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Uwaga. Analogiczne twierdzenie jest prawdziwe dla granicy lewostronnej i
dwustronnej.

Dowdd. Niech x > a. Wtedy

dla pewnego &, a < £ < z. Gdy z — at, to £ — a*. Zatem

lim M = lim f1e)

i glo) T e g(e)

Uwaga. Teza jest prawdziwa rowniez dla granicy niewtasciwe;j.

Przyktady.
(a)

. 1—cosz @m) .. sin ) 1 1
lim ——— = lim ——— = lim = —.
z—0 sin“x z—02sinxrcosxr =—02cosx 2

Lepszym wyjsciem jest uzycie wzordéw trygonometrycznych

1—COS:U_ 1 —-cosz 1 1

) - = — <.
sin® x 1—cos?2z 1-+cosx z—0 2

sinmx . TCOoSTX . w1 —ax%2cosTx
lim —— = lim — = — lim =0.

z—1- /1 — 22  z—1- 1_’;2 z—1- T

Mozna tez obliczy¢ granice bezposrednio

sin 7 sin(l—z) V1—z . 0 0
f— . _ - —_— .
V1— a2 7(l—z) V1+za2-1- /2
(c)
. Vsin . CoS T . T COST
lim = lim lim —00.

e—n logl  e—m 2y/sinz i e—m 2y/sinx
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Whiosek 5.19. Zaldimy, ze funkcje f(z) i g(x) sq rézniczkowalne w prze-
dziale (a,00), ¢'(x) # 0 dla x > a, oraz Jim flz) = Jim g(x) = 0. Wtedy

lim f(@) = lim f'(z)
700 g(z) e g(x)]

o ile druga granica istnieje.

Dowdd. Mozemy przyjac, ze a > 1. Okre$lmy funkcje

1 1 1 1
f(—) 0<y< -, g(—) 0<y<-,
Fly)=4"\¥ a Gly) =49 \y a
0 y =0, 0 y=0.
Wtedy F i G sa rozmiczkowalne w przedziale (0,1) i ciggle w punkcie 0.
Rzeczywiscie

lim F(y) = lim f(i) = lim f(x)=0.

y—0t y—0+ T—00
Dalej
fle) . Q) . G f'() f'(z)
lim == = li - im s = lim = /
oo g(r)  w=0t g(y)  we0t =5 g'(y) w0t g'(y) e gl(a)
Ol
Przyktad.
1
5 — arct N 2 2
lim « E—arctgm _ lim 2 2O8T g, 142 o, Ty
T—00 2 T—00 1 Z—00 1 z—00 | 4 g2
x x?

Twierdzenie 5.20 (Reguta de I'Hospitala dla 22). Funkcje f(x) i g(x) sq
rozniczkowalne w (a,b) oraz ¢'(x) # 0 dla a < x < b. Zaldzmy, zZe

lim f(z) = lim g(z) = co.
Wtedy
lim —f(x) = lim f'(z)

ot glz)  omar glz)

o ile granica po prawej stronie istnieje.
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Uwaga. Analogiczne twierdzenie jest prawdziwe dla granic lewostronnych,
obustronnych i granic w 4o00.
Uwaga. Przeksztatcenie

@) gla)!
g@)  fla)

i uzycie Twierdzenia 5.18 nie bedzie skuteczne, bo

(9()™) _ d'(x) (f(2))
(fl)71) @) (g(2))*

Dowdd. Idea dowodu polega na tym, ze dla x blisko a wyrazenia ;((3 oraz
M zachowuja sie podobnie. Niech a < x < x5. Wtedy
9(x) — g(o)

J(@) _ f(x) = Flao) + flxo)

g(z)  g(x) — g(xo) + g(zo)

f(z) = f(=o) f (o) F€)  _ flwo)
_ 9(@) —g(@o)  g(z) —g(zo) _ g'(§)  g(z) — g(zo)
9(xo) g(zg
1+ 1+
9(x) = g(xo) 9(x) = g(x0)

dla pewnego punktu &£ potozonego pomiedzy x i xg. Oznaczmy L = lim+ g :Ej)) .

Wtedy

PO, fa) ~ Lolwo)

fl@) o _ g©) g9(z) — g(xo)

9(x) - 9(@o)

9(x) — g(xo)
Ustalmy liczbe 0 < n < 1/2. Wybierzmy x, tak, aby
QIEE)) —Li<n, daa<t<ux.
Wtedy
F'(€) — L) <n.
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Poniewaz g(z) — oo dla x — a™, to mozemy teraz znalezé a < x1 < zg tak,

aby
— L
|f (o) — Lg(zo)| + g(w0)| <n dlaa<z<az.
l9(x) — g(x0)]
Niech a < z < z;. Otrzymamy
f'(€) ‘ ‘f x0) — Lg(zo)
x ! 2
|f(T) 1| < [ — g(o) "y
g(x) - ‘ g(:co) 1—n
g(z) — g(xo)
O
Przyktady.
1
(a) lim L~ lim — =0,
Tr—00 6% Tr—00 6:17
1
log x T .
(b) xlirélJf .TlngL’ B :cll%%r - :vli%{r 1T xli%%r —.’I?) N
x x?
. a? 2z
(¢) lim — = lim — = 0. Mozna tez uzasadni¢ inaczej: dla z > 0 mamy
r—00 e$ Tr—00 PI
F k k+1)!
R =]
(k+1)! L
(d) lim 2% = lim €% = lim e¥ = 1.
r—0+ z—0+ y=zxlogr y—0—

5.9 Pochodna ciggu i szeregu funkcyjnego

Twierdzenie 5.21. Funkcje f,(x) sq ciggle i rézniczkowalne w sposdb ciggly
w przedziale [a,b]. Zalézmy, Ze ciggi fn(x) i fl(x) sq jednostajnie zbieine
do f(z) i g(x), odpowiednio. Wtedy f'(x) = g(x) (na koticach przedziatu
fia) =gla) i fL.(b) = g(b)). Tan.

(lim f(2))" = lim f}, ().
Czyli pochodna granicy ciggu funkcji jest granicg pochodnych tych funkcy.
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Dowdd. Niech a < z9 < b. Checemy pokazaé, ze f'(xo) = g(x¢). Z zalozenia
dlae > 0 istnieje prog N taki, ze dlan > N mamy |f/(t)—g(t)| < £/3,dlaa <
t < b. Wiemy, ze funkcja g(z) jest ciagta, jako granica jednostajnie zbieznego
ciagu funkeji f/ (z). Zatem istnieje liczba 0 > 0 taka, ze dla | —x¢| < § mamy
lg(&) — g(x0)| < £/3. Niech 0 < |z — x| < §. Wtedy dla n > N otrzymujemy

fa() = fu(zo)

r — X

— g(xo)| = |£,(&) — g(xo)]

€ 2

<118 = 9O +19(8) — glwo)| < 5 + 5 = 3=

dla pewnego punktu £ lezacego pomiedzy z i zg. Zatem dla 0 < |z — x| < 0
mamy

|f(x)—_ 100) _ )| = tin £ = Inloo) _ o hf 20
T — o " T = To 3
To oznacza, ze
lim f(x) = (o) = g(wo),
T—T0 T — X
czyli f'(zo) = g(x0). =

Uwaga. W dowodzie wykorzystana byta jedynie zbieznosé punktowa ciggu
-

Uwaga. Wystarczy zatozy¢, ze ciag f,(x) jest zbiezny w jednym punkcie ¢
przedziatu [a, b]. Rzeczywiscie, z tego warunku wynika jednostajna zbieznosé
ciagu f,(x). Sprawdzimy jednostajny warunek Cauchy’ego dla ciagu f,(x).

[fo(2) = fu(@)] < | [fa(2) = fin(@)] = [fulc) = funlO)] | + [fulc) = fm(c)]

h(z) h(c)
=1 £u(&) = fr(&) [z — c| + [fule) = fm(c)]
R'(€)

< (b= a)l (&) = fr(E)] + |fule) = frm(c)]-

Whniosek 5.22. Zaloimy, Ze funkcje f, sq ciggle i rézniczkowalne w sposéb
oo

ciggly w przedziale [a,b]. Jesli szereg Y fo(x) jest zbieiny praynajmniej w

n=1
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o0

jednym punkcie, natomiast szereg Z fr(x) jest zbiezny jednostajnie, to suma
o n=1
szerequ s(x Z x) jest funkcjq rézniczkowalng oraz

00 / 0o
(z (o)) =50 =3 1), (5.7
n=1 n=1
tzn. pochodna sumy szerequ funkcyjnego jest szeregiem pochodnych.

Dowéd. Niech s, (x Z ). Ciag funkeyjny s, (x) spelnia zatozenia po-

/
przedniego twierdzenia. Zatem (h}ln sn(x)> = lim si(z), co jest réwnoznacz-

ne z (5.7). O
Przyktad. s(r) = 26—3, 0 < z < 1. Przyjmujemy f,(r) = ¢ g
- n n
2ot
Wtedy f,,(v) = —————, co daje [f,(z)| < —;. Zatem szereg Zf
n n=1

jest jednostajnie zbiezny. Szereg Z fn(z) tez jest jednostajnie zbiezny. Czyli

o0 e—nl?z "= 1
!
= 9
s (x) san::l e

Twierdzenie 5.23. Zaléz'my, ze liczba R > 0 jest promieniem zbieinosci

szeregu potegowego f(x Z apx™. Wtedy funkcja f(x) jest rézniczkowalna

w przedziale (—R, R) oraz f'(x Z na,z" .

Uwaga. Szereg potegowy dla funkcji f/(x) ma wiecksze wartosci bezwzgled-

ne wspoétczynnikéw, wiec promien zbieznosci nie moze by¢ mniejszy od R.

Jednak promienie zbiezno$ci obu szeregéw sg takie same. Istotnie, niech R’
o

oznacza promien zbieznosci dla z ! Z na,x" x # 0.
n=1
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S .. a 1
(a) Jedli istnieje granica 1171111 % =5 to
1 — lim (n + 1)[ant| — lim |an1] _ l
R n n|a,| n g R

I o 1
(b) Jesli istnicje granica lim {/ la,| = T to

1 1 n 3 n 3 n . n 1
= lim {/n|a,| = lim Un lim {f]an| = lim {f]a,| = o

Ogolnie mamy

1 1
o= hmnsuP nla,| = li7Izn Un limnsup an| = o

o

Dowdd. Szereg pochodnych Z na,r" ' jest zbiezny w przedziale (—R, R).
n=1

Wiemy, ze zbieznosé jest jednostajna w kazdym przedziale [—R + §, R — ¢,

dla 0 > 0. Z Wniosku 5.22 otrzymujemy teze, czyli

0 ! 0
(Z an:c"> = Z na,z" L.
n=0 n=1
O

o0

Whiosek 5.24. Funkcja f(z) = > a,2”™ dla —R < = < R, gdzie R jest
n=0

promieniem zbieznosci, jest nieskornczenie wiele razy rozniczkowalna oraz

f®)(2) = (g:oana:”) v = én(n —1)...(n—k+1Daya" "

Dowadd. Stosujemy wielokrotnie Wniosek 5.22 korzystajac z faktu, ze pro-
mien zbiezno$ci nie zmienia sie przy rézniczkowaniu. O
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Przyktady.

(a) Rozwazmy funkcje f(z) = log(1 + x), z > 1. Mamy

1 [ee]
'(x) = = -1z, dl < 1.
F@) =y = D", diale
(=D)" a1 s (DM o
Rozwazmy szereg Z ' = Z ————2". Promien zbieznosci
—nt1 =i n

tego szeregu Wyn081 1. 7Z Twierdzenia 5.23 mamy

(i (_1—)Hx> - (i:jo (7:)1:5“) = > (1" = = (log(140)).

n=1 n n=0

Zatem
(o) n+1

log(1 + ) :Z "+ C, |r|<1,

dla pewnej statej C. Podstawmmc x = 0 uzyskamy C = 0. Zatem

[ee) n+1
log(1 + ) Z ) ——", dla —1l<z<l1. (5.8)

7 kryterium Leibniza szereg po prawej stronie jest zbiezny rowniez dla
x = 1. Zatem z Twierdzenia 4.17 otrzymujemy

o0 )n+1

log 2 :Z

(b) f(x) = arctgz. Wtedy

/ — — —1)" 2n <1
f@) = = 0l
1)n 2n+1
Rozwazmy szereg Z 2—+1:I‘ Szereg ten jest zbiezny dla |z| < 1

Wiemy, ze
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czyli

o0

-1
arctgr =y 2(71—4_)1:62"“ +C, |z| < 1.

n=0

Podstawiamy z = 0 i otrzymujemy, ze C' = 0. Zatem

0 (_1)n
arctgz =y 2(71—_31332’”1, |z < 1. (5.9)

n=0

Podobnie jak w poprzednim przykladzie mozemy podstawi¢ x = 1 i
uzyskaé

T i (="
4 =2n+1

5.10 Wzory Taylora i MacLaurina

Twierdzenie 5.25 (Wzér Taylora). Niech f(x) bedzie funkcjg n-krotnie réz-
niczkowalng w przedziale wokot punktu a. Wtedy dla liczb b 2 tego przedziatu
mamy

(b—a)*
2l

fa)+...+ %f("_”(a) + R,

gdzie R, ma jedng z dwu postaci:

(1) R, = (b—'a) f™(a+0(b—a)), dla pewnej liczby 0 < 0 < 1 (reszta
n!
w postaci Lagrange’a),
(2) R, = (b=a) (1= (a+6 (b—a)), dla pewnej liczby 0 < §' < 1

(n—1)!

(reszta w postacti Cauchy’ego).

Uwagi
1. Oznaczmy b — a = h. Wtedy

hn—l

o @+ B

Flath) = f(a)+ 507 (a) 4 o (@) 4t

(1 =)' f " (a+0'h),

R, = h—f<">(a +6h) =
n! n



