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Abstract

We prove that any tight frame {gn}∞
n=0, with ‖g0‖ = 1, in a Hilbert space can be obtained by the Kaczmarz algorithm. The

uniqueness of the correspondence is determined.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let {en}∞n=0 be a linearly dense sequence of unit vectors in a Hilbert space H. In 1937 Kaczmarz considered the
problem of reconstructing vectors x from the data 〈x, en〉. He proved that in the finite dimensional case we have
xn → x for any x, where elements xn are defined recursively by

x0 = 〈x, e0〉e0,

xn = xn−1 + 〈x − xn−1, en〉en.

This formula is called the Kaczmarz algorithm [1].
It can be shown that if vectors gn are given by the recurrence relation

g0 = e0, gn = en −
n−1∑

i=0

〈en, ei〉gi, (1)

then g0 is orthogonal to gn for any n � 1 and

xn =
n∑

i=0

〈x,gi〉ei . (2)

By (1) the vectors {gn}∞n=0 are linearly dense in H. Also by definition of the algorithm the vectors x − xn and en

are orthogonal to each other. Hence

‖x‖2 = ‖x − x0‖2 + ∣∣〈x,g0〉
∣∣2

, ‖x − xn−1‖2 = ‖x − xn‖2 + ∣∣〈x,gn〉
∣∣2

, n � 1. (3)
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For n � 1 let Sn denote a finite dimensional operator defined by the rule

Sny =
n∑

j=0

〈y, ej 〉gj , y ∈H. (4)

Observe that the formulas (1) and (2) can be restated as

(I − Sn−1)en = gn, (5)

(I − S∗
n)x = x − xn. (6)

Moreover by (3) it follows that

‖x − xn‖2 = ∥∥(I − S∗
n)x

∥∥2 = ‖x‖2 −
n∑

j=0

∣∣〈x,gj 〉
∣∣2

. (7)

In particular
∞∑

n=0

∣∣〈x,gn〉
∣∣2 � ‖x‖2, x ∈H. (8)

A sequence {en}∞n=0 is called effective if xn → x for any x ∈ H. By virtue of (7) this is equivalent to ‖x‖2 =∑∞
n=0 |〈x,gn〉|2 for any x ∈ H, which means {gn}∞n=0 is a tight frame. We refer to [2] for more information on

the Kaczmarz algorithm and to [3] for the characterization of effective sequences through the Gram matrix of the
sequence {en}∞n=0.

2. Bessel sequences

Definition 1. A sequence of vectors {gn}∞n=0 in a Hilbert space H will be called a Bessel sequence if (8) holds. The
sequence {gn}∞n=0 will be called a special Bessel sequence if in addition ‖g0‖ = 1.

Observe that if {gn}∞n=0 is a special Bessel sequence then substituting x = g0 into (8) implies gn ⊥ g0 for n � 1.
Let Pn denote the orthogonal projection onto e⊥

n , the orthogonal complement to the vector en. By [3, (1)] we have

I − S∗
n = PnPn−1 . . . P0, (9)

I − Sn = P0 . . . Pn−1Pn. (10)

Theorem 1. For any special Bessel sequence {gn}∞n=0 in a Hilbert space H there exists a sequence {en}∞n=0 of unit
vectors such that (1) holds. In other words, any special Bessel sequence can be obtained through the Kaczmarz
algorithm.

Proof. We will construct the sequence {en}∞n=0 recursively. Set e0 = g0. Assume the unit vectors e1, . . . , eN−1 have
been constructed such that the formula (1) holds for n = 0, . . . ,N − 1. We want to find y such that

(I − SN−1)y = gN, ‖y‖ = 1. (11)

By (10) we have (I − SN−1)eN−1 = 0, i.e. the operator I − SN−1 admits nontrivial kernel. Hence the solvability
of (11) is equivalent to that of

(I − SN−1)y = gN, ‖y‖ � 1. (12)

By the Fredholm alternative the equation (I − SN−1)y = gN is solvable if and only if gN is orthogonal to
ker(I − S∗

N−1). We will check that this condition holds. Let x ∈ ker(I − S∗
N−1). Then by (7) and (8) we have

0 = ∥∥(I − S∗
N−1)x

∥∥2 = ‖x‖2 −
N−1∑

j=0

∣∣〈x,gj 〉
∣∣2 �

∞∑

j=N

∣∣〈x,gj 〉
∣∣2

.
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In particular 〈x,gN 〉 = 0, i.e. gN ⊥ ker(I − S∗
N−1).

Let y denote the unique solution to

(I − SN−1)y = gN, y ⊥ ker(I − SN−1).

The proof will be complete if we show that ‖y‖ � 1. Again by the Fredholm alternative we have y ∈ Im(I − S∗
N−1).

Let y = (I −S∗
N−1)x for some x ∈H. We may assume that x ⊥ ker(I −S∗

N−1). In particular 〈x,g0〉 = 0, as (9) yields
g0 ∈ ker(I − S∗

N−1). By (7) we have

‖y‖2 = ∥∥(I − S∗
N−1)x

∥∥2 = ‖x‖2 −
N−1∑

j=1

∣∣〈x,gj 〉
∣∣2

.

On the other hand,

‖y‖2 = 〈
x, (I − SN−1)y

〉 = 〈x,gN 〉.
Therefore

‖y‖2 − ‖y‖4 = ‖x‖2 −
N∑

j=1

∣∣〈x,gj 〉
∣∣2 � 0,

which implies ‖y‖ � 1. �
Corollary 1. For any special tight frame {gn}∞n=0 in a Hilbert space H there exists an effective sequence {en}∞n=0 of
unit vectors such that (1) holds, i.e. any special tight frame can be obtained through the Kaczmarz algorithm.

For a sequence {en}∞n=0 of unit vectors the special Bessel sequence {gn}∞n=0 is determined uniquely by (1). However
a given special Bessel sequence may correspond to many sequences of unit vectors due to two reasons. First of all for
certain N the dimension of the space ker(I −SN−1) may exceed 1. Secondly, if we fix a unit vector u in ker(I −SN−1)

the vector eN can be defined as eN = y + λu for any complex λ number such that |λ|2 + ‖y‖2 = 1. In what follows
we will indicate properties which guarantee a one to one correspondence between {en}∞n=0 and {gn}∞n=0.

Definition 2. A sequence of unit vectors {en}∞n=0 will be called strongly redundant if the vectors {en}∞n=N are linearly
dense for any N . A special Bessel sequence {gn}∞n=0 will be called strongly redundant if the vectors {g0} ∪ {gn}∞n=N

are linearly dense for any N .

Proposition 1. Let sequences {en}∞n=0 and {gn}∞n=0 satisfy (1). The sequence {gn}∞n=0 is strongly redundant if and only
if {en}∞n=0 is strongly redundant and 〈en, en+1〉 �= 0 for any n � 0.

Proof. Assume {gn}∞n=0 is strongly redundant. First we will show that the kernel of I − SN−1 is one-dimensional and
thus consists of the multiples of the vector eN−1 (see (10)). Assume for a contradiction that dim ker(I − SN−1) � 2.
By the Fredholm alternative we get dim ker(I − S∗

N−1) � 2. Hence there exists a nonzero vector x such that x ⊥ g0
and (I − S∗

N−1)x = 0. By (3) we obtain

‖x‖2 =
N−1∑

n=1

∣∣〈x,gn〉
∣∣2

.

This and the condition (8) imply that x is orthogonal to all the vectors g0 and {gn}∞n=N , which contradicts the strong
redundancy assumption.

Assume 〈eN−1, eN 〉 = 0 for some N � 1. Then by (10) we have eN−1, eN ∈ ker(I − SN) which is a contradiction
as the kernel is one-dimensional.

Concerning strong redundancy of {en}∞n=0, assume a vector y is orthogonal to all the vectors {en}∞n=N . In particular
y is orthogonal to eN . Since ker(I − SN) = CeN , by the Fredholm alternative y belongs to Im(I − S∗

N). Let y =
(I − S∗

N)x for some x ∈H. We may assume that x ⊥ g0 as g0 ∈ ker(I − S∗
N). By (9), since y is orthogonal to en for
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n � N , we get y = (I − S∗
n)x = (I − S∗

N)x for n � N . On the other hand, by (2) and (6) we obtain that 〈x,gn〉 = 0
for n > N + 1. Since x ⊥ g0, by strong redundancy assumptions we obtain x = 0 and thus y = 0.

For the converse implication assume {en}∞n=0 is strongly redundant and 〈en, en+1〉 �= 0. By the inequality (see [2])

‖x − xn‖ �
∣∣〈en−1, en〉

∣∣‖x − xn−1‖
we get that x − xn �= 0 for any x ⊥ e0. Since x − xn = (I − S∗

n)x, the kernel of I − S∗
n consists of the multiples of

e0 = g0, only.
Let x be orthogonal to {g0} ∪ {gn}n�N+1 for some N � 1. By (2) we obtain that xn = xN for n � N . By the

definition of the Kaczmarz algorithm we get x − xN ⊥ en for n � N + 1. Now strong redundancy of {en}∞n=0 implies
x − xN = 0. By (6) we obtain (I − S∗

N)x = 0. This yields x = 0 since the kernel is one-dimensional and consists of
the multiples of g0. �

For sequences {en}∞n=0 and {σnen}∞n=0, where σn are complex numbers of absolute value 1, the Kaczmarz algo-
rithm coincides. Therefore we will restrict our attention to admissible sequences of unit vectors {en}∞n=0 such that
〈en, en+1〉 � 0.

Theorem 2. Let {gn}∞n=0 be a strongly redundant special Bessel sequence. Then there exists a unique admissible
sequence {en}∞n=0 of unit vectors such that (1) holds. Moreover, the sequence {en}∞n=0 is strongly redundant.

Proof. The proof will go by induction. The vector e0 is determined by e0 = g0. Assume the vectors e0, . . . , eN−1
were determined uniquely. We have to show that the problem

(I − SN−1)y = gN, ‖y‖ = 1, 〈y, eN−1〉 � 0

has a unique solution y.
By the proof of Proposition 1 the kernel of I − SN−1 is one-dimensional and thus consists of the multiples of the

vector eN−1. By the proof of Theorem 1 there exists a unique solution yN to the problem

(I − SN−1)y = gN, y ⊥ ker(I − SN−1)

and ‖yN‖ � 1. Moreover by this proof ‖yN‖ = 1 if and only if

‖x‖2 −
N∑

j=1

∣∣〈x,gj 〉
∣∣2 = 0,

where yN = (I −S∗
N−1)x and x ⊥ ker(I −S∗

N−1). This leads to a contradiction because by inequality (8) we get that x

is orthogonal to all the vectors g0 and {gn}∞n=N . Hence ‖yN‖ < 1.
At this stage we know that any solution to the equation

(I − SN−1)y = 0

is of the form

y = yN + λeN−1, λ ∈ C,

because ker(I −SN−1) = CeN−1. Since ‖yN‖ < 1 and yN ⊥ eN−1 there exists a unique solution y satisfying ‖y‖ = 1
and 〈y, eN−1〉 � 0 namely the one corresponding to λ = √

1 − ‖yN‖2. �
Corollary 2. Let {gn}∞n=0 be a strongly redundant special tight frame. Then there exists a unique admissible effective
sequence {en}∞n=0 of unit vectors such that (1) holds. Moreover, the sequence {en}∞n=0 is strongly redundant.
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