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1 Ciągi liczbowe

Będziemy rozważali ciągi złożone z liczb rzeczywistych. Liczby rzeczywiste
R mają własność ciągłości, z której wielokrotnie będziemy korzystać.

Podzbiór A ⊂ R nazywamy ograniczonym z góry jeśli x ¬ a dla pewnej
liczby a oraz dla wszystkich liczb x z A. Najmniejszą liczbę ograniczającą
zbiór A z góry nazywamy kresem górnym (supremum) i oznaczamy sym-
bolem supA. Podobnie określamy kres dolny (infimum) i oznaczamy przez
inf A. Własność ciągłości liczb rzeczywstych oznacza, że każdy ograniczony
podzbiór A ⊂ R posiada kresy dolny i górny.

Przykład. Zbiór liczb wymiernych Q nie ma własności ciągłości. Rozważmy

A = {x ∈ Q : x2 < 2} = {x ∈ Q : −
√

2 < x <
√

2}.

Definicja 1.1. Ciągiem {an} nazywamy odwzorowanie liczb naturalnych w
liczby rzeczywiste. Liczby a1, a2, a3, . . . nazywamy wyrazami ciągu.

Przykłady.
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(a) 1, 2, 3, 4, 5, . . . .

(b) 2, 4, 6, 8, 10, . . . .

(c) an = 5n+ 3, bn = 2n + 1.

(d) a1 = 2, an+1 =
1
2

(
an +

1
an

)
.

(e) 2, 3, 5, 7, 11, . . . , - ciąg liczb pierwszych.

Ciąg {an} nazywamy rosnącym (ściśle rosnącym) jeśli

an ¬ an+1 (an < an+1)

dla wszystkich n. Podobnie określamy ciągi malejące i ściśle malejące.

Przykład. Ciąg z przykładu (d) jest ściśle malejący. Rzeczywiście, pokażemy
najpierw, że an > 1 dla wszystkich n. Mamy a1 = 2 > 1. Dalej

an+1 − 1 =
1
2

(
an +

1
an

)
− 1 =

a2
n + 1− 2an

2an
=

(an − 1)2

2an
.

Jeśli an > 1, to an+1 > 1. Dalej

an+1 − an =
1
2

(
an +

1
an

)
− an =

1
2

( 1
an
− an

)
< 0,

bo an > 1.

1.1 Zbieżność ciągów

Przykłady.

(a) Wyrazy ciągu an = 1
n

zbliżają się do zera, gdy n rośnie.

(b) Dla bn = (−1)n + 1
n2

wyrazy o numerach parzystych zbliżają się do 1,
a te o numerach nieparzystych do −1.

Definicja 1.2 (intuicyjna). Mówimy, że ciąg an jest zbieżny do liczby g
jeśli wyrazy ciągu leżą coraz bliżej liczby g dla dużych wskaźników n. Tzn.
jeśli chcemy, aby liczba an znalazła się odpowiednio blisko g, to wskaźnik n
powinien być odpowiednio duży. Stosujemy zapis lim

n
an = g.
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Definicja 1.3 (ścisła). Dla dowolnej liczby ε > 0 (która określa, jak blisko
granicy mają znajdować się wyrazy ciągu) istnieje liczba N (próg określający
jak duży powinien być wskaźnik ciągu) taka, że dla n > N mamy |an−g| < ε.

Ostatni warunek oznacza, że dla n > N wyrazy ciągu an leżą w przedziale
(g−ε, g+ε), tzn. w przedziale tym leżą prawie wszystkie wyrazy ciągu {an}.

Przykłady.

(a) an = n−1
n

= 1− 1
n
. Mamy |an − 1| = 1

n
. Widać, że ciąg an jest zbieżny

do 1 na podstawie intuicyjnej definicji. Przećwiczymy ścisłą definicję.
Ustalmy liczbę ε > 0. Niech N =

[
1
ε

]
. Wtedy dla n > N otrzymamy

n > 1
ε
. Zatem 1

n
< ε.

(b) an = (−1)n. Jeśli an dąży do g, to wyrazy o dużych numerach powinny
leżeć blisko siebie. Ale |an+1 − an| = 2.

Twierdzenie 1.4. Zbieżny ciąg posiada tylko jedną granicę.

Dowód. Załóżmy nie wprost, że lim
n
an = g, lim

n
an = g′, oraz g < g′. Określ-

my ε = (g′ − g)/2. Przedziały (g − ε, g + ε) oraz (g′ − ε, g′ + ε) są wtedy
rozłączne. Nie jest możliwe więc, aby prawie wszystkie wyrazy leżały zarówno
w pierwszym jak i drugim przedziale.

Twierdzenie 1.5. Każdy ciąg monotoniczny (rosnący lub malejący) i ogra-
niczony jest zbieżny.

Dowód. Załóżmy, że an jest rosnący oraz niech g = sup an. Pokażemy, że
liczba g jest granicą ciągu an. Ustalmy liczbę ε > 0. Liczba g−ε nie ogranicza
ciągu an od góry. Tzn. aN > g − ε dla pewnego wskaźnika N. Wtedy dla
n > N mamy

g − ε < aN ¬ an ¬ g < g + ε.

Twierdzenie 1.6. Załóżmy, że lim
n
an = g oraz lim

n
bn = h. Wtedy ciągi po

lewej stronie wzorów poniżej są zbieżne oraz:

(a) lim
n

(an + bn) = lim
n
an + lim

n
bn.

(b) lim
n

(anbn) = lim
n
an · lim

n
bn.
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(c) lim
n

an
bn

=
lim
n
an

lim
n
bn
, o ile lim

n
bn 6= 0.

Dowód. Udowodnimy tylko (c). Zaczniemy od wersji

lim
n

1
bn

=
1

lim
n
bn
.

Oznaczmy ε1 = |h|/2. Z założenia istnieje próg N1 taki, że dla n > N1 mamy
|bn − h| < |h|/2. Stąd |bn| > |h|/2. Dla n > N1 otrzymujemy zatem∣∣∣∣ 1

bn
− 1
h

∣∣∣∣ =
|bn − h|
|h| |bn|

<
2|bn − h|
|h|2

. (1.1)

Ustalmy ε > 0. Istnieje próg N taki, że dla n > N mamy

|bn − h| <
h2ε

2
. (1.2)

Niech n > max(N1, N). Wtedy z (1.1) i (1.2) uzyskamy∣∣∣∣ 1
bn
− 1
h

∣∣∣∣ < ε.

Z (b) mamy wtedy

lim
n

an
bn

= lim
n
an ·

1
bn

= lim
n
an · lim

n

1
bn

=
lim
n
an

lim
n
bn
.

Uwaga: Przy dowodzie (b) można skorzystać ze wzoru

anbn − gh = (an − g)(bn − h) + (an − g)h+ g(bn − h).

Wniosek 1.7. Jeśli lim
n
an = g, to lim

n
c an = c g.

Twierdzenie 1.8. Jeśli ciągi an i bn są zbieżne, to

(a) | lim
n
an| = lim

n
|an|.

(b) Jeśli an ­ 0, to lim
n
an ­ 0.
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(c) Jeśli an ¬ bn, to lim
n
an ¬ lim

n
bn.

(d) (twierdzenie o trzech ciągach) Jeśli an ¬ cn ¬ bn oraz lim
n
an =

lim
n
bn, to ciąg cn jest zbieżny oraz lim

n
cn = lim

n
an.

Dowód. (a) Oznaczmy lim
n
an = g. Wtedy teza wynika natychmiast z nierów-

ności ∣∣∣∣|an| − |g|∣∣∣∣ ¬ |an − g|.
(d) Z założenia mamy

0 ¬ cn − an ¬ bn − an. (1.3)

Dalej
lim
n

(bn − an) = lim
n
bn + lim

n
(−an) = lim

n
bn − lim

n
an = 0.

Ustalmy liczbę ε > 0. Istnieje próg N taki, że dla n > N mamy 0 ¬ bn−an <
ε. Wtedy z (1.3)

0 ¬ cn − an < ε, dla n > N.

Stąd lim
n

(cn − an) = 0. Ciąg cn jest zbieżny jako suma ciągów cn − an oraz
an. Ponadto lim

n
cn = lim

n
an.

——————————————————————————————–

Definicja 1.9. Dla ciągu {an} i ściśle rosnącego ciagu liczb naturalnych mn

ciąg {amn} nazywamy podciagiem.

Przykłady. an2 , an!, apn , gdzie pn jest n-tą liczba pierwszą.
Dla rosnącego ciągu mn liczb naturalnych mamy mn ­ n.

Twierdzenie 1.10. Podciąg ciągu zbieżnego jest zbieżny do tej samej liczby
co pełny ciąg.

Dowód. Oznaczmy g = lim
n
an. Dla liczby ε > 0 rozważamy przedział (g −

ε, g + ε). Z założenia prawie wszystkie wyrazy ciągu an znajdują się w tym
przedziale. Tym bardziej prawie wszystkie wyrazy podciągu amn tam się
znajdują.

Uwaga. Prawdziwe jest twierdzenie odwrotne: jeśli każdy podciąg ciągu an
zawiera podciąg zbieżny do liczby g, to cały ciąg jest zbieżny do g.
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Twierdzenie 1.11 (Bolzano, Weierstrass). Każdy ciąg ograniczony zawiera
podciąg zbieżny.

Dowód. Załóżmy, że wyrazy ciągu cn znajdują się w przedziale [a1, b1]. Bę-
dziemy konstruować podciąg dn ciągu cn. Niech d1 := c1. Przynajmniej jeden
z przedziałow [a1, (a1 +b1)/2], [(a1 +b1)/2, b1] zawiera nieskończenie wyrazów
ciągu cn. Oznaczmy ten przedział przez [a2, b2]. Niech m2 oznacza najmniej-
szy wskaźnik, większy niż 1, dla którego cm2 =: d2 leży w [a2, b2]. Dalej jeden
z przedziałów [a2, (a2 +b2)/2], [(a2 +b2)/2, b2] zawiera nieskończenie wyrazów
ciągu cn. Końce tego przedziału oznaczmy przez a3 i b3. Podobnie jak wcze-
śniej wybieramy najmniejszy wskaźnik m3 > m2, dla którego cm3 =: d3 leży
w [a3, b3]. Postępując tak dalej otrzymamy nieskończony ciąg przedziałów
[an, bn] oraz podciąg dn := cmn o własnościach

dn ∈ [an, bn] ⊂ [an−1, bn−1], bn − an = 1
2(bn−1 − an−1).

Mamy
a1 ¬ an−1 ¬ an ¬ bn ¬ bn−1 ¬ b1.

Ciąg an jest rosnący i ograniczony, natomiast ciąg bn jest malejący i też
ograniczony. Zatem ciągi te są zbieżne. Z równości

bn − an =
1

2n−1
(b1 − a1)

wynika lim
n

(bn − an) = 0. Zatem lim
n
bn = lim

n
an. Ponieważ an ¬ dn ¬ bn, to

z twierdzenia o trzech ciągach otrzymujemy, że ciąg dn jest zbieżny.

Czasami chcemy rozpoznać, czy dany ciąg jest zbieżny, ale nie potrafimy
wskazać granicy. Wtedy możemy użyć warunku Cauchy’ego.

Definicja 1.12. Mówimy, że ciąg spełnia warunek Cauchy’ego jeśli dla du-
żych wskaźników wyrazy ciągu leżą blisko siebie. Ściśle: dla dowolnej liczby
ε > 0 istnieje próg N taki, że dla m,n > N mamy |an − am| < ε.

Przykłady.

(a)

an = 1 +
1
22

+
1
32

+ . . .+
1
n2
.
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Załóżmy, że n > m. Wtedy:

an − am =
1

(m+ 1)2
+

1
(m+ 2)2

+ . . .+
1
n2

<
1

m(m+ 1)
+

1
(m+ 1)(m+ 2)

+ . . .+
1

(n− 1)n

=
( 1
m
− 1
m+ 1

)
+
( 1
m+ 1

− 1
m+ 2

)
+. . .+

( 1
n− 1

− 1
n

)
=

1
m
− 1
n
<

1
m
.

Chcemy, aby 1/m < ε. Niech N = [1/ε] . Wtedy dla n > m > N mamy
1/m < ε, zatem

0 < an − am <
1
m
< ε.

(b)

bn = 1 +
1
2

+
1
3

+ . . .+
1
n
.

Obliczamy

b2n − bn =
1

n+ 1
+

1
n+ 2

+ . . .+
1

2n
­ 1

2n
+

1
2n

+ . . .+
1

2n︸ ︷︷ ︸
n składników

=
1
2
.

Zatem warunek Cauchy’ego nie jest spełniony.

Twierdzenie 1.13. Ciąg jest zbieżny wtedy i tylko wtedy, gdy spełnia waru-
nek Cauchy’ego.

Dowód. ( =⇒ ) Niech g = lim
n
an. Wtedy

|an − am| = |(an − g)− (am − g)| ¬ |an − g|+ |am − g|.

Z założenia dla liczby ε > 0 istnieje próg N, dla którego |ak − g| < ε
2 dla

k > N. Niech n,m > N. Wtedy

|an − am| < ε.

(⇐=) Pokażemy, że ciąg an jest ograniczony. Dla ε = 1 istnieje próg N (liczba

naturalna) taki, że |an − am| < 1 dla n,m > N. Niech

M = max{|a1|, |a2|, . . . , |aN |, |aN+1|+ 1}.

Wtedy |an| ¬M dla wszystkich n. Rzeczywiście:
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(1) Dla n = 1, 2, . . . , N mamy |an| ¬M w oczywisty sposób.

(2) Dla n > N mamy |an − aN+1| < 1 zatem

|an| = |(an − aN+1) + aN+1| ¬ |an − aN+1|+ |aN+1| < 1 + |aN+1| ¬M.

Z twierdzenia Bolzano-Weierstrassa ciąg an posiada podciąg zbieżny. Niech
g = lim

n
amn . Pokażemy, że lim

n
an = g. Ustalmy liczbę ε > 0. Istnieje próg

N1 taki, że |an − am| < ε
2 dla n,m > N1. Dalej istnieje próg N2 taki, że dla

n > N2 mamy |amn− g| < ε
2 . Określmy N = max(N1, N2). Wtedy dla n > N

otrzymujemy mn ­ n > N, zatem

|an − g| = |(an − amn) + (amn − g)| ¬ |an − amn|+ |amn − g| <
ε

2
+
ε

2
= ε.

Definicja 1.14. Mówimy, że ciąg an jest rozbieżny do nieskończoności (∞)
jeśli dla dowolnej liczby M istnieje próg N taki, że dla n > N mamy an > M,
tzn. w przedziale (M,∞) znajdują się prawie wszystkie wyrazy ciągu.

Przykład.

bn = 1 +
1
2

+
1
3

+ . . .+
1
n
.

Wiemy, że b2n − bn > 1
2 . Zatem

b2n = (b2n − b2n−1) + (b2n−1 − b2n−2) + . . .+ (b2 − b1) + b1 ­
n

2
+ 1.

Dla liczby naturalnej k ­ 2 mamy 2n ¬ k < 2n+1 dla pewnej wartości n.
Wtedy n+ 1 > log2 k oraz

bk ­ b2n ­ 1 +
n

2
­ n+ 1

2
>

1
2

log2 k.

——————————————————————————————–

Definicja 1.15. Liczbę α nazywamy punktem skupienia ciągu an jeśli można
znaleźć podciąg ank zbieżny do α.

Uwaga. Zbieżny ciąg posiada tylko jeden punkt skupienia.
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Przykłady.

(a) an = (−1)n. Wtedy a2n = 1 i a2n+1 = −1.

(b) an = sinn. Zbiór punktów skupienia jest równy [−1, 1].

(c) Rozważmy ciąg
1, 1

2 , 1,
1
2 ,

1
3 , 1,

1
2 ,

1
3 ,

1
4 , . . . .

Wtedy zbiór punktów skupienia jest równy {0, 1, 1
2 ,

1
3 , . . .}.

Twierdzenie 1.16. Dla ograniczonego ciągu an istnieją najmniejszy i naj-
większy punkt skupienia nazywane granicą dolną i górną ciągu i oznaczane
symbolami lim inf an oraz lim sup an.

Dla ciągu z przykładu (c) granica dolna wynosi 0, a górna 1.

Uwaga. Można udowodnić, że

lim inf an = sup
n

inf
m­n

am, lim sup an = inf
n

sup
m­n

am.

1.2 Liczba e

Rozważmy dwa ciągi

xn =
(

1 +
1
n

)n
, yn =

(
1 +

1
n

)n+1

.

Mamy xn < yn. Obliczamy

xn+1

xn
=

(
1 + 1

n+1

)n+1

(
1 + 1

n

)n+1

(
1 +

1
n

)
=
(
n(n+ 2)
(n+ 1)2

)n+1 (
1 +

1
n

)

=
(

1− 1
(n+ 1)2

)n+1 (
1 +

1
n

)
­
(

1− 1
(n+ 1)

)(
1 +

1
n

)
= 1.

W ostatniej linii skorzystaliśmy z nierówności Bernoulli’ego (1+x)n ­ 1+nx
dla x > −1. Udowodniliśmy, że ciąg xn jest rosnący. Dalej

yn−1

yn
=

(
1 + 1

n−1

)n+1

(
1 + 1

n

)n+1
1

1 + 1
n−1

=
(

n2

(n+ 1)(n− 1)

)n+1
n− 1
n

=
(

1 +
1

n2 − 1

)n+1 n− 1
n
­
(

1 +
1

n− 1

)
n− 1
n

= 1.
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Zatem yn jest ciągiem malejącym. Mamy zatem

2 = x1 ¬ x2 ¬ . . . ¬ xn ¬ yn ¬ . . . ¬ y2 ¬ y1 = 4.

Oba ciągi są więc zbieżne. Oznaczmy

e = lim
n
xn = lim

n

(
1 +

1
n

)n
.

Wtedy

yn = xn

(
1 +

1
n

)
→ e.

Znajdziemy teraz inną przydatną postać liczby e. Mamy

xn =
(

1 +
1
n

)n
=

n∑
k=0

(
n

k

)
1
nk

= 1 +
n∑
k=1

n(n− 1)(. . . (n− k + 1)
k!

1
nk
¬ 1 +

n∑
k=1

1
k!

Ustalmy liczbę naturalną m. Dla n > m mamy

xn =
(

1 +
1
n

)n
­ 1 +

m∑
k=1

n(n− 1)(. . . (n− k + 1)
nk

1
k!

= 1 +
m∑
k=1

(
1− 1

n

)(
1− 2

n

)
. . .

(
1− k − 1

n

)
1
k!

Przechodzimy z n do nieskończoności i otrzymujemy

e ­ 1 +
m∑
k=1

1
k!
.

Reasumując mamy (
1 +

1
n

)n
¬ 1 +

n∑
k=1

1
k!
¬ e.

Zatem
e = lim

n

(
1 +

1
1!

+
1
2!

+
1
3!

+ . . .+
1
n!

)
.

Twierdzenie 1.17. Liczba e ma przedstawienie

e = 1 +
1
1!

+
1
2!

+
1
3!

+ . . .+
1
n!

+
θ(n)
n!n

,

gdzie 0 < θ(n) < 1.
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Dowód. Dla m > n mamy

cm := 1 +
1
1!

+
1
2!

+
1
3!

+ . . .+
1
n!

+
1

(n+ 1)!
+ . . .+

1
m!

= cn+
1

(n+ 1)!

[
1 +

1
n+ 2

+
1

(n+ 2)(n+ 3)
+ . . .+

1
(n+ 2)(n+ 3) · . . . ·m

]

< cn +
1

(n+ 1)!

[
1 +

1
n+ 2

+
1

(n+ 2)2
+ . . .+

1
(n+ 2)m−n−1

]

= cn +
1

(n+ 1)!

1− 1
(n+2)m−n

1− 1
n+2

< cn +
1

(n+ 1)!
n+ 2
n+ 1

Przechodząc do granicy, gdy m→∞ otrzymujemy

1+
1
1!

+
1
2!

+
1
3!

+ . . .+
1
n!

< e ¬ 1+
1
1!

+
1
2!

+
1
3!

+ . . .+
1
n!

+
1
n!n

n(n+ 2)
(n+ 1)2

.

Zatem

0 < e−
(

1 +
1
1!

+
1
2!

+
1
3!

+ . . .+
1
n!

)
¬ 1
n!n

n(n+ 2)
(n+ 1)2

<
1
n!n

.

Stąd otrzymujemy tezę twierdzenia.

Wniosek 1.18. Liczba e jest niewymierna.

Dowód. Symbolem {x} oznaczamy część ułamkową liczby x. Gdyby e = p
q
,

dla liczby naturalnych p i q, to {q!e} = 0. Ale z poprzedniego twierdzenia
mamy

{n!e} =
{
θ(n)
n

}
6= 0.

Wiemy, że (
1 +

1
n

)n
< e <

(
1 +

1
n

)n+1

.

Zastosujmy logarytm przy podstawie e do nierówności. Otrzymamy

1
n+ 1

< log
(

1 +
1
n

)
<

1
n
. (1.4)
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Rozważmy ciąg

un = 1 +
1
2

+ . . .+
1
n
− log(n+ 1).

Mamy

un − un−1 =
1
n
− log(n+ 1) + log n =

1
n
− log

(
1 +

1
n

)
> 0,

na podstawie pierwszej nierówności w (1.4). Rozważmy inny ciąg

vn = 1 +
1
2

+ . . .+
1
n
− log n.

Mamy

vn+1 − vn =
1

n+ 1
− log(n+ 1) + log n =

1
n+ 1

− log
(

1 +
1
n

)
< 0,

na podstawie drugiej nierówności w (1.4). Dla n > 1 otrzymujemy

u1 < un < vn < v1.

Zatem oba ciągi są zbieżne jako ciągi monotoniczne i ograniczone. Ponieważ
vn = un−1 + 1

n
, to granice obu ciągów są równe. Oznaczmy symbolem c tę

granicę. Wtedy
0 < 1− log 2 = u1 < c < v1 = 1.

Reasumując (
1 +

1
2

+ . . .+
1
n
− log n

)
= c, 0 < c < 1. (1.5)

Liczbę c nazywamy stałą Eulera.

2 Szeregi liczbowe

Dla ciągu an określamy ciąg sum częściowych sn wzorem

sn = a1 + a2 + . . .+ an.

W szczególności s5 = a1 + a2 + a3 + a4 + a5. Jeśli ciąg sn jest zbieżny (do
granicy s), to mówimy, że szereg jest zbieżny i zapisujemy

∞∑
n=1

an = s.

Przykłady.
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(a) Rozważmy ciąg geometryczny an = qn dla |q| < 1. Wtedy

sn = q + q2 + . . .+ qn =
q − qn+1

1− q
−→
n

q

1− q
,

bo qn −→
n

0, dla |q| < 1.∗ Zatem

∞∑
n=1

qn =
q

1− q
.

(b) Rozważmy szereg harmoniczny o wyrazach an = 1
n
. Wiemy, że

sn = 1 +
1
2

+ . . .+
1
n
> log n.

Szereg
∞∑
n=1

1
n

jest rozbieżny (do nieskończoności).

Twierdzenie 2.1 (Warunek Cauchy’ego dla szeregu). Szereg
∞∑
n=1

an jest

zbieżny wtedy i tylko wtedy, gdy spełnia warunek, że dla dowolnej liczby ε > 0
istnieje próg N taki, że dla n > m > N mamy

|am+1 + am+2 + . . .+ an| < ε.

Dowód. Dla n > m mamy

|sn − sm| = |am+1 + am+2 + . . .+ an| < ε.

To oznacza, że warunek w twierdzeniu jest identyczny z warunkiem Cau-
chy’ego dla ciągu sn.

——————————————————————————————–

Twierdzenie 2.2. Jeśli szereg
∞∑
n=1

an jest zbieżny, to lim
n
an = 0.

Dowód. Mamy an = sn − sn−1. Oznaczmy s = lim
n
an. Wtedy

lim
n
an = lim

n
sn − lim

n
sn−1 = s− s = 0.

∗Wystarczy pokazać |q|n → 0, czyli rozważać 0 < q < 1. Niech 1/q = 1 + a, dla a > 0.
Wtedy 1/qn = (1 + a)n > 1 + na. Czyli 0 < qn < 1/(1 + na).
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Uwaga. Warunek w tezie nie wystarcza do zbieżności szeregu. Na przykład
szereg o wyrazach

1,
1
2
,
1
2
,
1
3
,
1
3
,
1
3
, . . .

nie jest zbieżny. Ile wynosi wyraz szeregu o numerze 2014 ? Które numery
mają wyrazy szeregu o wartości 1/2014 ?

Twierdzenie 2.3. Dla każdego szeregu zbieżnego ciąg sum częściowych jest
ograniczony.

Dowód. Ciąg sn spełnia warunek Cauchy’ego więc jest ograniczony.

Twierdzenie 2.4. Załóżmy, że szeregi
∞∑
n=1

an i
∞∑
n=1

bn są zbieżne. Wtedy zbież-

ne są szeregi
∞∑
n=1

(an ± bn) i
∞∑
n=1

λan oraz

∞∑
n=1

(an ± bn) =
∞∑
n=1

an ±
∞∑
n=1

bn,

∞∑
n=1

λan = λ
∞∑
n=1

an.

Definicja 2.5. Szereg
∞∑
n=1

an jest bezwzględnie zbieżny jeśli szereg
∞∑
n=1

|an| jest

zbieżny.

Twierdzenie 2.6. Szereg bezwzględnie zbieżny jest zbieżny.

Dowód. Teza wynika z nierówności dla n > m

|am+1 + am+2 + . . .+ an| ¬ |am+1|+ |am+2|+ . . .+ |an|.

Zatem warunek Cauchy’ego dla szeregu
∞∑
n=1

|an| pociąga ten warunek dla

szeregu
∞∑
n=1

an.

Uwaga. Zbieżny szereg nie musi być bezwzględnie zbieżny. Na przykład
szereg o wyrazach

1
2
,−1

2
,

1
4
,−1

4
,

1
4
,−1

4
,

1
6
,−1

6
,

1
6
,−1

6
,

1
6
,−1

6
, . . .
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jest zbieżny do liczby 0, ale nie jest zbieżny bezwględnie.

Uwaga. Zbieżność ciągu an i szeregu
∞∑
n=1

an nie zależy od zachowania się

skończonej liczby początkowych wyrazów. Tzn. jeśłi an = bn dla n > N to
ciągi an i bn są jednocześnie zbieżne lub jednocześnie rozbieżne. To samo

dotyczy szeregów
∞∑
n=1

an i
∞∑
n=1

bn.

Twierdzenie 2.7 (Kryterium Dirichleta). Załóżmy, że ciąg an jest malejący
oraz an −→

n
0. Załóżmy również, że sumy częściowe ciągu bn są ograniczone

(tzn. ciąg o wyrazach sn = b1 + b2 + . . .+ bn jest ograniczony). Wtedy szereg
∞∑
n=1

anbn jest zbieżny.

Dowód. Sprawdzimy warunek Cauchy’ego. Z założenia |sn| ¬M. Niech n >
m. Wtedy

|am+1bm+1 + am+2bm+2 + . . .+ anbn|
= |am+1(sm+1 − sm) + am+2(sm+2 − sm+1) + . . .+ an(sn − sn−1)|

= |−am+1sm+(am+1−am+2)sm+1+(am+2−am+3)sm+2+. . .+(an−1−an)sn−1+ansn|
¬ am+1|sm|+(am+1−am+2)|sm+1|+(am+2−am+3)|sm+2|+. . .+(an−1−an)|sn−1|+an|sn|
¬M [am+1 + (am+1 − am+2) + (am+2 − am+3) + . . .+ (an−1 − an) + an] = 2Mam+1.

Dla ε > 0 istnieje liczba naturalna m0 taka, że am0 <
ε

2M . Wtedy dla m ­ m0

mamy

|am+1bm+1 + am+2bm+2 + . . .+ anbn| ¬ 2Mam+1 ¬ 2Mam0 < ε.

Przykład. Rozważamy szereg
∞∑
n=1

sinnx
n

. Dla x = kπ szereg jest zbieżny,

bo każdy wyraz się zeruje. Załóżmy, że x 6= 2kπ. Przyjmujemy an =
1
n

oraz
bn = sinnx. Będziemy korzystać ze wzoru trygonometrycznego

cosα− cos β = 2 sin β−α
2 sin β+α

2 .
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Badamy sumy częściowe ciągu bn.

sinx+ sin 2x+ . . .+ sinnx

=
1

2 sin x
2

(
2 sin x

2 sinx+ 2 sin x
2 sin 2x+ . . .+ 2 sin x

2 sinnx
)

=
1

2 sin x
2

[(
cos x

2 − cos 3x
2

)
+
(
cos 3x

2 − cos 5x
2

)
+ . . .+

(
cos (2n−1)x

2 − cos (2n+1)x
2

)]

=
1

2 sin x
2

(
cos x

2 − cos (2n+1)x
2

)
=

sin nx
2 sin (n+1)x

2

sin x
2

.

Otrzymujemy

| sinx+ sin 2x+ . . .+ sinnx| ¬ 1
| sin x

2 |
.

Wniosek 2.8 (kryterium Leibniza o szeregu naprzemiennym). Jeśli ciąg an

jest malejący oraz an −→
n

0, to szereg
∞∑
n=1

(−1)n+1an jest zbieżny.

Dowód. Przyjmujemy bn = (−1)n+1. Wtedy sumy częściowe ciągu bn mają
postać s2n = 0 i s2n+1 = 1. Zatem szereg jest zbieżny.

Przykład Szereg
∞∑
n=1

(−1)n+1

n
jest zbieżny z kryterium Leibniza. Ze wzoru

(1.5) można wykazać, że szereg jest zbieżny do liczby log 2.

Wniosek 2.9. Jeśli an jest zbieżnym ciągiem monotonicznym a szereg
∞∑
n=1

bn

jest zbieżny, to zbieżny jest szereg
∞∑
n=1

anbn.

Dowód. Możemy założyć, że ciąg an jest malejący. Oznaczmy a = lim
n
an.

Wtedy an−a↘
n

0. Z twierdzenia Dirichleta szereg
∞∑
n=1

(an−a)bn jest zbieżny.

Ale
anbn = (an − a) + abn,

zatem szereg
∞∑
n=1

anbn jest zbieżny.
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Twierdzenie 2.10 (Kryterium porównawcze). Załóżmy, że 0 ¬ an ¬ bn.

Jeśli szereg
∞∑
n=1

bn jest zbieżny, to zbieżny jest szereg
∞∑
n=1

an.

Wniosek 2.11. Jeśli 0 ¬ an ¬ bn oraz szereg
∞∑
n=1

an jest rozbieżny, to szereg

∞∑
n=1

bn też jest rozbieżny.

Przykład. Badamy szereg
∞∑
n=1

n4 + 8n
2n5 + n2 + 4

.

n4 + 8n
2n5 + n2 + 4

­ n4

2n5 + n5 + 4n5
=

1
7n
.

Wiemy, że
∑ 1

n
=∞, więc badany szereg jest rozbieżny.

Twierdzenie 2.12 (Kryterium Cauchy’ego). Załóżmy, że

a = lim
n

n

√
|an|.

(i) Jeśli a < 1, to szereg
∞∑
n=1

an jest bezwględnie zbieżny.

(ii) Jeśli a > 1, to szereg
∞∑
n=1

an jest rozbieżny.

Uwaga. Kryterium nie rozstrzyga zbieżności, gdy a = 1. Dla szeregów
∑ 1

n2∑ 1
n

mamy a = 1. Pierwszy z szeregów jest zbieżny a drugi rozbieżny.

Dowód. (i) a < 1. Niech r = a+1
2 . Wtedy a < r < 1. Istnieje próg N taki, że

dla n > N mamy n

√
|an| < r. Zatem |an| < rn dla n ­ N + 1. Z kryterium

porównawczego szereg
∞∑
n=1

|an| jest zbieżny.

(ii) a > 1. Dla r = a+1
2 istnieje próg N taki, że dla n > N mamy n

√
|an| > r >

1. Tzn. |an| > rn dla n > N, czyli an jest rozbieżny do nieskończoności.

——————————————————————————————–
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Twierdzenie 2.13 (Kryterium d’Alemberta). Załóżmy, że

lim
n

|an+1|
|an|

= a.

(i) Jeśli a < 1, to szereg
∞∑
n=1

an jest bezwględnie zbieżny.

(ii) Jeśli a > 1, to szereg
∞∑
n=1

an jest rozbieżny.

Dowód. Zastosujemy oznaczenia z dowodu kryterium Cauchy’ego.

(i) Istnieje N takie, że dla n > N mamy |an+1||an| < r. Wtedy

|an| =
|an|
|an−1|

· |an−1|
|an−2|

· . . . · |aN+2|
|aN+1|

|aN+1| < rn−N−1|aN+1| =
|aN+1|
rN+1

rn. (2.1)

Z kryterium porównawczego szereg
∞∑
n=1

|an| jest zbieżny.

(ii). Istnieje N takie, że dla n > N mamy |an+1|
|an| > r > 1. Ze wzoru (2.1)

otrzymujemy wtedy

|an| >
|aN+1|
rN+1

rn.

Zatem |an| −→
n
∞.

Uwaga. Można udowodnić, że z istnienia granicy lim
n

|an+1|
|an|

wynika

lim
n

n

√
|an| = lim

n

|an+1|
|an|

.

Wniosek 2.14. Jeśli ciąg an spełnia założenia kryterium Cauchy’ego lub
d’Alemberta, to dla a < 1 ciąg ten jest zbieżny do zera, a dla a > 1 wartości
bezwzględne wyrazów dążą do nieskończoności.

Przykłady.
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(a)
∞∑
n=1

2n

n!
. Stosujemy kryterium d’Alemberta

an+1

an
=

2n+1

(n+ 1)!
· 2n

n!
=

2
n+ 1

−→
n

0.

(b)
∞∑
n=1

nk

3n
, dla k ∈ N. Używamy kryterium Cauchy’ego.

n

√
nk

3n
=

1
3

( n
√
n)k −→

n

1
3
.

(c)
∞∑
n=1

n!
nn
. Wygodniej będzie użyć kryterium d’Alemberta.

an+1

an
=

(n+ 1)!
(n+ 1)n+1

· n
n

n!
=

nn

(n+ 1)n+1
=

1(
1 + 1

n

)n −→
n

1
e
< 1.

Zatem szereg jest zbieżny.

Twierdzenie 2.15 (Cauchy’ego o zagęszczaniu). Załóżmy, że ciąg an jest

malejący oraz an −→
n

0. Szereg
∞∑
n=1

an jest zbieżny wtedy i tylko wtedy, gdy

zbieżny jest szereg
∞∑
n=1

2na2n .
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Przykłady.

(a) Rozważmy szereg
∞∑
n=1

1
nα
, dla α > 0. Szereg zagęszczony ma postać

∞∑
n=1

2n

2nα
=
∞∑
n=1

( 1
2α−1

)n
.

Szereg ten jest zbieżny tylko jeśli 2α−1 > 1, czyli dla α > 1.

(b) Niech an =
1

n logα n
, dla n ­ 2 oraz α > 0. Wtedy

∞∑
n=1

2na2n =
∞∑
n=1

2n

2n(log 2n)α
=
∞∑
n=1

1
nα logα 2

.

Zatem szereg jest zbieżny tylko dla α > 1.

(c) Można pokazać, że szereg o wyrazach

an =
1

n log n(log log n)α
,

jest zbieżny tylko dla α > 1.

Dowód twierdzenia o zagęszczaniu. (⇒) Mamy

1
2

n∑
k=1

2ka2k = a2 + 2a4 + 4a8 + . . .+ 2n−1a2n

¬ a2 + (a3 + a4) + (a5 + a6 + a7 + a8) + . . .+ (a2n−1+1 + . . .+ a2n)

¬
2n∑
k=1

ak ¬
∞∑
k=1

ak =: s.

Zatem
n∑
k=1

2ka2k ¬ 2s. To oznacza, że sumy częściowe szeregu
∞∑
k=1

2ka2k

są ograniczone od góry. Stąd szereg jest zbieżny, bo sumy częściowe
tworzą ciąg rosnący.
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(⇐) Obliczamy

n∑
k=1

ak ¬
2n−1∑
k=1

ak

= a1 + (a2 + a3) + (a4 + a5 + a6 + a7) + . . .+ (a2n−1 + . . .+ a2n−1)

¬ a1 + 2a2 + 4a4 + . . .+ 2n−1a2n−1 ¬ a1 +
∞∑
k=1

2ka2k =: s̃.

Sumy częściowe szeregu
∞∑
n=1

an są ograniczone przez s̃, zatem szereg jest

zbieżny.

Dla zbieżnego szeregu s =
∞∑
n=1

an określamy ciąg n-tych ogonów wzorem

rn =
∞∑

k=n+1

ak. Mamy

sn + rn = s, rn = s− sn,

zatem
lim
n
rn = lim

n
(s− sn) = 0.

2.1 Łączność i przemienność w sumie nieskończonej

Jeśli szereg
∞∑
n=1

an jest zbieżny, to zbieżny jest szereg postaci

(a1 + a2 + . . .+ an1) + (an1+1 + an1+2 + . . .+ an2)
+ . . .+ (ank+1 + ank+2 + . . .+ ank+1) + . . . (2.2)

Sumy częściowe szeregu (2.2) mają postać

sn1 , sn2 , . . . , snk , . . . ,

zatem ciąg snk jest podciągiem ciągu sn.

Uwaga. Wynikanie odwrotne nie jest spełnione. Szereg (2.2) po otworzeniu
nawiasów może być rozbieżny:

(−1 + 1) + (−1 + 1) + . . .+ (−1 + 1) + . . .
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Jeśli w każdym nawiasie szeregu wyrazy mają ten sam znak i szereg (2.2)
jest zbieżny (do s), to szereg bez nawiasów też jest zbieżny. Rzeczywiście,
zauważmy, że jeśli nk < n < nk+1, to suma sn leży pomiędzy snk i snk+1 . Dla
dużych wskaźników k liczby snk i snk+1 leżą blisko liczby s. Wtedy wielkości
sn dla nk < n < nk+1 również leżą blisko s.

Permutacją zbioru liczb naturalnych nazywamy ciąg σ1, σ2, . . . , σn, . . . zło-
żony z liczb naturalnych, w którym każda liczba występuje dokładnie raz, np.

2, 1, 4, 3, . . . , 2n, 2n− 1, . . .

Twierdzenie 2.16. Jeśli szereg
∞∑
n=1

an jest bezwględnie zbieżny, to szereg

∞∑
n=1

aσn jest zbieżny dla dowolnej premutacji σ oraz

∞∑
n=1

an =
∞∑
n=1

aσn .

Uwaga. Założenie bezwzględnej zbieżności jest istotne. Rozważmy szereg
∞∑
n=1

(−1)n+1

n
. Mamy

1− 1
2

+
1
3
−
(1

4
− 1

5

)
−
(1

6
− 1

7

)
− . . .− < 1− 1

2
+

1
3

1 +
1
3
− 1

2
+
(1

5
+

1
7
− 1

8

)
︸ ︷︷ ︸

> 0

+ . . .+
( 1

4n− 3
+

1
4n− 1

− 1
2n

)
︸ ︷︷ ︸

> 0

+ . . . > 1 +
1
3
− 1

2
.

——————————————————————————————–

Dowód. Oznaczmy s =
∞∑
n=1

an. Ustalmy liczbę ε > 0. Istnieje liczba naturalna

N, dla której
∞∑

n=N+1

|an| < ε
2 . Rozważamy permutację {σn}. Istnieje liczba na-

turalna M taka, że wśród liczb aσ1 , aσ2 , . . . , aσM występują wszystkie wyrazy
a1, a2, . . . , aN . Niech n > M. Wtedy

m∑
k=1

aσk − s =
(

m∑
k=1

aσk −
N∑
k=1

ak

)
−

∞∑
k=N+1

ak.
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W nawiasie wyrazy się uproszczą i pozostaną tylko wyrazy o numerach więk-
szych od N. Zatem

∣∣∣∣∣
m∑
k=1

aσk − s
∣∣∣∣∣ ¬

∣∣∣∣∣
m∑
k=1

aσk −
N∑
k=1

ak

∣∣∣∣∣+
∞∑

k=N+1

|ak| ¬ 2
∞∑

k=N+1

|ak| < ε.

Twierdzenie 2.17 (Riemann). Jeśli szereg jest zbieżny warunkowo, tzn. jest
zbieżny, ale

∑ |an| =∞, to poprzez zamianę kolejności wyrazów można uzy-
skać szereg zbieżny do z góry ustalonej liczby, rozbieżny do −∞, +∞ lub
szereg rozbieżny.

2.2 Mnożenie Cauchy’ego szeregów.

Rozważmy dwa wielomiany
∞∑
n=0

anx
n oraz

∞∑
n=0

bnx
n (zakładamy, że an = bn =

0 dla dużych n). Mnożymy te wielomiany i grupujemy wyrazy z tą samą
potęgą przy x:

(a0 + a1x+ a2x
2 + . . .+ anx

n + . . .)(b0 + b1x+ b2x
2 + . . .+ bnx

n + . . .)
= a0b0 + (a1b0 + a0b1)x+ (a2b0 + a1b1 + a0b2)x2 + . . .

+ (anb0 + an−1b1 + . . .+ a1bn−1 + a0bn)xn + . . . =
∞∑
n=0

(
n∑
k=0

an−kbk

)
xn.

Podstawmy x = 1 aby otrzymać

∞∑
n=0

an
∞∑
n=0

bn =
∞∑
n=0

n∑
k=0

an−kbk. (2.3)
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Wzór (2.3) można uzasadnić w inny sposób. Chcemy pomnożyć
∞∑
n=0

an i
∞∑
n=0

bn.

Tworzymy tabelę mnożenia

b0 b1 b2 . . . bn−1 bn . . .
a0 a0b0 a0b1 a0b2 a0bn
a1 a1b0 a1b1 a1bn−1

a2 a2b0
... . . .

an−1 an−1b1

an anb0
...

Następnie sumujemy wyrazy na przekątnych i wyniki dodajemy.

Twierdzenie 2.18. Jeśli szeregi
∞∑
n=0

an i
∞∑
n=0

bn sa zbieżne, przy czym co-

najmniej jeden z nich bezwzględnie, to szereg o wyrazach cn =
n∑
k=0

an−kbk jest

zbieżny oraz
∞∑
n=0

an
∞∑
n=0

bn =
∞∑
n=0

cn.

Uwaga. Założenie bezwględnej zbieżności jest istotne. Niech a0 = b0 = 0
oraz

an = bn =
(−1)n√

n
, n ­ 1.

Wtedy

cn =
n−1∑
k=1

(−1)n
1√

(n− k)k
.

Korzystając z nierówności 2ab ¬ a2 + b2 otrzymamy√
(n− k)k ¬ (n− k) + k

2
=
n

2
.

Zatem

|cn| =
n−1∑
k=1

1√
(n− k)k

­ 2(n− 1)
n

.

To oznacza, że ciąg cn nie jest zbieżny do 0, czyli szereg o wyrazach cn nie
może być zbieżny.
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3 Funkcje i granice

Jeśli każdej liczbie z pewnego podzbioru E ⊆ R przyporządkowana jest jakaś
liczba rzeczywista, to mamy do czynienia z funkcją. Funkcja składa się z
dziedziny E oraz przepisu, który mówi jakie liczby należy przyporządkować
liczbom z E. Zwykle przepis podany jest wzorem y = f(x).

Przykłady.

(a) E = (0, 1), f(x) = x.

(b) E = (0,∞), f(x) =
√
x.

(c) E = (−1, 1), f(x) =


sinx −1 < x < 0,
5 x = 0,
x2 0 < x < 1.

.

Definicja 3.1 (intuicyjna). Załóżmy, że funkcja f(x) jest określona wokół
punktu a (ale niekoniecznie w punkcie a). Mówimy, że liczba g jest grani-
cą funkcji f(x) w punkcie a, jeśli wartości f(x) leżą coraz bliżej liczby g
dla argumentów x leżących coraz bliżej liczby a, ale x 6= a. Piszemy wtedy
lim
x→a

f(x) = g.

Powyższa definicja wystarcza do obliczenia większości granic. Uściślenia tej
definicji można wykonać na dwa sposoby.

Definicja 3.2 (Heine). Załóżmy, że funkcja f(x) jest określona wokół punktu
a (ale niekoniecznie w punkcie a). Mówimy, że liczba g jest granicą funkcji
f(x) w punkcie a jeśli dla każdego ciągu xn zbieżnego do a, ale xn 6= a, ciąg
f(xn) jest zbieżny do liczby g.

Przykłady.

(a) E = R, f(x) = x2. Wtedy lim
x→0

x2 = 0. Rzeczywiście, niech xn −→
n

0,

xn 6= 0. Wtedy x2
n −→n 0.

(b) E = (−1, 0) ∪ (0, 1), f(x) =
1
x
− 1
x
√
x+ 1

. Ile wynosi lim
x→0

f(x) ?

1
x
− 1
x
√
x+ 1

=
√
x+ 1− 1
x
√
x+ 1

=
x

x
√
x+ 1(

√
x+ 1 + 1)

=
1√

x+ 1(
√
x+ 1 + 1)

.

Gdy xn −→
n

0, to f(xn) −→
n

1
2 .
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Definicja 3.3 (Cauchy). Mówimy, że liczba g jest granicą funkcji f(x) w
punkcie a jeśli dla dowolnej liczby ε > 0 istnieje liczba δ > 0 taka, że jeśli
0 < |x− a| < δ, to |f(x)− g| < ε.

Uwaga. Definicja Cauchy’ego odpowiada definicji intuicyjnej. Osoba wąt-
piąca, że f(x) może znaleźć się blisko g, wyraża żądanie, aby odległość f(x)
i g była mniejsza niż ε, np. dla ε = 0, 0001. Naszym zadaniem jest wskazanie
liczby δ > 0, która zagwarantuje, że jeśli odległość argumentu x 6= a od a
jest mniejsza niż δ, to faktycznie odległość f(x) od g będzie mniejsza niż
ε. Po wykonaniu zadania osoba wątpiąca może zmniejszyć wartość ε np. do
0,00001. Wtedy my musimy znaleźć nową (zwykle znacznie mniejszą) war-
tość dla liczby δ, aby zaspokoić żądanie. Jeśli potrafimy to zrobić dla dowolnej
wartości ε, to faktycznie granica funkcji w punkcie a jest równa liczbie g.

Przykład. f(x) =
√
x− 1
x− 1

. Chcemy obliczyć granicę w punkcie 1 z definicji

Cauchy’ego. Mamy f(x) =
1√
x+ 1

. Z definicji intuicyjnej widać, że granica

w 1 wynosi 1
2 . Mamy

∣∣∣∣f(x)− 1
2

∣∣∣∣ =

∣∣∣∣∣ 1√
x+ 1

− 1
2

∣∣∣∣∣ =
|1−
√
x|

2(
√
x+ 1)

=
|x− 1|

2(
√
x+ 1)2

¬ 1
2
|x− 1|.

Dla liczby ε > 0 niech δ = 2ε. Wtedy dla 0 < |x− 1| < 2ε mamy

|f(x)− 1
2 | ¬

1
2 |x− 1| < ε.

Uwaga. Zapis kwantyfikatorowy definicji Cauchy’ego ma postać

∀ ε > 0 ∃ δ > 0 ∀x { 0 < |x− a| < δ =⇒ |f(x)− g| < ε }.

Twierdzenie 3.4. Definicje granicy według Cauchy’ego i Heinego są rów-
noważne.

Dowód. Udowodnimy tylko implikację (H) =⇒ (C). Załóżmy nie wprost, że
liczba g nie jest granicą funcji f(x) w punkcie a w sensie Cauchy’ego. To
oznacza, że istnieje liczba ε > 0 taka, że dla dowolnej liczby δ > 0 można
znaleźć argument x spełniający 0 < |x−a| < δ, ale |f(x)−g| ­ ε. Przyjmijmy
δn = 1

n
i niech xn oznacza argument odpowiadajacy liczbie δn. Otrzymujemy

0 < |xn − a| < 1
n

oraz |f(xn)− g| ­ ε. Wtedy xn −→
n

a, ale f(xn) 6−→
n

g.
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Co zrobić, gdy nie widać kandydata na wartość granicy funkcji ? Do tego
służy warunek Cauchy’ego. Intuicyjnie oznacza on, że jeśli dwa argumenty
x i x′ leżą blisko liczby a, ale x, x′ 6= a, to wartości f(x) i f(x′) leżą blisko
siebie. Ścisłe określenie znajduje się w następnym twierdzeniu.

Twierdzenie 3.5 (Warunek Cauchy’ego). Funkcja f(x) posiada granicę w
punkcie a wtedy i tylko wtedy, gdy dla dowolnej liczby ε > 0 można znaleźć
liczbę δ > 0 taką, że

0 < |x− a|, |x′ − a| < δ =⇒ |f(x)− f(x′)| < ε. (3.1)

Dowód. Udowodnimy tylko implikację (⇐). Niech xn −→
n

a, ale xn 6= a.

Wtedy ciąg f(xn) spełnia warunek Cauchy’ego dla ciągów. Rzeczywiście, dla
ε > 0 istnieje δ spełniająca (3.1). Ponieważ xn −→

n
a, to 0 < |xn− a| < δ dla

dużych wartości n, np. dla n > N. Wtedy dla n,m > N na podstawie (3.1)
otrzymamy |f(xn) − f(xm)| < ε. Zatem ciag f(xn) jest zbieżny. Oznaczmy
g = lim

n
f(xn). Wtedy lim

x→a
f(x) = g w sensie Heinego. Rzeczywiście, niech

x′n −→n a i x′n 6= a. Z poprzedniego rozumowania wiemy, że ciąg f(x′n) jest
zbieżny, np. do liczby g′. Rozważmy nowy ciąg postaci

x1, x
′
1, x2, x

′
2, . . . , xn, x

′
n, . . .

Ten ciąg dąży do a. Zatem odpowiadający ciąg wartości funkcji

f(x1), f(x′1), f(x2), f(x′2), . . . , f(xn), f(x′n), . . .

jest zbieżny. To jest możliwe tylko dla g = g′.

3.1 Ważna granica

Twierdzenie 3.6.
lim
x→0

sinx
x

= 1.

Dowód. Dla kąta 0 < x < π
2 rozważmy trójkąt prostokątny o kącie x i przy-

prostokątnej długości 1 przy tym kącie. Trójkąt ten zawiera w sobie wycinek
koła o kącie x i promieniu 1, który z kolei zawiera trójkąt równoramienny
o kącie wierzchołkowym x i ramionach długości 1. Porównując pola figur
otrzymamy nierówność

sinx
2

<
x

2
<

tg x
2
.
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Zatem
sinx < x <

sinx
cosx

.

Z drugiej nierówności otrzymujemy

sinx > x cosx = x
[
1− 2 sin2 x

2

]
> x

[
1− 2

(
x

2

)2
]

= x− x3

2
.

Uzyskujemy więc

x− x3

2
< sinx < x, 0 < x <

π

2
. (3.2)

Z nierówności wynika, że

lim
x→0+

sinx
x

= 1.

Z parzystości funkcji
sinx
x

otrzymujemy tezę.

——————————————————————————————–

3.2 Granice jednostronne

Przykład. Z wysokości 20 m upuszczamy kamień. Chcemy znaleźć prędkość
kamienia w chwili uderzenia w ziemię. Przed uderzeniem wysokość wynosi
h(t) = 20 − 1

2gt
2. Przyjmijmy g = 10 m/s2. Wtedy h(t) = 20 − 5t2. Kamień

spadnie po 2 sekundach. Średnia prędkość kamienia od momentu t < 2 do
momentu uderzenia w ziemię wynosi

h(t)− h(2)
t− 2

=
20− 5t2

t− 2
= −5

(t− 2)(t+ 2)
t− 2

= −5(t+ 2).

Prędkość chwilowa w momencie uderzenia wynosi zatem

lim
t→2
t<2

h(t)− h(2)
t− 2

= −20 m/s.

Definicja 3.7. Załóżmy, że funkcja f(x) jest określona w pewnym przedziale
a < x < a+ η (na prawo od punktu a). Mówimy, że funkcja f(x) ma granicę
lewostronną w punkcie a równą liczbie g, jeśli dla każdego ciągu xn −→

n
a,

xn < a, mamy f(xn) −→
n

g. Równoważnie

∀ ε > 0 ∃ δ > 0 ∀x { a− δ < x < a =⇒ |f(x)− g| < ε }.
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Podobnie określa się granicę prawostronną.

Twierdzenie 3.8. Granica lim
x→a

f(x) istnieje wtedy i tylko wtedy, gdy istnieją
granice jednostronne lim

x→a−
f(x) i lim

x→a+
f(x) i są sobie równe.

Dowód. (⇐) Załóżmy, że lim
x→a−

f(x) = lim
x→a+

f(x) = g.Dla liczby ε > 0 istnieją

liczby δ1, δ2 > 0 spełniające warunek: dla a− δ1 < x < a lub a < x < a+ δ2

mamy |f(x)−g| < ε. Przyjmijmy δ = min(δ1, δ2). Wtedy jeśli 0 < |x−a| < δ
to albo a−δ1 ¬ a−δ < x < a albo a < x < a+δ ¬ a+δ2. W obu przypadkach
uzyskujemy |f(x)− g| < ε.

Przykład.

f(x) =


1
x2
− 1 x < 1,

x− x3 x > 1.

lim
x→1−

f(x) = lim
x→1−

( 1
x2
− 1

)
= 0,

lim
x→1+

f(x) = lim
x→1−

(x− x3) = 0.

3.3 Granice niewłaściwe i granice w punktach niewła-
ściwych

Definicja 3.9. Funkcja f(x) ma granicę ∞ w punkcie a jeśli dla każdego
ciągu xn −→

n
a, xn 6= a, mamy f(xn) −→

n
∞. Równoważnie, dla dowolnej

liczby M istnieje liczba δ > 0, dla której warunek 0 < |x − a| < δ pociąga
f(x) > M.

Definicja 3.10. Załóżmy, że funkcja f(x) jest określona w przedziale (a,∞).
Mówimy, że liczba g jest granicą funkcji f(x) w ∞ jeśli dla dowolnego ciągu
xn −→

n
∞ mamy f(xn) −→

n
g. Równoważnie

∀ ε > 0 ∃M ∀x {x > M =⇒ |f(x)− g| < ε }.

Podobnie określa się granicę −∞ i granicę w −∞.
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3.4 Działania na granicach

Twierdzenie 3.11. Załóżmy, że lim
x→a

f(x) = A oraz lim
x→a

g(x) = B. Wtedy

(i) lim
x→a

[f(x)± g(x)] = A±B.

(ii) lim
x→a

f(x)g(x) = AB.

(iii) lim
x→a

f(x)
g(x)

=
A

B
, o ile B 6= 0.

Dowód. Teza wynika z odpowiedniego twierdzenia o ciągach.

Uwaga. Twierdzenie jest prawdziwe dla granic jednostronnych i granic w
punktach niewłaściwych.

Twierdzenie 3.12 (Reguła podstawienia). Jeśli lim
x→a

f(x) = b, lim
y→b

g(y) = c,

oraz funkcja f(x) nie przyjmuje wartości b w pobliżu punktu a, to lim
x→a

g(f(x)) =
c.

Dowód. Niech xn −→
n

a, xn 6= a. Wiemy, że f(x) 6= b w pewnym przedziale
(a− η, a+ η) \ {a}. Wtedy xn leży w tym przedziale dla dużych wartości n,
np. dla n > N. Zatem yn := f(xn) 6= b dla n > N oraz yn = f(xn) −→

n
b.

Otrzymujemy g(f(xn)) = g(yn) −→
n

c.

Uwaga. Przy zastosowaniu reguły podstawienia posługujemy sie zapisem

lim
x→a

g(f(x)) =
y=f(x)

lim
y→b

g(y) = c.

Przykład.

lim
x→2

√
x+

1
x
.

Przyjmujemy f(x) = x+
1
x
, g(y) =

√
y. Wtedy b = 5

2 oraz c =
√

5
2 . W innym

zapisie mamy

lim
x→2

√
x+

1
x

=
y=x+ 1

x

lim
y→ 52

√
y =

√
5
2
.
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Trzeba się upewnić, że x+
1
x
6= 5

2 , gdy x 6= 2 i x leży blisko 2. Równanie

x+
1
x

=
5
2

= 2 +
1
2

ma dwa rozwiązania x = 2 i x = 1
2 . Dla 0 < |x−2| < 1 mamy więc x+

1
x
6= 5

2 .

3.5 Funkcje ciągłe

Definicja 3.13. Mówimy, że funkcja f(x) jest ciągła w punkcie a, jeśli f(x)
jest określona w pewnym przedziale wokół punktu a, włącznie z punktem a,
oraz

(1) istnieje granica lim
x→a

f(x),

(2) lim
x→a

f(x) = f(a).

Przy zastosowaniu definicji Cauchy’ego granicy funkcji, ciągłość w zapisie
kwantyfikatorowym ma postać

∀ ε > 0 ∃ δ > 0 ∀x { |x− a| < δ =⇒ |f(x)− f(a)| < ε }.

Można pominąć warunek 0 < |x − a|, bo dla x = a mamy |f(x) − f(a)| =
0 < ε.

Przykłady.

(a)

f(x) =


sinx
x

, x 6= 0,

1 x = 0.

lim
x→0

f(x) = lim
x→0

sinx
x

= 1 = f(0).

(b)

f(x) =

x sin 1
x
, x 6= 0,

0 x = 0.

lim
x→0

f(x) = 0 = f(0), bo |x sin 1
x
| ¬ |x|.
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(c)

f(x) =

sin 1
x
, x 6= 0,

0 x = 0.

Granica w punkcie 0 nie istnieje. Niech xn = 1
nπ

oraz x′n = 1
2nπ+π

2
.

Wtedy f(xn) = 0 oraz f(x′n) = 1.

Twierdzenie 3.14. Jeśli funkcje f(x) i g(x) są ciągłe w punkcie a, to funkcje

f(x) ± g(x), f(x)g(x) i
f(x)
g(x)

sa również ciągłe w a, przy czym w ostatnim

przypadku zakładamy, że g(a) 6= 0.

Uwaga. Jeśli g(a) 6= 0, to z ciągłości wynika, że g(x) 6= 0 dla x w pobliżu
punktu a. Rzeczywiście, przyjmijmy ε = |g(a)|

2 . Wtedy istnieje liczba δ > 0

taka, że dla |x− a| < δ mamy |g(x)− g(a)| < |g(a)|
2

. Dalej

|g(a)| − |g(x)| ¬ |g(x)− g(a)| < |g(a)|
2

.

Zatem |g(x)| > |g(a)|
2

.

Przykłady.

(a) Każdy wielomian jest funkcją ciągłą w każdym punkcie.

(b) Iloraz dwu wielomianów jest funkcją ciągłą poza miejscami zerowymi
mianownika.

Twierdzenie 3.15. Jeśli funkcja f(x) jest ciągła w punkcie a, a funkcja
g(x) jest ciągła w punkcie b = f(a), to funkcja złożona g(f(x)) jest ciągła w
punkcie a.

Dowód. Niech xn −→
n

a. Wtedy yn := f(xn) −→
n

f(a) = b. Zatem g(yn) −→
n

g(b). To oznacza, że g(f(xn)) −→
n

g(f(a)).

Przykład. Załóżmy, że f : (0, 1) → R oraz lim
x→a

f(x) istnieje dla wszystkich

punktów 0 < a < 1. Określmy f̃(x) = lim
x→a

f(x). Czy funkcja f̃ jest ciągła w
każdym punkcie przedziału (0, 1) ?

——————————————————————————————–
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Definicja 3.16. Mówimy, że funkcja f(x) jest ciagła w przedziale (a, b), jeśli
jest ciagła w każdym punkcie tego przedziału. Mówimy, że funkcja f(x) jest
ciagła w przedziale [a, b], jeśli dodatkowo lim

x→a+
f(x) = f(a) oraz lim

x→b−
f(x) =

f(b).

Przykłady.

(a) f(x) =
1

x(1− x)
, 0 < x < 1.

(b) h(y) =
√
y, y ­ 0.

Sprawdzenie: dla y0 > 0 mamy

|√y −√y0| =
|y − y0|√
y +
√
y0

¬ 1
√
y0

|y − y0|.

Dla y0 = 0 i ε > 0 niech 0 ¬ y < ε2. Wtedy
√
y < ε.

(c) f(x) =
√
x(1− x), 0 ¬ x ¬ 1.

Twierdzenie 3.17 (Jednostajna ciągłość funkcji). Funkcja f(x) ciągła na
przedziale domkniętym [a, b] jest jednostajnie ciągła, tzn. dla dowolnej licz-
by ε > 0 istnieje liczba δ > 0 taka, że dla x, x′ z [a, b], jeśli |x − x′| < δ, to
|f(x)− f(x′)| < ε.

Uwaga. Zapis kwantyfikatorowy ciągłości jednostajnej ma postać

∀ ε > 0 ∃ δ > 0 ∀x ∈ [a, b] ∀x′ ∈ [a, b] { |x−x′| < δ =⇒ |f(x)−f(x′)| < ε }.

Dla porównania zapis kwantyfikatorowy ciągłości w każdym punkcie x prze-
działu [a, b] ma postać

∀ ε > 0 ∀x ∈ [a, b] ∃ δ > 0 ∀x′ ∈ [a, b] { |x−x′| < δ =⇒ |f(x)−f(x′)| < ε }.

Przy jednostajnej ciągłości liczba δ > 0 jest uniwersalna dla wszystkich punk-
tów x ∈ [a, b], gdy przy ciągłości punktowej ta liczba jest dobierana indywi-
dualnie dla każdego punktu x ∈ [a, b].

Intuicyjnie jednostajna ciągłość oznacza, że jeśli dwa argumenty funkcji
leżą blisko siebie, to odpowiadające im wartości funkcji są również położone
blisko siebie, niezależnie od położenia tych argumentów.
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Dowód. (nie wprost). Załóżmy, że warunek jednostajnej ciągłości nie jest
spełniony. Tzn., że istnieje liczba ε > 0 taka, że dla dowolnego wyboru liczby
δ > 0 znajdą się punkty x, x′ w przedziale [a, b] takie, że |x − x′| < δ oraz
|f(x) − f(x′)| ­ ε. W szczególności dla δn = 1

n
istnieją punkty xn, x

′
n w

przedziale [a, b] spełniające

|xn − x′n| <
1
n
, |f(xn)− f(x′n)| ­ ε. (3.3)

Z twierdzenia Bolzano-Weierstrassa z ciągu xn można wybrać zbieżny pod-
ciąg xnk . Oznaczmy x = lim

k
xnk . Z pierwszego warunku w (3.3) mamy

xnk −
1
nk

< x′nk < xnk +
1
nk
.

Z twierdzenia o trzech ciągach wnioskujemy, że x = lim
k
x′nk . Z ciągłości w

punkcie x otrzymujemy f(xnk) −→
k

f(x) i f(x′nk) −→k f(x). To oznacza, że

f(xnk)−f(x′nk) −→k 0, co stoi w sprzeczności z drugim warunkiem w (3.3).

Przykłady.

(a) Domkniętość przedziału jest istotna. Rozważmy f(x) = 1
x

na przedziale
(0, 1]. Dla xn = 1

2n i x′n = 1
n

mamy f(xn) = 2n, f(x′n) = n. Zatem

x′n − xn −→n 0, f(xn)− f(x′n) −→
n
∞.

(b) Funkcja w poprzednim przykładzie była nieograniczona. Rozważmy
f(x) = sin 1

x
na na przedziale (0, 1]. Dla xn = 1

2nπ i x′n = 1
(2n+1/2)π

mamy
x′n − xn −→n 0, f(x′n)− f(xn) = 1.

(c) Jeśli nachylenie wykresu funkcji jest ograniczone, tzn.

f(x1)− f(x2)
x1 − x2

¬ L, x1 6= x2,

to funkcja jest jednostajnie ciągła. Istotnie mamy wtedy

|f(x1)− f(x2)| ¬ L|x1 − x2|.

Np. f(x) = x jest jednostajnie ciągła na całej prostej. Z kolei f(x) = x2

nie jest jednostajnie ciągła na całej prostej, bo dla xn = n+ 1
n
, x′n = n

mamy xn − x′n −→n 0 oraz f(x′n)− f(xn) ­ 2.
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(d) Ograniczone nachylenie wykresu nie jest warunkiem koniecznym dla
jednostajnej ciągłości. Np. funkcja f(x) =

√
|x| jest jednostajnie ciągła

na całej prostej mimo, że nachylenie wykresu w pobliżu punktu 0 jest
nieograniczone.

Twierdzenie 3.18 (Weierstrass). Funkcja ciągła f(x) na przedziale do-
mkniętym [a, b] jest ograniczona oraz osiąga swoje kresy górny M i dolny m.
Tzn. istnieją punkty c i d w przedziale [a, b] takie, że f(c) = m i f(d) = M.

Uwaga.
m = inf

a¬x¬b
f(x), M = sup

a¬x¬b
f(x).

Dowód. Dla liczby ε = 1 istnieje liczba δ > 0 taka, że jeśli |x − x′| < δ,
to |f(x) − f(x′)| < 1. Wybierzmy liczbę naturalną n tak, aby b−a

n
< δ. Np.

niech n = [ b−a
δ

] + 1. Dzielimy przedział [a, b] na n równych części punktami
ak = a+ b−a

n
k dla k = 0, 1, . . . n. Oznaczmy

C = max{|f(a1)|+ 1, |f(a2)|+ 1, . . . , |f(an)|+ 1}.

Niech a ¬ x ¬ b. Wtedy ak−1 ¬ x ¬ ak dla pewnej liczby k = 1, 2, . . . , n.
Zatem

|x− ak| ¬ ak − ak−1 =
b− a
n

< δ.

Wtedy
|f(x)| − |f(ak)| ¬ |f(x)− f(ak)| < 1.

Otrzymujemy więc
|f(x)| < |f(ak)|+ 1 ¬ C,

czyli funkcja f jest ograniczona.
Załóżmy, nie wprost, że f(x) < M dla wszystkich a ¬ x ¬ b. Rozważmy

funkcję g(x) =
1

M − f(x)
. Funkcja g(x) jest ciągła na przedziale [a, b]. Z

pierwszej części dowodu wynika, że g jest ograniczona z góry, tzn.

1
M − f(x)

= g(x) ¬ N,

dla pewnej stałej N. Po przekształceniu otrzymamy

M − f(x) ­ 1
N
, czyli f(x) ¬M − 1

N
.
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Dalej

M = sup
a¬x¬b

f(x) ¬M − 1
N
,

co daje sprzeczność.

Twierdzenie 3.19 (Własność Darboux). Funkcja ciągła na przedziale [a, b]
przyjmuje wszystkie wartości pośrednie, tzn. wartości pomiędzy liczbami f(a)
i f(b).

Dowód. Rozważymy przypadek f(a) < f(b). Niech f(a) < l < f(b). Chcemy
udowodnić, że f(x0) = l dla pewnego punktu x0 w [a, b]. Załóżmy, nie wprost,
że f(x) 6= l dla wszystkich x. Rozważymy funkcję

g(x) =
1

|f(x)− l|
.

Z twierdzenia Weierstrassa mamy

1
|f(x)− l|

= g(x) ¬ N,

dla pewnej stałej N. Zatem

|f(x)− l| ­ 1
N
, a ¬ x ¬ b. (3.4)

Z jednostajnej ciągłości dla ε = 1
N

można znaleźć liczbę δ, dla której

|x− x′| < δ =⇒ |f(x)− f(x′)| < 1
N
.

Dzielimy przedział na n równych części punktami ak = a + b−a
n
k tak, aby

b−a
n

< δ. Zatem |f(ak) − f(ak−1| < 1
N
. Mamy f(a0) < l < f(an). Niech k

będzie najmniejszym wskaźnikiem, dla którego l < f(ak). Wtedy f(ak−1) <

l < f(ak). Ponieważ |f(ak)− f(ak−1| < 1
N
, to |f(ak)− l| < 1

N
. Otrzymujemy

sprzeczność z (3.4).

Wniosek 3.20. Funkcja ciągła na przedziale domkniętym przyjmuje wszyst-
kie wartości pomiędzy swoimi kresami dolnym i górnym.
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Dowód. Z twierdzenia Weierstrassa istnieją punkty c i d takie, że f(c) = m i
f(d) = M. Z własności Darboux zastosowanej do przedziału pomiędzy c i d
funkcja przyjmuje wszystkie wartości pomiędzy m i M.

Przykłady.

(a) Chcemy rozwiązać równanie

w(x) := x3 + 2x2 + x− 3 = 0.

Mamy w(0) = −3 i w(1) = 1. Z własności Darboux w(x0) = 0 dla
pewnego punktu x0 pomiędzy 0 i 1. Ponieważ w(1

2) < 0, to można
znaleźć rozwiązanie pomiędzy 1

2 i 1.

(b)

f(x) =

sin 1
x

0 < |x| ¬ 1,
0, x = 0.

Funkcja ma własność Darboux mimo, że nie jest ciągła w punkcie 0.

Twierdzenie 3.21. Funkcja monotoniczna w przedziale [a, b] jest ciągła wte-
dy i tylko wtedy, gdy ma własność Darboux.

——————————————————————————————–

Lemat 3.22. Funkcja monotoniczna posiada granice jednostronne w każdym
punkcie.

Dowód. Pokażemy, że
lim
x→c+

f(x) = inf
x>c

f(x)

dla dowolnej funkcji rosnącej. Dla x > c mamy f(x) ­ f(c), zatem α :=
inf
x>c

f(x) ­ f(c). Dla liczby ε > 0 istnieje argument x0 > c spełniający
f(x0) < α + ε. Wtedy dla c < x < x0 mamy α ¬ f(x) ¬ f(x0) < α + ε.
Zatem |f(x)− α| < ε.

Dowód twierdzenia. Rozważmy funkcję rosnącą f(x) i punkt c wewnątrz [a, b].
Nieciągłość oznacza, że przynajmniej jedna z nierówności

lim
x→c−

f(x) ¬ f(c) ¬ lim
x→c+

f(x)

jest ostra. W każdym przypadku funkcja nie miałaby wtedy własności Dar-
boux.
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Definicja 3.23. Mówimy, że funkcja f(x) jest różnowartościowa na podzbio-
rze E ⊆ R, jeśli dla dwu argumentów x1 6= x2 z E mamy f(x1) 6= f(x2).

Niech F = {f(x) : x ∈ E} dla funkcji różnowartościowej. Wtedy dla
wartości y ∈ F istnieje jedyny element x ∈ E taki, że f(x) = y. Możemy
określić g(y) = x. Wtedy g(f(x)) = x oraz f(g(y)) = y.

Twierdzenie 3.24. Funkcja ciągła i różnowartościowa jest monotoniczna.

Dowód. Załóżmy, że f nie jest monotoniczna. To oznacza, że można zna-
leźć trzy argumenty x1 < x2 < x3 spełniające f(x1) < f(x2) > f(x3) albo
f(x1) > f(x2) < f(x3). Tzn. f(x2) nie leży pomiędzy f(x1) i f(x3). Rozważ-
my przypadek f(x1) < f(x2) > f(x3). Oznaczmy α = max{f(x1), f(x2)}.
Z własności Darboux wartości z przedziału [α, f(x2)] są przyjęte dwukrotnie
przez funkcję f, raz w przedziale (x1, x2) i drugi raz w przedziale (x2, x3).

Twierdzenie 3.25 (o funkcji odwrotnej). Jeśli funkcja f(x) jest ciągła i
różnowartościowa na przedziale [a, b], to funkcja odwrotna g(y) jest ciągła na
przedziale [m,M ], gdzie m = inf

a¬x¬b
f(x) oraz M = sup

a¬x¬b
f(x).

Dowód. Wiemy, że f(x) jest ściśle monotoniczna. Przyjmijmy, że f(x) jest
rosnąca. Wtedy funkcja odwrotna też jest rosnąca na przedziale [m,M ]. Dla
ciągłości wystarczy zatem pokazać własność Darboux. Niech y1 < y2 oraz
g(y1) < c < g(y2). Trzeba znaleźć argument y taki, że g(y) = c. Nakładamy
na nierówność funkcję f i otrzymujemy

y1 = f(g(y1)) < f(c)︸ ︷︷ ︸
y

< f(g(y2)) = y2.

Dalej g(y) = g(f(c)) = c.

Przykład. Dla funkcji f(x) = xn, 0 ¬ x ¬M funkcją odwrotną jest g(y) =
n
√
y, 0 ¬ y ¬ n

√
M. Ponieważ M jest dowolną dodatnią liczbą, to g(y) = n

√
y

jest ciągła na [0,∞).

3.6 Ścisłe wprowadzenie funkcji wykładniczej

Ustalmy liczbę a > 1. Dla liczb wymiernych w ∈ Q określamy

aw = (ap)
1
q , jeśli w = p

q
, q ∈ N, p ∈ Z.

Wynik nie zależy od przedstawienia liczby w tej postaci.
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Definicja 3.26. Podzbiór E ⊆ R nazywamy gęstym jeśli dla dowolnej liczby
x ∈ R istnieje ciąg liczb an ∈ E zbieżny do x.

Zbiór liczby wymiernych jest gęsty w R. Rzeczywiście, dla x ∈ R mamy
nx− 1 < [nx] ¬ nx. Zatem

x− 1
n
< [nx]

n
¬ x.

To oznacza, że [nx]
n
−→
n

x.

Lemat 3.27. Jeśli funkcje g(x) i h(x) są ciągłe na R oraz g(a) = h(a) dla
punktów a z gęstego podzbioru E ⊆ R, to g(x) ≡ h(x).

Dowód. Dla x ∈ R bierzemy ciąg an punktów z E zbieżny do x. Wtedy

g(x) = lim
n
g(an) = lim

n
h(an) = h(x).

Określamy
F (x) = sup

w∈Q
w<x

aw.

Wtedy F (x) jest funkcją ściśle rosnącą. Istotnie, niech x1 < x2. Można zna-
leźć liczby wymierne w1, w2 takie, że x1 < w1 < w2 < x2. Wtedy

F (x1) ¬ aw1 < aw2 ¬ F (x2).

Zbadamy ciągłość funkcji F (x). Dla liczby x0 istnieje ciąg liczb wymiernych
wn spełniający

wn < x0 < wn + 2
n
.

Np. wn = [nx0]
n
− 1

n
. Obliczamy

lim
x→x+0

F (x) = lim
n
F (wn + 2

n
) = lim

n
awn+

2
n

= lim
n
awn lim

n
(a2)

1
n = lim

n
awn = lim

x→x−0
F (x).

Lemat 3.28. F (x+ y) = F (x)F (y).
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Dowód. Niech wn −→
n

x, vn −→
n

y, gdzie wn, vn ∈ Q. Wtedy

F (x+ y) = lim
n
F (wn + vn) = lim

n
awn+vn = lim

n
awnavn

= lim
n
awn lim

n
avn = lim

n
F (wn) lim

n
F (vn) = F (x)F (y).

F (x) nazywamy funkcją wykładniczą. Funkcja wykładnicza ma następu-
jące własności (dla a > 1).

(1) F (x+ y) = F (x)F (y).

(2) F (x) < F (y), dla x < y.

(3) F (1) = a.

(4) F (x) jest ciągła.

Można udowodnić, że powyższe własności określają funkcję wykładniczą w
sposób jednoznaczny. Przyjmujemy oznaczenie F (x) = ax. Mamy

lim
x→∞

ax =∞, lim
x→−∞

ax = lim
x→−∞

1
a−x

= 0.

Funkcję odwrotną, określoną na półprostej (0,∞) nazywamy logarytmem
przy podstawie a i oznaczamy symbolem loga x.

4 Ciągi i szeregi funkcyjne

Definicja 4.1. Niech fn będzie ciągiem funkcji określonych na A ⊆ R, np.
A = [a, b], [a,∞), (a, b). Mówimy, że ciąg fn jest zbieżny punktowo do funkcji
f, jeśli dla każdego punktu x ze zbioru A mamy fn(x) −→

n
f(x).

W zapisie kwantyfikatorowym definicja przybiera postać

∀ ε > 0 ∀x ∈ A ∃N ∀n > N {|fn(x)− f(x)| < ε }.

Próg N zależy od punktu x i od ε.
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Definicja 4.2. Mówimy, że ciąg fn jest zbieżny jednostajnie do funkcji f
na zbiorze A, jeśli

∀ ε > 0 ∃N ∀x ∈ A ∀n > N {|fn(x)− f(x)| < ε }.

Używamy zapisu fn ⇒ f.

Tym razem próg N nie zależy od x, jest uniwersalny dla wszystkich punk-
tów ze zbioru A.

Co oznacza warunek

∀x ∈ A ∀n > N {|fn(x)− f(x)| < ε } ?

Po przekształceniu otrzymamy

∀x ∈ A ∀n > N {f(x)− ε < fn(x) < f(x) + ε} .

Tzn. od pewnego miejsca (dla n > N) wykresy funkcji fn(x) leżą w pasie o
promieniu ε wokół wykresu funkcji f(x).

Przykład. fn(x) = xn, 0 ¬ x ¬ 1.

lim
n
xn =

0 0 ¬ x < 1,
1, x = 1.

=: f(x).

Czy możliwa jest zbieżność jednostajna ? Niech ε = 1
3 . W pasie o promieniu

1
3 wokół wykresu funkcji f nie ma wykresu żadnej funkcji ciągłej.

Niech fn(x) = xn, 0 ¬ x ¬ a < 1. Wtedy ciąg fn jest jednostajnie zbieżny
do 0. Rzeczywiście, dla ε > 0 istnieje liczba naturalna N, dla której aN ¬ ε.
Wtedy dla n > N i 0 ¬ x ¬ a mamy

0 ¬ fn(x) = xn ¬ an < aN ¬ ε.

Przykład.

fn(x) =


nx 0 ¬ x ¬ 1

n
,

2− nx 1
n
¬ x ¬ 2

n
,

0 2
n
¬ x ¬ 1.

Mamy fn(x) −→
n

0 dla 0 ¬ x ¬ 1. Nie ma jednak zbieżności jednostajnej,

bo fn( 1
n
) = 1. W pasie o promieniu 1

2 wokół zera nie ma wykresu żadnej z
funkcji fn.

——————————————————————————————–
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Twierdzenie 4.3. Granica jednostajnie zbieżnego ciągu funkcji ciągłych jest
funkcją ciągłą.

Dowód. Załóżmy, że ciąg fn(x) jest zbieżny jednostajnie do funkcji f(x).
Sprawdzamy ciągłość funkcji f w punkcie x0. Ustalmy liczbę ε > 0. Z za-
łożenia istnieje próg N, taki, że dla n > N mamy |fn(x) − f(x)| < ε

3 . W
szczególności

|fN+1(x)− f(x)| < ε

3
.

Z ciągłości funkcji fN+1 istnieje liczba δ > 0 taka, że dla |x− x0| < δ mamy

|fN+1(x)− fN+1(x0)| < ε

3
.

Zatem dla |x− x0| < δ otrzymujemy

|f(x)−f(x0)| ¬ |f(x)−fN+1(x)|+|fN+1(x)−fN+1(x0)|+|fN+1(x0)−fN+1(x0)|

<
ε

3
+
ε

3
+
ε

3
= ε.

Wniosek 4.4. Jeśli ciąg funkcji ciągłych fn jest zbieżny punktowo do funkcji
f, ale f nie jest ciągła, to ciąg fn nie jest zbieżny jednostajnie.

Przykład. f(x) = xn, 0 ¬ x ¬ 1. Granica punktowa nie jest funkcją ciągłą.

Twierdzenie 4.5. Załóżmy, że istnieje ciąg liczb an > 0 taki, że an −→
n

0
oraz

|fn(x)− f(x)| ¬ an, x ∈ A.

Wtedy ciąg fn jest zbieżny do funkcji f jednostajnie na zbiorze A.

Przykłady.

(a) fn(x) =
1

1 + nx
, x ­ 0. Mamy fn(0) = 0. Dla x > 0 szacujemy

fn(x) ¬ x

nx
=

1
n
. Zatem

0 ¬ fn(x) ¬ 1
n
, x ­ 0.
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(b) fn(x) = xn − xn+1, 0 ¬ x ¬ 1. Dla 0 ¬ x ¬ 1− 1√
n

mamy

0 ¬ fn(x) = xn(1− x) ¬ xn ¬ (1− 1√
n
)n.

Z kolei dla 1− 1√
n
¬ x ¬ 1

0 ¬ fn(x) = xn(1− x) ¬ 1− x ¬ 1√
n
.

Zatem dla 0 ¬ x ¬ 1 uzyskujemy

0 ¬ fn(x) ¬ (1− 1√
n
)n + 1√

n
−→
n

0,

bo
(1− 1√

n
)n =

[
(1− 1√

n
)
√
n
]√n

.

Twierdzenie 4.6 (warunek Cauchy’ego zbieżności jednostajnej). Ciąg funk-
cji fn(x) jest jednostajnie zbieżny na zbiorze A wtedy i tylko wtedy, gdy

∀ ε > 0 ∃N ∀x ∈ A ∀n,m > N {|fn(x)− fm(x)| < ε }.

Uwaga. Intuicyjnie oznacza to, że jeśli n i m są duże, to wykresy funkcji fn
i fm leżą blisko siebie.

Dowód. (⇐). Z założenia dla każdego punktu x z A ciąg liczbowy fn(x)
spełnia warunek Cauchy’ego. Zatem fn(x) jest zbieżny. Oznaczmy f(x) =
lim
n
fn(x). Chcemy pokazać, że fn ⇒

n
f. Niech ε > 0. Z założenia istnieje próg

N taki, że dla n,m > N mamy

|fn(x)− fm(x)| < ε
2 , x ∈ A.

Wtedy dla n > N otrzymujemy

|fn(x)− f(x)| = lim
m
|fn(x)− fm(x)| ¬ ε

2 < ε.

Twierdzenie 4.7 (Dini). Niech fn(x) będzie monotonicznym ciągiem funk-
cji ciagłych określonych na przedziale [a, b], tzn. spełniony jest jeden z dwu
warunków:
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(a) fn(x) ¬ fn+1(x) dla a ¬ x ¬ b, n ∈ N.

(b) fn(x) ­ fn+1(x) dla a ¬ x ¬ b, n ∈ N.

Załóżmy, że fn jest zbieżny punktowo do funkcji f ciągłej na [a, b]. Wtedy
zbieżność fn do f jest jednostajna.

Dowód. Załóżmy, że fn(x)↗
n
f(x). Oznaczmy gn(x) = f(x)− fn(x). Wtedy

gn(x) ↘
n

0. Trzeba pokazać, że gn ⇒
n

0. Załóżmy nie wprost, że gn 6⇒
n

0.

To oznacza, że istnieje liczba ε > 0 taka, że dla dowolnego wyboru liczby
naturalnej N istnieje liczba naturalna n > N oraz punkt xN w [a, b] takie,
że gn(xN) ­ ε. Wtedy

gN+1(xN) ­ gn(xN) ­ ε, dla n > N.

Na podstawie twierdzenia Bolzano-Weierstrassa możemy wybrać podciąg
zbieżny xNk . Oznaczmy x0 = lim

k
xNk . Wtedy dla m ¬ Nk otrzymujemy

gm(xNk) ­ gNk+1(xNk) ­ ε.

Przechodzimy do granicy, gdy k →∞ aby uzyskać gm(x0) = lim
k
gm(xNk) ­ ε.

Ale gm(x0) −→
m

0, co daje sprzeczność.

Definicja 4.8. Mówimy, że szereg
∞∑
n=1

fn(x) jest jednostajnie zbieżny dla

x ∈ A, jeśli ciąg sum częściowych sn(x) =
n∑
k=1

fk(x) jest jednostajnie zbieżny.

Przykład.
∞∑
n=1

xn, 0 ¬ x ¬ 1
2 . Mamy

sn(x) =
n∑
k=1

xk =
x− xn+1

1− x
−→
n

x

1− x
.

Sprawdzamy zbieżność jednostajną

∣∣∣∣sn(x)− x

1− x

∣∣∣∣ =
xn+1

1− x
¬

1
2n+1

1− 1
2

=
1
2n
−→
n

0.
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Twierdzenie 4.9 (Warunek Cauchy’ego). Szereg
∞∑
n=1

fn(x) jest jednostajnie

zbieżny wtedy i tylko wtedy, gdy

∀ ε > 0 ∃N ∀x ∈ A ∀n > m > N {|fm+1(x) + fm+2(x) + . . .+ fn(x)| < ε }.

Dowód.
sn(x)− sm(x) = fm+1(x) + fm+2(x) + . . .+ fn(x).

Twierdzenie 4.10 (kryterium Weierstrassa o majoryzacji). Jeśli szereg licz-

bowy
∞∑
n=1

an o wyrazach nieujemnych jest zbieżny oraz |fn(x)| ¬ an dla x ∈ A,

to szereg
∞∑
n=1

fn(x) jest zbieżny jednostajnie i bezwzględnie dla x ∈ A.

Dowód. Sprawdzamy warunek Cauchy’ego. Dla n > m mamy

|fm+1(x) + fm+2(x) + . . .+ fn(x)| ¬ |fm+1(x)|+ fm+2(x)|+ . . .+ |fn(x)|
¬ am+1 + am+2 + . . .+ an.

Tezę uzyskujemy z warunku Cauchy’ego dla szeregu
∞∑
n=1

an.

Twierdzenie 4.11. Jeśli funkcje fn(x) są ciągłe oraz szereg
∞∑
n=1

fn(x) jest

zbieżny jednostajnie na A, to suma szeregu s(x) =
∞∑
n=1

fn(x) jest funkcją

ciągłą na A.

Przykład.
∞∑
n=0

xn

n!
. Szereg jest zbieżny dla wszystkich wartości x np. z kry-

terium d’Alemberta. Rozważmy |x| ¬ a. Wtedy∣∣∣∣xnn!

∣∣∣∣ ¬ an

n!
.

Z kryterium Weierstrassa szereg jest zbieżny jednostajnie i bezwzględnie w
przedziale [−a, a]. Suma szeregu reprezentuje więc funkcję ciągłą na R, bo a
jest dowolną dodatnią liczbą. Oznaczmy

exp(x) =
∞∑
n=0

xn

n!
.
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Wtedy exp(0) = 1 oraz

exp(1) = 1 +
1
1!

+
1
2!

+
1
3!

+ . . .+
1
n!

+ . . . = e.

Korzystając z mnożenia szeregów metodą Cauchy’ego otrzymamy

exp(x) exp(y) =
∞∑
n=0

xn

n!

∞∑
n=0

yn

n!
=
∞∑
n=0

n∑
k=0

xn−k

(n− k)!
yk

k!

=
∞∑
n=0

1
n!

n∑
k=0

(
n

k

)
xn−kyk =

∞∑
n=0

(x+ y)n

n!
= exp(x+ y).

W oparciu o podrozdział 3.6 z własności funkcji exp(x) wynika, że exp(x) =
ex. Udowodniliśmy więc, że

ex =
∞∑
n=0

xn

n!
.

——————————————————————————————–

Przykłady.

(a) f(x) =
∞∑
n=1

sinnx
n2

, x ∈ R.

∣∣∣∣sinnxn2

∣∣∣∣ ¬ 1
n2
.

Zatem f(x) jest funkcją ciągłą.

(b) g(x) =
∞∑
n=1

sinnx
n

, x ∈ R. Szereg jest zbieżny dla x ∈ R z kryterium

Dirichleta. Można pokazać analizując dowód twierdzenia Dirichleta i
pierwszy przykład po tym twierdzeniu, że zbieżność jest jednostajna
dla |x− 2kπ| ­ ε > 0.

Definicja 4.12. Szeregi postaci
∞∑
n=0

anx
n nazywamy potęgowymi.

Przykład. Szereg
∞∑
n=1

xn jest zbieżny tylko dla |x| < 1. Mówimy wtedy, że

liczba 1 jest promieniem zbieżności tego szeregu.
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Definicja 4.13. Promieniem zbieżności szeregu
∞∑
n=0

anx
n nazywamy kres gór-

ny wartości bezwględnych liczb x, dla których szereg jest zbieżny.

(a)
∞∑
n=1

(−1)n+1

xn
. Znajdziemy promień zbieżności z kryterium d’Alemberta.

∣∣∣∣∣(−1)n+2xn+1

n+ 1

∣∣∣∣∣
∣∣∣∣∣ n

(−1)n+1xn

∣∣∣∣∣ =
(

1 +
1
n

)
|x| −→

n
|x|.

Dla |x| < 1 szereg jest bezwzględnie zbieżny a dla |x| > 1 jest rozbieżny.
Promień zbieżności wynosi 1.

(b)
∞∑
n=0

xn

n!
. Promień zbieżności wynosi ∞.

(c)
∞∑
n=0

n!xn. Promień zbieżności wynosi 0.

Twierdzenie 4.14. Jeśli R > 0 jest promieniem zbieżności szeregu
∞∑
n=0

anx
n,

to szereg jest zbieżny dla |x| < R i rozbieżny dla |x| > R. Ponadto zbieżność
jest jednostajna w każdym przedziale [−r, r] dla 0 < r < R.

Dowód. Z określenia liczby R szereg jest rozbieżny dla |x| > R. Każda liczba
|x| < R leży w pewnym przedziale [−r, r] dla r < R, (np. r = |x|). Z
określenia promienia zbieżności istnieje liczba x0 spełniająca r < |x0| < R

oraz szereg
∞∑
n=0

anx
n
0 jest zbieżny. Wtedy |anxn0 | −→n 0. Zatem |anxn0 | ¬ M

dla pewnej dodatniej liczby M. Niech Niech |x| ¬ r. Wtedy

|anxn| = |anxn0 |
∣∣∣∣ xx0

∣∣∣∣n ¬M

(
r

|x0|

)n
.

Ale r
|x0| < 1. Zatem z kryterium Weierstrassa uzyskujemy jednostajną i bez-

względną zbieżność w przedziale [−r, r].

Uwaga. Z dowodu wynika, że

R = sup
{
|x| :

∞∑
n=0

anx
n jest zbieżny

}
= sup{|x| : anxn jest ograniczony} (4.1)
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Twierdzenie 4.15. (i) R =
1

limn
n

√
|an|

, o ile granica wyrażenia w mia-

nowniku istnieje.

(ii) R =
1

lim
n

|an+1|
|an|

, o ile granica wyrażenia w mianowniku istnieje.

W obu przypadkach dopuszczamy granicę równą 0 lub ∞. Wtedy R = ∞
lub R = 0, odpowiednio.

Przykłady.

(a)
∞∑
n=1

xn

n10
. Mamy lim

n

n

√
1
n10

= 1.

(b)
∞∑
n=0

1
2n
xn
2
. Wtedy a2014 = 0. Nie możemy zastosować poprzedniego

twierdzenia. Stosujemy kryterium Cauchy’ego

n

√
1
2n
|x|n2 =

1
2
|x|n −→

n


0 |x| < 1,
1
2 |x| = 1,
∞ |x| > 1.

Zatem R = 1.

(c)
∞∑
n=0

xn!

n!
. Z kryterium d’Alemberta

∣∣∣∣∣ x(n+1)!
(n+ 1)!

∣∣∣∣∣
∣∣∣∣∣ n!
xn!

∣∣∣∣∣ =
1

n+ 1
|x|n·n! −→

n

0 |x| ¬ 1,
∞ |x| > 1.

Uwaga. Można udowodnić, że R =
1

lim sup n

√
|an|

. Rzeczywiście, niech A =

{|x| : anxn jest ograniczony}. Dla x ∈ A mamy |anxn| ¬M dla pewnej liczby
M > 0. Zatem

|x| ¬ M1/n

|an|1/n
.
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Niech α oznacza największy punkt skupienia ciągu |an|1/n.Wtedy |ank |1/nk −→
k

α dla pewnego podciągu liczba naturalnych nk. Zatem

|x| ¬ M1/nk

|ank |1/nk
−→
k

1
α
.

Na podstawie (4.1) otrzymujemy

R ¬ 1
α

=
1

lim sup |an|1/n
.

Z kolei jeśli

|x| > 1
lim sup |an|1/n

,

to lim sup |anxn|1/n > 1. To oznacza, że ciąg anxn nie jest ograniczony.

Twierdzenie 4.16. Suma szeregu s(x) =
∞∑
n=0

anx
n jest funkcją ciągłą w

przedziale (−R,R).

Dowód. sn(x) =
n∑
k=0

akx
k jest funkcją ciągłą. Wiemy, że sn(x) ⇒

n
s(x) dla

−r ¬ x ¬ r dla dowolnej liczby 0 < r < R. Stąd otrzymujemy tezę.

Twierdzenie 4.17 (Abel). Jeśli szereg f(x) =
∞∑
n=0

anx
n jest zbieżny dla

x = a, to funkcja f(x) jest lewostronnie ciągła w punkcie x = a jeśli a > 0 i
prawostronnie ciągła, jeśli a < 0.

Dowód. Wystarczy rozważyć przypadek a = 1. Chcemy udowodnić, że

lim
x→1−

f(x) = f(1) =
∞∑
n=0

an.

Oznaczmy sn =
n∑
k=0

ak i s =
∞∑
n=0

an. Wtedy (przyjmując s−1 = 0 otrzymujemy

n∑
k=0

akx
k =

n∑
k=0

(sk − sk−1)xk

=
n∑
k=0

skx
k −

n−1∑
k=0

skx
k+1 = (1− x)

n∑
k=0

skx
k + snx

n+1.
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Dla 0 < x < 1 przechodzimy do granicy w podkreślonych wyrażeniach.
Ponieważ ciąg sn jest ograniczony, to snxn+1 −→

n
0. Zatem

f(x) =
∞∑
n=0

anx
n = (1− x)

∞∑
n=0

snx
n.

Dalej

f(x)− f(1) = (1− x)
∞∑
n=0

snx
n − s

= (1− x)
∞∑
n=0

snx
n − (1− x)

∞∑
n=0

sxn = (1− x)
∞∑
n=0

(sn − s)xn.

Otrzymujemy więc

|f(x)− f(1)| ¬ (1− x)
N∑
n=0

|sn − s|xn + (1− x)
∞∑

n=N+1

|sn − s|xn.

Dla ε > 0 istnieje liczba naturalna N taka, że |sn − s| < ε/2. Ciąg sn jest
ograniczony więc |sn| ¬M dla pewnej liczby M > 0. Wtedy

|f(x)− f(1)| ¬ 2M(1− x)
N∑
n=0

xn + ε
2(1− x)

∞∑
n=0

xn

¬ 2M(N + 1)(1− x) + ε
2 .

Jeśli |x− 1| < ε
4M(N+1) , to |f(x)− f(1)| < ε.

5 Pochodne

Przez punkt P i Q 6= P okręgu przeprowadzamy sieczną. Gdy punkt Q
zbliża się do punktu P, to przyjmujemy, że graniczne położenie siecznych
określa położenie stycznej do okręgu w punkcie P. Będziemy zajmować się
stycznymi do wykresów funkcji y = f(x). Chcemy znaleźć styczną do wykresu
w punkcie (a, f(a)). Wybierzmy inny punkt wykresu (x, f(x)). Nachylenie
(współczynnik kierunkowy) siecznej przechodzącej przez punkty (a, f(a)) i
(x, f(x)) wynosi

f(x)− f(a)
x− a

.
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Zatem nachylenie stycznej wyraża się wzorem

lim
x→a

f(x)− f(a)
x− a

.

Wyrażenie pod granicą nazywamy ilorazem różnicowym.
——————————————————————————————–
Obiekt porusza się po linii pionowej i jego wysokość w chwili t wynosi

h(t). Chcemy obliczyć prędkość w chwili t = a. Wybieramy moment czasu t
blisko a, ale t 6= a (np. t > a). Średnia prędkość w przedziale czasu od a do
t wynosi

h(t)− h(a)
t− a

.

Prędkość chwilowa określona jest wzorem

lim
t→a

h(t)− h(a)
t− a

.

Definicja 5.1. Mówimy, że funkcja f(x) określona w pewnym przedziale wo-
kół punktu a ma pochodną w tym punkcie, jeśli istnieje granica

f ′(a) = lim
x→a

f(x)− f(a)
x− a

.

Uwaga. Liczba f ′(a) określa chwilowe tempo zmiany wartości funkcji w
punkcie a.

Jeśli f ′(a) istnieje, to równanie stycznej do wykresu funkcji y = f(x) w
punkcie (a, f(a)) ma postać

y − f(a) = f ′(a)(x− a).

Przykład. Chcemy znaleźć równanie stycznej do wykresu y =
√
x w punkcie

(2,
√

2). Mamy

√
x−
√

2
x− 2

=
√
x−
√

2
(
√
x−
√

2)(
√
x+
√

2)
=

1
√
x+
√

2
−→
x→2

1
2
√

2
.

Równanie stycznej to

y −
√

2 =
1

2
√

2
(x− 2).
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Definicja 5.2. Jeżeli funkcja f(x) jest określona w przedziale [a, a+ δ) (lub
(a− δ, a]) oraz istnieje granica

f ′+(a) = lim
x→a+

f(x)− f(a)
x− a

(
lub f ′−(a) = lim

x→a−
f(x)− f(a)

x− a

)
,

to mówimy, że istnieje pochodna prawostronna (lub lewostronna) w punkcie
a.

Przykład. Zrzucamy kamień z wysokości 20m. Jaka jest prędkość kamienia
w chwili uderzenia w ziemię ? Mamy

h(t) =

20− 5t2 0 ¬ t ¬ 2,
0 t > 2.

Trzeba obliczyć h′−(2).

h′−(2) = lim
t→2−

h(t)− h(2)
t− 2

= lim
t→2−

20− 5t2

t− 2
= lim

t→2−

−5(���t− 2)(t+ 2)
���t− 2

− 20.

Oczywiście h′+(2) = 0.

Twierdzenie 5.3. Jeśli funkcja f(x) ma pochodną w punkcie a, to jest w
tym punkcie ciągła.

Dowód.

f(x)− f(a) =
f(x)− f(a)

x− a︸ ︷︷ ︸
↘
f ′(a)

(x− a)︸ ︷︷ ︸
↘ 0

−→
x→a

0.

Twierdzenie 5.4. Załóżmy, że f ′(a) i g′(a) istnieją. Wtedy

(i) (f ± g)′(a) = f ′(a)± g′(a).

(ii) (fg)′(a) = f ′(a)g(a) + f(a)g′(a).

(iii)
(
f

g

)′
(a) =

f ′(a)g(a)− f(a)g′(a)
g(a)2

, o ile g(a) 6= 0.
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Dowód. (iii)

f(x)
g(x)

− f(a)
g(a)

x− a
=
f(x)g(a)− f(a)g(x)
g(x)g(a)(x− a)

=
1

g(x)g(a)
[f(x)− f(a)]g(a)− f(a)[g(x)− g(a)]

x− a
−→
x→a

f ′(a)g(a)− f(a)g′(a)
g(a)2

.

Przykłady.

(a) f(x) ≡ c. f ′(a) = 0.

(b) fn(x) = xn, n ­ 1.

f ′n(a) = lim
x→a

xn − an

x− a
= lim

x→a
(xn−1+axn−2++a2xn−3+. . .+an−2x+an−1)

= an−1 + an−1 + . . .+ an−1︸ ︷︷ ︸
n składników

= nan−1.

(c) gn(x) = x−n =
1

fn(x)
, x 6= 0.

g′n(x) =
(

1
fn(x)

)′
=
−f ′n(x)
fn(x)2

=
−nxn−1

x2n
= −nx−n−1.

Uwaga. Przykłady (b) i (c) dają (xn)′ = nxn−1 dla n ∈ Z.
Czasami stosuje się inny zapis dla pochodnej. Przyjmując h = x−a mamy

f ′(a) = lim
h→0

f(a+ h)− f(a)
h

.

Ile wynosi lim
n
n2
[
f(2 + 1

n2
)− f(2)

]
? To wyrażenie jest równe

lim
n

f(2 + 1
n2

)− f(2)
1
n2

= f ′(2).
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(d)

(ex)′ = lim
h→0

ex+h − ex

h
= ex lim

h→0

eh − 1
h︸ ︷︷ ︸

=1

= ex

(e) (sinx)′ = cosx. Rzeczywiście

sin(x+ h)− sinx
h

=
sinx(cosh−1) + cos x sinh

h

= sinx
cosh− 1

h︸ ︷︷ ︸
→0 ?

+ cosx
sinh
h
−→
h→0

cosx.

cosh− 1
h

=
cos2 h− 1
h(cosh +1)

= −sin2 h

h2

h

cosh+ 1
−→
h→0

0.

Uwaga. Niech f(x) = g(x+ b). Wtedy f ′(x) = g′(x+ b). Istotnie

f ′(x) = lim
h→0

g((x+ b) + h)− g(x+ b)
h

= g′(x+ b).

(f) (cosx)′ = − sinx, bo cos x = sin(x+ π
2 ) zatem

(cosx)′ = sin′(x+
π

2
) = cos(x+

π

2
) = − sinx.

(g) (tg x)′ =
( sinx

cosx

)′
=

cos2 x+ sin2 x

cos2 x
=


1

cos2 x
1 + tg2 x

x 6= π

2
+ kπ.

(h) x > 0, (log x)′ =
1
x
. Uzasadnienie:

lim
h→0

log(x+ h)− log x
h

=
1
x

lim
h→0

log(1 + h
x
)

h
x

=
1
x

lim
t→0

log(1 + t)
t

Niech u = log(1 + t). Wtedy u→ 0, gdy t→ 0. Zatem

lim
t→0

log(1 + t)
t

= lim
u→0

u

eu − 1
= 1.
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Twierdzenie 5.5 (Reguła łańcucha). Jeśli funkcja f(x) jest różniczkowalna
w punkcie x = a, natomiast funkcja g(y) jest różniczkowalna w punkcie b =
f(a), to funkcja złożona (g ◦ f)(x) = g(f(x)) jest różniczkowalna w punkcie
x = a oraz

(g ◦ f)′(a) = g′(b)f ′(a) = g′(f(a))f ′(a). (5.1)

Dowód. Nieścisłe, ale obrazowe uzasadnienie jest następujące.

g(f(x))− g(f(a))
x− a

=
g(f(x))− g(f(a))
f(x)− f(a)

f(x)− f(a)
x− a

,

przy założeniu f(x) 6= f(a). Dla x→ a mamy f(x)→ f(a). Zatem pierwszy
ułamek dąży do g′(f(a)) a drugi do f ′(a).

Przejdziemy do ścisłego dowodu. Z założenia mamy

f(x)− f(a)
x− a

= f ′(a) + u(x), u(x) −→
x→a

0.

Podobnie
g(y)− g(b)
y − b

= g′(b) + v(y), v(y) −→
y→b

0.

Mamy zatem

f(x)− f(a) = (x− a) [f ′(a) + u(x)],
g(y)− g(b) = (y − b) [g′(b) + v(y)].

Podstawmy y = f(x) i b = f(a). Otrzymamy

g(f(x))− g(f(a)) = [f(x)− f(a)][g′(f(a)) + v(f(x))]
= (x− a) [f ′(a) + u(x)][g′(f(a)) + v(f(x))].

Czyli
g(f(x))− g(f(a))

x− a
= [f ′(a) + u(x)][g′(f(a)) + v(f(x))].

Gdy x→ a, to u(x)→ 0. Ponadto y = f(x) −→
x→a

f(a) = b. Zatem v(f(x))→
0. Ostatecznie w granicy otrzymujemy f ′(a)g′(f(a)).

Uwaga. Wzór (5.1) można też zapisać w postaci

(g ◦ f)′(x) = g′(y)f ′(x), gdzie y = f(x).

——————————————————————————————–

Przykłady.
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(a) Obliczyć (log sinx)′.

y = f(x) = sin x f ′(x) = cos x

g(y) = log y g′(y) =
1
y

Zatem
(log sinx)′ =

1
sinx

cosx = ctg x.

(b) h(x) = cos(x5). h′(x) = − sin(x5) 5x4.

5.1 Zapis Leibniza

∆y = f(x+ ∆x)− f(x).

Iloraz
∆y
∆x

reprezentuje stosunek zmiany wartości y do zmiany wartości x.

f ′(x) = lim
∆x→0

∆y
∆x

=
dy

dy
.

Prawa strona jest oznaczeniem pochodnej w zapisie Leibniza.
Zobaczmy jak wygląda reguła łańcucha w tym zapisie. Wprowadzamy

oznaczenia u = f(x), y = g(u). Wtedy

du

dx
= f ′(x),

dy

du
= g′(u) =

y=f(x)
g′(f(x)).

Dalej

y = g(f(x)),
dy

dx
= (g ◦ f)′(x).

Wzór (5.1) przyjmuje postać

dy

dx
=
dy

du

du

dx
, u = f(x).

Przykłady.

(a) y = sin8 x. Niech u = sinx, y = u8. Wtedy

dy

dx
=
dy

du

du

dx
= 8u7 cosx = 8 sin7 x cosx.
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(b) y = log(cos(x2 + 1)). Niech u = x2 + 1, v = cosu, y = log v.

dy

dx
=
dy

dv

dv

du

du

dx
=

1
v

(− sinu) 2x = −2x sin(x2 + 1)
cos(x2 + 1)

.

Definicja 5.6. Mówimy, że funkcja f(x) jest różniczkowalna w przedziale
(a, b) jeśli f ′(x) istnieje w każdym punkcie x z (a, b). Mówimy, że funkcja
f(x) jest różniczkowalna w przedziale [a, b] jeśli dodatkowo istnieją f ′+(a) oraz
f ′−(b).

Przykłady.

(a) f(x) =

x sin 1
x

x 6= 0,
0 x = 0.

Dla x 6= 0 pochodna istnieje i wynosi

f ′(x) = sin
1
x

+ x
−1
x2

cos
1
x

= sin
1
x
− 1
x

cos
1
x
.

Sprawdzimy istnienie pochodnej w 0.

f(x)− f(0)
x

= sin
1
x
.

Otrzymane wyrażenie nie ma granicy, gdy x→ 0.

(b) f(x) =

x2 sin 1
x

x 6= 0,
0 x = 0.

Dla x 6= 0 mamy

f ′(x) = 2x sin
1
x

cos
1
x
.

Dalej
f(x)− f(0)

x
= x sin

1
x
−→
x→0

0.

Zatem

f ′(x) =

2x sin 1
x

cos 1
x

x 6= 0,
0 x = 0.

Zauważmy, że funkcja f ′(x) nie ma granicy w punkcie 0.
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Twierdzenie 5.7. Niech g oznacza funkcję odwrotną do funkcji f. Załóż-
my, że f ′(a) istnieje oraz f ′(a) 6= 0. Wtedy funkcja g jest różniczkowalna w
punkcie b = f(a) oraz

g′(b) =
1

f ′(a)
.

Uwaga. Przy oznaczeniach g = f−1, a = f−1(b) mamy

(f−1)′(b) =
1

f ′(f−1(b))
.

Dowód. Dla y = f(x) mamy

g(y)− g(b)
y − b

=
x− a

f(x)− f(a)
.

Gdy y → b, to z ciągłości funkcji g w punkcie b otrzymujemy g(y) → g(b),
czyli x→ a. Zatem

lim
y→b

g(y)− g(b)
y − b

= lim
x→a

1
f(x)− f(a)

x− a

=
1

f ′(a)
.

Przykład. y = f(x) = xn, x > 0. Wtedy x = g(y) = y1/n. Zatem

g′(y) =
1

f ′(x)
=

1
xn−1

=
1
n
y
1
n
−1.

Znajdziemy postać wzoru na pochodną funkcji odwrotnej w zapisie Leib-
niza. Dla y = f(x) i x = g(y) mamy

dy

dx
= f ′(x),

dx

dy
= g′(y).

Zatem
dx

dy
=

1
dy

dx

.

Przykłady.
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(a) y = tg x, x = arctg y. Wtedy

dx

dy
=

1
dy

dx

=
1

1 + tg2x
=

1
1 + y2

.

W szczególności

(arctg t)
∣∣∣∣
t=1

=
1
2
.

(b) (arcsin x)′ =
1√

1− x2
. Rzeczywiście, niech y = sinx, −π

2 < x < π
2 .

Wtedy x = arcsin y, −1 < y < 1. Zatem

(arcsin y)′ =
1

sin′ x
=

1
cosx

=
1√

1− sin2 x
=

1√
1− y2

.

W szczególności (arcsinx)′
∣∣∣∣
x=0

= 1.

Jeśli α jest kątem nachylenia stycznej do wykresu funkcji y = f(x) w
punkcie (a, f(a)), to f ′(a) = tgα. Przy zamianie x i y rolami kąt β = π

2 − α
określa nachylenie wykresu x = g(y) (czyli tego samego wykresu) w punkcie
(g(b), b) = (a, f(a)). Zatem

g′(b) = tg β = tg (π2 − α) = ctgα =
1

tgα
=

1
f ′(a)

.

5.2 Maxima i minima

Definicja 5.8. Załóżmy, że funkcja f(x) jest określona w otoczeniu punktu
a i w pewnym przedziale (a − δ, a + δ) mamy f(x) ¬ f(a). Mówimy wtedy,
że f posiada lokalne maksimum w punkcie a. Jeśli nierówność jest ostra dla
x 6= a z przedziału (a− δ, a+ δ), to mamy do czynienia ze ścisłym lokalnym
maksimum. Podobnie określa się lokalne minimum i ścisłe lokalne minimum.

Twierdzenie 5.9. Załóżmy, że funkcja f(x) jest różniczkowalna i posiada
lokalne ekstremum w punkcie a. Wtedy f ′(a) = 0.

Dowód. Załóżmy, że w a występuje lokalne minimum. Wtedy dla a < x <
a+ δ mamy

f(x)− f(a)
x− a

­ 0.
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Zatem

f ′(a) = lim
x→a+

f(x)− f(a)
x− a

­ 0.

Dla a− δ < x < a mamy

f(x)− f(a)
x− a

¬ 0,

czyli

f ′(a) = lim
x→a+

f(x)− f(a)
x− a

¬ 0.

Stąd f ′(a) = 0.

Definicja 5.10. Punktami krytycznym funkcji nazywamy punkty, w których
pochodna nie istnieje lub istnieje i wtedy jest równa 0 (punkty stacjonarne).

5.3 Metoda znajdowania wartości największej i naj-
mniejszej funkcji ciągłej na przedziale [a, b]

Z twierdzenia Weierstrassa wiemy, że istnieją punkty c i d w przedziale [a, b]
takie, że

f(c) = min
a¬x¬b

f(x), f(d) = max
a¬x¬b

f(x).

Zajmiemy się położeniem punktu c. Mamy następujące możliwości.

1. c = a lub c = b, tzn. c jest jednym z końców przedziału.

2. a < c < b.

2(a) Pochodna w c nie istnieje.

2(b) Pochodna w c istnieje i f ′(c) = 0, bo c jest w szczególności mini-
mum lokalnym.

Reasumując, wartości m i M są przyjęte na końcach przedziału lub w jakichś
punktach krytycznych. Aby wyznaczyć m i M wykonujemy następujące czyn-
ności.

(a) Znajdujemy wszystkie punkty krytyczne funkcji.

(b) Obliczamy wartości funkcji w punktach krytycznych i na końcach prze-
działu.
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(c) Największa z otrzymanych wartości jest równa M, a najmniejsza to m.

Przykład. f(x) = x2/3 − x = (x2)1/3 − x, [−1, 1]. Obliczamy

f ′(x) = 1
3(x2)−2/3 2x− 1, x 6= 0.

Sprawdzamy istnienie pochodnej w 0.

f(x)− f(0)
x

=
x2/3 − x

x
= x−1/3 − 1

−→
x→0−

−∞
−→
x→0+

∞

Zatem 0 jest punktem krytycznym. Rozwiązujemy równanie f ′(x) = 0. Czyli

2
3

(x2)−2/3 x− 1 = 0.

Stąd x = 8
27 . Mamy

f(−1) = 2, f(1) = 0, f(0) = 0, f( 8
27) = 4

27 .

Zatem m = 0 i M = 2.
——————————————————————————————–

Twierdzenie 5.11 (Rolle). Niech f(x) będzie funkcją ciągłą na [a, b] i róż-
niczkowalną w (a, b). Jeśli f(a) = f(b), to f ′(c) = 0, w pewnym punkcie
a < c < b.

Dowód. Jeśli f jest stała, tzn. f(x) ≡ f(a), to f ′(x) ≡ 0. Jeśli f nie jest stała,
to m < M. Zatem wartość m lub M jest przyjęta w punkcie wewnętrznym
c. Ale wtedy f ′(c) = 0.

Twierdzenie 5.12 (Cauchy). Funkcje f(x) i g(x) są ciągłe w [a, b] i róż-
niczkowalne w (a, b), przy czym g′(x) 6= 0, dla a < x < b. Wtedy

f(b)− f(a)
g(b)− g(a)

=
f ′(c)
g′(c)

dla pewnego punktu c, a < c < b.
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Dowód. Mamy g(a) 6= g(b), bo gdyby g(a) = g(b), to z twierdzenia Rolle’a
mielibyśmy g′(c) = 0 dla pewnego punktu a < c < b. Określmy funkcję

h(x) = f(a)− f(x) +
f(b)− f(a)
g(b)− g(a)

[g(x)− g(a)].

Wtedy h(a) = h(b). Z twierdzenia Rolle’a otrzymujemy h′(c) = 0 dla pewngo
a < c < b. Tzn.

0 = −f ′(c) +
f(b)− f(a)
g(b)− g(a)

g′(c).

Po przekształeceniu otrzymujemy tezę.

Twierdzenie 5.13 (Lagrange, o wartości średniej). Jeśli f(x) jest funkcją
ciągłą na [a, b] i różniczkowalną w (a, b), to dla pewnego punktu a < c < b
mamy

f(b)− f(a)
b− a

= f ′(c).

Dowód. Stosujemy twierdzenie Cauchy’ego dla g(x) = x.

Uwaga. Wyrażenie f(b)−f(a)
b−a jest współczynnikiem nachylenia siecznej prze-

chodzącej przez punkty (a, f(a)) i (b, f(b). Z kolei f ′(c) jest współczynnikiem
nachylenia stycznej do wykresu w punkcie (c, f(c)). Twierdzenie Lagrange’a
mówi zatem, że w pewnym punkcie styczna do wykresu jest równoległa do
siecznej.

Wniosek 5.14. Jeśli f ′(x) = 0 dla wszystkich a < x < b, to funkcja f(x)
jest stała.

Dowód. Niech a < x, y < b. Możemy przyjąć x < y. Wtedy

f(y)− f(x)
y − x

= f ′(z) = 0,

dla pewnego punktu x < z < y. Zatem f(x) = f(y).

Wniosek 5.15. Jeśli f ′(x) = g′(x) dla a < x < b, to f(x) = g(x) + c dla
pewnej stałej c.

Dowód. Dla h(x) = f(x)− g(x) mamy h′(x) = 0, zatem h(x) ≡ c.
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Twierdzenie 5.16. Jeśli f ′(x) ­ 0 dla a < x < b, to f(x) jest funkcją
rosnącą. Jeśli f ′(x) > 0 dla a < x < b, to f(x) jest ściśle rosnąca.

Uwaga. Podobne twierdzenie jest prawdziwe dla przeciwnej nierówności.

Dowód. Niech a < x < y < b. Wtedy z twierdzenia Lagrange’a mamy

f(y)− f(x)
y − x

= f ′(z) ­ 0

dla pewnego punktu x < z < y. Zatem f(y) ­ f(x). W przypadku f ′(z) > 0
otrzymujemy f(y) > f(x).

Uwaga. Jeśli f(x) jest ściśle rosnąca, to nie znaczy, że f ′(x) > 0 dla każdego
punktu x. Np. f(x) = x3.

Przykład. Udowodnić, że

(1 + x)α > 1 + αx, dla x > −1, x 6= 0, α > 1. (5.2)

Określamy
f(x) = (1 + x)α − αx− 1.

Pomocniczo obliczamy

(xα)′ = (eα log x)′ = eα log xα

x
= αxα−1, x > 0.

Zatem
f ′(x) = α(1 + x)α−1 − α = α[(1 + x)α−1 − 1].

Stąd f ′(x) > 0 dla x > 0 oraz f ′(x) < 0 dla −1 < x < 0. To oznacza,
że funkcja f(x) ściśle rośnie na półprostej [0,∞) i ściśle maleje na (−1, 0].
Wnioskujemy, że f(x) > f(0) dla x > −1, x 6= 0. Czyli (1 +x)α−αx− 1 > 0
dla x > −1, x 6= 0.

5.4 Wyższe pochodne

Definicja 5.17. Jeśli f ′(x) jest różniczkowalna w punkcie a, to jej pochodną
oznaczamy symbolem

f ′′(a) = lim
x→a

f ′(x)− f ′(a)
x− a

i nazywamy drugą pochodną w punkcie a.
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Przykłady

(a) f(x) = sinx, f ′(x) = cos x, f ′′(x) = − sinx.

(b) f(x) = x1/2, f ′(x) = 1
2 x
−1/2, f ′′(x) = −1

4 x
−3/2.

Podobnie określamy następne pochodne. Czyli n-ta pochodna funkcji jest
pochodną (n− 1)-tej pochodnej. Używamy symbolu f (n).

Przykład

f(x) = sinx f ′(x) = cos x f ′′(x) = − sinx
f ′′′(x) = − cosx f (4)(x) = sin x f (2014) = sinx.

Przyśpieszenie

Drugą pochodną położenia obiektu (poruszającego się po linii prostej) wzglę-
dem czasu nazywamy przyśpieszeniem, czyli chwilowym tempem zmiany pręd-
kości. Średnie przyśpieszenie od chwili t0 do chwili t wynosi

v(t)− v(t0)
t− t0

.

Wtedy

a(t0) = lim
t→t0

v(t)− v(t0)
t− t0

= lim
t→t0

f ′(t)− f ′(t0)
t− t0

= f ′′(t0),

gdzie f(t) oznacza położenie obiektu na prostej.

5.5 Różniczkowanie niejawne

Funkcje w dotychczasowych przykładach były podane jawnym wzorem y =

f(x), np. y =
x2

1 + x
, y = tg x. Załóżmy, że y jest związane z x poprzez

równanie, np.
x3 + y3 = 2xy, (5.3)

przy czym y jest funkcją zmiennej x. Załóżmy, że y jest różniczkowalna.
Chcemy obliczyć y′. Różniczkujemy tożsamość (5.3), czyli nakładamy d/dx
pamiętając, że y = y(x). Otrzymamy

3x2 + 3y2 dy

dx
= 2y + 2x

dy

dx
,
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czyli
dy

dx
=

2y − 3x2

3y2 − 2x
, 3y2 6= 2x.

Przykład. Załóżmy, że y jest różniczkowalną funkcją zmiennej x spełniającą

równanie
x3 = y4 + x2 sin y + 1,

oraz y = 0 dla x = 1. Chcemy obliczyć
dy

dx

∣∣∣∣
x=1

. Nakładamy pochodną d/dx

na tożsamość.
3x2 = 4y3 dy

dx
+ 2x sin y + x2 cos y

dy

dx
. (5.4)

Dalej
dy

dx
=

3x2 − 2x sin y
4y3 + x2 cos y

.

Zatem
dy

dx

∣∣∣∣
x=1

= 3. Różniczkując tożsamość (5.4) można obliczyć
d2y

dx2

∣∣∣∣x=1
y=0

.

Uwaga. Oznaczenie Leibniza na wyższe pochodne funkcji y = f(x)

f (n)(x) =
dny

dxn
.

Przykład. Znaleźć styczną do wykresu funkcji y zadanej równaniem

x2 + y2 = 1

w punkcie (−1
2 ,
√

3
2 ). Obliczamy

2x+ 2y
dy

dx
= 0.

Zatem
dy

dx
= −x

y
.

Stąd
dy

dx

∣∣∣∣x=−1/2
y=
√
3/2

=
1√
3
. Styczna ma zatem równanie

y −
√

3
2

=
1√
3

(
x+

1
2

)
.
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5.6 Related rates

Pompujemy balon w kształcie sfery. Wtedy objętość V i promień r są funk-
cjami czasu t związanymi ze sobą równaniem

V =
4
3
πr3.

Różniczkując równanie względem t otrzymamy

dV

dt
= 4πr2 dr

dt
. (5.5)

Balon jest pompowany w tempie 10 cm3/s. Jakie jest tempo zmiany pro-
mienia w momencie, gdy r = 10 cm ? Niech t0 oznacza moment czasu, gdy
r = 10. Do wzoru (5.5) podstawiamy t = t0. Wtedy

10 =
dV

dt

∣∣∣∣
t=t0

= 4π102 dr

dt

∣∣∣∣
t=t0

.

Zatem
dr

dt

∣∣∣∣
t=t0

=
1

40π
(cm/s).

——————————————————————————————–
Na odcinku drogi z ograniczeniem 60 km/h policja ustawiła radar 5 m od

drogi (za krzaczkami). Samochód jedzie z prędkością 90 km/h. Jaki będzie
odczyt na radarze, gdy samochód znajdzie się 20 m od miejsca na drodze,
w pobliżu którego ustawiono radar ? Niech y oznacza odległość pojazdu od
radaru a x odległość pojazdu od odpowiadającego miejsca na drodze. Wtedy

y2 = x2 +52. Chcemy znaleźć
dy

dt
w momencie, gdy x = 20 m. Różniczkujemy

równanie względem t. Otrzymamy

2y
dy

dt
= 2x

dx

dt
.

Zatem
dy

dt
=
x

y

dx

dt
=

x√
x2 + 5

dx

dt
.

Wiemy, że dx
dt

= −90. Niech t0 oznacza moment czasu, gdy x = 20. Wtedy

dy

dt

∣∣∣∣
t=t0

= −90
20√

400 + 25
≈ −87, 3.
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Jaki jest pomiar na radarze, gdy x = 4 ? Oznaczmy przez t1 ten moment
czasu.

dy

dt

∣∣∣∣
t=t1

= −90
4√
41
≈ −56, 22.

5.7 Aproksymacja za pomocą stycznej

Rozważamy funkcję f(x) = x1/3. Chcemy obliczyć 3
√

1, 1. Ogólnie załóżmy,
że f(x) jest różniczkowalna w punkcie a, czyli

f(x)− f(a)
x− a

−→
x→a

f ′(a).

To oznacza, że
f(x)− f(a)

x− a
≈ f ′(a),

gdy x leży blisko a. Otrzymujemy

f(x) ≈ f(a) + f ′(a)(x− a).

Prawa strona reprezentuje równanie stycznej do wykresu w punkcie a.Oznacz-
my h = x− a. Wtedy

f(a+ h) ≈ f(a) + h f ′(a). (5.6)

Aby obliczyć przybliżoną wartość 3
√

1, 1 przyjmujemy a = 1 i h = 0, 1. Mamy
f ′(x) = 1

3x
−2/3, zatem f ′(1) = 1

3 . Z (5.6) otrzymujemy

3
√

1, 1 ≈ 1 + 0, 1 · 1
3

= 1, 033 . . . .

Dla porównania dokładna wartość wynosi

3
√

1, 1 = 1, 0322 . . . .

5.8 Reguła de l’Hospitala

Twierdzenie 5.18 (Reguła de l’Hospitala). Załóżmy, że funkcje f(x) i g(x)
są ciągłe w [a, b) oraz różniczkowalne w (a, b). Ponadto f(a) = g(a) = 0 oraz
g′(x) 6= 0 dla a < x < b. Wtedy

lim
x→a+

f(x)
g(x)

= lim
x→a+

f ′(x)
g′(x)

,

o ile granica po prawej stronie istnieje.
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Uwaga. Analogiczne twierdzenie jest prawdziwe dla granicy lewostronnej i
dwustronnej.

Dowód. Niech x > a. Wtedy

f(x)
g(x)

=
f(x)− f(a)
g(x)− g(a)

=
f ′(ξ)
g′(ξ)

dla pewnego ξ, a < ξ < x. Gdy x→ a+, to ξ → a+. Zatem

lim
x→a

f(x)
g(x)

= lim
ξ→a

f ′(ξ)
g′(ξ)

.

Uwaga. Teza jest prawdziwa również dla granicy niewłaściwej.

Przykłady.

(a)

lim
x→0

1− cosx
sin2 x

(H)
= lim

x→0

sinx
2 sinx cosx

= lim
x→0

1
2 cosx

=
1
2
.

Lepszym wyjściem jest użycie wzorów trygonometrycznych

1− cosx
sin2 x

=
1− cosx
1− cos2 x

=
1

1 + cos x
−→
x→0

1
2
.

(b)

lim
x→1−

sin πx√
1− x2

= lim
x→1−

π cosπx
−x√
1−x2

= − lim
x→1−

π
√

1− x2 cosπx
x

= 0.

(c)

lim
x→π−

√
sinx

log x
π

= lim
x→π−

cosx
2
√

sinx 1
x

= lim
x→π−

x cosx
2
√

sinx
= −∞.

Wniosek 5.19. Załóżmy, że funkcje f(x) i g(x) są różniczkowalne w prze-
dziale (a,∞), g′(x) 6= 0 dla x > a, oraz lim

x→∞
f(x) = lim

x→∞
g(x) = 0. Wtedy

lim
x→∞

f(x)
g(x)

= lim
x→∞

f ′(x)
g′(x)

,

o ile druga granica istnieje.
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Dowód. Możemy przyjąć, że a ­ 1. Określmy funkcje

F (y) =


f

(
1
y

)
0 < y <

1
a
,

0 y = 0,
G(y) =


g

(
1
y

)
0 < y <

1
a
,

0 y = 0.

Wtedy F i G są różniczkowalne w przedziale (0, 1
a
) i ciągłe w punkcie 0.

Rzeczywiście
lim
y→0+

F (y) = lim
y→0+

f( 1
y
) = lim

x→∞
f(x) = 0.

Dalej

lim
x→∞

f(x)
g(x)

= lim
y→0+

f( 1
y
)

g( 1
y
)

(H)
= lim

y→0+

− 1
y2
f ′( 1

y
)

− 1
y2
g′( 1

y
)

= lim
y→0+

f ′( 1
y
)

g′( 1
y
)

= lim
x→∞

f ′(x)
g′(x)

.

Twierdzenie 5.20 (Reguła de l’Hospitala dla ∞
∞). Funkcje f(x) i g(x) są

różniczkowalne w (a, b) oraz g′(x) 6= 0 dla a < x < b. Załóżmy, że

lim
x→a+

f(x) = lim
x→a+

g(x) =∞.

Wtedy

lim
x→a+

f(x)
g(x)

= lim
x→a+

f ′(x)
g′(x)

,

o ile granica po prawej stronie istnieje.

Uwaga. Analogiczne twierdzenie jest prawdziwe dla granice lewostronnych,
obustronnych i granic w ±∞.
Uwaga. Przekształcenie

f(x)
g(x)

=
g(x)−1

f(x)−1

i użycie Twierdzenia 5.18 nie będzie skuteczne, bo

(g(x)−1)′

(f(x)−1)′
=
g′(x)
f ′(x)

(f(x))2

(g(x))2
.
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Dowód. Idea dowodu polega na tym, że dla x blisko a wyrażenia
f(x)
g(x)

oraz

f(x)− f(x0)
g(x)− g(x0)

zachowują się podobnie. Niech a < x < x0. Wtedy

f(x)
g(x)

=
f(x)− f(x0) + f(x0)
g(x)− g(x0) + g(x0)

=

f(x)− f(x0)
g(x)− g(x0)

+
f(x0)

g(x)− g(x0)

1 +
g(x0)

g(x)− g(x0)

=

f ′(ξ)
g′(ξ)

+
f(x0)

g(x)− g(x0)

1 +
g(x0)

g(x)− g(x0)

dla pewnego punktu ξ położonego pomiędzy x i x0. Oznaczmy L = lim
x→a+

f ′(x)
g′(x) .

Wtedy

f(x)
g(x)

− L =

f ′(ξ)
g′(ξ)

− L+
f(x0)− Lg(x0)
g(x)− g(x0)

1 +
g(x0)

g(x)− g(x0)

.

Ustalmy liczbę 0 < η < 1/2. Wybierzmy x0 tak, aby∣∣∣∣∣f ′(t)g′(t)
− L

∣∣∣∣∣ < η, dla a < t < x0.

Wtedy ∣∣∣∣∣f ′(ξ)g′(ξ)
− L

∣∣∣∣∣ < η.

Ponieważ g(x)→∞ dla x→ a+, to możemy teraz znaleźć a < x1 ¬ x0 tak,
aby

|f(x0)− Lg(x0)|+ |g(x0)|
|g(x)− g(x0)|

< η, dla a < x < x1.

Niech a < x < x1. Otrzymamy

∣∣∣∣∣f(x)
g(x)

− L
∣∣∣∣∣ ¬

∣∣∣∣∣f ′(ξ)g′(ξ)
− L

∣∣∣∣∣+
∣∣∣∣∣f(x0)− Lg(x0)
g(x)− g(x0)

∣∣∣∣∣
1−

∣∣∣∣∣ g(x0)
g(x)− g(x0)

∣∣∣∣∣
<

2η
1− η

< 4η.
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Przykłady.

(a) lim
x→∞

x

ex
= lim

x→∞

1
ex

= 0.

(b) lim
x→0+

x log x = lim
x→0+

log x
1
x

= lim
x→0+

1
x

− 1
x2

= lim
x→0+

(−x) = 0.

——————————————————————————————–

(c) lim
x→∞

x2

ex
= lim

x→∞

2x
ex

= 0. Można też uzasadnić inaczej: dla x > 0 mamy

0 <
xk

ex
¬ xk

xk+1

(k+1)!

=
(k + 1)!

x
−→
x→∞

0.

(d) lim
x→0+

xx = lim
x→0+

ex log x =
y=x log x

lim
y→0−

ey = 1.

5.9 Pochodna ciągu i szeregu funkcyjnego

Twierdzenie 5.21. Funkcje fn(x) są ciągłe i różniczkowalne w sposób ciągły
w przedziale [a, b]. Załóżmy, że ciągi fn(x) i f ′n(x) są jednostajnie zbieżne
do f(x) i g(x), odpowiednio. Wtedy f ′(x) = g(x) (na końcach przedziału
f ′+(a) = g(a) i f ′−(b) = g(b)). Tzn.

(lim
n
fn(x))′ = lim

n
f ′n(x).

Czyli pochodna granicy ciągu funkcji jest granicą pochodnych tych funkcji.

Dowód. Niech a ¬ x0 ¬ b. Chcemy pokazać, że f ′(x0) = g(x0). Z założenia
dla ε > 0 istnieje prógN taki, że dla n > N mamy |f ′n(t)−g(t)| < ε/3, dla a ¬
t ¬ b. Wiemy, że funkcja g(x) jest ciągła, jako granica jednostajnie zbieżnego
ciągu funkcji f ′n(x). Zatem istnieje liczba δ > 0 taka, że dla |ξ−x0| < δ mamy
|g(ξ)− g(x0)| < ε/3. Niech 0 < |x− x0| < δ. Wtedy dla n > N otrzymujemy∣∣∣∣∣fn(x)− fn(x0)

x− x0
− g(x0)

∣∣∣∣∣ = |f ′n(ξ)− g(x0)|

¬ |f ′n(ξ)− g(ξ)|+ |g(ξ)− g(x0)| < ε

3
+
ε

3
=

2
3
ε,
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dla pewnego punktu ξ leżącego pomiędzy x i x0. Zatem dla 0 < |x− x0| < δ
mamy∣∣∣∣∣f(x)− f(x0)

x− x0
− g(x0)

∣∣∣∣∣ = lim
n

∣∣∣∣∣fn(x)− fn(x0)
x− x0

− g(x0)

∣∣∣∣∣ ¬ 2
3
ε < ε.

To oznacza, że

lim
x→x0

f(x)− f(x0)
x− x0

= g(x0),

czyli f ′(x0) = g(x0).

Uwaga. W dowodzie wykorzystana była jedynie zbieżność punktowa ciągu
fn.

Uwaga. Wystarczy założyć, że ciąg fn(x) jest zbieżny w jednym punkcie c
przedziału [a, b]. Rzeczywiście, z tego warunku wynika jednostajna zbieżność
ciągu fn(x). Sprawdzimy jednostajny warunek Cauchy’ego dla ciągu fn(x).

|fn(x)− fm(x)| ¬ | [fn(x)− fm(x)]︸ ︷︷ ︸
h(x)

− [fn(c)− fm(c)]︸ ︷︷ ︸
h(c)

|+ |fn(c)− fm(c)|

= | f ′n(ξ)− f ′m(ξ)︸ ︷︷ ︸
h′(ξ)

| |x− c|+ |fn(c)− fm(c)|

¬ (b− a)|f ′n(ξ)− f ′m(ξ)|+ |fn(c)− fm(c)|.

Wniosek 5.22. Załóżmy, że funkcje fn są ciągłe i różniczkowalne w sposób

ciągły w przedziale [a, b]. Jeśli szereg
∞∑
n=1

fn(x) jest zbieżny przynajmniej w

jednym punkcie, natomiast szereg
∞∑
n=1

fn(x)′ jest zbieżny jednostajnie, to suma

szeregu s(x) =
∞∑
n=1

fn(x) jest funkcją różniczkowalną oraz

( ∞∑
n=1

fn(x)
)′

= s′(x) =
∞∑
n=1

fn(x)′, (5.7)

tzn. pochodna sumy szeregu funkcyjnego jest szeregiem pochodnych.
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Dowód. Niech sn(x) =
n∑
k=1

fk(x). Ciąg funkcyjny sn(x) spełnia założenia po-

przedniego twierdzenia. Zatem
(

lim
n
sn(x)

)′
= lim

n
s′n(x), co jest równoznacz-

ne z (5.7).

Przykład. s(x) =
∞∑
n=1

e−nx
2

n3
, 0 ¬ x ¬ 1. Przyjmujemy fn(x) =

e−nx
2

n3
.

Wtedy f ′n(x) = −2xe−nx
2

n2
, zatem |f ′n(x)| ¬ 2

n2
. Zatem szereg

∞∑
n=1

f ′n(x) jest

jednostajnie zbieżny. Szereg
∞∑
n=1

fn(x) też jest jednostajnie zbieżny. Zatem

s′(x) = −2x
∞∑
n=1

e−nx
2

n2
.

Twierdzenie 5.23. Załózmy, że liczba R > 0 jest promieniem zbieżności

szeregu potęgowego f(x) =
∞∑
n=0

anx
n. Wtedy f(x) jest różniczkowalna w prze-

dziale (−R,R) oraz f ′(x) =
∞∑
n=1

nanx
n−1.

Uwaga. Szereg dla f ′(x) ma większe wartości bezwzględne współczynni-
ków, więc promień zbieżności nie może być większy od R. Jednak promienie
zbieżności obu szeregów są takie same. Istotnie, niech R′ oznacza promień

zbieżności dla x−1
∞∑
n=1

nanx
n x 6= 0.

(a) Jeśli istnieje granica lim
n

|an+1|
|an|

=
1
R
, to

1
R′

= lim
n

(n+ 1)|an+1|
n|an|

= lim
n

|an+1|
|an|

=
1
R
.

(b) Jeśli istnieje gramica lim
n

n

√
|an| =

1
R
, to

1
R′

= lim
n

n

√
n|an| = lim

n

n
√
n lim

n

n

√
|an| = lim

n

n

√
|an| =

1
R
.
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Ogólnie mamy

1
R′

= lim sup
n

n

√
n|an| = lim

n

n
√
n lim sup

n

n

√
|an| =

1
R
.

Dowód. Szereg pochodnych
∞∑
n=1

nanx
n−1 jest zbieżny w przedziale (−R,R).

Wiemy, że zbieżność jest jednostajna w każdym przedziale [−R + δ, R − δ],
dla δ > 0. Z Wniosku 5.22 otrzymujemy tezę, czyli( ∞∑

n=0

anx
n

)′
=
∞∑
n=1

nanx
n−1.

Wniosek 5.24. Funkcja f(x) =
∞∑
n=0

anx
n dla −R < x < R, gdzie R jest

promieniem zbieżności, jest nieskończenie wiele razy różniczkowalna oraz

f (k)(x) =
( ∞∑
n=0

anx
n

)(k)

=
∞∑
n=k

n(n− 1) . . . (n− k + 1)anxn−k.

Dowód. Stosujemy wielokrotnie Wniosek 5.22, korzystając z faktu, że pro-
mień zbieżności nie zmienia się przy różniczkowaniu.

Przykłady.

(a) Rozważmy funkcję f(x) = log(1 + x), x > 1. Mamy

f ′(x) =
1

1 + x
=
∞∑
n=0

(−1)nxn, dla |x| < 1.

Rozważmy szereg
∞∑
n=0

(−1)n

n+ 1
xn+1 =

∞∑
n=1

(−1)n+1

n
xn. Promień zbieżności

tego szeregu wynosi 1. Z Twierdzenia 5.23 mamy( ∞∑
n=1

(−1)n+1

n
xn
)′

=
( ∞∑
n=0

(−1)n

n+ 1
xn+1

)′
=
∞∑
n=0

(−1)nxn =
1

1 + x
= (log(1+x))′.

Zatem

log(1 + x) =
∞∑
n=1

(−1)n+1

n
xn + C, |x| < 1,
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dla pewnej stałej C. Podstawiając x = 0 uzyskamy C = 0. Zatem

log(1 + x) =
∞∑
n=1

(−1)n+1

n
xn, dla − 1 < x < 1. (5.8)

Z kryterium Leibniza szereg po prawej stronie jest zbieżny również dla
x = 1. Zatem z Twierdzenia 4.17 otrzymujemy

log 2 =
∞∑
n=1

(−1)n+1

n
.

——————————————————————————————–

(b) f(x) = arctg x. Wtedy

f ′(x) =
1

1 + x2
=
∞∑
n=0

(−1)nx2n, |x| < 1.

Rozważmy szereg
∞∑
n=0

(−1)n

2n+ 1
x2n+1. Szereg ten jest zbieżny dla |x| < 1.

Wiemy, że

( ∞∑
n=0

(−1)n

2n+ 1
x2n+1

)′
=
∞∑
n=0

(−1)nx2n = (arctg x)′,

czyli

arctg x =
∞∑
n=0

(−1)n

2n+ 1
x2n+1 + C, |x| < 1.

Podstawiamy x = 0 i otrzymujemy, że C = 0. Zatem

arctg x =
∞∑
n=0

(−1)n

2n+ 1
x2n+1, |x| < 1. (5.9)

Podobnie jak w poprzednim przykładzie możemy podstawić x = 1 i
uzyskać

π

4
=
∞∑
n=0

(−1)n

2n+ 1
.
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5.10 Wzory Taylora i MacLaurina

Twierdzenie 5.25 (Wzór Taylora). Niech f(x) będzie funkcją n-krotnie róż-
niczkowalną w przedziale wokół punktu a. Wtedy dla liczb b z tego przedziału
mamy

f(b) = f(a) +
(b− a)

1!
f ′(a) +

(b− a)2

2!
f ′′(a) + . . .+

(b− a)n−1

(n− 1)!
f (n−1)(a) +Rn,

gdzie Rn ma jedną z dwu postaci:

(1) Rn =
(b− a)n

n!
f (n)(a + θ(b − a)), dla pewnej liczby 0 < θ < 1 (reszta

w postaci Lagrange’a),

(2) Rn =
(b− a)n

(n− 1)!
(1−θ′)n−1f (n)(a+θ′(b−a)), dla pewnej liczby 0 < θ′ < 1

(reszta w postaci Cauchy’ego).

Uwagi

1. Oznaczmy b− a = h. Wtedy

f(a+ h) = f(a) +
h

1!
f ′(a) +

h2

2!
f ′′(a) + . . .+

hn−1

(n− 1)!
f (n−1)(a) +Rn,

Rn =
hn

n!
f (n)(a+ θh) =

hn

(n− 1)!
(1− θ′)n−1f (n)(a+ θ′h).

2. Reszta Rn oraz θ i θ′ zależą od a, b i n.

Dowód. Oznaczmy

g(x) = f(b)−f(x)− (b− x)
1!

f ′(x)− (b− x)2

2!
f ′′(x)− . . .− (b− x)n−1

(n− 1)!
f (n−1)(x).

Wtedy

g′(x) = −���f ′(x) +�
��f ′(x)−�������(b− x)

1!
f ′′(x) +�������(b− x)

1!
f ′′(x)−��������(b− x)2

2!
f ′′′(x)

+ . . .+
�����������(b− x)n−2

(n− 2)!
f (n−1)(x)− (b− x)n−1

(n− 1)!
f (n)(x). (5.10)
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Mamy g(a) = Rn oraz g(b) = 0. Z twierdzenia Lagrange’a otrzymujemy

g(b)− g(a)
b− a

= g′(a+ θ′(b− a)),

dla pewnej liczby 0 < θ′ < 1. Zatem Rn = −(b− a)g′(a+ θ′(b− a)). Podsta-
wiamy x = a+ θ′(b− a) do wzoru (5.10). Wtedy

b− x = b− a− θ′(b− a) = (1− θ′)(b− a)

oraz

Rn =
(b− a)n

(n− 1)!
(1− θ′)n−1f (n)(a+ θ′(b− a)).

Rozważmy funkcję u(x) = (b− x)n. Mamy u(a) = (b− a)n oraz u(b) = 0.
Z twierdzenia Cauchy’ego otrzymujemy

g(b)− g(a)
u(b)− u(a)

=
g′(a+ θ(b− a))
u′(a+ θ(b− a))

,

dla pewnej liczby 0 < θ < 1. dalej

Rn = (b− a)n
g′(a+ θ(b− a))
u′(a+ θ(b− a))

.

Mamy u′(x) = −n(b− x)n−1. Z (5.10) wynika, że

g′(x)
u′(x)

=
f (n)(x)
n!

.

Ostatecznie

Rn =
(b− a)n

n!
f (n)(a+ θ(b− a)).

Uwaga. Przy dowodzie wzoru na resztę w postaci Lagrange’a skorzystaliśmy
z twierdzenia Cauchy’ego, natomiast przy postaci Cauchy’ego skorzystaliśmy
z twierdzenia Lagrange’a.

We wzorze Taylora przyjmijmy b = x i a = 0. Wtedy otrzymujemy wzór
McLaurina

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 + . . .+

xn−1

(n− 1)!
f (n−1)(0) +Rn, (5.11)
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Rn =
xn

n!
f (n)(θx) =

xn

(n− 1)!
(1− θ′)n−1f (n)(θ′x).

Uwagi.

1. Jeśli f(x) jest wielomianem, to Rn = 0, gdy n przekroczy stopień wie-
lomianu.

2. Z warunku Rn −→
n

0 wynika

f(x) = f(0) +
∞∑
n=1

f (n)(0)
n!

xn.

Jeśli |f (n)(t)| ¬M dla stałej niezależnej od n, to Rn −→
n

0, bo
xn

n!
−→
n

0

(np. z kryterium d’Alemberta). Można dopuścić też słabszy warunek
|f (n)(t)| ¬Mn.

3. Reszta Rn nie musi dążyć do zera nawet, gdy szereg jest zbieżny. Roz-
ważmy funkcję

f(x) =

e−1/x2 , x 6= 0,
0, x = 0.

Można udowodnić, że f jest różniczkowalna nieskończenie wiele razy

oraz f (n)(0) = 0 (w tym celu wystarczy pokazać, że lim
t→0+

e−1/t

tn
= 0).

Wtedy ze wzoru (5.11) otrzymujemy f(x) = Rn.

4. Przypuśćmy, że szereg potęgowy f(x) =
∞∑
n=0

anx
n ma dodatni promień

zbieżności. Prawa strona jest wtedy automatycznie szeregiem McLauri-

na funkcji f(x), tzn. an =
f(n)(0)
n!

. Rzeczywiście, na podstawie Wnio-

sku 5.24 mamy f (k)(0) = k!ak.

Przykład. f(x) = (1 + x)α, x > −1. Mamy

f (n)(x) = α(α− 1) . . . (α− n+ 1)(1 + x)α−n.

Zatem
f (n)(0)
n!

=
α(α− 1) . . . (α− n+ 1)

n!
=:
(
α

n

)
.
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Ze wzoru McLaurina mamy, przy konwencji
(
α

0

)
= 1,

(1 + x)α =
n−1∑
k=0

(
α

k

)
xk +Rn.

Pokażemy, że Rn −→
n

0 dla |x| < 1. Skorzystamy z postaci Cauchy’ego reszty.

Rn =
xn

(n− 1)!
(1− θ)n−1f (n)(θx)

=
xn

(n− 1)!
(1− θ)n−1α(α− 1) . . . (α− n+ 1)(1 + θx)α−n

= n

(
α

n

)
xn(1− θ)n−1(1 + θx)α−n.

Wyrażenie n

(
α

n

)
xn dąży do 0 dla |x| < 1, np. z kryterium d’Alemberta.

Wystarczy udowodnić, że wielkość (1 − θ)n−1(1 + θx)α−n jest ograniczona.
Dla |x| < 1 i 0 < θ < 1 mamy 1− θ ¬ 1 + θx. Zatem

(1− θ)n−1(1 + θx)α−n ¬ (1 + θx)n−1(1 + θx)α−n = (1 + θx)α−1.

Zależność od n jest jeszcze ukryta w θ. Dalej

(1 + θx)α−1 ¬

2α−1, α ­ 1,
(1− |x|)α−1, α < 1,

przy czym dla α < 1 skorzystaliśmy z nierówności 1 + θx ­ 1 − |x|. Reasu-
mując otrzymaliśmy uogólniony wzór dwumianowy Newtona.

(1 + x)α =
∞∑
n=0

(
α

n

)
xn, |x| < 1. (5.12)

Przyjmijmy α = −1
2 . W miejsce x podstawmy −x2 dla |x| < 1. Wtedy

1√
1− x2

= 1 +
∞∑
n=1

(
−1

2

n

)
(−1)nx2n.
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Dalej

(
−1

2

n

)
= (−1)n

1
2

3
2
. . .

2n− 1
2

n!
= (−1)n

(2n)!
2nn!2nn!

=
(−1)n

4n

(
2n
n

)
,

bo (2n− 1)!! =
(2n)!
2nn!

. Ostatecznie uzyskaliśmy

1√
1− x2

= 1 +
∞∑
n=1

(
2n
n

)(
x

2

)2n

, |x| < 1.

Ale (arcsinx)′ =
1√

1− x2
dla |x| < 1. Zatem

arcsinx = x+
∞∑
n=1

2
2n+ 1

(
2n
n

)(
x

2

)2n+1

, |x| < 1. (5.13)

Dla x = 1
2 , po pomnożeniu przez 2 obu stron (5.13), otrzymamy

π

3
= 1 +

∞∑
n=1

1
2n+ 1

(
2n
n

)
1

16n
.

Podstawiając dla odmiany x =
√

2
2 i mnożąc (5.13) przez

√
2 uzyskamy

π

2
√

2
= 1 +

∞∑
n=1

1
2n+ 1

(
2n
n

)
1
8n
.

——————————————————————————————–
Zauważmy, że dla 0 < x < 1 mamy

π

2
= arcsin 1 > arcsinx =

∞∑
n=0

2
2n+ 1

(
2n
n

)(
x

2

)2n+1

­
N∑
n=0

2
2n+ 1

(
2n
n

)(
x

2

)2n+1

.

Przechodząc do granicy x→ 1− otrzymamy

π

2
­

N∑
n=0

1
2n+ 1

(
2n
n

)
1
4n
.
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Ponieważ liczba N jest dowolna, to

π

2
­
∞∑
n=0

1
2n+ 1

(
2n
n

)
1
4n
.

Dalej

arcsinx =
∞∑
n=0

2
2n+ 1

(
2n
n

)(
x

2

)2n+1

¬
∞∑
n=0

2
2n+ 1

(
2n
n

)(1
2

)2n+1

=
∞∑
n=0

1
2n+ 1

(
2n
n

)
1
4n
.

Przechodzimy do granicy x→ 1−, aby uzyskać

π

2
¬
∞∑
n=0

1
2n+ 1

(
2n
n

)
1
4n
.

Otrzymujemy zatem

π

2
=
∞∑
n=0

1
2n+ 1

(
2n
n

)
1
4n
. (5.14)

Uwaga. Zbieżność szeregu po prawej stronie (5.14) można też uzyskać ze
wzoru Stirlinga podającego przybliżoną wartość wielkości n! ∼ nne−n

√
2πn.

Twierdzenie 5.26 (Reszta Peano). Jeśli funkcja f(x) jest n-krotnie róż-
niczkowalna w punkcie a, to

f(a+ h) = f(a) +
h

1!
f ′(a) +

h2

2!
f ′′(a) + . . .+

hn

n!
f (n)(a) +Rn(h),

gdzie

lim
h→0

Rn(h)
hn

= 0,

tzn. wielkość Rn(h) jest mała w stosunku do hn dla małych wartości |h|.
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Dowód. Zastosujemy wielokrotnie regułę de’Hospitala.

lim
h→0

Rn(h)
hn

= lim
h→0

f(a+ h)− f(a)− h
1!f
′(a)− h2

2! f
′′(a)− . . .− hn

n! f
(n)(a)

hn

= lim
h→0

f ′(a+ h)− f ′(a)− h
1!f
′′(a)− h2

2! f
′′′(a)− . . .− hn−1

(n−1)!f
(n)(a)

nhn−1

= . . . = lim
h→0

f (n−1)(a+ h)− f (n−1)(a)− f (n)(a)h
n!h

=
1
n!

lim
h→0

[
f (n−1)(a+ h)− f (n−1)(a)

h
− f (n)(a)

]
= 0.

Ostatnia granica wynosi zero bezpośrednio z określenia pochodnej w punkcie
a.

Definicja 5.27. Punkt x0 nazywamy punktem przegięcia funkcji f, jeżeli

dla wszystkich punktów x 6= x0 w pobliżu x0 mamy
f(x)− f(x0)

x− x0
> f ′(x0),

lub dla wszystkich takich punktów mamy
f(x)− f(x0)

x− x0
< f ′(x0).

Uwaga. Geometrycznie oznacza to, że części wykresu funkcji dla x < x0

i dla x > x0 leżą po przeciwnych stronach stycznej do wykresu w punkcie

(x0, f(x0)). Rzeczywiście, niech
f(x)− f(x0)

x− x0
> f ′(x0). Wtedy

f(x) > f(x0) + f ′(x0)(x− x0), dla x > x0,

f(x) < f(x0) + f ′(x0)(x− x0), dla x < x0.

Twierdzenie 5.28. Funkcja f(x) jest n-krotnie różniczkowalna w przedziale
wokół punktu a oraz f (n) jest ciągła w a. Załóżmy, że

f ′(a) = f ′′(a) = . . . = f (n−1)(a) = 0, f (n)(a) 6= 0, n ­ 2.

Jeśli n jest liczbą parzystą, to funkcja posiada ścisłe ekstremum lokalne w
punkcie a. W przeciwnym wypadku a jest punktem przegięcia funkcji f.

Dowód. Rozważymy przypadek f (n)(a) > 0. Z ciągłości możemy przyjąć, że
f (n)(t) > 0 dla argumentów t blisko a. Niech x leży blisko a. Wtedy ze wzoru
Taylora z resztą w postaci Lagrange’a otrzymujemy

f(x) = f(a) +
f (n)(ξ)
n!

(x− a)n,
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dla pewnego punktu ξ pomiędzy a i x. Jeśli n jest liczbą parzystą, to drugi
składnik po prawej stronie wzoru jest dodatni. Zatem f(x) > f(a) dla x 6= a
w pobliżu a. To oznacza, że w a występuje ścisłe minimum. Jeśli n jest liczbą
nieparzystą, to

f(x)− f(a)
x− a

=
f (n)(ξ)
n!

(x− a)n−1 > 0 = f ′(a),

dla x blisko a. Wtedy a jest punktem przegięcia.

Uwagi.

1. W punkcie przegięcia nie może występować ekstremum lokalne.

2. Jeśli f ′′(a) > 0, to w a jest ścisłe minimum, a dla f ′′(a) < 0, ścisłe
maksimum.

Przykłady.

(a) Chcemy znaleźć ekstrema funkcji f(x) = x4 + 4x. Obliczamy f ′(x) =
4(x3 + 1). Zatem f ′(−1) = 0. Dalej f ′′(−1) = 12. Zatem w punkcie −1
występuje ścisłe lokalne minimum.

(b) f(x) = x3 + x4. Mamy f ′(x) = 3x2 + 4x3 = x2(3 + 4x). Pochodna
zeruje się w 0 i w −3

4 . Dalej f ′′(x) = 6x + 12x2 = 6x(1 + 2x). Zatem
f ′′(−3

4) > 0. Mamy f ′′(0) = 0. Ale f ′′′(0) > 0. W rezultacie w punkcie
−3

4 występuje ścisłe lokalne minimum, a w punkcie 0 przegięcie wykre-
su.

Definicja 5.29. Mówimy, że funkcja f(x) określona w przedziale (a, b) jest
wypukła w dół, jeśli dla dowolnych punktów a < x1, x2 < b oraz liczb α, β ­
0, α + β = 1 mamy

f(αx1 + βx2) ¬ αf(x1) + βf(x2). (5.15)

Podobnie, f(x) jest wypukła w górę jeśli

f(αx1 + βx2) ­ αf(x1) + βf(x2). (5.16)

Uwaga. Wypukłość w dół oznacza, że fragment wykresu pomiędzy punktami
(x1, f(x1)) i (x2, f(x2)) leży pod sieczną przechodzącą przez te punkty. Rze-
czywiście, jeśli u(x) jest funkcją liniową oraz u(x1) = f(x1), u(x2) = f(x2),
to u(αx1 + βx2) = αu(x1) + βu(x2) = αf(x1) + βf(x2).
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Twierdzenie 5.30. Jeśli f ′′(x) > 0 dla a < x < b, to funkcja f(x) jest
wypukła w dół. Natomiast jeśli f ′′(x) < 0 dla a < x < b, to funkcja f(x) jest
wypukła w górę.

Dowód. Udowodnimy pierwszą część twierdzenia. Zakładamy, że x1 < x2

oraz α, β > 0, α + β = 1. Z twierdzenia Lagrange’a mamy

f(αx1 + βx2)− αf(x1)− βf(x2)
= α[f(αx1 + βx2)− f(x1)]− β[f(x2)− f(αx1 + βx2)]

= αβ(x2 − x1)f ′(ξ1)− αβ(x2 − x1)f ′(ξ2)
= αβ(x2 − x1)[f ′(ξ1)− f ′(ξ2)] = αβ(x1 − x2)(ξ2 − ξ1)f ′′(η),

gdzie x1 < ξ1 < αx1 + βx2 < ξ2 < x2 oraz ξ1 < η < ξ2. Zatem

f(αx1 + βx2)− αf(x1)− βf(x2) < 0

dla α, β > 0 i α + β = 1.

——————————————————————————————–

Uwagi.

1. Twierdzenie odwrotne jest też prawdziwe, ale w tezie otrzymamy słabą
nierówność dla f ′′. Istotnie załóżmy, że f jest wypukła w dół. Dla x1 <
x2 i α, β > 0, z nierówności (5.15) otrzymujemy

α[f(αx1 + βx2)− f(x1)] ¬ β[f(x2)− f(αx1 + βx2)].

Zatem
f(αx1 + βx2)− f(x1)

β(x2 − x1)
¬ f(αx1 + βx2)− f(x1)

α(x2 − x1)
.

Po przekształceniu dostajemy

f(αx1 + βx2)− f(x1)
(αx1 + βx2)− x1

¬ f(x2)− f(αx1 + βx2)
x2 − (αx1 + βx2)

.

Gdy α→ 0+, to β → 1− oraz αx1 + βx2 → x2. Otrzymujemy więc

f(x2)− f(x1)
x2 − x1

¬ f ′(x2).
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Podobnie, z β → 0+ wynika

f ′(x1) ¬ f(x2)− f(x1)
x2 − x1

.

Zatem f ′(x1) ¬ f ′(x2), czyli f ′ jest funkcją rosnącą. Tzn. f ′′ ­ 0.

2. Załóżmy, że f jest ściśle wypukła w dół. Wtedy funkcja f ′ jest ściśle ro-
snąca. Istotnie, gdyby f ′(x1) = f ′(x2) dla pewnych x1 < x2, to funkcja
f ′ byłaby stała w przedziale [x1, x2]. To by oznaczało, że f jest funkcją
liniową w tym przedziale.

6 Całka Riemanna

Definicja 6.1. Podziałem P przedziału [a, b] nazywamy skończoną rodzinę
punktów a = x0 < x1 < x2 < . . . < xn = b. Przyjmujemy oznaczenie
∆xi = xi − xi−1.

Dla ograniczonej funkcji f(x) określonej w [a, b] określamy liczby mi oraz
Mi wzorami

mi = inf
xi−1¬x¬xi

f(x), Mi = sup
xi−1¬x¬xi

f(x).

Definiujemy sumy dolne i górne wzorami

L(P , f) =
n∑
i=1

mi∆xi, U(P , f) =
n∑
i=1

Mi∆xi.

Uwaga. Jeśli f ­ 0, to liczba L(P , f) przybliża od dołu pole obszaru pod

wykresem funkcji, natomiast liczba U(P , f) przybliża to pole od góry.
Przypuśćmy, że m ¬ f(x) ¬M dla a ¬ x ¬ b. Wtedy

L(P , f) ­
n∑
i=1

m∆xi = m(b− a),

U(P , f) ¬
n∑
i=1

M∆xi = M(b− a).

Określamy całki dolną i górną wzorami

b∫
a

f(x) dx = sup
P
L(P , f),

b∫
a

f(x) dx = inf
P
U(P , f).
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Definicja 6.2. Mówimy, że funkcja f(x) jest całkowalna w sensie Riemanna
na przedziale [a, b], jeśli całka dolna jest równa całce górnej. Wtedy wspólną

wartość oznaczamy symbolem
b∫
a

f(x) dx.

Uwaga. Pokażemy wkrótce, że funkcja ciągłe są całkowalne. Istnieją jednak
funkcje niecałkowalne.

Przykłady

(a)

f(x) =

1 x ∈ Q,
0, x /∈ Q.

Dla przedziału [0, 1] mamy L(P , f) = 0 oraz U(P , f) = 1. Zatem

1∫
0

f(x) dx = 0,
1∫

0

f(x) dx = 1.

(b)

f(x) =

1 0 ¬ x ¬ 1,
2 1 < x ¬ 2.

Dla P = {0, 1, 1 + 1
n
, 2} mamy

L(Pn, f) = 1 + 1 · 1
n

+ 2
(

1− 1
n

)
= 3− 1

n
,

U(Pn, f) = 1 + 2 · 1
n

+ 2
(

1− 1
n

)
= 3.

Zatem
2∫

0

f(x) dx ­ 3,
2∫

0

f(x) dx ¬ 3.

Pokażemy wkrótce, że

b∫
a

f(x) dx ¬
b∫
a

f(x) dx,
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zatem
2∫

0

f(x) dx =
2∫

0

f(x) dx = 3.

(c)

f(x) =


1
q

x = p
q
, p ∈ Z, q ∈ N, (p, q) = 1,

0, x /∈ Q.

Rozważamy przedział [0, 1]. Mamy L(P , f) = 0. Ustalmy liczbę natu-
ralną N ­ 2. Określimy specjalny podział P . Każdy ułamek nieskra-
calny postaci p

q
, dla q < N otaczamy przedziałem o promieniu 1

2N3 .

Takich ułamków jest mniej niż N2. Przedziałami podziału są wtedy[
p
q
− 1

2N3 ,
p
q

+ 1
2N3

]
, gdzie q < N oraz przedziały pomiędzy nimi. Prze-

działy postaci
[
p
q
− 1

2N3

]
,
[
p
q

+ 1
2N3

]
są rozłączne. Rzeczywiście, rozważ-

my dwie różne liczby p
q

i p′

q′
, dla q, q′ < N. Wtedy∣∣∣∣∣pq − p′

q′

∣∣∣∣∣ =
|pq′ − p′q|

qq′
­ 1
qq′
­ 1
N2

>
1
N3

.

Gdyby przedziały odpowiadające p
q

i p′

q′
zachodziły na siebie, to∣∣∣∣∣pq − p′

q′

∣∣∣∣∣ ¬ 2 · 1
2N3

=
1
N3

.

NiechA składa się z numerów odpowiadającym przedziałom
[
p
q
− 1

2N3 ,
p
q

+ 1
2N3

]
.

Wtedy

U(P , f) =
n∑
i=1

Mi∆xi =
∑
i∈A

Mi∆xi +
∑
i/∈A

Mi∆xi

¬
∑
i∈A

∆xi +
∑
i/∈A

1
N

∆xi ¬ N2 · 1
N3

+
1
N

=
2
N
.

Ponieważ N jest dowolną liczbą naturalną, to
1∫
0
f(x) dx = 0.

Definicja 6.3. Podział P ′ przedziału P nazywamy rozdrobnieniem podziału
P , jeśli P ⊆ P ′. Dla podziałów P1 i P2 podział P1 ∪P2 nazywamy wspólnym
rozdrobnieniem P1 i P2.
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Twierdzenie 6.4. Jeśli P ⊆ P ′, to L(P , f) ¬ L(P ′, f) oraz U(P , f) ­
U(P ′, f), tzn. przy rozdrobnieniu sumy dolne się zwiększają a sumy górne
zmniejszają.

Dowód. Wystarczy rozważyć przypadek P ′ = P ∪ {x′}. Niech

P = {x0, x1, . . . , xi−1, xi, . . . , xn},
P ′ = {x0, x1, . . . , xi−1, x

′, xi, . . . , xn}.

Oznaczmy
ω1 = inf

xi−1¬x¬x′
f(x), ω2 = inf

x′¬x¬xi
f(x).

Wtedy ω1, ω2 ­ mi zatem

L(P ′, f)− L(P , f) = ω1(x′ − xi−1) + ω2(xi − x′)−mi∆xi
­ mi(x′ − xi−1) +mi(xi − x′)−mi∆xi = 0.

Podobnie pokazujemy, że U(P ′, f) ¬ U(P , f).

Wniosek 6.5. (i) Dla dwu podziałów P1 i P2 mamy L(P1, f) ¬ U(P2, f).

(ii)
b∫
a

f(x) dx ¬
b∫
a

f(x) dx.

Dowód. Mamy

L(P1, f) ¬ L(P1 ∪ P2, f) ¬ U(P1 ∪ P2, f) ¬ U(P2, f).

Biorąc kres górny względem P1 otrzymamy

b∫
a

f(x) dx ¬ U(P2, f).

Teraz bierzemy kres dolny względem P2 i otrzymujemy część (ii) wniosku.

Twierdzenie 6.6. Ograniczona funkcja f(x) na przedziale [a, b] jest cał-
kowalna wtedy i tylko wtedy, gdy dla dowolnej liczby ε > 0 można znaleźć
podział P , dla którego

U(P , f)− L(P , f) < ε. (6.1)
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Dowód. Udowodnimy tylko implikację (⇐). Załóżmy, że dla ε > 0 istnieje P
spełniający (6.1). Wtedy

L(P , f) ¬
b∫
a

f(x) dx ¬
b∫
a

f(x) dx ¬ U(P , f) < L(P , f) + ε.

Czyli

0 ¬
b∫
a

f(x) dx−
b∫
a

f(x) dx < ε.

Wniosek 6.7. Każda funkcja ciągła na przedziale [a, b] jest całkowalna. Po-
nadto dla dowolnej liczby ε > 0 można znaleźć liczbę δ > 0 taką, że dla
każdego podziału P = {x0, x1, . . . , xn}, jeśli

d(P) := max
1¬i¬n

∆xi < δ,

to dla dowolnego wyboru punktów pośrednich xi−1 ¬ ti ¬ xi mamy∣∣∣∣∣∣
n∑
i=1

f(ti)∆xi −
b∫
a

f(x) dx

∣∣∣∣∣∣ < ε.

Dowód. Ustalmy liczbę ε > 0. Z jednostajnej ciągłości można znaleźć liczbę
δ > 0 taką, że jeśli |x − x′| < δ, to |f(x) − f(x′)| < ε

b−a . Niech P będzie
podziałem spełniającym d(P) < δ. Wtedy

U(P , f)− L(P , f) =
n∑
i=1

(Mi −mi)∆xi <
ε

b− a
(b− a) = ε.

Stąd mamy całkowalność funkcji f. Ponadto

L(P , f) ¬
b∫
a

f(x) dx ¬ U(P , f),

oraz

L(P , f) ¬
n∑
i=1

f(ti)∆xi ¬ U(P , f),

bo mi ¬ f(ti) ¬ Mi. Z nierówności (6.1) liczby
n∑
i=1

f(ti)∆xi oraz
b∫
a

f(x) dx

leżą w przedziale o długości mniejszej niż ε.



Całka Riemanna 91

——————————————————————————————–
Liczbę d(P) nazywamy średnicą podziału P . Wyrażenie

S(P , f) =
n∑
i=1

f(ti)∆xi

nosi nazwę sumy całkowej. Mamy następujące typy sum całkowych:

(a) ti = xi−1 - lewy koniec,

(b) ti = xi - prawy koniec,

(c) ti = 1
2(xi−1 + xi) - środek przedziału,

(d) indywidualnie dobierane punkty ti.

Wniosek 6.8. Niech f będzie funkcją ciągłą na przedziale [a, b]. Rozważmy
ciąg podziałów Pn takich, że d(Pn) −→

n
0 (np. Pn jest podziałem na n równych

części). Wtedy

S(Pn, f) −→
n

b∫
a

f(x) dx.

Dowód. Ustalmy liczbę ε > 0. Z poprzedniego wniosku istnieje liczba δ > 0
taka, że ∣∣∣∣∣∣S(P , f)−

b∫
a

f(x) dx

∣∣∣∣∣∣ < ε,

dla d(P) < δ. Z założenia istnieje próg N taki, że jeśli n > N, to d(Pn) < δ.
Wtedy dla n > N mamy∣∣∣∣∣∣S(Pn, f)−

b∫
a

f(x) dx

∣∣∣∣∣∣ < ε.

Uwaga. Wkrótce udowodnimy, że
1∫

0

x2 dx =
1
3
. Chcemy obliczyć granicę

wyrażenia
1
n3

n∑
k=1

k2. Mamy

1
n3

n∑
k=1

k2 =
1
n

n∑
k=1

(
k

n

)2

−→
n

1∫
0

x2 dx =
1
3
,
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bo wyrażenie w środku jest sumą całkową typu prawy koniec dla funkcji
f(x) = x2 i dla podziału przedziału [0, 1] na n równych części.

Przykład.

f(x) =

cos 1
x

0 < x ¬ 1,
0, x = 0.

Pokażemy, że funkcja f jest całkowalna. Rozważymy podział

P =
{

0,
1
n
,

1
n

+
1
n3
,

1
n

+
2
n3
, . . . ,

1
n

+
n3 − n2

n3

}
.

Niech x, y ­ 1
n

oraz |x− y| ¬ 1
n3
. Wtedy

∣∣∣∣∣cos
1
x
− cos

1
y

∣∣∣∣∣ =

∣∣∣sin 1
ξ

∣∣∣
ξ2
|x− y| ¬ 1

1
n2

1
n3

=
1
n
,

bo ξ ­ 1
n
. Zatem największa rozpiętość wartości funkcji na przedziałach

podziału P , które mają długość 1
n3
, nie przekracza 1

n
. Otrzymujemy więc

U(P , f)− L(P , f) = (M0 −m0)
1
n

+
n3−n2∑
i=1

(Mi −mi)
1
n3

¬ 2
n

+
n3 − n2

n

1
n3
¬ 3
n
.

Zadanie. Znaleźć funkcję f : [0, 1] 1−1−→
na

[0, 1], której wykres jest gęstym

podzbiorem w [0, 1]× [0, 1].

Zapis f ∈ R oznacza, że f jest całkowalna w sensie Riemanna.

Twierdzenie 6.9. (i) Jeśli f, g ∈ R, to f ± g, cf ∈ R oraz

b∫
a

[f(x)± g(x)] dx =
b∫
a

f(x) dx±
b∫
a

g(x) dx,

b∫
a

cf(x) dx = c

b∫
a

f(x) dx.
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(ii) Jeśli f, g ∈ R oraz f(x) ¬ g(x) dla a ¬ x ¬ b, to

b∫
a

f(x) dx ¬
b∫
a

g(x) dx.

(iii) Jeśli f ∈ R[a, b] oraz a < c < b, to f ∈ R[a, c] ∩R[c, b] oraz

b∫
a

f(x) dx =
c∫
a

f(x) dx+
b∫
c

f(x) dx.

(iv) Jeśli f ∈ R oraz |f(x)| ¬M dla a ¬ x ¬ b, to∣∣∣∣∣∣
b∫
a

f(x) dx

∣∣∣∣∣∣ ¬M(b− a).

Dowód. Dla liczby ε > 0 można znaleźć podziały P1 i P2, dla których

U(P1, f)− L(P1, f) <
ε

2
, U(P2, g)− L(P2, g) <

ε

2
.

Wtedy dla podziału P = P1 ∪ P2 mamy

U(P , f)− L(P , f) <
ε

2
, U(P , g)− L(P , g) <

ε

2
.

W rezultacie

[U(P , f) + U(P , g)]− [L(P , f) + L(P , g)] < ε. (6.2)

Dalej

U(P , f + g) =
n∑
i=1

Mi(f + g)∆xi

¬
n∑
i=1

Mi(f)∆xi +
n∑
i=1

Mi(g)∆xi = U(P , f) + U(P , g). (6.3)

Podobnie
L(P , f + g) ­ L(P , f) + L(P , g). (6.4)
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W świetle (6.2) otrzymujemy

U(P , f + g)− L(P , f + g) < ε.

Stąd f + g jest całkowalna. Wartość całki
b∫
a

[f(x) + g(x)] dx leży pomiędzy

liczbami L(P , f + g) i U(P , f + g). Z (6.3) i (6.4) wartość ta leży w prze-
dziale pomiędzy liczbami L(P , f)+L(P , g) i U(P , f)+U(P , g). Ale wielkość
b∫
a

f(x) dx +
b∫
a

g(x) dx też leży w tym przedziale. Z (6.2) długość tego prze-

działu jest mniejsza niż ε. To oznacza, że∣∣∣∣∣∣
b∫
a

[f(x) + g(x)] dx−
b∫
a

f(x) dx−
b∫
a

g(x) dx

∣∣∣∣∣∣ < ε.

Stąd otrzymujemy

b∫
a

[f(x) + g(x)] dx =
b∫
a

f(x) dx+
b∫
a

g(x) dx.

Dla liczby c ­ 0 i podziału P mamy

mi(cf) = cmi(f), Mi(cf) = cMi(f),

natomiast dla c < 0

mi(cf) = cMi(f), Mi(cf) = cmi(f).

To wystarcza do przeprowadzenia dowodu równości
b∫
a
cf(x) dx = c

b∫
a
f(x) dx.

Część (ii) twierdzenia jest oczywista. Przechodzimy do dowodu (iii). Dla
liczby ε > 0 można znaleźć podział P0 przedziału [a, b] spełniający U(P0, f)−
L(P0, f) < ε. Wtedy dla podziału P = P0 ∪ {c} mamy

U(P , f)− L(P , f) < ε. (6.5)

Podział P możemy zapisać jako sumą podziałów P1 i P2 przedziałów [a, c] i
[c, b], odpowiednio. Ponadto

U[a,b](P , f) = U[a,c](P1, f) + U[c,b](P2, f), (6.6)
L[a,b](P , f) = L[a,c](P1, f) + L[c,b](P2, f). (6.7)
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Na podstawie (6.5) otrzymujemy więc

U[a,c](P1, f)− L[a,c](P1, f) < ε,

U[c,b](P2, f)− L[c,b](P2, f) < ε.

Stąd funkcja f jest całkowalna w przedziałach [a, c] i [c, b]. Wartość
b∫
a

f(x) dx

leży pomiędzy liczbami L[a,b](P , f) i U[a,b](P , f). Na podstawie (6.6) i (6.7)

wartość
c∫
a

f(x) dx +
b∫
c

f(x) dx też leży pomiędzy tymi liczbami. Wtedy z

(6.5) otrzymujemy∣∣∣∣∣∣
b∫
a

f(x) dx−
c∫
a

f(x) dx−
b∫
c

f(x) dx

∣∣∣∣∣∣ < ε.

Załóżmy, że |f(x)| ¬M. Wtedy −M ¬ f(x) ¬M. Zatem

− M(b − a) =
b∫
a

(−M) dx ¬
b∫
a

f(x) dx ¬
b∫
a

M dx = M(b − a).

——————————————————————————————–

Uwaga. Przyjmujemy, że
a∫
a

f(x) dx = 0 oraz dla b < a określamy

b∫
a

f(x) dx = −
a∫
b

f(x) dx.

Wtedy wzór w Twierdzeniu 6.9(iii) jest prawdziwy niezależnie od konfiguracji
liczb a, b i c.

Twierdzenie 6.10. Przypuśćmy, że funkcja f(x) jest całkowalna na prze-
dziale [a, b] oraz m ¬ f(x) ¬ M dla a ¬ x ¬ b. Niech g(y) będzie funkcją
ciągłą na [m,M ]. Wtedy funkcja złożona g(f(x)) jest całkowalna na [a, b].
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Dowód. Ustalmy liczbę ε > 0. Istnieje liczba δ > 0 taka, że jeśli |y1−y2| < δ,
to |g(y1) − g(y2)| < ε. Z całkowalności funkcji f można znaleźć podział P
taki, że

U(P , f)− L(P , f) =
n∑
i=1

(Mi −mi)∆xi < δε.

Jeśli liczba Mi −mi jest duża, to liczba ∆xi musi być mała. Niech

A = {i : Mi −mi < δ}, B = {i : Mi −mi ­ δ}.

Dla i ∈ A maksymalna rozpiętość wartości funkcji f na przedziale [xi−1, xi]
jest mniejsza od δ. Zatem maksymalna rozpiętość wartości funkcji g(f(x))
na tym przedziale jest mniejsza od ε. Oznaczmy

M∗
i = sup

xi−1¬x¬xi
g(f(x)), m∗i = inf

xi−1¬x¬xi
g(f(x)), K = max

m¬y¬M
|g(y)|.

Wtedy

U(P , g ◦ f)− L(P , g ◦ f) =
n∑
i=1

(M∗
i −m∗i )∆xi

=
∑
i∈A

(M∗
i −m∗i )∆xi +

∑
i∈B

(M∗
i −m∗i )∆xi ¬ ε

∑
i∈A

∆xi + 2K
∑
i∈B

∆xi

¬ ε(b− a) +
2K
δ

∑
i∈B

(Mi −mi)∆xi ¬ ε(b− a) +
2K
δ

n∑
i=1

(Mi −mi)∆xi

¬ ε(b− a) +
2K
δ
δε = ε(b− a+ 2K).

Wniosek 6.11. Jeśli funkcje f i g są całkowalne na przedziale [a, b], to
również funkcje |f |, f 2 oraz fg są całkowalne. Ponadto∣∣∣∣∣∣

b∫
a

f(x) dx

∣∣∣∣∣∣ ¬
b∫
a

|f(x)| dx.

Dowód. Dla funkcji |f | i f 2 stosujemy poprzednie twierdzenie z g(y) = |y| i
g(y) = y2. Dalej

fg =
1
4

(f + g)2 − 1
4

(f − g)2.
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Stąd fg jest całkowalna. Mamy −|f(x)| ¬ f(x) ¬ |f(x)|. Całkując nierów-
ność otrzymamy

−
b∫
a

|f(x)| dx ¬
b∫
a

f(x) dx ¬
b∫
a

|f(x)| dx.

Uwaga. Metody szacowania wartości całek.

1. Obliczenie wartości całki.

2. m(b− a) ¬
b∫
a

f(x) dx ¬M(b− a).

3. Znaleźć funkcje g(x) i h(x) takie, że g(x) ¬ f(x) ¬ h(x). Wtedy

b∫
a

g(x) dx ¬
b∫
a

f(x) dx ¬
b∫
a

h(x) dx.

3. L(P , f) ¬
b∫
a

f(x) dx ¬ U(P , f).

Przykład. Stosując metodę 2 otrzymamy

2 ¬
2∫

0

√
1 + x4 dx ¬ 2

√
17.

Lepszy wynik uzyskamy rozdzielając całkę

2∫
0

√
1 + x4 dx =

1∫
0

√
1 + x4 dx+

2∫
1

√
1 + x4 dx.

Wtedy

1 +
√

2 ¬
2∫

0

√
1 + x4 dx ¬

√
2 +
√

17.
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6.1 Zasadnicze twierdzenie rachunku różniczkowego i
całkowego

Twierdzenie 6.12. Jeśli funkcja f(x) jest całkowalna na [a, b] to funkcja

F (x) =
x∫
a

f(t) dt jest ciągła na [a, b]. Jeśli f jest ciągła w punkcie x0, to F (x)

jest różniczkowalna w x0 oraz F ′(x0) = f(x0) dla a < x0 < b i F ′+(a) = f(a),
F ′−(b) = f(b).

Dowód. Załóżmy, że |f(x)| ¬M, czyli −M ¬ f(x) ¬M. Dla a ¬ x1 ¬ x2 ¬
b mamy

|F (x2)− F (x1)| =

∣∣∣∣∣∣
x2∫
a

f(t) dt−
x1∫
a

f(t) dt

∣∣∣∣∣∣ =

∣∣∣∣∣∣
x2∫
x1

f(t) dt

∣∣∣∣∣∣ ¬M(x2 − x1)

Jeśli f jest ciagła w x0, to dla liczby ε > 0 można znaleźć liczbę δ > 0 taką,
że dla |t − x0| < δ mamy |f(t) − f(x0)| < ε. Załóżmy, że 0 < |x − x0| < δ.
Wtedy

∣∣∣∣∣F (x)− F (x0)
x− x0

− f(x0)

∣∣∣∣∣ =

∣∣∣∣∣∣ 1
x− x0

 x∫
a

f(t) dt−
x0∫
a

f(t) dt

− f(x0)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1
x− x0

x∫
x0

f(t) dt− 1
x− x0

x∫
x0

f(x0) dt

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1
x− x0

x∫
x0

[f(t)− f(x0)] dt

∣∣∣∣∣∣

¬



1
x− x0

x∫
x0

|f(t)− f(x0)| dt dla x > x0,

1
x0 − x

x0∫
x

|f(t)− f(x0)| dt dla x < x0.

.

W obu przypadkach argument całkowania t leży pomiędzy x0 i x. Zatem
|t − x0| ¬ |x − x0| < δ. Wtedy |f(t) − f(x0)| < ε. W obu przypadkach
funkcja podcałkowa jest mniejsza niż ε. Zatem niezależnie od przypadku
otrzymujemy oszacowanie przez ε. W przypadku x > x0 dostajemy F ′+(x0) =
f(x0) a z x < x0 wnioskujemy, że F ′−(x0) = f(x0).

Wniosek 6.13. Dla funkcji f(x) ciągłej na przedziale [a, b] istnieje funkcja
F (x) taka, że F ′(x) = f(x) dla a < x < b oraz F ′+(a) = f(a) i F ′−(b) = f(b).
Funkcję F (x) nazywamy funkcją pierwotną do funkcji f(x).



Całka Riemanna 99

Twierdzenie 6.14 (Zasadnicze twierdzenie rric). Jeśli funkcja f(x) jest cał-
kowalna na [a, b] oraz F (x) jest funkcją pierwotną do f(x), to

b∫
a

f(x) dx = F (b)− F (a) = F (x)
∣∣∣∣x=b

x=a
.

Dowód. Dla liczby ε > 0 bierzemy podział P taki, że

U(P , f)− L(P , f) < ε.

Niech x0, x1, . . . , xn oznaczają punkty podziału P . Wtedy z twierdzenia La-
grange’a otrzymujemy

F (b)− F (a) = F (x1)− F (x0) + F (x2)− F (x1) + . . .+ F (xn)− F (xn−1)

=
n∑
i=1

F ′(ti)∆xi =
n∑
i=1

f(ti)∆xi =: S(P , f),

dla pewnych punktów xi−1 ¬ ti ¬ xi. Mamy

L(P , f) ¬ S(P , f) ¬ U(P , f),

L(P , f) ¬
b∫
a

f(x) dx ¬ U(P , f).

Zatem ∣∣∣∣∣∣F (b)− F (a)−
b∫
a

f(x) dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣S(P , f)−
b∫
a

f(x) dx

∣∣∣∣∣∣ < ε.

Uwaga. Wzór w twierdzeniu jest prawdziwy również dla a ­ b.

Przykłady.

(a)
1∫

0

xn dx =
1

n+ 1
xn+1

∣∣∣∣1
0

=
1

n+ 1
.

(b)
1∫

0

1
1 + x2

dx = arctg x
∣∣∣∣1
0

=
π

4
.
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Twierdzenie 6.14 może być użyte do obliczania różnego rodzaju granic.

Przykłady.

(a) Chcemy obliczyć

lim
n

( 1
n2

+
3
n2

+ . . .+
2n− 1
n2

)
.

Wyrażenie pod granicą możemy zapisać w postaci

1
n

( 1
n

+
3
n

+ . . .+
2n− 1
n

)
.

Przyjmijmy, że xi =
2i
n

oraz ti =
xi−1 + xi

2
. Mamy ∆xi =

2
n
. Zatem

wyrażenie pod granicą ma postać sumy całkowej dla całki
1
2

2∫
0

x dx = 1.

Stąd granica wynosi 1. Można zauważyć, że wyrażenie pod granicą jest
równe 1, niezależnie od wartości n.

(b) Mamy do obliczenia

lim
n

(
1√

n2 + 1
+

1√
n2 + 22

+ . . .+
1√

n2 + n2

)

= lim
n

1
n

 1√
1 + 1

n2

+
1√

1 + 22
n2

+ . . .+
1√

1 + n2

n2

 =
1∫

0

1√
1 + x2

dx

= log(x+
√
x2 + 1)

∣∣∣∣1
0

= log(1 +
√

2).

——————————————————————————————–

Twierdzenie 6.15 (Całkowanie przez podstawienie). Przypuśćmy, że
funkcja f(u) jest ciągła, a funkcja ϕ(x) jest różniczkowalna w sposób
ciągły na przedziale [a, b] oraz zbiór wartości ϕ([a, b]) jest zawarty w
obszarze określoności funkcji f. Wtedy

b∫
a

f(ϕ(x))ϕ′(x) dx =
ϕ(b)∫
ϕ(a)

f(u) du. (6.8)
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Dowód. Symbolem F oznaczymy funkcję pierwotną do f. Wtedy

[F (ϕ(x))]′ = F ′(ϕ(x))ϕ′(x) = f(ϕ(x))ϕ′(x).

Z Twierdzenia 6.14 otrzymujemy zatem

b∫
a

f(ϕ(x))ϕ′(x) dx = F (ϕ(x))
∣∣∣∣b
a

= F (ϕ(b))− F (ϕ(a)) =
ϕ(b)∫
ϕ(a)

f(u) du.

Uwaga. Patrząc mechanicznie na wzór (6.8) widzimy, że nastąpiła za-
miana u = ϕ(x) i du = ϕ′(x) dx, oraz końce przedziału całkowania
zostały odpowiednio zmodyfikowane.

Przykłady.

(a) Dla całki
π/2∫
0

sinx cosx dx stosujemy podstawienie u = sinx =: ϕ(x),

f(u) = u. Wtedy du = cosx dx. W wyniku otrzymujemy
1∫

0

u du =
1
2
.

(b) Wzór (6.8) może być zastosowany w przeciwną stronę. Rozważmy całkę

1∫
0

du√
1 + u2

.

Zastosujemy podstawienie u = sinh x. Wtedy du = cosh x dx. Trzeba
znaleźć granice całkowania a i b odpowiadające liczbom 0 i 1. W tym
celu rozwiązujemy równania sinh a = 0 i sinh b = 1. Otrzymujemy
a = 0. Drugie równanie przekształcamy do postaci

1
2
e2b − eb − 1

2
= 0.

Jedynym dodatnim pierwiastkiem trójmianu kwadratowego jest 1+
√

2.
Zatem eb = 1 +

√
2, czyli b = log(1 +

√
2). Otrzymujemy więc

1∫
0

du√
1 + u2

=
log(1+

√
2)∫

0

coshx√
1 + sinh2 x

dx =
log(1+

√
2)∫

0

dx = log(1 +
√

2),
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bo coshx =
√

1 + sinh2 x.

Twierdzenie 6.16 (Całkowanie przez części). Załóżmy, że funkcje u i v są
ciągłe natomiast u′ i v′ są całkowalne w sensie Riemanna na przedziale [a, b].
Wtedy

b∫
a

u′(x)v(x) dx = u(x)v(x)
∣∣∣∣b
a
−

b∫
a

u(x)v′(x) dx.

Dowód. Mamy (uv)′ = u′v + uv′. Z Twierdzenia 6.14 otrzymujemy więc

u(x)v(x)
∣∣∣∣b
a

=
b∫
a

[u′(x)v(x) + u(x)v′(x)] dx =
b∫
a

u′(x)v(x) dx+
b∫
a

u(x)v′(x) dx.

Przykład.
π∫

0

x sinx dx = −x cosx
∣∣∣∣π
0

+
π∫

0

cosx dx = π.

Uwaga. Często łatwiej znaleźć funkcję pierwotną zamiast stosować całkowa-

nie przez części. W przykładzie (−x cosx+ sinx)′ = x sinx. Główną częścią
funkcji pierwotnej jest składnik −x cosx. Po obliczeniu pochodnej pojawia
się dodatkowy składnik − cosx. Stąd w funkcji pierwotnej występuje korek-

ta o sinx. Podobnie przy obliczaniu całki
1∫

0

x2ex dx możemy łatwo znaleźć

funkcję pierwotną metodą korekt. Otrzymamy

(x2ex − 2xex + 2ex)′ = x2ex.

Zatem
1∫

0

x2ex dx = (x2 − 2x+ 2)ex
∣∣∣∣1
0

= e− 2.

Twierdzenie 6.17 (Reszta we wzorze Taylora w postaci całkowej). Jeśli
funkcja f(x) jest n + 1-krotnie różniczkowalna w sposób ciągły w otoczeniu
punktu a, to dla punktów b z tego otoczenia mamy

f(b) = f(a) +
(b− a)

1!
f ′(a) +

(b− a)2

2!
f ′′(a) + . . .+

(b− a)n

n!
f (n)(a) +Rn+1,
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gdzie

Rn+1 =
1
n!

b∫
a

(b− x)nf (n+1)(x) dx.

Dowód. Zastosujemy wielokrotne całkowanie przez części.

f(b) = f(a) +
b∫
a

f ′(x) dx = f(a)−
b∫
a

(b− x)′f ′(x) dx

= f(a)− (b− x)f ′(x)
∣∣∣∣b
a

+
b∫
a

(b− x)f ′′(x) dx

= f(a) + f ′(a)(b− a) +
1
2

b∫
a

[−(b− x)2]′f ′′(x) dx

= f(a) + f ′(a)(b− a) +
1
2

(b− a)2f ′′(a) +
1
2

b∫
a

(b− x)2f ′′′(x) dx

= ... = f(a) +
(b− a)

1!
f ′(a) +

(b− a)2

2!
f ′′(a) + . . .+

(b− a)n

n!
f (n)(a) +Rn+1.

Twierdzenie 6.18 (Twierdzenie o wartości średniej). Funkcje f i g są cał-
kowalne na [a, b], przy czym g(x) ­ 0 dla a ¬ x ¬ b. Wtedy

b∫
a

f(x)g(x) dx = λ

b∫
a

g(x) dx

dla liczby λ leżącej pomiędzy kresami dolnym m i górnym M funkcji f.

Dowód. Mamy mg(x) ¬ f(x)g(x) ¬Mg(x). Całkując otrzymamy

m

b∫
a

g(x) dx ¬
b∫
a

f(x)g(x) dx ¬M

b∫
a

g(x) dx.

Jeśli
b∫
a
g(x) dx = 0, to również

b∫
a
f(x)g(x) dx = 0. W przypadku

b∫
a
g(x) dx > 0

otrzymujemy

m ¬

b∫
a
f(x)g(x) dx

b∫
a
g(x) dx

¬M.
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Przykład.
π∫

0

f(x) sinx dx = λ

π∫
0

sinx dx = 2λ

dla pewnej liczby m ¬ λ ¬M.

Wniosek 6.19. Jeśli funkcja f jest ciągła a funkcja g(x) nieujemna i cał-
kowalna, to

b∫
a

f(x)g(x) dx = f(ξ)
b∫
a

g(x) dx

dla pewnego punktu a ¬ ξ ¬ b.

Dowód. Z poprzedniego twierdzenia mamy m ¬ λ ¬M. Z własności Darbo-
ux można znaleźć ξ taki, że f(ξ) = λ.

Przykład. Jeśli f jest ciągła, to

π∫
0

f(x) sinx dx = 2f(ξ).

Twierdzenie 6.20. Jeśli g(x) jest nieujemną funkcją rosnącą a f(x) funkcją
całkowalną na [a, b], to

b∫
a

f(x)g(x) dx = g(b)
b∫
ξ

f(x) dx (6.9)

dla pewnego punktu ξ z przedziału [a, b].

Dowód. Założymy, że g jest różniczkowalna w sposób ciągły i że f jest ciągła.
Określmy

F (x) =
b∫
x

f(t) dt.
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Wtedy F ′(x) = −f(x). Zatem

b∫
a

f(x)g(x) dx =
b∫
a

(−F (x))′g(x) dx

= −F (x)g(x)
∣∣∣∣b
a

+
b∫
a

F (x)g′(x) dx = F (a)g(a) +
b∫
a

F (x)g′(x) dx.

Niech m i M oznaczają kresy dolny i górny funkcji F. Z Twierdzenia 6.18
otrzymujemy

b∫
a

f(x)g(x) dx ­ mg(a) +m

b∫
a

g′(x) dx = mg(b).

Podobnie
b∫
a

f(x)g(x) dx ¬Mg(b).

Jeśli g(b) > 0, to

m ¬ 1
g(b)

b∫
a

f(x)g(x) dx ¬M.

Z własności Darboux dla funkcji F (x) dostajemy

1
g(b)

b∫
a

f(x)g(x) dx = F (ξ) =
b∫
ξ

f(x) dx

dla pewnego punktu ξ w [a, b].

Uwaga. Jeśli g(x) jest nieujemna i malejąca, to

b∫
a

f(x)g(x) dx = g(a)
ξ∫
a

f(x) dx

Przykład. Dla 0 < a < b mamy

b∫
a

sinx
x

dx =
1
a

ξ∫
a

sinx dx =
cos a− cos ξ

a
.
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Zatem ∣∣∣∣∣∣
b∫
a

sinx
x

dx

∣∣∣∣∣∣ ¬ 2
a
.

——————————————————————————————–

6.2 Wzory Wallisa i Stirlinga

Dla dwu ciągów liczb dodatnich an i bn zapis an ≈ bn oznacza, że
an
bn
−→
n

1.

We wzorze (
2n
0

)
+ . . .+

(
2n
n

)
+ . . .+

(
2n
2n

)
= 4n

liczba
(

2n
n

)
jest największa. Wzór Wallisa podaje informację jaki jest stosu-

nek tej liczby do sumy wszystkich symboli, czyli do 4n.

Twierdzenie 6.21 (Wzór Wallisa).

lim
n

(n!)24n

(2n)!
√
n

=
√
π.

Tzn.
(

2n
n

)
≈ 4n√

πn
.

Dowód. Oznaczmy In =
π/2∫
0

sinn x dx. Mamy I0 =
π

2
oraz I1 = 1. Dalej dla

n ­ 2 mamy

In =
π/2∫
0

(− cosx)′(sinx)n−1 dx

= − cosx (sinx)n−1
∣∣∣∣π/2
0

+ (n− 1)
π/2∫
0

cos2 x (sinx)n−2 dx

= (n− 1)
π/2∫
0

[1− sin2 x] (sinx)n−2 dx = (n− 1)In−2 − (n− 1)In.
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Zatem
In =

n− 1
n

In−2. (6.10)

Poprzez iterację (6.10) otrzymujemy

I2n =
2n− 1

2n
I2n−2 = . . . =

(2n− 1)(2n− 3) . . . 3 · 1
2n(2n− 2) . . . 4 · 2

I0 =
(2n)!

4n(n!)2

π

2
,

(6.11)

I2n+1 =
2n

2n+ 1
I2n−1 = . . . =

(2n)(2n− 2) . . . 4 · 2
(2n+ 1)(2n− 1) . . . 5 · 3

I1 =
4n(n!)2

(2n+ 1)!
.

(6.12)

Ciąg In jest malejący, czyli I2n+2 ¬ I2n+1 ¬ I2n. Zatem na podstawie (6.10)
dostajemy

2n+ 1
2n+ 2

=
I2n+2

I2n
¬ I2n+1

I2n
¬ 1.

Wnioskujemy, że I2n+1/I2n −→
n

1. Stąd korzystając z (6.11) i (6.12) mamy

1←−
n

√
I2n+1

I2n
=

√√√√ 4n(n!)2

(2n+ 1)!
4n(n!)2

(2n)!
2
π

=
4n(n!)2

(2n)!
√
πn

√
2n

2n+ 1
.

Twierdzenie 6.22 (Wzór Stirlinga).

lim
n

n!
nne−n

√
2πn

= 1,

tzn. n! ≈ nne−n
√

2πn.

Dowód. Udowodnimy następującą nierówność, z której wynika teza twierdze-
nia.

nne−n
√

2πn < n! ¬ nne−n
√

2πn e
1
4n . (6.13)

Oznaczmy

an =
n!

nn+ 12 e−n
=
n! en

nn+ 12
.

Wtedy
an
an+1

=
1

(n+ 1)e
(n+ 1)n+ 32

nn+ 12
=

1
e

(
1 +

1
n

)n+ 12
.
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Dalej

log
an
an+1

=
(
n+

1
2

)
log

(
1 +

1
n

)
− 1.

Rozważmy fragment wykresu funkcji y = 1/x od punktu x1 = n do punktu
x2 = n + 1. Wykres jest wypukły w dół. Zatem pole trapezu pod sieczną
przechodzącą przez punkty (x1, 1/x1) i (x2, 1/x2) jest większe niż pole pod
wykresem funkcji. Z kolei to ostatnie pole jest większe niż pole trapezu pod
styczną do wykresu w punkcie (x3, 1/x3) dla x3 = (x1 + x2)/2 = n+ 1

2 . Pole
pod wykresem wynosi

n+1∫
n

1
x
dx = log(n+ 1)− log n = log

(
1 +

1
n

)
.

Zatem
1

n+ 1
2

< log
(

1 +
1
n

)
<

1
2

( 1
n

+
1

n+ 1

)
=

n+ 1
2

n(n+ 1)
.

Pomnóżmy nierówność przez n+ 1
2 i odejmijmy 1. Wtedy

0 <
(
n+

1
2

)
log

(
1 +

1
n

)
− 1 <

(
n+ 1

2

)2

n(n+ 1)
− 1 =

1
4n(n+ 1)

.

To oznacza, że

0 < log
an
an+1

<
1
4

( 1
n
− 1
n+ 1

)
,

czyli

1 ¬ an
an+1

<
e
1
4n

e
1

4(n+1)
.

Stąd ciąg an jest malejący. Niech α = lim
n
an. Ostatnia nierówność pociąga

również

1 ¬ an
an+k

<
e
1
4n

e
1

4(n+k)
.

Przechodzimy do granicy, gdy k →∞. Otrzymujemy

1 <
an
α
¬ e

1
4n . (6.14)

To oznacza, że α > 0. Obliczymy teraz wartość liczby α. Mamy

a2
n

a2n
√

2
=

(n!)2e2n

n2n+1

(2n)2n+ 12

(2n)!e2n
√

2
=

(n!)24n

(2n)!
√
n
−→
n

√
π.
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Ale
a2
n

a2n
√

2
−→
n

α2

α
√

2
=

α√
2
.

Stąd α =
√

2π. Z (6.14) uzyskujemy

1 <
an√
2πn

¬ e
1
4n ,

co jest równoznaczne z (6.13).

Twierdzenie 6.23. Ciąg funkcji fn ciągłych na przedziale [a, b] jest jedno-
stajnie zbieżny do funkcji f. Wtedy

lim
n

b∫
a

fn(x) dx =
b∫
a

f(x) dx.

Uwaga. Twierdzenie mówi, że

lim
n

b∫
a

fn(x) dx =
b∫
a

lim
n
fn(x) dx,

tzn. można wejść z granicą pod znak całki, przy zbieżności jednostajnej.

Dowód. Dla ustalonej liczby ε > 0 można znaleźć próg N taki, że dla n > N
oraz a ¬ x ¬ b mamy |fn(x)− f(x)| < ε/(b− a), czyli

f(x)− ε

b− a
< fn(x) < f(x) +

ε

b− a
.

Całkując otrzymamy

b∫
a

f(x) dx− ε <
b∫
a

fn(x) dx <
b∫
a

f(x) dx+ ε,

tzn. ∣∣∣∣∣∣
b∫
a

fn(x) dx−
b∫
a

f(x) dx

∣∣∣∣∣∣ < ε.
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Przykłady.

(a) fn(x) = xn(1 − x), 0 ¬ x ¬ 1. Można pokazać, że fn(x) ⇒ 0, Zatem
1∫

0

fn(x) dx −→
n

0.

(b) fn(x) = xn. Mamy

fn(x) −→
n

0 0 ¬ x < 1,
1 x = 1.

Zatem fn(x) nie jest zbieżny jednostajnie, ale
1∫

0

xn dx =
1

n+ 1
−→
n

0.

(c) fn(x) = n3xn(1− x). Mamy fn(x) −→
n

0, dla 0 ¬ x ¬ 1. Ale

1∫
0

n3xn(1− x) dx = n3
( 1
n+ 1

− 1
n+ 2

)
=

n3

(n+ 1)(n+ 2)
−→
n
∞.

6.3 Całka nieoznaczona

Definicja 6.24. Przypuśćmy, że funkcje f(x) i F (x) są określone na usta-
lonym przedziale i spełniają F ′(x) = f(x). Funkcję F (x) nazywamy funkcją
pierwotną do funkcji f(x) lub całką nieoznaczoną funkcji f(x) i zapisujemy∫

f(x) dx = F (x).

Jeśli G(x) jest inną funkcją pierwotną do f(x), to G(x) = F (x) + C dla
pewnej stałej C. Rzeczywiście,

(G(x)− F (x))′ = G′(x)− F ′(x) = f(x)− f(x) = 0.

Zatem funkcja G(x) − F (x) jest stała na przedziale. Stwierdzenie nie jest
prawdziwe dla dwu przedziałów. Na przykład niech x ∈ (0, 1) ∪ (2, 3). Niech
F (x) = x2 oraz

G(x) =

x2 + 1 0 < x < 1,
x2 − 1 2 < x < 3.
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Wtedy G′(x) = F ′(x) = 2x.

Przykład. ∫ 1
x
dx =

log x x > 0,
log(−x) x < 0

= log |x|.

Zapis stosowany w wielu podręcznikach∫ 1
x
dx = log |x|+ C

jest mylący, bo sugeruje, że na obu półprostych dodatniej i ujemnej musimy
wziąć tę samą stałą.

——————————————————————————————–

Twierdzenie 6.25.∫
[f(x) + g(x)] dx =

∫
f(x) dx+

∫
g(x) dx,∫

cf(x) dx = c
∫
f(x) dx.

Twierdzenie 6.26 (Całkowanie przez podstawienie). Załóżmy, że funkcja
ϕ(x) jest różniczkowalna w sposób ciągły natomiast funkcja f(u) jest ciągła
na zbiorze wartości funkcji ϕ. Wtedy∫

f(ϕ(x))ϕ′(x) dx = F (ϕ(x)),

gdzie F (u) =
∫
f(u) du.

Dowód.
d

dx
F (ϕ(x)) = F ′(ϕ(x))ϕ′(x) = f(ϕ(x))ϕ′(x).

Uwaga. Tezę możemy zapisać w postaci∫
f(ϕ(x))ϕ′(x) dx = F (u), gdzie u = ϕ(x).

Inaczej ∫
f(ϕ(x))ϕ′(x) dx =

∫
f(u) du, gdzie u = ϕ(x).

Stosowanie twierdzenia
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1. Chcemy obliczyć
∫
f(ϕ(x))ϕ′(x) dx. Obliczamy

∫
f(u) du i po wyko-

naniu obliczeń podstawiamy u = ϕ(x). Formalnie wyrażenie ϕ′(x) dx
zamieniło się na du, tzn. du = ϕ′(x) dx. To jest zgodne z zapisem Le-

ibniza, bo ϕ(x) =
du

dx
.

2. Chcemy obliczyć
∫
f(u) du. Podstawiamy u = ϕ(x).Obliczamy

∫
f(ϕ(x))ϕ′(x) dx.

Następnie pozbywamy się zmiennej x przez podstawienie u = ϕ(x). Po-
nownie du = ϕ′(x) dx.

Przykłady.

(a) ∫
e−
√
x dx =

∫
2
√
xe−

√
x 1
2
√
x
dx.

Stosujemy podstawienie u = ϕ(x) =
√
x, f(u) = 2ue−u. Zatem du =

1√
x
dx. Otrzymujemy więc

∫
e−
√
x dx =

∫
2ue−u du = −2ue−u − 2e−u = −2

√
xe−

√
x − 2e−

√
x.

(b)

∫
sin
√
u du =

u=x2

∫
sinx 2x dx = −2x cosx+ 2 sinx

= −2
√
u sin

√
u+ 2 sin

√
u.

Twierdzenie 6.27 (Całkowanie przez części).∫
f ′(x)g(x) dx = f(x)g(x)−

∫
f(x)g′(x) dx.

Dowód. Mamy (f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x). Zatem

f(x)g(x) =
∫
f ′(x)g(x) dx+

∫
f(x)g′(x) dx.
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Przykłady.

(a)
∫
xe−x dx =

∫
(−e−x)′x dx = −xe−x +

∫
e−x dx = −xe−x − e−x.

(b)
∫

log x dx =
∫
x′ log x dx = x log x−

∫
x

1
x
dx = x log x− x.

(c)
∫
ex sinx dx = ex sinx−

∫
ex cosx = ex sinx−

[
ex cosx+

∫
ex sinx dx

]
.

(d)
∫ cosx

sinx
dx =

sinx
sinx

−
∫

sinx
(
− cosx

sin2 x

)
dx = 1 +

∫ cosx
sinx

dx.

6.4 Całkowanie funkcji wymiernych

Będziemy się zajmowali obliczeniem
∫ p(x)
q(x)

dx, gdzie p(x) i q(x) są wielo-

mianami. Jeśli deg p ­ deg q, to wykonujemy dzielenie z resztą

p(x) = w(x)q(x) + r(x), deg r < deg q.

Wtedy
p(x)
q(x)

= w(x) +
r(x)
q(x)

.

Przykłady.

(a)
∫ 1
x
dx = log |x|. Zatem

∫ f ′(x)
f(x)

dx = log |f(x)|.

(b)

∫ dx

(x− 2)(x− 3)
=
∫ ( 1

x− 3
− 1
x− 2

)
dx

= log |x− 3| − log |x− 2| = log
∣∣∣∣x− 3
x− 2

∣∣∣∣ .
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Ogólnie przy całkowaniu r(x)/q(x) rozkładamy mianownik na czynniki
postaci (x− α)n oraz [(x− β)2 + γ2]m. Wtedy wyrażenie r(x)/q(x) rozkłada
się na sumę wyrażeń postaci

c1

x− α
+

c2

(x− α)2
+ . . .+

cn
(x− α)n

,

d1x+ e1

(x− β)2 + γ2
+

d2x+ e2

[(x− β)2 + γ2]2
+ . . .+

dmx+ em
[(x− β)2 + γ2]m

.

Przykład. ∫ dx

x3 + 1
dx =

∫ dx

(x+ 1)(x2 − x+ 1)
.

Wiemy, że
1

(x+ 1)(x2 − x+ 1)
=

A

x+ 1
+

Bx+ C

x2 − x+ 1
. (6.15)

Chcemy znaleźć stałe A, B i C.
Sposób I.
Mnożymy obie strony równości przez x + 1 i podstawiamy x = −1. Otrzy-

mujemy A =
1
3
. Dalej

1
(x+ 1)(x2 − x+ 1)

− 1
3(x+ 1)

=
−x2 + x+ 2

3(x+ 1)(x2 − x+ 1)

= − (x+ 1)x− 2)
3(x+ 1)(x2 − x+ 1)

= − x− 2
3(x2 − x+ 1)

.

Ostatecznie otrzymaliśmy

1
(x+ 1)(x2 − x+ 1)

=
1

3(x+ 1)
− x− 2

3(x2 − x+ 1)
. (6.16)

Sposób II.
Mnożymy równość (6.15) przez (x+ 1)(x2 − x+ 1) i otrzymujemy

1 = A(x2− x+ 1) + (Bx+C)(x+ 1) = (A+B)x2 + (B +C −A)x+A+C.

Następnie rozwiązujemy układ równań

A+B = 0,
B + C − A = 0,

A+ C = 1.
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Na podstawie (6.16) obliczamy∫ dx

3(x+ 1)
=

1
3

log |x+ 1|.

Dalej

x− 2
x2 − x+ 1

=
1
2

2x− 1
x2 − x+ 1

− 3
2

1
x2 − x+ 1

,

1
x2 − x+ 1

=
1(

x− 1
2

)2
+ 3

4

=
4
3

1[
2√
3

(
x− 1

2

)]2
+ 1

.

Ostatecznie otrzymujemy wynik∫ dx

x3 + 1
dx =

1
3

log |x+ 1| − 1
6

log(x2 − x+ 1) +
1√
3

arctg
2x− 1√

3
.

Przykład.
∫ dx

(x− 1)2(x2 + 1)
.

Mamy
1

(x− 1)2(x2 + 1)
=

A

x− 1
+

B

(x− 1)2
+
Cx+D

x2 + 1
. (6.17)

Jak najszybciej znaleźć stałe A, B, C i D ? Oznaczmy f(x) = 1/(x2 + 1).
Mnożymy równość przez (x − 1)2 i podstawiamy x = 1. Dostajemy B =
f(1) = 1

2 . Przekształcamy równość do postaci

f(x)
(x− 1)2

− f(1)
(x− 1)2

=
Cx+D

x2 + 1
.

Po pomnożeniu przez x− 1 otrzymujemy

f(x)− f(1)
x− 1

= A+ (x− 1)
Cx+D

x2 + 1
.

Czyli

A = lim
x→1

f(x)− f(1)
x− 1

= f ′(1) =
−2x

(x2 + 1)2

∣∣∣∣
x=1

= −1
2
.

Na podstawie (6.17) obliczamy

1
(x− 1)2(x2 + 1)

− 1
2

1
(x− 1)2

+
1
2

1
x− 1

=
2− (x2 + 1) + (x− 1)(x2 + 1)

2(x− 1)2(x2 + 1)
=

x(x− 1)2

2(x− 1)2(x2 + 1)
=

x

2(x2 + 1)
.
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Ostatecznie otrzymujemy∫ dx

(x− 1)2(x2 + 1)
= −1

2
log |x− 1| − 1

2(x− 1)
+

1
4

log(x2 + 1).

Ogólnie, rozważamy składnik postaci
f(x)

(x− a)k
, gdzie f(x) jest funkcją

nieskończenie wiele razy różniczkowalną w punkcie a. Ze wzoru Taylora mamy

f(x) = f(a) +
x− a

1!
f ′(a) + . . .+

(x− a)k−1

(k − 1)!
f (k−1)(a) +

(x− a)k

k!
f (k)(ξ),

dla pewnego punktu ξ pomiędzy a i x. Wtedy

f(x)
(x− a)k

=
f(a)

(x− a)k
+

f ′(a)
(x− a)k−1

+ . . .+
f (k−1)(a)

(k − 1)!(x− a)
+Rk(x),

oraz

lim
x→a

Rk(x) = lim
ξ→a

f (k)(ξ)
k!

=
f (k)(a)
k!

,

co oznacza, że w mianowniku funkcji Rk(x) nie występuje czynnik x − a.
Każdy składnik postaci ck/(x− α)k całkujemy według wzorów∫ dx

(x− α)k
= − 1

k − 1
1

(x− α)k−1
, k ­ 0,∫ dx

x− α
= log |x− α|.

Składniki postaci
(dkx+ ek)

[(x− β)2 + γ2]k

przez podstawienie afiniczne sprowadzamy do wyrażeń postaci

(d̃ku+ ẽk)
(u2 + 1)k

.

——————————————————————————————–

Dalej
(d̃ku+ ẽk)
(u2 + 1)k

= d̃k
u

(u2 + 1)k
+ ẽk

1
(u2 + 1)k

.
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∫ u

(u2 + 1)k
=


1
2

log(u2 + 1) k = 1,

− 1
2(k − 1)

1
(u2 + 1)k−1

k ­ 2.

Oznaczy Ik =
∫ du

(u2 + 1)k
. Wtedy I1 = arctg u oraz

Ik =
∫
u′

1
(u2 + 1)k

du =
u

(u2 + 1)k
+ k

∫ 2u2 du

(u2 + 1)k+1

=
u

(u2 + 1)k
+ 2k

∫ [(u2 + 1)− 1] du
(u2 + 1)k+1

=
u

(u2 + 1)k
+ 2kIk − 2kIk+1.

Otrzymujemy więc

Ik+1 =
1
2k

u

(u2 + 1)k
+

2k − 1
2k

Ik.

6.5 Podstawienie wykładnicze i trygonometryczne

Przykłady.

(a)
∫ √

1− ex dx. Podstawiamy u = ex, du = ex dx czyli dx =
du

u
, aby

otrzymać ∫ √
1− ex dx =

∫ √1− u
u

du.

Następnie podstawiamy v =
√

1− u. Wtedy u = 1 − v2, czyli du =
−2v dv.

∫ √1− u
u

du =
∫ v

1− v2
(−2v) dv =

∫ 2v2

v2 − 1
dv = 2

∫ (
1 +

1
v2 − 1

)
dv

= 2v
∫ ( 1

v − 1
− 1
v + 1

)
dv = 2v + log |v − 1| − log |v + 1|

= 2
√

1− ex + log(1−
√

1− ex)− log(1 +
√

1− ex)

= 2
√

1− ex + log
ex

1 +
√

1− ex
− log(1 +

√
1− ex)

= 2
√

1− ex + x− 2 log(1 +
√

1− ex).
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(b) Przypomnimy podstawowe wzory dotyczące funkcji hiperbolicznych.

cosh2 x = sinh2 x+ 1,
sinh 2x = 2 sinh x coshx,

cosh 2x = 2 cosh2 x− 1 = 2 sinh2 x+ 1.

W całce
∫ √

x2 + 1 dx wykonujemy podstawienie x = sinh t. Wtedy
dx = cosh t dt. Zatem∫ √

x2 + 1 dx =
∫

cosh2 t dt =
1
2

∫
[cosh 2t+ 1] dt

=
1
2
t+

1
4

sinh 2t =
1
2
t+

1
2

sinh t cosh t

Z równości x = (et − e−t)/2 otrzymujemy

1
2
e2t − xet − 1

2
= 0.

Wtedy et = x+
√
x2 + 1 oraz t = log(x+

√
x2 + 1). Zatem∫ √

x2 + 1 dx =
1
2

log(x+
√
x2 + 1) +

1
2
x
√
x2 + 1.

(c) Przy całce
∫ √

x2 − 1 dx x > 1 wykonujemy podstawienie x = cosh t,

t > 0. Wtedy
√
x2 − 1 = sinh t. Zatem

∫ √
x2 − 1 dx =

∫
sinh2 t dt =

1
2

∫
[cosh 2t− 1] dt

= −1
2
t+

1
2

sinh t cosh t =
1
2

log(x+
√
x2 − 1) +

1
2
x
√
x2 − 1.

(c) W całce
∫ √

1− x2 dx wykonujemy podstawienie x = sin t, −π
2 < x <

π
2 . Wtedy

∫ √
1− x2 dx =

∫
cos2 t dt =

1
2

∫
[cos 2t+ 1] dt =

1
4

sin 2t+
1
2
t

=
1
2

sin t cos t+
1
2
t =

1
2
x
√

1− x2 +
1
2

arcsinx.
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Rozważamy wyrażenie postaci R(x,
√
ax2 + bx+ c), gdzie R(x, y) jest

funkcją wymierną dwu zmiennych. Poprzez podstawienie afiniczne x = αt+β
sprowadzamy wyrażenie do jednej z trzech postaci i wykonujemy podane w
tabeli podstawienia.

R(t,
√
t2 + 1) a > 0, ∆ < 0 t = sinhu

R(t,
√
t2 − 1) a > 0, ∆ > 0 t = coshu

R(t,
√

1− t2) a < 0, ∆ > 0 t = sinu

Otrzymamy w wyniku wyrażenie postaci R(coshu, sinhu) lub R(cosu, sinu).
Jeśli nie potrafimy bezpośrednio wskazać funkcji pierwotnej na tym etapie
wykonujemy podstawienia v = eu lub v = tg u

2 , odpowiednio. Przy podsta-
wieniu v = eu mamy

coshu =
1
2

(v + v−1), sinhu =
1
2

(v − v−1), du =
dv

v
.

Przy podstawieniu v = tg u
2 otrzymujemy

cosu = cos2 u

2
− sin2 u

2
= cos2 u

2

[
1− tg2 u

2

]
= cos2 u

2
(1− v2),

sinu = 2 sin
u

2
cos

u

2
= 2 cos2 u

2
tg
u

2
= 2 cos2 u

2
v,

dv =
1
2

(
1 + tg2 u

2

)
du.

Korzystając ze wzoru

1 + tg2 u

2
=

1
cos2 u

2

otrzymamy

cosu =
1− v2

1 + v2
, sinu =

2v
1 + v2

, du =
2

1 + v2
dv.

Przy obu podstawieniach otrzymujemy funkcję wymierną zmiennej v.

Przykład. Nie zawsze warto sprowadzać obliczenie do całki z funkcji wy-
miernej. Czasami lepiej zastosować wzory trygonometryczne, aby szybciej
osiagnąć cel. Przy zastosowaniu podstawienia v = tg x

2 do całki
∫

cos2 x dx

otrzymamy ∫
cos2 x =

∫ (
1− v2

1 + v2

)2 2
1 + v2

dv.
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Uwaga. Można uniknąć podstawienia trygonometrycznego. Np. w całce
∫ √

1− x2 dx

dla x > 0 możemy zastosować podstawienie x = 1/u. Wtedy dx = −du/u2.
Zatem ∫ √

1− x2 dx = −
∫ √

1− 1
u2

du

u2
= −

∫ √u2 − 1
u3

du.

6.6 Zastosowanie całek oznaczonych do obliczania wiel-
kości fizycznych

Pole obszaru na płaszczyźnie

Jeśli y = f(x) jest nieujemną funkcją ciągłą na [a, b], to pole S obszaru pod
wykresem funkcji i nad osią x wynosi

S =
b∫
a

f(x) dx.

Pole obszaru pomiędzy wykresami dwu funkcji ciągłych f(x) ¬ g(x), a ¬
x ¬ b wynosi zatem

S =
b∫
a

[g(x)− f(x)] dx.

Środek masy obszaru

Zakładamy, że obszar mieści się pomiędzy wykresami funkcji f(x) i g(x), a ¬
x ¬ b, przy czym f(x) ¬ g(x). Przyjmujemy, że masa jest proporcjonalna do
powierzchni. Dzielimy przedział [a, b] na n równych części punktami xi, gdzie
i = 0, 1, . . . , n. Temu odpowiada podział obszaru na n wąskich fragmentów
związanych z przedziałami [xi−1, xi]. Masa fragmentu wynosi w przybliżeniu

mi = [g(xi)− f(xi)]∆xi.

Środek masy tego fragmentu znajduje się w przybliżeniu w punkcie

Xi :=
(
xi,

1
2 [f(xi) + g(xi)]

)
.

Środek masy całego obszaru jest równy w przybliżeniu środkowi masy układu
punktów (Xi,mi) dla i = 1, 2, . . . , n. Środek masy tego układu znajduje się
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w punkcie

X ≈


n∑
i=1

ximi

n∑
i=1

mi

,

n∑
i=1

1
2 [f(xi) + g(xi)]mi

n∑
i=1

mi

 .

Dalej

n∑
i=1

mi =
n∑
i=1

[g(xi)− f(xi)]∆xi −→
n

b∫
a

[g(x)− f(x)] dx,

n∑
i=1

ximi =
n∑
i=1

xi[g(xi)− f(xi)]∆xi −→
n

b∫
a

x[g(x)− f(x)] dx,

1
2

n∑
i=1

[f(xi) + g(xi)]mi =
1
2

n∑
i=1

[g(xi)2 − f(xi)2]∆xi −→
n

1
2

b∫
a

[g(x)2 − f(x)2] dx.

Zatem

X =


b∫
a
x[g(x)− f(x)] dx

b∫
a

[g(x)− f(x)] dx
,

1
2

b∫
a

[g(x)2 − f(x)2] dx

b∫
a

[g(x)− f(x)] dx

 .
Przeanalizujemy błąd występujący w obliczeniach. Dla funkcji h i liczby δ > 0
określamy oscylację wzorem

osc (h, δ) = sup{|h(x)− h(y)| : a ¬ x, y ¬ b, |x− y| < δ }.

Przy obliczaniu pojedynczego składnika błąd nie przekracza

b− a
n

osc
(
h,
b− a
n

)
,

gdzie w roli funkcji h występują funkcje g − f, x(g − f) oraz g2 − f 2. Po
zsumowaniu błąd nie przekracza wielkości

(b− a) osc
(
h,
b− a
n

)
−→
n

0.
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Długość krzywej

Krzywa na płaszczyźnie zadana jest poprzez parametryzację x = x(t), y =
y(t), a ¬ t ¬ b. Zakładamy, że funkcje x(t) i y(t) są różniczkowalne w
sposób ciągły. Chcemy obliczyć długość krzywej. Dzielimy przedział [a, b] na
n równych części punktami ti, i = 0, 1, . . . , n. Fragment krzywej pomiędzy
kolejnymi punktami (x(ti−1), y(ti−1) i (x(ti), y(ti) przybliżamy odcinkiem dla
każdej wartości i = 1, 2, . . . , n. Otrzymamy łamaną o długości

Ln =
n∑
i=1

√
[x(ti)− x(ti−1)]2 + [y(ti)− y(ti−1)]2.

Z twierdzenia Lagrange’a mamy

x(ti)− x(ti−1) = x′(ci)∆ti,
y(ti)− y(ti−1) = y′(di)∆ti,

dla pewnych punktów ci i di pomiędzy ti−1 i ti. Zatem

Ln =
n∑
i=1

√
x′(ci)2 + y′(di)2 ∆ti.

Określmy wielkość

L̃n =
n∑
i=1

√
x′(ci)2 + y′(ci)2 ∆ti −→

n

b∫
a

√
x′(t)2 + y′(t)2 dt.

Dalej

|L̃n − Ln| ¬
n∑
i=1

∣∣∣∣√x′(ci)2 + y′(di)2 −
√
x′(ci)2 + y′(ci)2

∣∣∣∣ .
Skorzystamy z nierówności trójkąta∣∣∣∣√a2

2 + b2
2 −

√
a2

1 + b2
1

∣∣∣∣ ¬ √(a2 − a1)2 + (b2 − b1)2.

Zatem

|L̃n − Ln| ¬
n∑
i=1

|y′(di)− y′(ci)|∆ti ¬ n
b− a
n

osc
(
y′,

b− a
n

)

= (b− a) osc
(
y′,

b− a
n

)
−→
n

0,
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bo funkcja y′ jest jednostajnie ciągła. Reasumując otrzymaliśmy

Ln −→
n

b∫
a

√
x′(t)2 + y′(t)2 dt.

Przyjmujemy więc, że długość krzywej wynosi

L =
b∫
a

√
x′(t)2 + y′(t)2 dt.

Przykład. Okrąg o promieniu r możemy sparametryzować przez x = r cos t,

y = r sin t, 0 ¬ t ¬ 2π. Wtedy

L =
2π∫
0

√
(−r sin t)2 + (r cos t)2 dt = 2πr.

Wracamy do sytuacji ogólnej. Niech s(t) oznacza długość krzywej, gdy czas
zmienia sie od a do t. Wtedy

s(t) =
t∫
a

√
x′(u)2 + y′(u)2 du.

Zatem
s′(t) =

√
x′(t)2 + y′(t)2.

W zapisie Leibniza wzór ma postać

ds

dt
=

√√√√(dx
dt

)2

+
(
dy

dt

)2

.

Używa się też zapisu
ds =

√
(dx)2 + (dy)2.

Niech y = f(x) będzie funkcją różniczkowalną w sposób ciągły na [a, b].
Chcemy obliczyć długość wykresu. Stosujemy parametryzację x = t, y =
f(t). Wtedy

L =
b∫
a

√
1 + f ′(t)2 dt =

b∫
a

√
1 + f ′(x)2 dx.
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Przykład. y =
√

1− x2, −1 ¬ x ¬ 1. Wtedy

L =
1∫
−1

√
1 +

x2

1− x2
dx =

1∫
−1

1√
1− x2

= arcsinx
∣∣∣∣1
−1

= π.

Uwaga. Funkcja podcałkowa nie jest określona dla x = ±1, więc obliczenie

nie jest do końca ścisłe. W celu uściślenia obliczeń można ograniczyć się do
−1+δ ¬ x ¬ 1−δ. W wyniku dostaniemy arcsin(1−δ)−arcsin(−1+δ). Przy
δ → 0+ otrzymamy π. Całkę z funkcji, która nie jest określona w niektórych
punktach przedziału całkowania, nazywamy całką niewłaściwą. Teorią takich
całek zajmiemy się w drugiej części kursu.

Długość krzywej we współrzędnych biegunowych

Dla punktu X(x, y) określamy współrzędne biegunowe (r, θ), gdzie r jest
odległością punktu od początku układu, natomiast θ jest kątem pomiędzy
dodatnią półosią x i półprostą OX. Zatem r =

√
x2 + y2. Ponadto x = r cos θ

i y = r sin θ.
Załóżmy, że krzywa jest zadana przez związek pomiędzy r i θ wzorem

r = f(θ), θ1 ¬ θ ¬ θ2. Wtedy

x = f(θ) cos θ, y = f(θ) sin θ, θ1 ¬ θ ¬ θ2.

Zatem

L =
θ2∫
θ1

√
[f ′(θ) cos θ − f(θ) sin θ]2 + [f ′(θ) sin θ − f(θ) cos θ]2 dθ.

Po uproszczeniu otrzymujemy

L =
θ2∫
θ1

√
f ′(θ)2 + f(θ)2 dθ.

Przykłady.

(a) r = sin θ, 0 ¬ θ ¬ π. Można sprawdzić, że krzywa opisuje okrąg o
promieniu 1

2 i środku w (0, 1
2). Mamy

L =
π∫

0

√
cos2 θ + sin2 θ dθ = π.
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(b) r = θ, 0 ¬ θ ¬ 4π. Krzywa opisuje dwa obroty spirali. Mamy

L =
4π∫
0

√
1 + θ2 dθ =

1
2
θ
√

1 + θ2 +
1
2

log(θ +
√

1 + θ2)
∣∣∣∣4π
0

= 2π
√

1 + 16π2 +
1
2

log(4π +
√

1 + 16π2).

Środek masy krzywej

Rozważamy krzywą x = x(t), y = y(t), a ¬ t ¬ b. Zakładamy, że masa jest
proporcjonalna do długości krzywej. Dzielimy przedział na n równych części.
Masa fragmentu krzywej odpowiadającego przedziałowi [ti−1, ti] wynosi

mi =
ti∫

ti−1

√
x′(t)2 + y′(t)2 dt =

√
x′(ui)2 + y′(ui)2∆ti,

dla pewnego punktu ui pomiędzy ti−1 i ti. Całą masę tego fragmentu umiesz-
czamy w punkcie (x(ui), y(ui)). Otrzymamy układ n punktów z masami mi.
Środek masy tego układu znajduje się w punkcie

n∑
i=1

mix(ui)

n∑
i=1

mi

,

n∑
i=1

miy(ui)

n∑
i=1

mi

 .

Dalej

n∑
i=1

mi =
n∑
i=1

√
x′(ui)2 + y′(ui)2∆ti =

b∫
a

√
x′(t)2 + y′(t)2 dt,

n∑
i=1

mix(ui) =
n∑
i=1

x(ui)
√
x′(ui)2 + y′(ui)2∆ti −→

n

b∫
a

x(t)
√
x′(t)2 + y′(t)2 dt.

Podobnie
n∑
i=1

miy(ui) −→
n

b∫
a

y(t)
√
x′(t)2 + y′(t)2 dt.
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Środek masy znajduje się więc w punkcie
b∫
a
x(t)

√
x′(t)2 + y′(t)2 dt

b∫
a

√
x′(t)2 + y′(t)2 dt

,

b∫
a
y(t)

√
x′(t)2 + y′(t)2 dt

b∫
a

√
x′(t)2 + y′(t)2 dt

 .

Mamy s′(t) =
√
x′(t)2 + y′(t)2. Przyjmijmy oznaczenie ds = s′(t) dt. Środek

masy ma wtedy współrzędne
b∫
a
x ds

b∫
a
ds

,

b∫
a
y ds

b∫
a
ds

 .

Przykład. f(x) =
√

1− x2, −1 ¬ x ¬ 1. Wykres opisuje górny półokrąg o

promieniu 1. Obliczamy drugą współrzędną środka masy. Mamy

1∫
−1

√
1− x2

√
1 +

x2

1− x2
dx =

1∫
−1

dx = 2.

Współrzędna ta wynosi zatem
2
π
.

——————————————————————————————–

Pole powierzchni figur obrotowych

Chcemy obliczyć pole powierzchni bocznej S figury otrzymanej przez obrót
krzywej x = x(t), y = y(t) ¬ 0, a ¬ t ¬ b wokół osi x. Dzielimy prze-
dział czasu na n równych części punktami ti. Rozważamy fragment krzywej
odpowiadający przedziałowi [ti−1, ti]. Długość tego fragmentu wynosi

Li =
ti∫

ti−1

√
x′(u)2 + y′(u)2 du =

√
x′(ui)2 + y′(ui)2∆ti

dla pewnego momentu ti−1 < ui < ti. Pole powierzchni otrzymanej przez
obrót fragmentu jest równe w przybliżeniu 2πy(ui)Li. Zatem

S ≈ 2π
n∑
i=1

y(ui)
√
x′(ui)2 + y′(ui)2∆ti.
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Przechodząc do granicy, gdy n→∞ otrzymamy

S = 2π
b∫
a

y(t)
√
x′(t)2 + y′(t)2 dt.

Uwaga. Druga współrzędna środka masy krzywej wynosi

y0 =
1
L

b∫
a

y(t)
√
x′(t)2 + y′(t)2 dt,

gdzie L jest długością krzywej. Zatem

S = 2πy0 L.

Tzn. pole powierzchni obrotowej jest równe iloczynowi długości krzywej i
drogi jaką przebywa środek masy przy obrocie (reguła Guldina).

Jeśli krzywa jest fragmentem wykresu funkcji y = f(x), a ¬ x ¬ b, to
pole powierzchni obrotowej wyraża się wzorem

S = 2π
b∫
a

f(x)
√

1 + f ′(x)2 dx.

Przykłady.

(a) Jakie jest pole powierzchni bocznej stożka ściętego o długości tworzącej
l i promieniach podstaw r i R ? Powierzchnię otrzymujemy przez obrót
odcinka o długości l, którego końce znajdują się na wysokościach r i R
nad osią x. Druga współrzędna środka masy wynosi (r +R)/2. Zatem

S = 2π
r +R

2
l = π(r +R)l.

(b) Jakie jest pole powierzchni torusa, czyli figury powstałej przez obrót
okręgu o środku w (a, b) i promieniu r ¬ b ? Środek masy znajduje się
w (a, b). Zatem

S = 2πb 2πr = 4π2br.
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(c) Rozważamy górny półokrąg f(x) =
√

1− x2, −1 ¬ x ¬ 1. Chcemy
obliczyć pole powierzchni otrzymanej przez obrót fragmentu wykresu
a ¬ x ¬ b. Mamy

S = 2π
b∫
a

√
1− x2

√
1 +

x2

1− x2
dx = 2π(b− a).

Pole powierzchni zależy tylko od długości przedziału [a, b].

Objętość bryły obrotowej przy obrocie wokół osi x

Rozważamy wykres funkcji ciągłej i nieujemnej y = f(x), a ¬ x ¬ b. Chcemy
obliczyć objętość V bryły otrzymanej przez obrót obszaru pomiędzy wykre-
sem funkcji i osią x, przy obrocie wokół osi x. Dzielimy przedział [a, b] na
n równych części punktami xi. Symbolem Vi oznaczamy objętość fragmentu
bryły odpowiadającej przedziałowi [xi−1, xi]. Niech mi i Mi oznaczają mini-
mum i maksimum funkcji na przedziale [xi−1, xi]. Fragment bryły zawiera w
sobie walec o wysokości ∆xi i promieniu mi a sam jest zawarty w walcu o
wysokości ∆xi i promieniu Mi. Zatem

πm2
i∆xi ¬ Vi ¬ πM2

i ∆xi.

Z własności Darboux dla funkcji f(x)2 mamy Vi = πf(ti)2∆xi, dla pewnej
wartości xi−1 < ti < xi. Całkowita objętość wynosi więc

V = π
n∑
i=1

f(ti)2∆xi −→
n

π

b∫
a

f(x)2 dx.

Rozważamy obszar A pomiędzy wykresami dwu funkcji y = f(x), y =
g(x), a ¬ x ¬ b oraz 0 ¬ f(x ¬ g(x). Objętość bryły otrzymanej przez obrót
wokół osi x wynosi

V = π

b∫
a

[
g(x)2 − f(x)2

]
dx.

Uwaga. Druga współrzędna środka masy obszaru A jest równa

y0 =
1

2S

b∫
a

[
g(x)2 − f(x)2

]
dx,
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gdzie S jest polem obracanego obszaru. Zatem

V = 2πy0S.

To oznacza, że objętość jest równa iloczynowi powierzchni obracanego obsza-
ru i drogi jaką przebywa środek masy obszaru przy obrocie (reguła Guldina).

Przykład. Rozważmy obszar ograniczony przez y =
√
R2 − x2, y =

√
r2 − x2,

dla 0 < r < R oraz −r ¬ a < b ¬ r i a ¬ x ¬ b. Objętość bryły obrotowej
jest równa

V = π

b∫
a

[
(
√
R2 − x2)2 − (

√
r2 − x2)2

]
dx = π(R2 − r2)(b− a).

Objętość zależy tylko od długości przedziału [a, b].

Objętość bryły obrotowej przy obrocie wokół osi y

Rozważamy ponownie wykres funkcji ciągłej i nieujemnej y = f(x), a ¬
x ¬ b. Chcemy obliczyć objętość V bryły otrzymanej przez obrót obszaru
pomiędzy wykresem funkcji i osią x, tym razem przy obrocie wokół osi y.
Dzielimy przedział [a, b] na n równych części punktami xi i symbolem Vi
oznaczamy objętość fragmentu bryły odpowiadającej przedziałowi [xi−1, xi].
Wtedy

Vi ≈ πx2
i f(xi)− πx2

i−1f(xi) = π(xi−1 + xi)f(xi)∆xi ≈ 2πxif(xi)∆xi.

Po zsumowaniu otrzymamy

2π
n∑
i=1

xif(xi)∆xi −→
n

2π
b∫
a

xf(x) dx.

Zatem

V = 2π
b∫
a

xf(x) dx.

Rozważmy teraz obszar pomiędzy wykresami funkcji y = f(x), y = g(x),
a ¬ x ¬ b oraz 0 ¬ f(x) ¬ g(x). Objętość bryły przy obrocie wokół osi y
wynosi

V = 2π
b∫
a

x[g(x)− f(x)] dx.
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Zatem
V = 2πx0S,

gdzie S jest polem obracanego obszaru, a x0 jest pierwszą współrzędną środka
masy. To oznacza, że reguła Guldina jest spełniona przy obrocie wokół osi y.

Przykład. y = 1− (x− 2)2, 1 ¬ x ¬ 3. Wtedy

V = 2π
3∫

1

x[1− (x− 2)2] dx.

Praca

Przypuśćmy, że przy przesuwaniu obiektu wzdłuż linii prostej do punktu
a do punktu b wywieramy stałą siłę c. Wtedy wykonana praca jest równa
c(b−a). W przypadku, gdy siła nie jest stała i wynosi f(x) dla a ¬ x ¬ b, to
dzielimy przedział [a, b] na n równych części. Praca potrzebna do przesunięcia
od xi−1 do xi wynosi w przybliżeniu f(xi)∆xi. Całkowita praca jest równa
w przybliżeniu

W ≈
n∑
i=1

f(xi)∆xi −→
n

b∫
a

f(x) dx.

Przyjmujemy więc

W =
b∫
a

f(x) dx.

Przykład. Pchamy cieknącą taczkę przez 100 m. Z powodu wycieku siła

wywierana na taczkę wynosi

f(x) = 60
(

1− x2

2000

)
(N).

Zatem

W =
100∫
0

60
(

1− x2

2000

)
dx (J).

——————————————————————————————–
W 1676 Robert Hooke sformułował prawo mechaniki: siła wywierana

przez sprężynę rozciągniętą o x jednostek poza naturalną długość sprężyny
jest proporcjonalna do x (dla małych wartości x). Tzn. g(x) = −kx, gdzie k
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jest stałym współczynnikiem. Zatem praca potrzebna do rozciągnięcia sprę-
żyny od a do b jednostek poza naturalną długość wynosi

W =
b∫
a

kx dx.

Przykład. Praca potrzebna do rozciągnięcia sprężyny o 10 cm wynosi 10 J.

Ile wynosi praca potrzebna do rozciągnięcia o dodatkowe 20 cm ? Mamy

W10 =
0,1∫
0

kx dx = 10.

Czyli k = 2000. Dalej

W10,30 =
0,3∫

0,1

2000x dx = 2000 0, 2 0, 2 = 80 (J).

Praca potrzebna do wypompowania pojemnika

Chcemy wypompować wodę z pojemnika przez odpływ znajdujący się na
pewnej wysokości. Jeśli mamy podnieść warstwę wody o objętości V (m3) o
l metrów w górę, to wykonana prace będzie równa

W = 9, 8 · 1000 · V l.

Zakładamy, że woda mieści się pomiędzy poziomami x = a i x = b. Dzieli-
my przedział [a, b] na n równych części. Objętość warstwy wody pomiędzy
poziomami xi−1 i xi wynosi w przybliżeniu A(xi)∆xi, gdzie A(x) oznacza
pole powierzchni przekroju pojemnika na poziomie x. Praca potrzebna do
podniesienia warstwy wynosi Wi ≈ 9800A(xi)∆xi(l − xi). Całkowita praca
wynosi w przybliżeniu

W ≈ 9800
n∑
i=1

(l − xi)A(xi)∆xi.

Zatem

W = 9800
b∫
a

(l − x)A(x) dx.
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Przykład. Pojemnik w kształcie dolnej półkuli o promieniu 10 m jest wy-
pełniony wodą. Chcemy wypompować wodę przez odpływ znajdujący się 1 m
nad poziomem wody. Umieszczamy skalę tak, że woda mieści się pomiędzy
poziomami −10 i 0. Przekrój pojemnika na wysokości x jest kołem o promie-
niu r(x) =

√
100− x2. Zatem A(x) = π(100− x2). Otrzymujemy więc

W = 9800
0∫

−10

(1− x)π(100− x2) dx.

Objętości brył w R3

Przypuśćmy, że bryła mieści się pomiedzy płaszczyznami pionowymi x = a
i x = b. Niech A(x) oznacza pole przekroju bryły płaszczyzną pionową w
punkcie x. Aby obliczyć objętość bryły dzielimy przedział [a, b] na n równych
części. Objętość fragmentu bryły pomiędzy płaszczyznami x = xi−1 i x = xi
wynosi w przybliżeniu Vi ≈ A(xi)∆xi. Zatem całkowita objętość jest równa

V =
n∑
i=1

A(xi)∆xi.

Stąd

V =
b∫
a

A(x) dx.

Uwaga. Ze wzoru wynika, że dwie bryły mające te same pola przekrojów na
każdym poziomie mają równe objętości.

Przykład. Jaka jest objętość piramidy o wysokości 4 m i podstawie 3 m
na 3 m ? Umieszczamy oś x pionowo. Zakładamy, że podstawa piramidy
znajduje się na poziomie -4, natomiast wierzchołek na poziomie 0. Przekrój
piramidy płaszczyzną prostopadłą do osi x na poziomie x jest kwadratem o
boku a = −3

4x. Zatem A(x) = 9
16x

2 oraz

V =
9
16

∫ 0

−4
x2 dx =

9
16

∫ 4

0
x2 dx = 12.

6.7 Przybliżone obliczanie całek

Przy obliczaniu całek oznaczonych nie zawsze możliwe jest dokładne podanie
wartości liczbowej.

Przykłady.
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(a) Chcemy obliczyć długość wykresu funkcji y = 1
3x

3 dla 0 ¬ x ¬ 1.
Wtedy

L =
1∫

0

√
1 + x4 dx.

(b) Rozważmy elipsę o półosiach 1 i 2. Możemy użyć parametryzacji x =
cos t, y = 2 sin t, 0 ¬ t ¬ 2π. Wtedy długość elipsy wynosi

L =
2π∫
0

√
sin2 t+ 4 cos2 t dt =

2π∫
0

√
1 + 3 cos2 t dt.

Metoda trapezów

Mamy do obliczenia
b∫
a

f(x) dx, gdzie f(x) ­ 0. Dzielimy przedział na n

równych części. Kolejne punkty wykresu (xi−1, f(xi−1) i (xi, f(xi) łączymy
odcinkiem. Otrzymujemy łamaną, która przybliża wykres funkcji. Pole pod

tą łamaną przybliża pole pod wykresem funkcji, czyli liczbę
b∫
a

f(x) dx. Zatem

b∫
a

f(x) dx

≈ f(x0) + f(x1)
2

b− a
n

+
f(x1) + f(x2)

2
b− a
n

+. . .+
f(xn−1) + f(xn)

2
b− a
n

,

czyli

b∫
a

f(x) dx ≈ b− a
2n

[f(a) + 2f(x1) + 2f(x2) + . . .+ 2f(xn−1) + f(b)].

Przykład.
2∫

1

1
x
dx = log 2. Zastosujemy metodę trapezów dla n = 4. Wtedy

log 2 ≈ 1
8

[
1 + 2 · 4

5
+ 2 · 2

3
+ 2 · 4

7
+

1
2

]
= 0, 697023 . . .
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Wiadomo, że log 2 = 0, 693147 . . . , więc dokładność obliczenia jest równa
około 0,4 procenta. Błąd w metodzie trapezów wynosi

ET
n (f) =

∣∣∣∣∣∣
b∫
a

f(x) dx− b− a
2n

[f(a) + 2f(x1) + . . .+ 2f(xn−1) + f(b)]

∣∣∣∣∣∣ .
Można udowodnić, że

ET
n (f) ¬ (b− a)3

12n2
max
a¬x¬b

|f ′′(x)|.

Dla funkcji f(x) =
1
x

mamy f ′′(x) =
2
x3
. Zatem

ET
4

(1
x

)
¬ 1

12 · 16
2 =

1
96
.

Metoda Simpsona

Thomas Simpson (1710-61) był angielskim matematykiem, który w 1743
opracował metodę przybliżonego obliczania całek. Dzielimy przedział [a, b]
na parzystą liczbę n = 2k części o długości h = b−a

n
. Trzy kolejne punkty

wykresy (x0, f(x0)), (x1, f(x1)) i (x2, f(x2)) łączymy parabolą p(x). Mamy
zatem

p(x) = f(x0)
(x− x1)(x− x2)

2h2
−f(x1)

(x− x0)(x− x2)
h2

+f(x2)
(x− x0)(x− x2)

2h2
.

Całkę
x2∫
x0

f(x) dx zastępujemy przez

x2∫
x0

f(x) dx ≈
x2∫
x0

p(x) dx =
h

3
[f(x0) + 4f(x1) + f(x2)].

——————————————————————————————–

Ostatnia równość wynika ze wzorów
x2∫
x0

(x− x0)(x− x1) dx =
x2∫
x0

(x− x1)(x− x2) dx =
2h3

3
,

x2∫
x0

(x− x0)(x− x2) dx = −4h3

3
.
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To samo wykonujemy dla wszystkich pozostałych przedziałów postaci [x2, x4],
[x4, x6], . . . , [x2k−2, x2k]. Tzn.

x2i∫
x2i−2

f(x) dx ≈
x2i∫

x2i−2

pi(x) dx =
h

3
[f(x2i−2) + 4f(x2i−1) + f(x2i)],

gdzie pi oznacza wielomian kwadratowy dla przedziału [x2i−2, x2i]. Reasumu-
jąc otrzymujemy

b∫
a

f(x) dx

≈ b− a
3n

[f(a) + 4f(x1) + 2f(x2) + . . .+ 2f(xn−2) + 4f(xn−1) + f(b)].

Przykład. Zastosujemy metodę Simpsona dla całki log 2 =
2∫

1

1
x
dx przy

n = 4. Wtedy

log 2 ≈ 1
12

[
1 + 4 · 4

5
+ 2 · 2

3
+ 4 · 4

7
+

1
2

]
= 0, 693253 . . .

Wiemy, że log 2 = 0, 693147 . . . , więc dokładność obliczenia jest dziesięcio-
krotnie lepsza niże przy metodzie trapezów, przy tej samej ilości włożonej
pracy.

Można udowodnić, że błąd w metodzie Simpsona spełnia

ES
n (f) ¬ (b− a)5

180n4
max
a¬x¬b

|f (4)(x)|.

7 Twierdzenie Weierstrassa i wielomiany Bern-
steina

Twierdzenie 7.1 (Weierstrass). Dla dowolnej funkcji ciągłej f(x) na prze-
dziale [0, 1] można znaleźć ciąg wielomianów pn(x) spełniający pn ⇒ f na
przedziale [0, 1]. To oznacza, że dla dowolnej liczby ε > 0 w pasie o promie-
niu ε wokół wykresu funkcji f(x) znajduje się wykres jakiegoś wielomianu.
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Uwaga. Teza twierdzenia jest prawdziwa dla dowolnego przedziału [a, b].
Rzeczywiście, dla f ∈ C[a, b] określamy f̃(x) = f((b − a)x + a). Wtedy
f̃ ∈ C[0, 1]. Jeśli p̃n ⇒ f̃ , to pn ⇒ f, gdzie pn(x) = p̃n

(
x−a
b−a

)
.

Dowód (wg S. Bernsteina (1880-1968)). Dla funkcji ciągłej f(x) i liczby n
określamy wielomiany Bernsteina wzorem

Bn(f)(x) =
n∑
k=0

(
n

k

)
f

(
k

n

)
xk(1− x)n−k.

Mamy

Bn(1)(x) =
n∑
k=0

(
n

k

)
xk(1− x)n−k = [x+ (1− x)]n = 1.

Dalej

Bn(x)(x) =
n∑
k=0

k

n

(
n

k

)
xk(1− x)n−k = x

n∑
k=1

(
n− 1
k − 1

)
xk−1(1− x)(n−1)−(k−1)

=
l=k−1

x
n−1∑
l=0

(
n− 1
l

)
xl(1− x)(n−1)−l = xBn−1(1)(x) = x,

Bn(x2)(x) =
n∑
k=0

k2

n2

(
n

k

)
xk(1− x)n−k =

n∑
k=1

k

n

(
n− 1
k − 1

)
xk(1− x)n−k

=
n∑
k=1

k − 1
n

(
n− 1
k − 1

)
xk(1− x)n−k +

1
n

n∑
k=1

(
n− 1
k − 1

)
xk(1− x)n−k

=
n− 1
n

xBn−1(x)(x) +
x

n
Bn−1(1) =

n− 1
n

x2 +
1
n
x = x2 +

x− x2

n
.

Rozważamy funkcję ciągłą f na [0, 1]. Ustalamy liczbę ε > 0. Z jednostajnej
ciągłości można znaleźć liczbę δ > 0 taką, że

|t− s| < δ =⇒ |f(t)− f(s)| < ε

2
.

Ustalmy punkt x w przedziale [0, 1]. Liczby naturalne Nn = {0, 1, 2, . . . , n}
podzielimy na dwa podzbiory

A = {k ∈ Nn :
∣∣∣ k
n
− x

∣∣∣ < δ},
B = Nn \ A.
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Wtedy

|Bn(f)(x)− f(x)|

=

∣∣∣∣∣
n∑
k=0

(
n

k

)
f

(
k

n

)
xk(1− x)n−k −

n∑
k=0

(
n

k

)
f(x)xk(1− x)n−k

∣∣∣∣∣
=

∣∣∣∣∣
n∑
k=0

(
n

k

)[
f

(
k

n

)
− f(x)

]
xk(1− x)n−k

∣∣∣∣∣ ¬
n∑
k=0

(
n

k

) ∣∣∣∣∣f
(
k

n

)
− f(x)

∣∣∣∣∣xk(1−x)n−k

=
∑
k∈A

(
n

k

) ∣∣∣∣∣f
(
k

n

)
− f(x)

∣∣∣∣∣xk(1− x)n−k︸ ︷︷ ︸
||
SA

+
∑
k∈B

(
n

k

) ∣∣∣∣∣f
(
k

n

)
− f(x)

∣∣∣∣∣xk(1− x)n−k︸ ︷︷ ︸
||
SB

.

Dalej

SA ¬
ε

2

∑
k∈A

(
n

k

)
xk(1− x)n−k ¬ ε

2

n∑
k=0

(
n

k

)
xk(1− x)n−k =

ε

2
.

Niech M = max
a¬x¬b

|f(x)|. Wtedy

SB ¬ 2M
∑
k∈B

(
n

k

)
xk(1− x)n−k ¬ 2M

δ2

∑
k∈B

(
n

k

)(
x− k

n

)2

xk(1− x)n−k

¬ 2M
δ2

n∑
k=0

(
n

k

)(
x− k

n

)2

xk(1− x)n−k

=
2M
δ2

[x2Bn(1)− 2xBn(x)(x) +Bn(x2)(x)]

=
2M
δ2

[
x2 − 2x2 + x2 +

x(1− x)
n

]
=

2M
δ2n

(x− x2) ¬ M

2δ2n
.

Dla n >
M

δ2ε
mamy SB < ε/2. Zatem |Bn(f)(x)− f(x)| < ε dla odpowiednio

dużych wartości n.

Uwaga. Dla funkcji f i liczby x wielkość Bn(f)(x) jest średnią ważoną liczb
f
(
k
n

)
, dla k = 0, 1, 2, . . . , n, ze współczynnikami

(
n
k

)
xk(1 − x)n−k. Suma

współczynników jest równa 1. Sprawdzimy, który współczynnik jest najwięk-
szy. W tym celu rozwiązujemy nierówność(

n

k − 1

)
xk−1(1− x)n−(k−1) ¬

(
n

k

)
xk(1− x)n−k.
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Po prostych przekształceniach otrzymujemy warunek równoważny

k

n+ 1
¬ x.

Zatem największy współczynnik odpowiada wartości k0, dla której

k0

n+ 1
¬ x <

k0 + 1
n+ 1

.

Zauważmy, że
k0

n+ 1
<
k0

n
<
k0 + 1
n+ 1

.

Zatem ∣∣∣∣∣k0

n
− x

∣∣∣∣∣ < 1
n+ 1

.

Przykład. Prawdopodobieństwo sukcesu w jednej próbie wynosi p, 0 < p <

1. Wykonujemy próbę n razy. Przy n próbach wygrana wynosi f
(
k
n

)
, gdzie

k jest liczbą sukcesów, a f jest ustaloną funkcją ciągłą na [0, 1]. Np. jeśli
f
(

1
5

)
= 10, to przy 12 sukcesach w 60 próbach, wypłata wynosi 10. Wartość

oczekiwana wygranej przy n próbach wyraża się wzorem

En =
n∑
k=0

(
n

k

)
f

(
k

n

)
pk(1− p)n−k = Bn(f)(p) −→

n
f(p).

Przykład. Rzucamy kostką do gry. Sukcesem jest wypadnięcie szóstki. Funk-

cja wypłaty f(x) spełnia

f(1) = 106, f
(1

6

)
= −0, 01.

Czy gra jest opłacalna przy dużej liczbie rzutów ?


