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Abstract

We prove that any tight frame {g, ;’;0, with ||go|l = 1, in a Hilbert space can be obtained by the Kaczmarz algorithm. The
uniqueness of the correspondence is determined.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let {e,}7, be a linearly dense sequence of unit vectors in a Hilbert space . In 1937 Kaczmarz considered the
problem of reconstructing vectors x from the data (x,e,). He proved that in the finite dimensional case we have
X, — x for any x, where elements x,, are defined recursively by

xo = (x, ep)eo,
Xn =Xp—1 + (X — Xp—1, €n)en.
This formula is called the Kaczmarz algorithm [1].
It can be shown that if vectors g, are given by the recurrence relation
n—1
g0=e0.  gn=6n— Y {en €8, )]
i=0
then gg is orthogonal to g, for any n > 1 and
n
Xu =) (x.gi)er. )
i=0
By (1) the vectors {gn},2, are linearly dense in . Also by definition of the algorithm the vectors x — x,, and e,
are orthogonal to each other. Hence

2 2>l 3)

2 2
ol =t lP = e = xllF + [(x, ga)

1% = llx — xo0ll% + | (x, go)
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For n > 1 let §,, denote a finite dimensional operator defined by the rule

S;y = (v.ej)gj. yeH. 4
j=0

Observe that the formulas (1) and (2) can be restated as

(I — Su—1)en = gn. )
(I—SHx=x—x,. 6)
Moreover by (3) it follows that
n
2 2
br = xall® = (7 = Sx||" = 217 = Y | x. )] (7)
j=0
In particular
o
2 2
D e <Ixl?, xeH. ®)
n=0
A sequence {e,};”, is called effective if x, — x for any x € H. By virtue of (7) this is equivalent to Ix||? =

Z;O:o [(x, gn)|2 for any x € H, which means {g, ;’l": o 1s a tight frame. We refer to [2] for more information on

the Kaczmarz algorithm and to [3] for the characterization of effective sequences through the Gram matrix of the
sequence {e,},2 .

2. Bessel sequences

o

Definition 1. A sequence of vectors {g,}7 , in a Hilbert space H will be called a Bessel sequence if (8) holds. The
o0

sequence {g,},~, will be called a special Bessel sequence if in addition | goll = 1.

Observe that if {g,,}f;o:O is a special Bessel sequence then substituting x = g¢ into (8) implies g, L go forn > 1.
Let P, denote the orthogonal projection onto e,J;, the orthogonal complement to the vector e,,. By [3, (1)] we have

[ —Si=P,Pyi... Py, )
[—Sy=Py...P_1Py. (10)

Theorem 1. For any special Bessel sequence {g,},-, in a Hilbert space H there exists a sequence {e,}> , of unit
vectors such that (1) holds. In other words, any special Bessel sequence can be obtained through the Kaczmarz
algorithm.

Proof. We will construct the sequence {e, } ), recursively. Set eg = go. Assume the unit vectors ey, ..., ey—1 have
been constructed such that the formula (1) holds forn =0, ..., N — 1. We want to find y such that

(I —Sy-1)y=¢gn, lylI=1 (11
By (10) we have (I — Sy—1)exy—1 =0, i.e. the operator I — Sy_; admits nontrivial kernel. Hence the solvability
of (11) is equivalent to that of

(I =Snv-Dy=¢gn, IylI<l (12)

By the Fredholm alternative the equation (/ — Sy—1)y = gy is solvable if and only if gy is orthogonal to
ker(/ — S%_,). We will check that this condition holds. Let x € ker(/ — Sy,_,). Then by (7) and (8) we have

o0

N—1
0= —Si_px|>= x> = Y [ gn? = > Jx. g
Jj=0

j=N
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In particular (x, gy) =0, i.e. gy Lker(/ — Sy _)).
Let y denote the unique solution to

(I —Sn-1)y=gn, y-Llker(I —Sy-1).

The proof will be complete if we show that ||y|| < 1. Again by the Fredholm alternative we have y € Im(I — Sy,_,).
Let y = (I — Sy_,)x for some x € H. We may assume that x | ker(/ — Sy,_,). In particular (x, go) =0, as (9) yields
go € ker(/ — Sy_,). By (7) we have

N—1
IyI2 = = S_px|® = 112 = 3 | g )]
j=1

On the other hand,
Iyl =(x, (I = Sv—Dy) = (x, gn)-
Therefore

N
2
IYIP = Iy I1* = 11x1” =) Jix, g0]" =0,
j=1

which implies ||y|| < 1. O

Corollary 1. For any special tight frame {g,}°° , in a Hilbert space H there exists an effective sequence {e,};> , of
unit vectors such that (1) holds, i.e. any special tight frame can be obtained through the Kaczmarz algorithm.

For a sequence {e, },7 , of unit vectors the special Bessel sequence {g,}7 , is determined uniquely by (1). However
a given special Bessel sequence may correspond to many sequences of unit vectors due to two reasons. First of all for
certain N the dimension of the space ker(/ — Sy_1) may exceed 1. Secondly, if we fix a unit vector u in ker(/ — Sy_1)
the vector ey can be defined as ey = y 4+ Au for any complex A number such that |12 + ||y||? = 1. In what follows
we will indicate properties which guarantee a one to one correspondence between {e,,}°° ) and {g,,}° .

Definition 2. A sequence of unit vectors {e, } 2, will be called strongly redundant if the vectors {e, }° \; are linearly
dense for any N. A special Bessel sequence { g,,};’lo:0 will be called strongly redundant if the vectors {go} U {g,,}°°
are linearly dense for any N.

Proposition 1. Let sequences {e,}; , and {g,}7-  satisfy (1). The sequence {g,}7 , is strongly redundant if and only
if (e} is strongly redundant and {(ey, e, 1) # 0 for any n > 0.

Proof. Assume {g,}77 is strongly redundant. First we will show that the kernel of / — Sy is one-dimensional and
thus consists of the multiples of the vector ey—_1 (see (10)). Assume for a contradiction that dimker(/ — Sy_1) > 2.
By the Fredholm alternative we get dimker(/ — S%,_,) > 2. Hence there exists a nonzero vector x such that x 1L go
and (I — Sy, _;)x =0. By (3) we obtain

N-1 5
Il =] gad|
n=1

This and the condition (8) imply that x is orthogonal to all the vectors go and {g,}, 5, Which contradicts the strong
redundancy assumption.

Assume (eny_1, en) =0 for some N > 1. Then by (10) we have ey_1, ey € ker(I — Sy) which is a contradiction
as the kernel is one-dimensional.

Concerning strong redundancy of {e,, }7° ;, assume a vector y is orthogonal to all the vectors {e,},_ , . In particular
y is orthogonal to ey. Since ker(/ — Sy) = Cep, by the Fredholm alternative y belongs to Im(/ — S;‘;,). Let y =
(I — Sy)x for some x € H. We may assume that x L g as go € ker( — S%). By (9), since y is orthogonal to e, for
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n>=N,wegety=(—S;)x=(— Sy)x forn > N. On the other hand, by (2) and (6) we obtain that (x, g,) =0
forn > N + 1. Since x L g, by strong redundancy assumptions we obtain x = 0 and thus y = 0.
For the converse implication assume {e,, }°°  is strongly redundant and (e, e,+1) # 0. By the inequality (see [2])

lx = xnll = [{en—1, en)|lIx — X1l

we get that x — x,, # 0 for any x L eg. Since x — x, = (I — S;;)x, the kernel of / — S, consists of the multiples of
eo = 8o, only.

Let x be orthogonal to {go} U {gs}n>n+1 for some N > 1. By (2) we obtain that x, = xy for n > N. By the
definition of the Kaczmarz algorithm we get x — xy L e, forn > N + 1. Now strong redundancy of {e,};2 , implies
x —xy = 0. By (6) we obtain ( — S}'\‘,)x = 0. This yields x = 0 since the kernel is one-dimensional and consists of
the multiples of gg. O

For sequences {e,}°C ; and {0y,e,},2 ., where o, are complex numbers of absolute value 1, the Kaczmarz algo-

rithm coincides. Therefore we will restrict our attention to admissible sequences of unit vectors {e,}° , such that
(en,ent1) = 0.

Theorem 2. Let {g,}°°, be a strongly redundant special Bessel sequence. Then there exists a unique admissible
sequence {e,}° , of unit vectors such that (1) holds. Moreover, the sequence {e,}>° , is strongly redundant.

Proof. The proof will go by induction. The vector eq is determined by eg = go. Assume the vectors eg, ..., enN—1
were determined uniquely. We have to show that the problem
(I =Sn-Dy=¢gn, Iyll=1, {y,en—1)=0

has a unique solution y.
By the proof of Proposition 1 the kernel of / — Sy_; is one-dimensional and thus consists of the multiples of the
vector ey —1. By the proof of Theorem 1 there exists a unique solution yy to the problem

(I —Sy-1)y=gn, yLker(/ —Sy_1)
and ||yn || < 1. Moreover by this proof ||yy|| =1 if and only if

N
lxl? = Y| g =0,
j=1

where yy = (I — S]";,_l)x and x | ker(I — Sj(,_l). This leads to a contradiction because by inequality (8) we get that x
is orthogonal to all the vectors go and {g,},2 . Hence [|yn || < 1.
At this stage we know that any solution to the equation

(I —=Sv-1)y=0
is of the form
y=yn+ien_1, AreC,

because ker(/ — Sy—1) = Ceny_1. Since ||yn|| < 1 and yn L eny—_1 there exists a unique solution y satisfying ||y|| =1
and (y, ey_1) = 0 namely the one corresponding to A =+/1 — ||yy 2. O

Corollary 2. Let {gn},2, be a strongly redundant special tight frame. Then there exists a unique admissible effective

sequence {e,},° , of unit vectors such that (1) holds. Moreover, the sequence {e,}. , is strongly redundant.
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