyklad. f(z) = V1 — 22, —1 < x < 1. Wykres opisuje gérny pélokrag o

promieniu 1. Obliczamy drugg wspoétrzedng srodka masy. Mamy

1 5 1
Vi1 e = [ de=2,
1 -7 1

2

Wspotrzedna ta wynosi zatem —.
T

Pole powierzchni figur obrotowych

Chcemy obliczy¢ pole powierzchni bocznej S figury otrzymanej przez obrét
krzywej x = z(t), y = y(t) < 0, a < t < b wokét osi z. Dzielimy prze-
dziat czasu na n réwnych czesci punktami ¢;. Rozwazamy fragment krzywej
odpowiadajacy przedziatowi [t;_1,t;]. Dlugosé tego fragmentu wynosi

L= / \/a:’(u)2 + ' (u)? du = \/a:’(ui)Q + v/ (u;)?At;

dla pewnego momentu t;_; < wu; < t;. Pole powierzchni otrzymanej przez
obrét fragmentu jest réwne w przyblizeniu 27y(u;)L;. Zatem

S~ 21> ylu) /o (u)? + 3 ()2 At
=1
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Przechodzac do granicy, gdy n — oo otrzymamy

—27T/y ()2dt

Uwaga. Druga wspotrzedna srodka masy krzywej wynosi

- noTa

gdzie L jest dtugoscig krzywej. Zatem

h \

S = 27Ty0 L.

Tzn. pole powierzchni obrotowej jest réwne iloczynowi dtugosci krzywej i
drogi jaka przebywa $rodek masy przy obrocie (reguta Guldina).

Jesli krzywa jest fragmentem wykresu funkcji y = f(z), a < z < b, to
pole powierzchni obrotowej wyraza sie wzorem

b

S:27r/f(x) 1+ f/(2)? do.

a

Przyktlady.

(a) Jakie jest pole powierzchni bocznej stozka Scietego o dtugosei tworzacej
[ i promieniach podstaw r i R 7 Powierzchnie otrzymujemy przez obrét
odcinka o dtugosci [, ktorego konce znajduja sie na wysokosciach r i R
nad osia z. Druga wspotrzedna srodka masy wynosi (r + R)/2. Zatem

r+ R

S =27 l=m(r+ R)I.

(b) Jakie jest pole powierzchni torusa, czyli figury powstalej przez obrot
okregu o érodku w (a, ) i promieniu r < b ? Srodek masy znajduje sie
w (a,b). Zatem
S = 27 2mr = 4m’br.
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(¢) Rozwazamy gorny pétokrag f(x) = 1 —22, —1 < =z < 1. Chcemy
obliczy¢ pole powierzchni otrzymanej przez obrét fragmentu wykresu
a < x < b. Mamy

—2#/\/1—952 1+1 5 dr =2m(b - a).

Pole powierzchni zalezy tylko od dtugosci przedziatu [a, b].

Objetos¢ bryly obrotowej przy obrocie wokél osi x

Rozwazamy wykres funkcji ciaglej i nieujemnej y = f(x), a < x < b. Chcemy
obliczy¢ objetos¢ V' bryty otrzymanej przez obrot obszaru pomiedzy wykre-
sem funkcji i osig x, przy obrocie wokét osi x. Dzielimy przedzialt [a,b] na
n rownych czeéci punktami z;. Symbolem V; oznaczamy objetos¢ fragmentu
bryty odpowiadajacej przedziatowi [z;_1, x;]. Niech m; i M; oznaczaja mini-
mum i maksimum funkcji na przedziale [x;_1, z;]. Fragment brylty zawiera w
sobie walec o wysoko$ci Ax; i promieniu m; a sam jest zawarty w walcu o
wysokosci Ax; i promieniu M;. Zatem

WW?A.%Z' <V < ﬂMfoi.

Z wtasnosci Darboux dla funkcji f(z)? mamy V; = 7 f(t;)?Ax;, dla pewnej
wartosci x;_1 < t; < x;. Catkowita objeto$¢ wynosi wiec

n

b
V= WZf(ti)2Axi — 7r/f(x)2 dx

i=1
Rozwazamy obszar A pomiedzy wykresami dwu funkcji y = f(x), y =

g(x),a <z <boraz 0 < f(z < g(x). Objetosé bryly otrzymanej przez obrét

wokot osi ¢ wynosi
b

V=r [ |gl@) - f(@)?] du.

a

Uwaga. Druga wspétrzedna srodka masy obszaru A jest rowna

=5 ] o7 107]
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gdzie S jest polem obracanego obszaru. Zatem
V = 2my,S.

To oznacza, ze objetos¢ jest réwna iloczynowi powierzchni obracanego obsza-
ru i drogi jaka przebywa srodek masy obszaru przy obrocie (reguta Guldina).

Przyktad. Rozwazmy obszar ograniczony przez y = v R?2 — 22,y = /12 — 22,
dla0<r < Roraz —r <a<b<ria<x<b Objetos¢ brylty obrotowej
jest réwna

V:W/{( R? — 12)* — ( 7‘2—x2)2] dr = n(R* —r*)(b— a).

a

Objetosé zalezy tylko od dtugosci przedziatu [a, b].

Objetosé¢ bryly obrotowej przy obrocie wokoél osi y

Rozwazamy ponownie wykres funkcji ciggtej i nieujemnej y = f(x), a <
x < b. Checemy obliczy¢ objetos¢ V' brylty otrzymanej przez obrét obszaru
pomiedzy wykresem funkcji i osia x, tym razem przy obrocie wokot osi y.
Dzielimy przedzial [a,b] na n réwnych czesci punktami x; i symbolem V;
oznaczamy objetos¢ fragmentu bryly odpowiadajacej przedziatowi [x;_1, z;].
Wtedy

Vi & mad fa;) — mai  f(z) = w(wy + 2) f (25) Ay ~ 2m, f (25) Ay

Po zsumowaniu otrzymamy

" b
21y xif (z;)Aw; — 27T/$f(l’) dx.

i=1

Zatem
b

V= 27r/:cf(a:) dx.
Rozwazmy teraz obszar pomiedzy wykresami funkcji y = f(z), v = g(x),
a <z <boraz 0 < f(z) < g(x). Objetosé bryly przy obrocie wokét osi y
WYnosi

V =2r / lg(z) — f(2)] d.



130 Analiza matematyczna ISIM I

Zatem
V= 27'('1'0 S,

gdzie S jest polem obracanego obszaru, a x jest pierwsza wspotrzedna srodka
masy. To oznacza, ze reguta Guldina jest spetniona przy obrocie wokoét osi y.

Przyklad. y =1 — (z — 2)% 1 < x < 3. Wtedy

V= 27r/x[1 — (x —2)Y dz.

Praca

Przypusémy, ze przy przesuwaniu obiektu wzdtuz linii prostej do punktu
a do punktu b wywieramy stata site c. Wtedy wykonana praca jest rowna
c(b—a). W przypadku, gdy sita nie jest stata i wynosi f(z) dlaa < z <, to
dzielimy przedzial [a, b] na n réwnych czesci. Praca potrzebna do przesuniecia
od z;_1 do x; wynosi w przyblizeniu f(x;)Ax;. Catkowita praca jest réwna
w przyblizeniu

. b
i=1 2
Przyjmujemy wiec
b
W= / f(z) da.

Przyktad. Pchamy cieknaca taczke przez 100 m. Z powodu wycieku sita

wywierana na taczke wynosi

Zatem

W 1676 Robert Hooke sformulowal prawo mechaniki: sita wywierana
przez sprezyne rozciggnietyg o x jednostek poza naturalng diugosé sprezyny
jest proporcjonalna do z (dla matych wartosci x). Tzn. g(x) = —kz, gdzie k
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jest stalym wspotezynnikiem. Zatem praca potrzebna do rozciagniecia spre-
zyny od a do b jednostek poza naturalng dlugo$é¢ wynosi

b
W:/kxdx.

Przyktad. Praca potrzebna do rozciggniecia sprezyny o 10 cm wynosi 10 J.
Ile wynosi praca potrzebna do rozciggniecia o dodatkowe 20 cm ? Mamy

0,1

Wi = /k;xd:zc ~ 10.
0

Czyli k = 2000. Dalej

0,3
Wios0 = / 2000z dz = 20000,20,2 = 80 (J).

0,1

Praca potrzebna do wypompowania pojemnika

Chcemy wypompowaé¢ wode z pojemnika przez odplyw znajdujacy sie na
pewnej wysokosci. Jesli mamy podnieéé warstwe wody o objetosci V' (m?) o
[ metréw w gore, to wykonana prace bedzie réwna

W =9,8-1000- VI.

Zaktadamy, ze woda miesci si¢ pomiedzy poziomami z = a i x = b. Dzieli-
my przedzial [a,b] na n réwnych czesci. Objetosé warstwy wody pomiedzy
poziomami z; 1 1 x; wynosi w przyblizeniu A(x;)Ax;, gdzie A(z) oznacza
pole powierzchni przekroju pojemnika na poziomie z. Praca potrzebna do
podniesienia warstwy wynosi W; ~ 9800 A(x;)Az;(I — x;). Calkowita praca
wynosi w przyblizeniu

W 9800 (I — x;)A(z;) Ax;.

i=1
Zatem

b
W = 9300 / (I — 2)A(z) d.
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Przyktad. Pojemnik w ksztalcie dolnej poétkuli o promieniu 10 m jest wy-
petniony wodg. Chcemy wypompowaé wode przez odpltyw znajdujacy sie 1 m
nad poziomem wody. Umieszczamy skale tak, ze woda miesci si¢ pomiedzy
poziomami —10 i 0. Przekr6j pojemnika na wysokosci z jest kotem o promie-
niu r(z) = V100 — 2. Zatem A(z) = 7(100 — z?). Otrzymujemy wiec

0
W = 9800 / (1 — 2)7(100 — 22 da.

—10

Objetosci bryt w R?

Przypusémy, ze bryta miesci sie pomiedzy ptaszczyznami pionowymi x = a
i x = b. Niech A(z) oznacza pole przekroju bryty plaszczyzna pionowa w
punkcie z. Aby obliczy¢ objetosé bryly dzielimy przedzial [a, b] na n réwnych
czesci. Objetosé fragmentu bryty pomiedzy plaszczyznami x = x;, 1 i x = x;
wynosi w przyblizeniu V; ~ A(x;)Ax;. Zatem catkowita objetosé¢ jest réwna

=1

Stad
b
V = /A(x) dzx.

Uwaga. Ze wzoru wynika, ze dwie bryty majace te same pola przekrojow na
kazdym poziomie majg réwne objetosci.

Przyktad. Jaka jest objetosé¢ piramidy o wysokosci 4m i podstawie 3m

na 3 m? Umieszczamy os x pionowo. Zakladamy, ze podstawa piramidy

znajduje si¢ na poziomie -4, natomiast wierzchotek na poziomie 0. Przekroj

piramidy ptaszczyzng prostopadly do osi x na poziomie x jest kwadratem o
9.2

boku a = —2z. Zatem A(z) = j5a? oraz

9 (0 9 4
V:—/ xQdaj:—/ 22 dr = 12.
16 J—4 16 Jo

6.7 Przyblizone obliczanie calek

Przy obliczaniu catek oznaczonych nie zawsze mozliwe jest doktadne podanie
wartosci liczbowej.

Przyktady.
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(a) Chcemy obliczy¢ diugosé wykresu funkcji y = %x?’ dla 0 < z < 1.
Wtedy

1
L:/\/1+x4dx.
0

(b) Rozwazmy elipse o pétosiach 11 2. Mozemy uzy¢ parametryzacji © =
cost, y = 2sint, 0 <t < 2m. Wtedy dtugosé elipsy wynosi

27 27
L:/\/sin2t+4cos2tdt:/\/1+30052tdt.
0 0

Metoda trapezow

b
Mamy do obliczenia / f(z)dz, gdzie f(x) > 0. Dzielimy przedzial na n

réwnych czesci. Kolejne punkty wykresu (z;_1, f(z;-1) 1 (x;, f(z;) taczymy
odcinkiem. Otrzymujemy tamana, ktéra przybliza wykres funkcji. Pole pod

b
ta tamanag przybliza pole pod wykresem funkcji, czyli liczbe / f(x) dx. Zatem

f(:vo)+f(:£1)b—a+f(m1)+f(a:2)b—a+ +f(93n_1)+f(:£n)b—a

~ e 9

2 n 2 n 2 n

czyli

b

[ F@) e~ 2 F (@) + 2f (1) + 2 (@) + 4 2 (@) + F(B)).

—a
2n

2
1
Przyktad. / —dx = log 2. Zastosujemy metode trapezow dla n = 4. Wtedy
x
1

1 4 2 4 1
log2~—-[1+2-—4+2- —4+2.- -+ —| = 23 ...
og 8[—1— 5—1— 3+ 7+2 0,697023
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Wiadomo, ze log2 = 0,693147..., wigc doktadno$¢ obliczenia jest réwna
okoto 0,4 procenta. Blad w metodzie trapezéw wynosi

BN = | [ ayde =" 2 f(a) + 27 G) 4 2f () + O]

Mozna udowodnic, ze

Unl 1

12n2  a<az<b

EN(f) <

1 2
Dla funkcji f(x) = — mamy f"(z) = —. Zatem
T T

1 1 1
ET () <——2=—.
x 12-16 96
Metoda Simpsona

Thomas Simpson (1710-61) byt angielskim matematykiem, ktéry w 1743

opracowal metode przyblizonego obliczania caltek. Dzielimy przedzial [a, b]
b—a

na parzysta liczbe n = 2k czesci o dhugosci h = =2. Trzy kolejne punkty

wykresy (2o, f(20)), (z1, f(21)) 1 (22, f(22)) taczymy paraboly p(x). Mamy
zatem

pla) = flag) I =) ) (LI ) (£ O )

Calke / f(z) dzx zastepujemy przez
)

T2 T2 ]’L

[ f@)de~ [ p(a)de = 5 [f(x0) +4f(@1) + F(z2)]
Ostatnia réwnos¢ wynika ze wzorow

7 7 2h?

/(x —xo)(x — 1) dx = /(m —11)(x — x9) dx = ER

7 Ah?

(x — zo)(x — 29) dx = —5

o
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To samo wykonujemy dla wszystkich pozostalych przedziatéw postaci [z, x4],
[.’13‘4, xﬁ], ceey [.’13‘21672, .CEQk]. Tzn.

T2 T2

/ f(z)dr = / pi(z) de = Z [f(@ai—2) +4f(z2i-1) + f(2)],

X2i—2 T2i—2

gdzie p; oznacza wielomian kwadratowy dla przedziatu [x9; o, x9;]. Reasumu-
jac otrzymujemy

b

/f(x) dx

Nb—a
~ 3n

[f(a) +4f (1) +2f(w2) + ...+ 2f (2p2) +4f(xn1) + f(D)].

1
Przyktad. Zastosujemy metode Simpsona dla catki log2 = / —dx przy
x
1

n = 4. Wtedy

12’\'114422441 0,693253
082~ +-5+-3+-7—|—2]—,
Wiemy, ze log2 = 0,693147..., wiec doktadno$¢ obliczenia jest dziesiecio-
krotnie lepsza nize przy metodzie trapezow, przy tej samej ilosci wlozonej
pracy.

Mozna udowodnié, ze btad w metodzie Simpsona spelnia

O s |70 (0),

S(F) <
E.(f) < 180n% a<a<b

7 Twierdzenie Weierstrassa i wielomiany Bern-
steina

Twierdzenie 7.1 (Weierstrass). Dla dowolnej funkcji cigglej f(x) na prze-
dziale [0,1] mozna znaleZé cigg wielomiandw p,(x) spetniajecy p, = f na
przedziale [0,1]. To oznacza, ze dla dowolnej liczby € > 0 w pasie o promie-
niu € wokdt wykresu funkcji f(x) znajduje sie wykres jakiegos wielomianu.
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Uwaga. Teza twierdzenia jest prawdziwa dla dowolnego przedziatu [a, b].
Rzeczywiscie, dla f € Cla,b] okreslamy f(z) = f((b — a)x + a). Wtedy
€ Clo,1]. Jesli pn = f to pn = f, gdzie py(x) = pu (52) -

Dowdd (wg S. Bernsteina (1880-1968)). Dla funkcji ciagtej f(x) i liczby n

okreslamy wielomiany Bernsteina wzorem

Mamy B
B,(1)(z) = ,é (Z):c'fu —a) =t (-2t =1
Dalej
Bu(2)(x) = gﬂ . (Z) (-2 = kg_jl (Z - 1);&—1(1 _ )06

Rozwazamy funkcje ciagta f na [0, 1]. Ustalamy liczbe € > 0. Z jednostajnej

ciagtosci mozna znalez¢ liczbe § > 0 taka, ze
€
15| <6 = /(1) ~ Fs)] < 5.

Ustalmy punkt = w przedziale [0, 1]. Liczby naturalne N,, = {0,1,2,...,n}
podzielimy na dwa podzbiory

A={keN, : |t -z <},
B=N,\A.
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Wtedy
| Bn(f)(z) = f(z)]

€ n £ <& [(n €
< _ k _ n—k < _ k _ n—k = _.
Sa i > (k)x (1—x) 5 ;;:0 <k>x (1—2) 5

keA
Niech M = Inax, |f(z)]. Wtedy

Sp<2M Y (Z):U’f@ — )" h K 2;\24 > (Z) (x — :>2xk(1 — )"k

keB
IM I [n E\°
6° k=0 <k> <23 n) = z)

2M
= ?[:an(l) — 22 B,(z)(x) + Bu(2?) ()]
2M |, 5 o  x(l—ux) 2M 9 M
52 |© Tt 52”(:1: z°) 552

M
Dla n > 52 mamy Sp < €/2. Zatem |B,(f)(z) — f(z)| < ¢ dla odpowiednio

duzych wartosci n. O

Uwaga. Dla funkgcji f i liczby x wielko$¢ B,,(f)(z) jest srednia wazona liczb
f (%), dla k = 0,1,2,...,n, ze wspOlczynnikami (Z 278(1 — )" *. Suma
wspotezynnikow jest rowna 1. Sprawdzimy, ktéry wspotezynnik jest najwiek-

szy. W tym celu rozwigzujemy nieréwnosé

(k i 1) 2F (1 = )l <Z> (1 — z)" ",



138 Analiza matematyczna ISIM I

Po prostych przeksztalceniach otrzymujemy warunek réwnowazny

k <
T
n+1\

Zatem najwickszy wspotczynnik odpowiada wartosci kg, dla ktorej

k ko +1
0 <yt

n+1 n+1"

Zauwazmy, ze
ko ko  ko+1

n+1 n n+1"

Zatem

ko 1
x| < .
n+1

Przyktad. Prawdopodobienstwo sukcesu w jednej probie wynosi p, 0 < p <

1. Wykonujemy probe n razy. Przy n prébach wygrana wynosi f (%) , gdzie
k jest liczba sukceséw, a f jest ustalona funkcja ciagla na [0,1]. Np. jesli
f (%) = 10, to przy 12 sukcesach w 60 probach, wyptata wynosi 10. Wartos¢
oczekiwana wygranej przy n probach wyraza sie wzorem

B3 (1) (5) 0o = 500 - 100

k=0 "
Przyktad. Rzucamy kostka do gry. Sukcesem jest wypadniecie szostki. Funk-
cja wyptaty f(z) spelia

f(1) = 10°, f (é) = —0,01.

Czy gra jest opltacalna przy duzej liczbie rzutéw ?



