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1 Operatory ograniczone na przestrzeni Ba-
nacha

Niech T" : X — X bedzie ciagglym operatorem liniowym na przestrzeni
Banacha X. Przypominamy, ze norme operatora 1" okreslamy wzorem

1T = sup{|Tz]| - [lf <1}

Symbolem B(X) := B(X, X) oznaczamy przestrzen Banacha wszystkich cia-
glych operatorow liniowych z X w X.

Przykltad 1.1. Rozwazmy odwzorowanie liniowe T" : C* — C". Chcemy
zbadaé dla jakich zespolonych liczb A operator (tzn. macierz) Al — T jest
odwracalny. Jak wiadomo z kursu algebry liniowej warunkiem rownowaznym
jest det(A — T') # 0. Liczby A, dla ktérych ostatni wyznacznik zeruje sie
nazywamy warto$ciami wtasnymi. Wiadomo, ze jesli det(A\ — T') = 0, to
istnieje niezerowy wektor v € C" taki, ze Tv = Av. Tzn. macierz A\l — T nie
jest r6znowartosciowa. Innym réwnowaznym warunkiem jest, ze Im (AI-T) C

Cn.
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Definicja 1.2. Zbiorem rezolwenty p(T) nazywamy zbior tych liczb zespo-
lonych X\, dla ktérych operator N\I —T jest odwracalny. Dopetnienie C\ p(T)
nazywamy spektrum operatora T i oznaczamy symbolem o(T).

Definicja 1.3. Spektrum punktowym o,(T) nazywamy zbior wartosci wia-
snych operatora T, tzn. zbior liczb zespolonych X takich, ze \I — T nie jest
operatorem roznowartosciowym. Wtedy istnieje niezerowy element r w X ta-
ki, ze Tx = \x.

Definicja 1.4. Spektrum resztowym o,.(T) nazywamy zbidr liczb zespolonych
A, dla ktorych obraz Im (A — T') nie jest gestq podprzestrzenig w X.

Przyklad 1.5. Rozwazmy przestrzen
X =07r= xnnO.Z]xn]2<oo}

Dla x = (x,)52, okreslmy operator S wzorem

Tpo1 N =1
Sx), =
(Sx) {O

n = 0.
Tzn.
S(l’o, T1,T9, .. ) = (07ZE0, T1,T9, .. )
Mamy ||Sz||2 = ||z||2, zatem ||S|| = 1. To oznacza, ze operator S jest
izometrig.

Sprawdzamy réznowartosciowos¢ operatora Al — .S. W tym celu rozwia-
zujemy réwnanie (Al — S)x = 0, czyli Sz = Az. Otrzymujemy nieskonczony
cigg rOwnan

0 = )\330
Tpo1 = A&, n> 1.
Jesli A = 0, to x, = 0 dla wszystkich n. Zatézmy, ze A # 0. Wtedy zo = 0

oraz
Tp = A2y 1= A "2 =0.
To oznacza, ze operator S nie posiada wartosci wtasnych.
Zbadamy teraz o,(S). Zatézmy, ze obraz Im (A — S) nie jest gesty w 2.
Réwnowaznie istnieje niezerowy element y € €% taki, ze y L Im (A — S).
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Niech V' = lin{ey, €1, €, . ..}, gdzie e = (0,...,0, %, 0...). Przestrzen V jest
gesta w (2, tzn. V = (2. Zatem

A = S)(V)CIm (M —S) = (M — S)(?) = (M - S)(V) c (M - S)(V).

SkorzystaliSmy z wtasnosci znanej z kursu topologii, ze obraz przez odwzo-
rowanie cigglte domknigcia zbioru jest zawarty w domknieciu obrazu tego
zbioru. To oznacza, ze

Im (M — S) = (M = 5)(V).

Whioskujemy, ze warunek y L Im (A —5) jest réwnowazny z warunkiem
y L (A — S)(V). Ostatni warunek z kolei oznacza, ze y L (A — 5)(ex) dla
k=0,1,2,.... Rozwiazujemy uktad rownan

(y,(\I — S)ex) =0, k=0,1,2,....
Zatem
(y, \er, —exy1) =0, k=0,1,2,....

Dalej
Ykp1 = \yp, k=0,1,2,....

Otrzymujemy ostatecznie
~k
Ye =Ayo, k=1

Jedliyg =0, toy = 0. Jedli yo # 0, to y € £ wtedy i tylko wtedy, gdy |\| < 1.
Zatem

o.(S)={AeC: |\ <1}
Pozostaje zbadaé liczby A spetiajace |A| > 1. Sprawdzimy, kiedy AT — S jest
,na”. W tym celu dla y € (2 rozwigzujemy réwnanie (A — S)z = y. Wtedy

)\xﬂ = Yo,
/\l‘n_l‘n—l = Yn, n >l

Stad otrzymujemy
Tp = Ailyn + Ailxnfl-

Zatem
T =N " + AN 201 . ATy, (1.1)
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Niech y = ey, gdzie

Wtedy

Tpo=A""1 n>0

Dla |A\| = 1 ciag (z,) nie nalezy do ¢*. Zatem
g(S)2{reC: |)\<1}

Niech |A| > 1. Sprawdzamy norme rozwiazania x z (|1.1)).

o0 o0 n 2 oo n
Yozl =20 DA k) <0 D AT ek AT g
n=0 n=0 k=0 n=0 k,l=0
= DT Y (vl
k=0 n=max(k,l)
- - 1/2 - 1/2
SOOI XD [yl > vl
k,l=0 n=max(k,l) n=max(k,l)
< SN B = ()
k,l=0 Al =
Zatem )
A = 8)yll2 = [l < Wllyllz,
czyli
1 1
100 = )7 < =
Podsumowujac
o(S)={ e C: |\ <1}
Uwaga 1.6.

1. W przykladzie mozna zauwazy¢, ze jesli A € o(S5), to |[A| < ||S]]. Ta
wlasnosé zachodzi dla kazdego ograniczonego operatora (por. Wniosek

13).

2. Zbior o(S) jest domkniety i rowniez ta wlasnos$¢ jest spelniona dla
dowolnego ograniczonego operatora liniowego (por. Twierdzenie |1.10)).
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Twierdzenie 1.7. Zalozmy, Ze ograniczony operator liniowy T : X — X,
gdzie X jest przestrzeniqg Banacha, spetnia |T|| < 1. Wtedy operator I — T
jest odwracalny oraz

Loy,
n=0

(e}
Dowadd. Szereg Z T" jest bezwzglednie zbiezny, bo
n=0

Tn Tn_
I < 3 I =

o0

Dzieki zupetosci przestrzeni B(X) symbol A = Z T" okresla ograniczony
n=0

operator liniowy. Zauwazmy, ze

AT =TA=> T""'"=A-1.
n=0

Zatem
Al -T)=(I-T)A=1.

Stad A= (I —T)"". 0

Whniosek 1.8. Niech X bedzie przestrzeniq Banacha oraz T € B(X). Jesli
IA| > ||T||, to operator \I — T jest odwracalny, tzn. X € o(T).

Dowod. Mamy
M —T=XI-X\'T), |IX'T| < 1.

7 poprzedniego twierdzenia operator I — A~!T jest wiec odwracalny. Zatem
odwracalny jest tez A\ —T. O]

Uwaga 1.9. Z twierdzenia wynika, ze dla ||T']] < 1 mamy

1

I =) <
1= |7

Zatem przy zalozeniu ||T'|| < |A| otrzymujemy

1 1

JAL=T)7 ] = NI = A7) < A - .
L= AT~ W=7
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Twierdzenie 1.10. Dia T € B(X), gdzie X jest przestrzenig Banacha, zbior
rezolwenty o(T) jest otwartym podzbiorem w C. Ponadto funkcja

R(T) = (I - T)™", z € o(T)

jest analitycznym odwzorowaniem zbioru o(T) w B(X), tzn. w otoczeniu kaz-
dego punktu zo funkcja R.(T) przedstawia sie za pomocq bezwzglednie zbiez-
nego szerequ potegowego postacs

R.(T) = i(z —20)"A,, A, € B(X).
Zachodzi tez wzor
R.(T) = Ry(T) = —(z — w)Ro(T) Ru(T). (1.2)

Uwaga 1.11. Wzér (|1.2) mozna kojarzy¢ z tozsamoscia

1 1 Z—w

z—t m:_(z—t)(w—t)'

Dowdéd. Niech zy € o(T). Pokazemy, ze liczby z lezace blisko zy naleza do
o(T). Mamy

2l —T = (20 =T) — (20 — 2)I = (20] —T)[I — (20 — 2)(20] —T)7"]. (1.3)
Zatézmy, ze
1
I(zo =T)7M|1"

|z — 20| <

Wtedy
|(z — 20) (20l — T)_lH < 1.

Z Twierdzenia [1.7|operator I — (2o — 2)(z0I —T) ™! jest odwracalny. Zatem ze
wzoru (|1.3]) operator zI — T jest odwracalny jako ztozenie dwu operatorow
odwracalnych. Czyli z € o(T), wiec zbidr o(T') jest otwarty.

Ze wzoru (|1.3) i Twierdzenia otrzymujemy

RAT) = (2] —T)™' = i (20— 2 (] — )"

=Y (z—20)"Ap, An=(=1)"(zol =T)"" (14)

n=0
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Obliczamy
RAT) = Ry(T) = (2I = T) ' — (wl —=T)™*

= (21 = T) ' {(wl —=T) — (2 = T)](wl —T)™*
= —(z—w) (2l = T) ™ Mwl =T)™' = —(2 — w)R.(T) Ry (T)

]
Dla z, z, € o(T) na podstawie ((1.4)) mamy
RZ(T)—RZO (T) = Z(ZO—Z)n(ZQI—T)_n_l—(Zol—T)_l = Z(Zo—Z)n<Z0[—T)_n_l.
n=0 n=1

Zatem

|R(T) = Rao(T)I| < D |2 = 20|"[[ (0] = T)H|"*
n=1

_ 2= alllR (D)
1 — [z = 2| Rz (T)]]

przy zalozeniu, ze |z — 2| < || R.,(T)|| ™! Z obliczei wynika, ze

lim R.(T) = R, (T).

zZ—20

Zatem, korzystajac z (1.2]), otrzymujemy

lim 220 = B (1) lim (—1)R.,(T)R.(T) = —R.,(T)*%

zZ—20 Z— 2 220

To oznacza, ze funkcja z — R,(T') posiada pochodng zespolona jako funkcja
z podzbioru o(T) w B(X).

Twierdzenie 1.12. Niech T bedzie ograniczonym operatorem liniowym na
przestrzeni Banacha X. Wtedy spektrum o(T) jest niepustym i domknietym
podzbiorem w C.

Dowaod. Domknietos$é zbioru wynika z otwartosci zbioru rezolwenty. Zal6ézmy;,
ze spektrum o(T') jest zbiorem pustym. Wtedy funkcja R,(T') jest okreslo-
na na calej ptaszczyznie zespolonej. Dla ustalonych elementu z € X oraz
funkcjonatu x* € X* rozwazamy funkcje

f(z) = x*(R(T)x).
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Funkcja f(z) jest holomorficzna w calej plaszczyznie zespolonej. Z zadania
18 mamy, ze ||R.(T)|| I\—) 0. Wtedy f(z) \I—) 0. Funkcja f(z) jest zatem
ograniczona w C. Na podstawie twierdzenia Liouville’a funkcja f jest stala,
czyli f(z) = 0. Stad z*(R,(T)x) = 0 dla dowolnego funkcjonatu z*, czyli
R.(T)x = 0 dla dowolnego elementu = € X. Zatem R,(T) = 0, co stoi w
sprzecznosci z odwracalnoscia operatora R, (7). [

Uwaga 1.13. Dla X = C" operatory T : X — X utozsamiamy z macierzami
wymiaru nxn. Wtedy z zasadniczego twierdzenia algebry mamy o (7)) = {\ €

C : det(M —T) #0} # 0.

Definicja 1.14. Promieniem spektralnym operatora T € B(X). nazywamy
liczbe
r(T) = max{|A| : A€ o(T)}.

Twierdzenie 1.15. Dia T € B(X), gdzie X jest przestrzenig Banacha,
istnieje granica lim |T™|*™ oraz granica ta jest réwna r(T). Ponadto, jesli
X jest przestrzeniq Hilberta oraz T* =T, to r(T) = ||T|.

Dowaod. Jesli T™ = 0 dla pewnej liczby ng, to T™ = 0 dla n > ng. Wte-
dy lim, || T"||'/" = 0. Zatézmy zatem, ze T™ # 0 dla wszystkich poteg n.
Oznaczmy a,, = log ||T"||. Zauwazmy, ze

Uptm < Ap + Q.
Rzeczywiscie

U = log |77 = log [ T"T™|| < log | T"[[[|T™||
= log [ T"|[ +1og [ T™|| = an + am.

I[stnienie granicy ciggu a, wynika z nastepnego lematu.

Lemat 1.16. Jesli cigg liczb rzeczywistych a,, spetnia warunek a, ., < a, +
am, to istnieje granica (byé moie —o0) ciggu a,/n oraz
a a
lim — = inf —.
non non
Dowod. Mamy
pptr S App + Ap < NAp +
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dla dowolnych liczb naturalnych n, p i r. Ustalmy liczbe p. Kazdg liczbe m
mozna zapisa¢ w postaci m = np + r, gdzie 0 < r < p — 1. Zatem

a a n 1
Zm o Tmptr it - a
np+r

= < a -
m np+r np+r

Gdy m — oo, to n — o0, wiec
a a
limsup — < 2.
m p

Poniewaz p jest dowolng liczbg naturalna, to

. a .o a .. .Q
limsup — < inf £ < liminf —=.
m P P m

Stad granice gérna i dolna muszg by¢ sobie réwne. O]

7 lematu wynika, ze
lim |77/ = int || 7"/,

Zatézmy, ze |z| > inf, ||[T7Y/". Pokazemy, ze wtedy operator zI — T jest
odwracalny. Istotnie, dla pewnej liczby n mamy |z| > ||77(|*/™. Stad |z|"* >
17" ||. Wtedy

1
=T =" — —=T")

Zn

jest operatorem odwracalnym, bo ||[z7"T"|| < 1. Z drugiej strony mamy
M —T" = (2l =T)S =S5z —-T),
dla S= 2"+ 2" T+ ... +2T" 2+ 7" L

Odwracalno$¢ operatora zI —T" wynika z prostego algebraicznego faktu, kto-
rego dowod pozostawiamy czytelnikowi.

Fakt 1.17. Zalozmy, Ze w polgrupie A z jednosciq, element a jest odwracalny
oraz a = bc = cb dla pewnych elementéow b i c. Wtedy elementy b i c tez sq
odwracalne.

Zatem z ¢ o(T). W konsekwencji otrzymujemy

o(T)C{zeC: |z] < inf |7/}
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To oznacza, ze r(T') < inf |7 ||
Niech teraz r > r(T'). Tzn. operator R,(T') istnieje dla |z| > r. Ustalmy
element x € X i funkcjonal z* € X*. Funkcja

2z 2" (R,(T)x)

jest holomorficzna dla |z| > r(T). Zatem ta funkcja jest holomorficzna w
pierscieniu r < |z| < s. Wtedy
him 5 [ @R e = o [ (BT
n = —— e (R,(T)x)z"dz = — 2 (R,(T)x)z" dz.
27?2‘ L 27rz| a
Rozwazmy s > [|T'||. Wtedy dla |z| = s mozemy rozwinaé¢ R,(7T") w absolutnie
zbiezny szereg

RZ(T) — Z Z_(k+1)Tk,
k=0

Zatem - .
L =Y a*(Trz)— / D gy — ¥ (Thx),
—n 27T’L‘Z|:S

bo tylko jeden sktadnik (dla k = n) jest niezerowy. Otrzymujemy zatem

1
2(T'x) =1, = %‘ l/ (R (T)x)z" dz.
Dalej
* n 1 n * n *
27 (T" )] < o - 2mr " max [ R (T)| [l l2[} = i max || B (Tl [l |2~
Ostatecznie
17" = sup |a*(T"z)] < 7" max || 72:(T)]|

flz=[|<1 2=

llzll<1
Stad

lim |77V < .
Poniewaz r byto dowolna liczba wigksza do r(7T'), to

lim | 77"/ < (7).
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Niech T'€ B(H). Dla x € H mamy
|IT2||* = (T2, Tw) = (T"Tw,x) < |T"Ta|||2|| < |TT|||=|*.

Zatem
1T < T T < IT*|IT) = 1T

Stad || T*T|| = ||T||*. Jesli T* = T, to ||T?|| = ||T||*. Potegi operatora T sa
rowniez samosprzezone, wiec

n n—1 n—2 n
1T =T =T = = T
Czyli
T2 = |7
Przechodzac do granicy otrzymamy r(T') = ||T||. O

Whiosek 1.18. Jesli T € B(H) jest operatorem normalnym, tzn. T*T =
TT*, tor(T) = ||T.

Dowdd. Wykonujemy obliczenia
n N % n *\ 27 n * n % n n+1
172 = [|(T*) T = |(T*)*" T*|| = [(T*D)*" | = |T*T||*" = | T||*

Zatem ’
17" = || 7.

Przechodzac do granicy otrzymujemy teze. O

Whiosek 1.19. Jesli T € B(H) jest operatorem normalnym, to |[T"] =
17[J".

Dowod. Mamy
17" = r(T™) = lim | T/ = (tim || 7%/ = ()" = || T

]

Przyklad 1.20. Rozwazmy operator T': L?(0,1) — L?(0,1) zadany wzorem

(T))@) = [ F)dy.
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Obraz Im T jest zawarty w C0, 1]. Istotnie, z nieréwnosci Schwarza mamy
dlad <z <ay<1

(T f)(x2) — (T f)(z1)] = L/f(y) dy| = 1(y) dy
< [ fll2llXer zall2 = VX2 — 21| f]]2-

Zatem T nie jest operatorem odwracalnym. Obliczmy T2

T @) - [T dy—/(/f )
/f(z) (/dy) dZZi(x—z)f(z)dz.

Udowodnimy przez indukcje, ze

(" f)(a i [0 ) (1.5)

Zaktadamy, ze wzor jest prawdziwy i sprawdzamy nastepna potege.

T

(T () = [ ) ) dy = (nil), / ( / (y— )" f(2) dz) dy

0

_ (n_ll)!jf(z) (/(y — )"t dy) dz = ;,O/(w —2)"f(2) d=.

Korzystajac z (1.5 otrzymujemy
2

dx

/m— y) dy

0

2/1(/m |2dy) (7($— )Q”dy) dz < ||fll3 e /2::11 dx

1
= @@ en gl WWHQ'

1
I+ = / )@= s |
0

Zatem || T"M| <

1
(n+ 1) Stad lim |7V = 0. W rezultacie o(T) = {0}.
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Twierdzenie 1.21. Niech T : X — X bedzie operatorem ograniczonym na
przestrzeni Banacha X. Dla wielomianu p(z), o wspotczynnikach zespolonych,
mamy

o(p(T)) = p(a(T),
tzn. kazda liczba w spektrum operatora p(T') ma postaé p(N), gdzie A € o(T).
Dowdd. Pominiemy przypadek deg p = 0. Zalozmy, ze p(A) ¢ o(P(T'). Wtedy
—p(A
operator p(T') —p(A)[ jest odwracalny. Niech ¢(z) = YM Wtedy ¢(2)

jest wielomianem oraz p(z) — p(A) = (z — A)q(2). Zatem
p(T) = pWNI = q(T)(T' = M) = (T = M)g(T).

To oznacza, ze operator T'— A jest odwracalny, czyli A ¢ o(T'). Zatem, jesli
A€ a(T), to p(A) € a(p(T)). Otrzymalismy p(o(T)) C o(p(T)).

Zatézmy, ze o € o(p(T)). Z zasadniczego twierdzenia algebry wielomian
p(z) — «a rozktada sie na czynniki liniowe

p(z) —a=clz—M)(z—A2)...(2 = \n), c#0
oraz p(\;) = «, dlaj=1,2,...,n. Wtedy
p(T) — ol = (T — MI)(T — NoI)... (T — A1),

7. zatozenia lewa strona jest operatorem nieodwracalnym. Zatem przynaj-
mniej jeden z czynnikéw po prawej stronie, np. 1" — A;I, jest operatorem
nieodwracalnym. Stad \; € o(7'). Poniewaz p(};) = «, to a € p(a(T)).
Otrzymalismy zawieranie o(p(T")) C p(a(T)). O

Uwaga 1.22. Teza jest spetniona dla funkcji catkowitych f(z), tzn. funkcji
postaci

f(z) = i anz",
n=0

przy czym promien zbieznosci szeregu wynosi +oo, lub jest wiekszy niz r(7T).
Wtedy operator

f(r) = i a,T"
T)

jest dobrze okreslony, bo szereg jest bezwzglednie zbiezny. Zawieranie f(o(
)

mozna udowodnié¢ podobnie jak wyzej, korzystajac z faktu, ze g(2) = it

jest funkcja catkowita.

)
2)—f
)

C a(f(T))
(M)
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Twierdzenie 1.23. Dia T € B(H) mamy
o(T*)=0(T)=4{z: z€0(T)}.

Dowdd. Wiemy, ze jesli operator A € B(H) jest odwracalny, to A* jest tez
odwracalny oraz (A*)™' = (A™1)*. Niech z ¢ o(T). Tzn. zI — T jest opera-
torem odwracalnym. Zatem zI — T™ jest tez odwracalny, czyli z ¢ o(T*). To
daje

Stad wynika, ze

czyli

]

Whiosek 1.24. Niech U : H — H bedzie operatorem unitarnym, tzn. U*U =
UU* = I, lub réwnowaznie U* = U™, Wtedy o(U) C {2 € C : |z| = 1}.

Dowod. Mamy
> = uvl = 1]l = 1.

Zatem ||U|| = 1, skad wynika o(U) C {z € C : |z| < 1}. Niech |z| < 1.
Chcemy pokazacé, ze zI — U jest odwracalny. Zauwazmy, ze

2l —U=20"U—-U=—(I —2U")U.

U jest odwracalny. Operator I — zU* jest réwniez odwracalny, bo ||zU*|| =
|z| < 1. Stad zI — U jest odwracalny, co dowodzi tezy wniosku. O

Uwaga 1.25. Jesli U jest unitarny, to ||Uz|| = ||z|| dla z € H. Rzeczywiscie
|Uz||* = (Uz,Uz) = (U"VUz,2) = (z,2) = ||z]*.
Podobnie ||[U*z|| = ||=]|.

Twierdzenie 1.26. Jesli operator T : H — H jest normalny, to |[Tx| =
|T*z|| dla x € H.

Dowod. Mamy
|Tx||* = (Tx, Tx) = (T*Tx, x) = (TT*x,x) = (T*x, T*x) = | T"xz|>.
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Whniosek 1.27. Jesli T' jest operatorem normalnym, to
IAT = T)z|| = [[(A — T")z]|

dla x € H. Ponadto, jesli X\ jest wartoscig wlasng operator T, to X\ jest
wartoscig wltasng operatora T, z tymi samymi wektorams wtasnyms.

Dowaod. 7 zatozenia wynika, ze \I — T jest operatorem normalnym, wiec
mozemy zastosowaé poprzednie twierdzenie. Druga cze$¢ wniosku wynika z
obserwacji, ze Tx = Az oznacza (Al — T)x = 0. ]

Twierdzenie 1.28. Wektory wtasne odpowiadajgce rézinym wartosciom wia-
snym. operatora normalnego sqg ortogonalne.

Dowdd. Niech T : 'H — 'H bedzie operatorem normalnym oraz Tx = Az i
Ty = py dla X\ # p oraz pewnych niezerowych wektoréw z,y € H. Obliczamy

Nz, y) = (Tz,y) = (2, Ty) = (z,fiy) = p(z,y).
Zatem (z,y) = 0. O

Whiosek 1.29. Niech T bedzie operatorem normalnym na H = C". Wtedy
istnieje baza ortonormalna vy, ve, . ..,v, w C" ztozZona z wektorow wiasnych
operatora T

Uwaga 1.30. Teza wniosku oznacza, ze w bazie wektorow {vy,va, ..., v,}
macierz operatora T ma posta¢ diagonalng z liczbami A\, Ao, ..., A\, na prze-
katnej.

Dowdd. Utozsamimy operator T z macierza w standardowej bazie przestrzeni
C". Rozwiazujemy réwnanie

p(A) =det(A\[—T)=0

ze wzgledu na A. Funkcja p(z) jest wielomianem stopnia n, wiec na podstawie
Zasadniczego Twierdzenia Algebry istnieje rozwigzanie \; € C. Wtedy )\,
jest wartodcia wtasng odpowiadajacg pewnemu wektorowi v; € C". Tzn.
Tvy = A\v;. Rozkladamy przestrzen na

C" = (CUl D Ml, gdzie M1 = {Ul}l.
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Mamy M; ~ C" ! oraz T(M;) C M,. Rzeczywiscie, niech v € M;. Chcemy
sprawdzi¢, czy Tv € M;. W tym celu obliczamy

(Tv,v1) = (v, T*v;) = (v, \jv1) = M\ {v,v;) = 0.

Traktujemy 7T jako operator na M; ~ C"~!. Powtarzamy cate wczeéniejsze
rozumowanie, aby znalez¢ wartos¢ wtasna Ao, wektor wtasny vy i nastepna
podprzestrzen Ms. Itd. H

Twierdzenie 1.31. Dla ograniczonego operatora samosprzezonego w prze-
strzeni Hilberta spektrum jest zawarte w 0si rzeczywiste;.

Dowdd. Zatézmy, ze z = X\ + i, gdzie A\, u € R, oraz p # 0. Pokazemy, ze
operator zI — T jest odwracalny, tzn. z ¢ o(T"). Wykonujemy obliczenia

(21 = Tl = (21 = T)v, (2 = T)v) = ((z] = T)(2I = T)v,v)
= (N 4 p®) ] = 20T + T, v) = (((M = T)? + p*1v, v)
= (M = T)v, (A = T)v) + p*(v,v) > pi®[|o]|.
Otrzymalismy wiec
[z = T)vl| = | [[o]l- (1.6)

To oznacza, ze operator zI — T jest réznowartosciowy oraz, ze obraz Im (zI —
T) jest domkniety. Korzystajac z zadania 73 [5] mamy

H=ker(zl —T) & Im (zI - T).

Pierwsza podprzestrzen jest zerowa, bo z ¢ R. Zatem H = Im (zI — T), tzn.
2I—T jest operatorem ,1-17 i ,na”. Stad zI/—1T jest odwracalny algebraicznie.
Ponadto z (1.6)) wynika ograniczono$¢ operatora odwrotnego. O

2 Operatory dodatnie

Definicja 2.1. Operator A € B(H) nazywamy dodatnim, jesli (Av,v) > 0
dla wszystkich wektorow v € H. Piszemy wtedy A > 0.

Fakt 2.2. Kazdy operator dodatni jest samosprzezony.
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Dowdéd. Z zatozenia mamy w szczegdlnosci, ze (Av,v) = (v, Av). Na podsta-
wie tozsamosci polaryzacyjnej otrzymujemy

4
(Av,w) = i > (A + i*w), v + iFw)i®
k=0

1

W

4
> (v +iFw, A(v +iFw))it = (v, Aw) = (A% v, w).
k=0

Stad A* = A. O

Uwaga 2.3. Warto zapamietac, zZe z tozZsamosci polaryzacyjnej wynika, ze
jesli dla dwu operatorow A © B z B(H) mamy (Av,v) = (Bv,v), to A= B.

Przyklady. (a) H = C" oraz A jest macierza postaci

100 ...0
020 ..0
A=10 03 ... 0
00 0 n|

Wtedy (Av,v) Z klu|* > 0, dla v = (vp)7_,

(b) Dla H = L?(0,1) okreslamy (Af)(z) = zf(z). Wtedy

(Av,v) = /a;|f(a;)|2da; >0

0

Lemat 2.4. Jesli A > 0 oraz C € B(H), to C*AC > 0

Dowad.
(C*ACv,v) = (A(Cv),Cv) > 0

Lemat 2.5. Jesli A, B> 0 oraz A+ B=0,to A= B =0.
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Dowod. Mamy
(Av,v) + (Bv,v) = ((A+ B)v,v) = 0.

Poniewaz oba sktadniki sg nieujemne, to oba muszg sie zerowac dla dowolnego
wektora v. Stad A = B = 0. n

Lemat 2.6. Jesli A jest operatorem samosprzezonym, to

|A[l = sup [(Av,v)| = sup |[(Av, v}].

vll<1 llvll=1
Dowdd. Mamy

|Al| = sup |(Av,w)| = sup Re (Av,w),
[lull<1 [lul|<1
llv]|<1 llv]|<1

bo mozna dobrac¢ liczbe zespolona o o module 1 taka, ze
|(Av, w)| = (Av, aw).

Z tozsamosci polaryzacyjnej otrzymujemy

Re (Av, w) = i(A(v +w), v+ w) — i(A(v —w),v— w)

1
= 2 [llo+ wlP(4y,y) — o - wl*(Az, 2)],

gdzie
U+ w v — W

= — =
YT ot ol Jo—wl’

oile v +w # 0. Zatem

1
Re (Av,w) < [[lv +w|* + [lv — w||)] sup [{Ay, )|

llyll=1

1
= 1[2llv||2+2\|wll2] sup [(Ay,y)|-
llyll=1

W |

W rezultacie mamy

|A|l < sup [(Ay, y)|.
lyll=1
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Oczywiscie nieréwnos¢ przeciwna jest tez spetniona, bo

IAll = sup [(Av,w)| > sup [(Av,v)]
Jvll<1 el <1

Lemat 2.7. Mamy

& ()
Pmw=1-2 o - D

n=1

", x| <1,

oraz szereq jest zbiezny jednostajnie.

Dowdd. Wzoér jest znany z kursu Analiza 1. Wiemy, ze
o~ (1/2 "
Vi—z=1+) (=), lz| < 1. (2.1)
n=1 n

Po przeksztatceniu mamy

12\ (2n)!
( n )H) U= e e

Stad réwnos¢ w tezie jest spelniona dla |z| < 1. Zatem

> (2n)!
;::1 (n!)2(2n — 1)4»

=1-vV1—-z<1, |[z[<]1.

Obliczamy kres gorny lewej strony i uzyskujemy

> (2n)!
,; (n)2(2n — D)an -

W zwiazku z tym szereg po prawej stronie (2.1) jest zbiezny jednostajnie
dla |z| < 1 z kryterium Weierstrassa. Stad wyrazenie po prawej stronie (2.1)
reprezentuje funkcje ciagta na przedziale [—1,1] réwna /1 — z dla |z| < 1.
Zatem rownosé (2.1) jest spetniona réwniez dla z = +1. O

Twierdzenie 2.8. Dla dodatniego operatora A € B(H) istnieje jedyny opera-
tor dodatni B spetniajocy B* = A, nazywany pierwiastkiem z A i oznaczamy
symbolem A2,
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Dowdéd. Mozemy zatozyé, ze ||A|| < 1, dzielac w razie potrzeby przez liczbe
dodatnig. Oznaczmy X = [ — A. Wtedy

(Xv,v) = (v,v) = (Av,v) > |v]|* = | Al|v]* > 0.
Ponadto
0 < (Xv,v) = (v,v) — (Av,v) < [|o]*.
Z Lematu [2.6| otrzymujemy wiec

IX]l = sup (Xv,v) <1.

f[oll=1

Oznaczmy
(2n)!
(n1)2(2n — 1)4n"

Cp =
Okreslmy
B=1- Z cn X",
n=1

przez analogie ze wzorem z Lematu[2.7, bo A = I — X. B jest dobrze okreslo-
nym operatorem, bo szereg jest bezwzglednie zbiezny znowu z Lematu [2.7]
Istotnie

0o 0o 00
S llen X < D el XM<Y e =1
n=1 n=1 n=1

Uwaga 2.9. W przestrzeni B(H) mozna pomnozy¢ metoda Cauchy’ego dwa
szeregi bezwzglednie zbiezne i otrzymany szereg bedzie bezwzglednie zbiezny.
Dowdd jest taki sam jak dla szeregdéw liczbowych, tylko symbol wartosci

bezwzglednej |- | trzeba zamieni¢ symbolem normy operatorowej || - ||. Jedyna
roznica polega na tym, ze
bl = [al[b],  JAB]| < [[A[l|B]|

Sprawdzamy, czy B? = A.

B = (I -> ch”> (1 -3 ch”> => d, X",
n=1 n=1 n=0

[e.o]

gdzie prawa strona jest iloczynem Cauchy’ego szeregu I — Z cn X" przez
n=1

siebie. Ale z Lematu [2.7 mamy

(1—gcnx">2=(\/E)2=1—x,
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zatem dy = 1, dy = —1 oraz d, = 0 dla n > 2. Czyli
B*=1-X=A.

Sprawdzimy nieujemno$¢ operatora B. Mamy

(Bv,v) = (v,v) — i (X0, v)

=1
" e} [e.9]
2 2 2 2
> [Joll* = 32 el X 0l > Nlol* = D2 eallv]l® = 0.
n=1 n=1
o0
SkorzystaliSmy z faktu, ze | X"|| < || X||" < 1 oraz »_ ¢, = 1, co wynika z
n=1

Lematu 2.7

Pozostaje sprawdzi¢ jedynosé. Zatézmy, ze dla innego operatora C' > 0
mamy C? = A. Wtedy CA = C? = AC, tzn. C' i A sg przemienne ze soba.
Wtedy réwniez C' 1 B sa przemienne, co wynika z okreslenia operatora B.
Wykonujemy obliczenie

(B~ C)B(B~C)+ (B~ C)C(B~C)
= (B~ CO)(B+C)(B—C)=(B*~C*)(B~C)=0.

Kazdy z poczatkowych sktadnikow jest operatorem dodatnim z Lematu [2.5]
Zatem
(B-C)B(B-C)=(B-C)C(B-C)=0.

Odejmujac te operatory otrzymujemy
0=(B-C)B(B-C)—(B-0)0(B—-0C)=(B—-C)
Operator B — C jest samosprzezony, wiec z Lematu [I.19 wynika, ze
0=[I(B-C)| =IIB-Cl
czyli C = B. O
Definicja 2.10. Dila A € B(H) okreslamy

A] = (A7),
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Definicja 2.11. Operator U € B(H) nazywamy czeSciowq izometrig, jesli
U jest izometrig po obcigciu do podprzestrzeni (ker U)L, tzn.

|Uv|| = ||v]], dla wszystkich v L kerU.

Uwaga 2.12. Zbi6r Im U jest domkniety jako izometryczny obraz przestrzeni
domknietej (ker U)* przez operator U. Rzeczywiscie, poniewaz

H =kerU @ (ker U)*,

to

ImU = U(H) = U ((ker U)*).

Lemat 2.13. Operator U jest czesciowq izometrig wtedy © tylko wtedy, gdy
operator UU* jest rzutem, tzn. (UU*)? = UU*.

Dowdd.
(=) Wiemy, ze (ker U)+ = Im U*. Ponadto [|[UU*v|| = ||[U*v||. Zatem

(UU*?v,v) = (UU*, UU) = |[UU*||? = ||[U*||* = (UU*v,v).

Stad (UU*)? = UU*.

(<) Jedli (UU*)? = UU™, to korzystajac z wezesniejszych obliczeri otrzy-
mamy, ze U jest izometria na Im U*. Zatem U jest izometria na domknieciu
Im U*, czyli na (ker U)*. O

Dla czesciowej izometrii U mamy dwa ortogonalne rozktady przestrzeni
H=kerU @ (kerU)", H=(ImU)"@ImU.
Operator U jest izometrig z (ker U)* na Im U.

Lemat 2.14. Jesli U jest czeSciowq izometrig, to U™ jest tez czeSciowq izo-
metriq.

Dowéd. Wiemy, ze (UU*)? = UU*. Z Lematu wystarczy dowie$é, ze

(U*U)?* = U*U. Mamy UU*(UU* — I) = 0. Poniewaz U jest izometria na

(ker U)* = Im U*, to U jest ,1-1” na Im U*. Stad U*(UU* — I) = 0. czyli
UUUt = U, (2.2)

Mnozymy z prawej strony przez U i uzyskujemy (U*U)? = U*U. O
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Jako czesciowa izometria U* jest izometrig z (ker U*)* na Im U*, czyli z
Im U na = (ker U)* (odwrotnie niz U).

Ponadto UU* jest rzutem na Im U. Istotnie, z mamy UU*(Uv) = Uv,
tzn. UU* jest identycznoécig na Im U. Co wiecej UU* zeruje si¢ na (Im U)+ =
ker U*. Po zamianie rolami U i U* wnioskujemy, ze U*U jest rzutem ortogo-
nalnym na Im U* = (ker U)*.

Twierdzenie 2.15 (Rozktad polarny). Dla operatora A € B(H) istnieje
jedyna czeSciowa izometria U spelniajgca A = U |A| oraz ker A = ker U.
Ponadto Im U = Im A.

Dowdd. Mamy
(Av, Av) = (A" Av,v) = (|APv,v) = (|Alv, |Alv)
Zatem
[Av]| = [[|[Alv].
Stad wynika, ze jesli |Alv; = |A|vg, to Av; = Awy, bo

[ Alor = [Alva]| = [[|A](01 = v2)[| = [[A(vr = va) || = [[Avy — Avs|.
Okreslamy odwzorowanie U najpierw na podprzestrzeni Im |A| wzorem
U(|Alv) = Av.

Z poprzednich obliczen operator U jest dobrze okreslony i jest izometrig z
Im |A] naIm A. Zatem U rozszerza si¢ do izometrii z Im |[A| na Im A w oparciu
o znany fakt z topologii metrycznej. Potézmy Uv = 0 dla v € (Im [A|)* =
ker |[A|. Wtedy U staje sie czeSciowa izometria oraz ker U = ker |A| = ker A.
Z definicji operatora U mamy U|A| = A.

Pozostaje sprawdzi¢ jedynos¢. Zalézmy, ze V' jest rowniez czesciowsy izo-
metrig speliajaca A = V|A| oraz ker V' = ker A. Zatem

V|Alv = Av = U|Alv,

tzn. V i U sa réwne na Im |A|. Stad V' = U na Im|A|, przez ciaglosé. Z kolei
na dopetnieniu ortogonalnym

Im ]A|L =ker |[A] =ker A =ker V =ker U

operatory U i V' sg réwne, bo oba sie tam zeruja. To oznacza, ze U = V. [
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Uwaga 2.16. Zauwazmy U*U jest rzutem na

(ker U)* = (ker A)* = (ker |A])* = Im |A].

Czyli
U'A=U"U|A| = |A|.

Uwaga 2.17. Jedli A jest operatorem odwracalnym, to rowniez A* i iloczyn
A*A sa odwracalne. W zwiazku z tym |A| jest odwracalny. Wtedy U =
A|A|7'. To oznacza, ze U i U* sa odwracalne.Dalej

UU = |[A|TTA*A|A| ™ =1,
zatem U* = U™, co oznacza, ze U jest operatorem unitarnym.
Przyklady.

(a) Niech H = C". Wtedy operator normalny A jest dodatni wtedy i
tylko wtedy, gdy wszystkie wartosci wlasne macierzy A sa nieujem-
ne. Rzeczywiscie, niech A > 0. Wtedy jesli Av = Av, dla v # 0, to
0 < (Av,v) = X(v,v). Zatem X > 0. Odwrotnie, zatdézmy, ze wartosci
wlasne dla A sa nieujemne. Wiemy, ze A mozna przedstawi¢ w postaci
A = CDC™!, gdzie D jest macierza diagonalng oraz C' jest macierza
unitarng. Tzn. A = C'DC*. Elementy na przekatnej macierzy D sg
nieujemne jako wartosci wlasne macierzy A. Zatem D jest operatorem
dodatnim, bo jesli

N O - 0
p—|® ™ 7
0 O A,

to "
(Dv,v) = > Aelvg]* > 0.
k=1
Zatem A > 0. Ponadto AY? = CDY2C, gdzie
M2 0 -0
e | 0 Ay 0|

0 0 AL/2
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(b) Niech H = L?*(0,1) oraz (Af)(z) = z f(z). Wtedy

1 1
(Af, f) = /Af :/x\f(x)mx>o.
0 0
Ponadto
(AV2f)(x) = Vo f(x).
(b) Niech H = (2. Okreslmy
U(ZL’(), T1,T9, .. ) = (l‘l,xg,l’g, .. )

U jest izometrig na V = eg, gdzie e = (0,...,0, %, 0,...). Ponadto U

zeruje sie na Cey. Zatem U jest czesciowa izometria. Mamy
U*(zo, 21, x2,...) = (0,20, 21, ...).

Rzeczywiscie
<U*l‘, y) ZL’ Uy Z xnyn-i-l Z Tn—1Yn-

Zauwazmy, ze

U*U<£U0,[I§'1,IE2,...) = U*<l’1,l’2,$3,...):(0,1'1,1'2,...),
UU*<JZ0,IE1,ZE27...) = U(O,ZE07J]1,...):(Jfo,lL'l,ZEQ,...).

Tzn. UU* = I oraz U*U jest rzutem na e .

3 Zbieznos$¢ operatoréow

Niech X 1Y beda przestrzeniami unormowanymi. Rozwazmy 7,,, T' € B(X,Y).

Definicja 3.1. (a) Mowimy, Ze cigg operatorow T,, jest zbiezny do opera-
tora T w normie operatorowey, jesli

||Tn — THB(X,Y) 7 0

(b) Méwimy, Ze cigg T, jest zbieiny do T mocno, jesli dla wszystkich ele-
mentow x € X mamy

| Tz — Ty — 0.
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(c) Mowimy, Ze cigg T, jest zbieiny do T stabo, jesli dla wszystkich ele-
mentow x € X oraz wszystkich funkcjonatow y* € Y* mamy
ly* (Toz) — y* (Tx)| — 0.

7 nierOwnosci

Y (Tox) —y*(Tx)| = ly" (Tox = Tx)| < [ly"[ly-
= [ly*lly (T = T)zfly <

Tox —Tx|y
Y llv-llzlx 1T — Tl 5exy)

Y+ Y+
wynika, ze (a) = (b) = (c).
Przyktad 3.2. Niech X =Y = (2 oraz
U(xo,x1,Ta,...) = (1, T2, 23, ...).
Dla T;,, = U™ mamy
To(zo, 21, T2, . .) = (T, Tps1, Tpgoy - - -)-

Zatem -
| Tl = 3 Jal” — .
k=n

To oznacza, ze ciag T}, jest zbiezny mocno do zera. Poniewaz
[Tl > 1 Thenll = [leoll = 1,

to ciag T;, nie dazy do 0 w normie operatorowe;.

Mamy
U*(zo, x1,22,...) = (0,20, 21, ...).
Wtedy
(U")"(zo, x1, T2, ...) = (0,...,0,20, 21, ...).
—
Zatem
1U") ll2 = [J]2-
Dalej

(U)"2,y) = (U")'w,y) = (2, U"y) — 0,

bo U™y - 0. To oznacza, ze (U*)™ dazy do 0 stabo, ale nie dazy do 0 mocno.
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Uwaga 3.3. Dla T,,, T € B('H) mamy T, = T wtedy i tylko wtedy, gdy

(The,y) — (Tz,y),  xyeH

Twierdzenie 3.4. Zalozmy, ze X jest przestrzeniq Banacha, a'Y przestrze-
nig unormowang. Wtedy kazdy stabo zbieiny cigg operatorow T, € B(X,Y)
jest ograniczony, tzn. sup, ||T,| < oo.

Dowadd. Zatézmy, ze T, - T stabo, tzn. dla dowolnego elementu z € X cigg
T,z jest stabo zbiezny w przestrzeni Y. Wtedy ciag T,z jest ograniczony w
Y, na podstawie wniosku z twierdzenia Banacha-Steinhausa. Zatem normy
|7 || sa wspdlnie ograniczone, w oparciu o wspomniany wniosek. [l

Rozwazmy przestrzen Hilberta H. Dla A, B € B(H) piszemy A > B jesli
A*= A, B* = Boraz A— B > 0. Ta relacja jest przechodnia, bo jesli A > 0
oraz B> 0,to A+ B > 0.

Lemat 3.5. Dia A > 0 mamy

|(Au, v)]
[ Awl]

< (Au,u)?(Av, )2, (3.1)
< AN Au, uy, (3.2)
Dowéd. Dla z € Ciu,v € 'H rozwazamy wyrazenie
0 < (A(zu+v), zu +v) = |2[*(Au, u) + (Av,v) + 2Re {z(Au, v)}.
Zatozmy, ze (Au,v) # 0. Niech z = —\sgn (Au, v) dla A € R. Wtedy
0 < (A(zu+v), zu +v) = (Au,u) \* — 2|(Au, v)| X + (Av, v).

Otrzymalidémy nieujemny trojmian kwadratowy zmiennej A. Zatem wyroznik
A tréjmianu musi by¢ niedodatni. Czyli

A
0> i |(Au, v)|? — (Au, u)(Av, v).

To dowodzi (3.1). W (3.1) podstawmy v = Au. Wtedy

1Aull* < (Au, u)' (A%, Au)'/?
< (Au, )| AP V2] Aul[2 < (Auy ) 2] AN 2| Aul|

Przy zatozeniu Au # 0 otrzymujemy ((3.1)). O
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Uwaga 3.6. Dow6d mozna réwniez przeprowadzié¢ przy uzyciu A2, Rze-
czywiscie

[(Au, v)] = [(AY2u, AV20)| <AVl [AY20]| = (Au, u)'/*(Av, v) /2,
[Aul| < [JAVZ(|[AY2ull = AV (Au, u)'? = A2 (Au, u) 2.

Twierdzenie 3.7. Niech T,, € B(H) bedzie rosngcym i ograniczonym cig-
giem operatoréw dodatnich, tzn. T, < T,i1, oraz sup ||T,| < co. Wtedy cigg

T, jest zbiezny mocno.

Dowdéd. Dla v € 'H mamy
0 < (Thv,v) < (Th11v,v).
Ponadto
0 < (Thv,0) < | Tallllol® < clfv?,

gdzie ¢ = sup ||T,||. Zatem ciag liczbowy (T,v,v) jest rosnacy i ograniczony,

wiec jest zbiezny dla dowolnego elementu v. 7 tozsamosci polaryzacyjnej
wynika, ze réwniez ciag (T, u, v) jest zbiezny dla dowolnych elementéw w i v.
Oznaczmy

B(u,v) = lim(Thu, v).

Wtedy
| B(u, v)] < sup [{Tou, v)| < clull[o]].

Zatem B(u,v) jest ograniczong forma hermitowska na H x H. Z Twierdzenia
3.24 i zadania 72 [[5]] istnieje operator samosprzezony T' taki, ze B(u,v) =
(Tu,v). Tzn.

1i7£n(Tnu,v> = (Tu,v).

Zatem cigg T, jest zbiezny do T stabo. Operator T jest dodatni, bo
0 < (Thu,u),/(Tu,u).

Co wiecej T' > T,,. Stosujemy (3.2) do A =T — T, i otrzymujemy

|Tu — Tyull = (T — Tp)ul| < |T = Tol|*((T — Tp)u, u)'/?
=T — T, ||Y*(Tu — Tyu, u)*/?.
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Poniewaz
1T = Tl < T+ [T5l] < T+ ¢,
to
| Tw — Toul| < (|7 + &)Y (Tu — T, u)/?.
Zatem ||[Tu — Thull — 0. Czyli T,, dazy do T" mocno. O

4 Operatory zwarte

Definicja 4.1. Ograniczony operator lintowy T : X — Y, gdzie X 1Y
sq przestrzeniami unormowanymsi, nazywamy zwartym jesl obraz dowolnego
ograniczoneqgo podzbioru w X jest warunkowo zwartym podzbiorem w'Y, tzn.
z kazdego ciggu elementow tego obrazu mozna wybrac podciqg zbieziny.

Uwaga 4.2. Aby operator T' : X — Y byt zwarty wystarczy, aby zbior
T(By) byt warunkowo zwarty, gdzie By jest kula jednostkowa w X, tzn. By =
{z € X : ||z|| < 1}. Rzeczywiscie, kazdy ograniczony zbidr jest zawarty w
wielokrotnosci kuli jednostkowej. Wiec obraz takiego zbioru jest zawarty w
wielokrotnosci obrazu kuli jednostkowe;j.

Przyktad 4.3. Niech T': C[0,1] — C|[0, 1] bedzie okreslony wzorem

(Th)w) = [ kla.y) f()dy.

gdzie k(x,y) jest funkcja ciagta dwu zmiennych. Wtedy

1T fllo < sup_[k(z,y)| [ f]loo-
\x7y\
Stad
1T < [|Elloc :== sup [k(z,y)].
\x7y\
Rozwazmy zbior T'({f € C[0,1] : || f]loo < 1}. Ten zbidr jest ograniczony, bo
operator T' jest ograniczony. Sprawdzamy jednakowsa ciagltosé funkeji z tego
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zbioru.

(Tf)(x) = (Tf)(=)] =

[k, y) = k()] S () dy

0sy<

1
</|k($,y) — k)l @)l dy < [Ifll sup [k(z,y) — k(2" y)
0

< 1 fllee sup 1k(z,y) — k()] (4.1)

O<y<

Funkcja k(z,y) jest jednostajnie ciagta. Zatem dla ustalonej liczby dodatniej
¢ istnieje liczba dodatnia § taka, ze jesli |z — 2’| < 0 oraz |y — /| < § to
|k(z,y) — k(2',y)| < e. Zatem jesli |x — 2| < §, to

sup |k(z,y) — k(2. y)| <e.

0<y<1

Czyli |(Tf)(z) — (T'f)(2")] < e. Reasumujac obraz kuli jednostkowe]j przez
operator T' jest ograniczony i jednakowo ciggly. Zatem z twierdzenia Arzeli-
Ascoliego ten obraz jest warunkowo zwarty, wiec operator T jest zwarty.

Twierdzenie 4.4. Niech X,Y,V, « W bedq przestrzeniami unormowanyms,
natomiast operatory T : X — Y, A :V — X oraz B :' Y — W bedg
ograniczonymsi operatorams lintowyma. Jesli operator T’ jest zwarty, to zwarty
jest rowniez operator BT A :V — W.

Uwaga 4.5. Aby pokazac operator T': X — Y jest zwarty, trzeba udowod-
ni¢, ze dla kazdego ograniczonego ciagu z,, w X ciag T'x, zawiera podciag
zbiezny w Y.

Dowaéd. Niech v, bedzie ograniczonym ciggiem w V. Wtedy ciag Av, jest
ograniczony w X. Zatem ciag T'(Av,) zawiera podciag T'(Avy,,) zbiezny. Z
ciagtosci operatora B mamy, ze podciag BT Av,, jest tez zbiezny. O]

Przyklad 4.6. Rozwazmy operator T : L?(0,1) — L?(0,1)

(Th)@) = [ kla.y)f () dy.
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gdzie k(x,y) jest funkcja ciaglta dwu zmiennych. Okreslmy operatory S; :
C[0,1] — L*(0,1) oraz Sy : L*(0,1) — C[0, 1] wzorami

1
Sif=f (Saof)(x /kxy
0

Oba operatory sa ograniczone, bo

1 1/2
15171 = 111> = ( / If(:v)|2d:v) <l
0

oraz

1
(SN @) < [ k(@ p)| [F()] dy < ||k||oo/|f )l dy
0

1/2
< 1kl ( / |f(y)|2dy) = Elloll
0

czyli ||S2f |l < ||klloollfll2- Mamy T' = S1.S2. Pokazemy, ze operator Sy jest
zwarty, zatem T tez bedzie zwarty z poprzedniego twierdzenia. Wykazemy, ze
obraz kuli w L?(0, 1) przez S, jest warunkowo zwarty w C|0, 1]. Oczywiscie
obraz kuli jest ograniczony, bo operator Sy jest ograniczony. Sprawdzamy
jednakowa ciaglosé funkeji z obrazu kuli. Niech || f||2 < 1. Wtedy korzystajac

z (4.1) otrzymamy
|(S2f) (@) = (S2f) ()] < sup |k(z,y) — k(2 y)[ [ flx

O0<y<1
< sup [k(z,y) — k(@' y)| [ /]2,
O0<y<1
wiec

|(S2f)(x) = (S2f)(2)] < sup [k(z,y) — k(z',y)|.

O<sy<1

Poniewaz funkcja k(z, y) jest jednostajnie ciggla, to funkcje So f, dla || f]j2 < 1
sg jednakowo ciagle.

Przyklad 4.7. Operatory skonczenie wymiarowe, tzn. dimImT < oo, sa
zwarte. Istotnie, niech T : X — Y bedzie ograniczonym operatorem linio-
wym, dla ktérego T'(X) jest przestrzenia skonczonego wymiaru m. Wtedy
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przestrzen T'(X) jest izomorficzna z C™ z norma euklidesowa. W takiej prze-
strzeni kazdy zbior ograniczony jest warunkowo zwarty. W szczegolnosci ob-
raz kuli jednostkowej przez operator ograniczony 7' jest taki.

Twierdzenie 4.8. Niech X bedzie przestrzeniq unormowang, a'Y przestrze-
nig Banacha. Zalézmy, ze operatory T,, € B(X,Y) sq zwarte oraz zbiezne do
operatora T € B(X,Y) w normie operatorowej. Wtedy operator T tez jest
zwarty.

Dowaéd. Rozwazamy ciag x,, elementéw z kuli jednostkowej w X. Z zatozenia
istnieje podciag z\1) ciggu m,, taki, ze ciag TyzlV) jest zbiezny, np. do y;. Z
kolei istnieje podciag () ciagu 2V taki, ze ciag Toz?) jest zbiezny, np. do ys.
Postepujac tak dalej znajdziemy podciag 2™ ciagu "~V taki, ze ciag T,z
jest zbiezny, np. do y,. Okredlmy nowy ciag #,, = z\™. Dla m > n wyrazy
ciggu ,, pochodza z podciggu xg;’;), tzn. ciag T,,, m > n jest podciggiem
ciagu . Zatem T, 7, = Yn- Sprawdzimy, ze ciag v, jest zbiezny. Mamy

e — ell = lim T3, — Til
Ale
1T — T || = [[(T1 — Th) Tl < (|17 = Tl [|Zm|| < |7 — Thl|-

Zatem ciag y, spelnia warunek Cauchy’ego. Z zupelnosci przestrzeni Y ciag
Yn jest zbiezny do pewnego elementu y. Pokazemy, ze Tz, =Y. Mamy

1TZ — yll < [TZm — ToZml| + (| T0Zm — ynll + llyn — vl

Dla liczby dodatniej ¢ wybieramy n odpowiednio duze tak, aby ||T — T,|| <
e/3 oraz ||y, — y|| < /3. Nastepnie dla ustalonej wartosci n istnieje liczba
my tak, ze dla m > my zachodzi ||T,%,, — yn|| < /3. Wtedy dla m > my
otrzymujemy

1 TZm — yl| <e.

[
Przyktad 4.9. Rozwazmy ponownie operator T' : L*(0,1) — L?(0,1) z

Przyktadu [£.6l Na podstawie twierdzenia Stone’a-Weierstrassa kombinacje
liniowe funkcji postaci a(z)b(y) leza gesto w przestrzeni C([0,1]%). Zatem
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istnieje ciag funkcji k,(z,%y) postaci k,(z,y) = S, ar(@)br(y) (przy czym
N i funkcje ay oraz by zaleza od n) takich, ze k,(z,y) = k(x,y). Okreslmy

operatory

1

(L)) = [ hala)f ) dy = 3 aule) [ (o) ) .

0

Zatem
Im T, C lin{a;(x),a2(x),...,an(x)}.
To oznacza, ze T}, jest operatorem skonczenie wymiarowym. W szczegdlnosci

T, jest operatorem zwartym. Ponadto

1

/[kn(x,y)—k(w,y)]f(y) dy </Ikn(:v,y)—k(rr,y)lIf(y)ldy

< sup k(2 y) = k()| [fllh < sup (ko (2, y) = k(z, )] ]2

0<a,y<1 0<z,y<1

(T, =T)f]()] =

Stad otrzymujemy

I(To = T)flla < sup [kn(2,y) = k(z,y)| [ f]2-

O<z,y<1

Zatem

0<Lz,y<1
Twierdzenie 4.10. Niech T' bedzie ograniczonym operatorem liniowym na
przestrzeni Hilberta. T jest zwarty wtedy @ tylko wtedy, gdy T™ jest zwarty.

Dowdd. Wiemy, ze operator T mozna zapisa¢ w postaci T = U|T| oraz
U*T = |T|. Jesli T jest zwarty, to zwarty jest tez |T|. Wtedy réwniez
T* = |T|U jest zwarty. O

Twierdzenie 4.11. W osrodkowej przestrzeni Hilberta H ograniczony ope-
rator lintowy T jest zwarty wtedy i tylko wtedy, gdy przeksztatca ciggi stabo
zbiezne do zera w ciggi zbiezne do zera w mormie przestrzent.

Dowad.
(=) Zalézmy, ze ciag elementéw x, przestrzeni H dazy stabo do zera.



Operatory zwarte 35

Ten ciag jest wigc ograniczony. Zatem T'z,, zawiera podciag zbiezny T'x,, .
Oznaczmy Tz, — Y Dla z € 'H otrzymujemy

(y,z) = liin(Tmnk, z) = liy(xnk,T*@ = 0.

Zatem (y, z) = 0 dla wszystkich z € H, czyli y = 0.
7 powyzszego rozumowania wynika, ze kazdy podciag ciagu Tz, zawiera
podciag zbiezny do zera. Zatem ciag Tz, dazy do zera.

(<) Niech z,, bedzie ograniczonym ciagiem elementéw z H. Z twierdzenia
Banacha-Alaoglu mozemy wybrac podciag x,, , ktory jest x-stabo, czyli stabo,
zbiezny. Niech z,, o stabo. Zatem z,, — x — 0 stabo. Z zatozenia ciag

k
T(xp, — ) jest zbiezny do zera w normie. Czyli ||Tx,, — Tx|| — 0. O

Lemat 4.12. Niech X, Y 1 Z bedqg przestrzeniami unormowanymai. Zatézmy,
ze operator T' : X — Y jest zwarty oraz, zZe cigg ograniczonych operatorow
Sp Y — Z jest mocno zbiezny do operatora S @Y — Z. Wtedy cigg
operatorow S, T jest zbiezny do ST w normie operatorowey.

Dowaod. Zatézmy, ze S, T nie jest zbiezny do ST w normie operatorowe;j.
Zatem dla pewnej dodatniej liczby € mozna znalez¢ rosnacy ciag liczb natu-
ralnych ny oraz ciag elementéw x;, € X takich, ze

[zell = 1, [[(Sn, T = ST)al| > e

Ze zwartosci operatora T ciag T'z) zawiera podciag zbiezny. Bez straty ogol-
nosci zatozymy, ze T'xj, jest zbiezny do pewnego elementu y € Y. Wtedy

e <|[(Sn, T = ST)aell < 1S, Tww = Swyyll + 1Sn,y — Syl + 15y — ST
S Sl 1Tz =yl + 190,y = Syl + 151 ly = T[]l — 0.

]

Twierdzenie 4.13. Kazdy zwarty operator pomiedzy przestrzeniami Hilber-
ta jest granicg w normie operatorowe] ciggu operatorow skonczenie wymiaro-
wych.

Dowdd. Niech T' : 'Hy — Hs bedzie zwarty. Rozwazmy przestrzen T(H;).
Oznaczmy symbolem B kule jednostkowa w H;. Wtedy

o

7() = U T0B) = U n7(5) € U 7).

n=1 n=1
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Zatem przestrzen T(H;) jest zawarta w przeliczalnej sumie zbioréw zwar-
tych. Z kursu topologii metrycznej wiemy, ze przestrzen T'(H;) jest wiec
osrodkowa. Zatem réwniez domkniecie Hs := T'(H;) C Ha jest osrodkows
przestrzenig Hilberta. Mozemy zastapi¢ Ha przez Hs. Niech {ej}72, oznacza
baze ortonormalna w przestrzeni Hz. Wtedy dla dowolnego elementu = € Hs
mamy

T = f:(x,ek>ek.

k=1

Oznaczmy
n

L =) (z,ep)er, I, : Hy — Has.

k=1

Wtedy I,z - x, dla x € Hs, czyli I, - I, mocno. Z Lematu wynika,
ze I,T = Iy, T =T w normie operatorowej. ]

Uwaga 4.14. Na podstawie twierdzenie mozna uzyska¢ inny dowod Twier-
dzenia [£.10] Rzeczywiscie, jesli T,, — T oraz operatory T, sa skofczenie
wymiarowe, to T — 1™ oraz 17 sa skonczenie wymiarowe.

Twierdzenie 4.15 (Alternatywa Fredholma). Niech T' bedzie operatorem
zwartym w przestrzeni Hilberta. Wtedy dla liczby A # 0 operator NI — T jest
odwracalny albo liczba X\ jest wartoscig wiasng operatora T.

Dowad. E|Mamy M —T = X\ — M\7'T). Zamieniajac operator T na \~'T,
ktory tez jest zwarty mozemy ograniczy¢ sie do przypadku A = 1. Rozwa-
zamy wiec operator I — T. Z poprzedniego lematu mozna znalez¢é operator
skoniczenie wymiarowy K taki, ze |7 — Ko|| < 1. Wtedy

I-T=1—-(T- K, — K.
Operator I — (T — Kj) jest odwracalny na podstawie TWierdzenia Zatem
I =T ={I-Ko[l = (T = Ko)| '} [ = (T = Ko)).

Oznaczmy

Ky = Kol — (T — Ko)] ™",

Wtedy
I-T=(I-K)I-T+ K). (4.2)

#Dowdd opracowany z Dominikiem Wachowskim
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Operator K; jest skonczenie wymiarowy, bo Im K; C Im Kg. Ze wzoru
wynika, ze I — T jest odwracalny wtedy i tylko wtedy, gdy I — K jest
odwracalny. Ponadto I — T jest roznowartosciowy wtedy i tylko wtedy, gdy
I — K, jest réznowartosciowy.

Pokazemy, ze jesli I — K jest roznowartosciowy, to [ — K jest odwracalny.
Stad bedzie wynika¢, ze jesli I — T jest roznowartosciowy, to I — T jest
odwracalny.

Zauwazmy, ze x L Im K + Im K wtedy i tylko wtedy, gdy = € ker /{1 N
ker K7. Przestrzen Im K;+Im K| ma skonczony wymiar, zatem jest domknie-
ta. Stad

H = [Im K; + Im K7] @& [ker K N ker K7].

Obie podprzestrzenie sa niezmiennicze na dziatanie operatora K, czyli réw-
niez dla operatora I — K. Operator I — K jest odwracalny wtedy i tylko
wtedy, gdy I — K7 jest odwracalny na kazdej z dwu podprzestrzeni (zadanie).
Operator I — K jest identyczno$cig na drugim sktadniku sumy proste;j.

Zatoézmy, ze I — Ky jest roznowartosciowy. Zatem I — K jest réznowarto-
Sciowy na Im K3 +1Im K7. Z kursu algebry liniowej wiemy, ze operator I — K,
jest wtedy odwracalny na Im K; + Im K7, bo przestrzen ta ma skonczony
wymiar.

]

Twierdzenie 4.16 (Riesz-Schauder). Spektrum operatora zwartego na prze-
strzeni Hilberta skiada sie z co najwyzej przeliczalnego zbioru liczb zespolo-
nych nie majgcych punktu skupienia poza by¢ moze punktem 0. Kazda nie-
zerowa liczba w spektrum jest wartoscig wlasng o skonczonej krotnosci (tzn.
przestrzen wektorow witasnych odpowiadajgca tej liczbie ma skonczony wy-
miar).

Dowdéd. Niech A # 0 oraz A € o(T) dla zwartego operatora T'. Z alternatywy
Fredholma wynika, ze A\ jest warto$cia wlasng operatora T. Niech Tz =
Az, oraz x # 0. Ustalmy liczbe € > 0. Pokazemy, ze przestrzen wektorow
wlasnych odpowiadajacych wartosciom whasnym A, |A| > €, ma skonczony
wymiar. To zakonczy dowdd tezy twierdzenia.

Zalt6ézmy nie wprost, ze istnieje nieskonczony uktad liniowo niezalezny
(xn)22, taki, ze Tx,, = \,x, oraz |\,| > €. Zastosujemy proces ortogonaliza-
cji Grama-Schmidta do tego ciagu i otrzymamy uktad ortonormalny (y,)>
o wtasnosci

Yn € B :=1in{xy, 20, ... 20}, yn L Eng.
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Niech

n
Yn = Z AT, Qpp > 0.
k=1

Wtedy

Ty, = Z agnTxy = Z Qpn Ak T

k=1 k=1
n—1 n—1 n—1
= )\nO‘n,nxn + Z ak,n)\kxk = Anyn -\ Z O Tk + Z ak,n)\kmk-
k=1 k=1 k=1
Tzn.
TYy = ApYn + Uy Uy € By,
Zatem

<Tynayn> - )‘n<yn7yn> = )\n-

Ciag vy, dazy stabo do zera co wynika z nieréwnosci Bessela. Zatem
17yl - o.
Stad A, - 0, na podstawie Twierdzenia . O

Lemat 4.17. Jesli T jest zwartym operatorem lintowym na przestrzeni Hil-
berta, to obraz Im (I —T) jest domknietq podprzestrzeniq liniowgq.

Dowéd. Wystarczy udowodnié nieréwnosé ||(I — T)z|| > c||z| dla pewne]
statej ¢ > 0 oraz wszystkich « L ker(I — T'). Rzeczywiscie, dla

Ho = ker(I —T)*
rozwazmy operator I — T : Hqg — 'H. Zauwazmy, ze
(I =T)(H) = (I =T)(Ho).

Wtedy z nieréwnosci ||(I — T)z|| > c|lz| dla x € Hy wynika, ze I — T jest
operatorem réznowartosciowym na Hy i jego obraz jest domkniegty.

Zalt6ézmy nie wprost, ze nier6wnos¢ nie jest spetniona dla zadnej stalej
¢ > 0. Zatem istnieje ciag elementéw z,, L ker(I — T') spelniajacy ||z,| = 1
oraz ||(I — T)z,|| — 0. Z ciggu Tz, mozna wybra¢ podciag zbiezny Tz, .
Niech T'z,,, =y Wtedy ||z, — T2y, || — 0. Zatem z,,, =y Stad

(I =T)y =lim(I = T)an, =0,
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czyli y € ker(I —T'). Z drugiej strony poniewaz x,, — Y, toy € ker(I —T)*.
Zatem y = 0. Ale ||y|| = limg ||z, || = 1. O

Uwaga 4.18. Jesli operator T jest zwarty, to rowniez Im (AL —T) dla A # 0
jest domknieta podprzestrzenig liniowa, bo

Im (Al - T) =Im (I - A"'T).

Twierdzenie 4.19. Niech T bedzie zwartym operatorem liniowym w B(H).
Réwnanie (I — T)x = y ma rozwigzanie x € H wtedy i tylko wtedy, gdy
y L ker(I —T%).

Dowod. Mamy rozktad ortogonalny
H=ker(l -T*)®Im(I-T)=ker(/ —7") ¢ Im(I-T).
Zatem y € Im (I — T) wtedy i tylko wtedy, gdy y L ker(I — 7). H

Twierdzenie 4.20. Niech T € B(H) bedzie zwartym operatorem samosprze-
zonym w osrodkowej przestrzeni Hilberta. Witedy istnieje baza ortonormalna
ztoZona z wektorow wiasnych operatora T. Tzn. istnieje baza ortonormalna
{on}N_| taka, ze T, = pnpn, gdzie p, € R oraz p, — 0. (9dy dim H = oo,
to N =00)

Dowdd. Przeprowadzimy dowdd w przypadku dim’H = oo. Operator 1" nie
jest odwracalny, bo dla ciggu ortonormalnego e, mamy e, — 0, zatem

st
[Ten|| — 0. Czyli 0 € o(T'). Wiemy, ze o(T) C R. Ponadto

o(T) = {tn}ny U {0},
gdzie p, # 0. Przestrzen wtasna
E,={reH :Tr=p,zx}

ma skonczony wymiar. Wiemy tez, ze jesli T* = T, to wektory wtasne od-
powiadajace roznym wartosciom wtasnym sa ortogonalne. Niech Fy = ker T'.
Oznaczmy

N
Ho - @ En @ E(].
n=1

Tzn. Hy jest najmniejsza domkni¢ta podprzestrzenia zawierajaca podprze-
strzenie E, dla n = 0,1,2,..., N. Pokazemy, ze Hy = H. Zalézmy nie
wprost, ze Hy C H. Zauwazmy, ze T'(Hy) C Ho, bo T(E,,) C E,, dla kazdego
n=0,1,2,...,N.
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Lemat 4.21. Niech T € B(H) oraz T* = T. Jesli dla pewnego podzbioru
M CH mamy T(M) C M, to T (M*) ¢ M*.

Dowéd. Niech x € M~+. Dla y € M mamy Ty € M, wiecc
(Tw,y) = (x,Ty) = 0.
To oznacza, ze Tax € M*. O

Z lematu mamy 7T’ (Hé) C ‘Hg. Niech T oznacza operator T ograniczony

do podprzestrzeni niezmienniczej Hy . Operator T jest nadal samosprzezo-
ny. T nie posiada wartosci wlasnych, bo wszystkie wektory wlasne zostaly
uwzglednione w Hy. Operator ten jest tez zwarty. Zatem o (T I') = {0}. Tzn.
promien spektralny T(T) jest zerowy. Ale z samosprzezonosci mamy

|7l = r(T) = 0.

Czyli T = 0. Otrzymujemy sprzeczno$é za wyjatkiem sytuacji Hy = {0}.
Zatem

N

H=EE,s E,.

n=1
Wiemy, ze dim F,, < oo. W kazdej podprzestrzeni F,, wybieramy baze¢ or-
tonormalng. Potaczenie tych zbioréw da nam baze ortonormalng catej prze-
strzeni H. Ustawmy elementy bazy w ciag {©,}22,. Wtedy T¢, = pn@n,
dla pewnych liczb u,, € o(T). Poniewaz elementy ,, daza stabo do zera, to
fin — 0. O

Uwaga 4.22. Dla x € 'H mamy

o0

=D (. 0n)¢
n=1
Zatem -
Te =7 (z,0n)Tpn= Zun
n=1

Twierdzenie 4.23. Dia operatora zwartego T € B(H) istniejq uklady orto-
normalne {@, }2_,, {n,}N_, oraz liczby dodatnie {\,}2_, takie, ze

N
Tx = Z AT, O )n.

n=1
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Dowdéd. Stosujemy rozktad polarny 7' = U|T|. Wartoséci wtasne operatora
|T| sa nieujemne. Rzeczywiscie, jesli A > 0 oraz Az = Az, dla = # 0, to

< (Az,z) = A*.

Zatem \ > 0. Z poprzedniego twierdzenia istnieje baza ortonormalna {,, }2°
taka, ze
Tz = Z [n{T, On)Pn-
n=1

Zatem

Tr =UlT|z =3 fin(z,¢n)Upn = Z Hn{, 0n)Usprn.
n=1
Mn?ﬁo

Dla u, # 0 oznaczmy Uy, = ,. Mamy |T|p, = pnpn. Stad ¢, € Im|T|.
Wiemy, ze U jest izometrig na Im |T|. Zatem

0, n=#m,

1, n=m.

<77Z)na¢m> = <U90n, UQDm> = <gpn,gpm> = {

Stad uktad {¥n}52; .. 4 jest ortonormalny. Niezerowe liczby pi, ustawiamy
w ciag {\,}2_,, aby uzyskaé teze twierdzenia. O

Uwaga 4.24. Gdy N = oo, to A, ~ 0.

Definicja 4.25. Wielkosci A, nazywamy liczbami singularnymi operatora
zwartego T. Mozemy zalozyé, ze Ay > Ay > A3 >

Twierdzenie 4.26 (Zasada minimaksu). Dla operatora zwartego T w prze-
strzeni Hilberta n-ta liczba singularna wyraza sie wzorem
A= min  max |[Tz|.

V<H vt
dim V=n-1 an 1

Dowod. Niech
N

Te =Y Alz,0n)n, An \, 0.

n=1
Oznaczmy V,, = lin{p1, @a, ..., n_1}. Wtedy element z € V.- ma postaé
N

T = Z(:p, ©K)Yk + o, gdzie zg € ker T' = ker |T'].
k=n
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Zatem
N
Tz=> Mz
k=n

Z nieréwnosci Bessela otrzymujemy

N

| Tx||* = Z Al SN [z, o) P < A2l
k=n
W rezultacie
[Tx]| < Anllz|l < A, dla flzf] <1

To daje nieréwnosé ,.>" we wzorze tezy twierdzenia.

Dla dowodu przeciwnej nierownosci niech V' < 'H bedzie podprzestrzenia
wymiaru n — 1. Wtedy istnieje wektor x € V,, 4 taki, ze x L V oraz ||z|| =1
(por. zadanie 33) Dalej

N
Tz =Y Mz, or)thy, = Z)\k
k=1
Zatem

|1T||* = ZAQ z,n)|” > Z P =Xl = A7

Stad max |Tx|| > A,. Biorac kres dolny wzgledem V' otrzymujemy
eV

llz(l=1

min  max [|[Tz|| > \,.
V<H zeVLi
dim V=n-1 llz||=1

Uwaga 4.27. Prawdziwy jest tez inny wzor

An = max min ||Tz].
V<H z€V
dimV=n |z|=1

Rzeczywiscie, niech V' =V, ;. Wtedy dla x € V mamy

Tl' = zn: >\k<ZC g0k>77/)k
k=1
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Zatem
| Tx||* = ZA > \2|z]|%.
Stad
min ||Tz|| = A,
x€V+1

[lzll=

bo dla x = ¢, uzyskujemy réwnosé. To dowodzi nieréwnosci 7 < 7.
Niech dim(V) = n. Na podstawie zadania 33 istnieje wektor x € V' taki,
ze x LV, oraz ||z|| = 1. Wtedy

N
Te =Y Melz, or)Ur.

k=n
Dalej
1Tz ||* = Z il < Azl = A7

Stad

min ||Tz| < Ay,

eV

llxfl=1
czyli

An > max min ||Tz|.
V<H zeV
dimV=n |z|=1

Whniosek 4.28. Jesli T' jest operatorem zwartym, to ||T|| = ||Txo|| dla pew-
nego elementu xo € H takiego, ze ||xo| = 1.

Dowdd. Istotnie, z zasady minimaksu wynika, ze

A= sup || T[] = |-

llzll=1

Liczba \; jest najwieksza warto$cia wtasna operatora |T|. Niech zp € H
bedzie odpowiadajacym jednostkowym wektorem wtasnym. Wtedy

[Toll = IIT|zoll = Aallzoll = Au = [|IT]-
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Uwaga 4.29. Wniosek mozna udowodni¢ bezposrednio. Mamy || T|| = lim | Tz, ||

dla pewnego ciagu wektoréw spetniajacych ||z, || = 1. Na podstawie Twier-
dzenia Banacha-Alaoglu z ciggu x,, mozna wybraé¢ podciag stabo zbiezny.
Niech z, — . Wtedy ||zo]| < 1. Ponadto x,, — xg - 0. Zatem Tz, — Txy—0

w normie przestrzeni M. To oznacza, ze || Tzo| = lim || Tz, || = ||T]|. Poniewaz
[Tl = 1 Tzoll < [[T'l[llzoll, to [[xo] > 1. Cayli [z = 1.
Definicja 4.30. Operator T € B(H) nazywamy operatorem Hilberta-Schmidta

jesli dla pewnej bazy ortonormalnej {e,}o2, mamy > ||Te,|* < co. Klase
n=1
tych operatorow oznaczamy symbolem HS.

Przyktad 4.31. Niech 7' : CV — CV bedzie odwzorowaniem liniowym z ma-
cierza a;; = (Tej, €;), gdzie {e,} | oznacza standardowq baz¢ w przestrzeni
CY. Wtedy

N N N N N
DolTesl? =D 20 KTejen)> = lagl?,
J=1 j=li=1 j=1i=1

tzn. otrzymujemy sume kwadratow wartosci bezwzglednych wszystkich wy-
raz6w macierzy.

Przyklad 4.32. Rozwaimy odwzorowanie liniowe T : (2 — (2. Oznaczmy
a; = (Tej,eq;), gdzie {e;}32, oznacza standardowq baze w przestrzeni (2.
Wtedy

SolTell? =D KTejen> =D layl*.
j=1

j=1i=1 j=11i=1

Twierdzenie 4.33. Wielkos¢ || Te,||* nie zalezy od wyboru bazy ortonor-
n=1
malnej. Ponadto jesli T € HS, toT* € HS.

Dowdd. Niech {f,,}>°_; bedzie dowolna baza ortonormalna przestrzeni H.
Wtedy z rownosci Parsevala mamy

S lTenl> =30 > (Ten, fn)l?
n=1 n=1m=1
=3 Y Hen T f)P = 30 T full®. (4.3)
m=1

n=1m=1
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Podstawiajac { fm}oo_, = {en}22, otrzymamy
S ITenl = 3 [Tl (1.4)
n=1 n=1
Dalej stosujemy (4.3]) i (4.4]) do operatora T™, aby uzyskaé
D Tenl® =3 T enll* = 3 IT*) full® = D T Sl
n=1 n=1 m=1 m=1

]

Twierdzenie 4.34. Kazdy operator Hilberta-Schmidta jest zwarty. Ponadto
liczby singularne operatora Hilberta-Schmidta sq sumowalne z kwadratem.

Dowod. Mozemy zatozyé, ze operator T' jest nieskonczenie wymiarowy, bo
teza jest w oczywisty sposob speliona dla operatora skonczenie wymiarowe-
go. Ustalmy baze ortonormalna {e, }2°,. Dla operatora T' € HS rozwazmy
operatory

Tz = fxx, en)Ten =T (i@: en>en> .

n=1 n=1
Tzn. Ty = TPy, gdzie Py jest rzutem ortogonalnym na podprzestrzen
lin{ey, s, ...,en}. Operator Tl jest skoniczenie wymiarowy, wiec jest zwarty.
Mamy
Te=T <Z<x, en>en> = (z,en)Tey.
n=1 n=1

Zatem z nieréwnosci Schwarza mamy

2 2
ITe - Tyal? = | 3 (2, en)Ten| < ( > |<x,en>|||Ten||)
n=N+1 n=N+1
< ( > |<$7€n>|2> ( > ||T€n||2) < ( > ||T€n||2) ]
n=N+1 n=N+1 n=N+1
Stad

o 1/2
1T = Tn| < ( ) HTenHQ) 2 0

n=N+1
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Zatem T jest zwarty jako granica w normie operatorowej operatoréw skon-
czenie wymiarowych.
Wiemy, ze

Tx = A{z,0n)thn,

n=1

gdzie A\, \, 0 oraz {p,}>>, jest baza ortonormalng obrazu operatora |T'|.
Niech {fi}X , bedzie baza ortonormalng dla ker |T'| = ker T. Wtedy uktad
{on}22, U {fi}, jest baza ortonormalng calej przestrzeni H, bo H =
Im |T'| @ ker |T'|. Ponadto

[e's) K [e%S) %)
00 > D | Tnll® + X ITfill* = D2 I Tenll® = Y- A5 (4.5)
n=1 k=1 n=1 n=1

O

Whniosek 4.35. Dla operatora Hilberta-Schmidta T i bazy ortonormalnej
{en}ols mamy

TN < > I Tenll?
n=1

Dowdd. Teza wynika bezposrednio ze wzoru (4.5 i faktu, ze A\ = ||T’||. Do-
wod mozna tez przeprowadzi¢ bezposrednio.

[e.9]

Te =) (z,eq)Te,,

n=1

zatem
172l < 3 |os en)] [ Tenll < (Z |<x,en>|2) (Z ||Ten||2)
n=1 n=1 n=1
o 1/2
<(Z|!Tenu2) Jal
n=1

]

Twierdzenie 4.36. Operatory Hilberta-Schmidta tworzq ideal.
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Dowdd. Niech T, S € HS. Dla bazy ortonormalnej {e,}>°, na podstawie
nieréwnoséci trojkata w 2 mamy

0o 1/2 o 1/2 o 1/2
(Z ||<T+S)en||2) _ (Z ITe, + Sean) < (Z<||Ten|| ; ||Sen|r>2)

n=1 n=1 n=1
< (Z HTenH2> - (Z ||Sen\|2> < 00.
n=1 n=1

Czyli T+ S € HS. Niech T € HS oraz S € B(H). Wtedy

Y ISTenl” < Y IISIPITenll® = [1S1* X2 1Tenll* < oo,
= n=1

n=1

co oznacza ST € HS. Z Twierdzenia mamy 1T% € HS. Zatem S*T™* €
HS. Znowu z Twierdzenia otrzymujemy 1S = (S*T*)* € HS. O

Uwaga 4.37. Operatory HS z norma
o0 1/2
ITllns = (32 7o)
n=1

tworzg unormowanag przestrzen liniowa, w ktorej norma pochodzi od iloczynu
skalarnego

Z Te,, Sey,).
n=1

Ponadto z (4.5)) i (4.4]) otrzymujemy

IT1rs = 1T lazs = 3° An.

n=1

gdzie A, sa liczbami singularnymi operatora 7. Prawdziwe sg nieréwnosci
15T lus < IS TNms,  NTSllas < [ISIIT)|us

Twierdzenie 4.38. Przestrzen HS jest zupetna, czyli jest przestrzeniq Hil-
berta.
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Dowdd. Zatézmy, ze ciag operatoréw 71, spelnia warunek Cauchy’go wzgle-
dem normy Hilberta-Schmidta. W szczegélnosci normy ||T5,| s sa wspoélnie
ograniczone, czyli C' = sup ||T,||ps < co. Z Wniosku wynika, ze opera-
tory T,, tworza ciag Cauchy’ego wzgledem normy operatorowej. Zatem ciag
T, jest zbiezny do operatora T' € B(H). Stad, dla ustalonej liczby K otrzy-
mujemy

K K
D Tex]* =lim > [ Trex|* < C
k=1 k=1

Poniewaz K jest dowolng liczbg naturalng, to

> | Terl* < C
k=1

czyli T € HS. Pozostaje udowodnié, ze ||T,, — T'||ps — 0. Dla liczby ¢ > 0
wybierzmy N takie, ze dlan,m > N spetniona jest nieréwnos¢ || T,, — Tp, || s <
e. Wtedy dla n > N mamy

K K
Z (T, — T)exl|* = Z (T — Tr)ex|]* <

Poniewaz K jest dowolne, to

1T = Tllirs = > (T = Thexl* < &

k=1

5 Nieré6wnos$¢é Lownera
Lemat 5.1. Dla operatoréw A, B € B(X) spelniona jest réwnosé
o(AB)U{0} = o(BA) U {0},

tzn. niezerowe elementy spektrow AB i BA sq takie same, czyli promienie
spektralne operatorow AB i BA sq rowne.
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Dowdd. Wystarczy pokazaé zawieranie ” C 7. Zalézmy, ze |A| > ||AB]| oraz
|A| > ||BA||. Wtedy operatory AB i BA sa odwracalne oraz

(M — AB) ™' = AT = AAB) ™ = A 'S A" (AB)"
n=0

= AT+ 224 (Z A‘(”‘l)(BA)”‘1> B
n=1

=AU+ AN AT - N'BA) ' B=X"T+ XA\ - BA)™'B

Zatézmy, ze 0 # X ¢ 0(BA). Bezposrednim rachunkiem mozna wtedy poka-

zac, ze operator
A+ MTAWN - BA)T'B

jest odwrotny od AB, czyli A ¢ 0(AB). Np.
N+ ATAMN — BA)T'B] (M — AB)
=1 - N'AB+ X YA — BA)Y (M - BA)B
=1 - )N'AB+ )X 'AB=1
O

Uwaga 5.2. Dowdd jest tatwiejszy, jesli jeden z operatoréw A lub B jest
odwracalny. Zat6zmy, ze A jest odwracalny. Wtedy

M —AB=AMNA"'—B), M-BA=(O\A"'-B)A

Stad wida¢, ze operatory A\I — AB i AI — BA sa jednoczesnie odwracalne lub
jednoczesnie nieodwracalne oraz

(Ml —BA)™' = A"Y(\[ - AB)*A

Twierdzenie 5.3 (nier6wno$¢ Lownera). Dla operatoréw dodatnich A, B € B(H)
z mieréwnosci A > B wynika AY? > BY/2.

Dowdd. Dla odwracalnego operatora C' nieréwnosé A2 > BY2 > 0 jest
réwnowazna z nieréwnoscia C*A'/2C — C*BY2C > 0 (por. Lemat [2.4)).

Zatézmy, ze operator A jest odwracalny. Wtedy operator A'/? jest od-
wracalny oraz A~/? jest operatorem dodatnim, bo operator odwrotny do
operatora dodatniego jest tez dodatni. Rzeczywiscie

(A™Px x) = (ATPAYPY AVPy) = (y, APy) >0, y=A""
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Podobnie operator A/* jest odwracalny. Nieréwno$é w tezie twierdzenia jest
wiec rownowazna z nieréwnoscia

[— A"VABY24-1/4 > ¢ O — A-VA
Z kolei ostatnia nieréwno$é jest rownowazna z warunkiem

|ATVABY2 A7 <1 (5.1)
(por. Lemat . Dalej, korzystajac z Lematu dostajemy
|A—VABY2 A=VA|| = p(A"VABY2 A1) = (B2 A2

7 zatozenia ||A~Y/2BA~Y2| < 1. Stad, na podstawie réwnosci || T'||? = | T*T |,
otrzymujemy

[T(Bl/2A71/2)]2 < HBl/ZAfl/ZHQ — ||A71/2BA71/2H < 1.

Zatem nieréwnosé ((5.1)) jest spetniona.
Z zatozenia A > B. Zatem

(eI + AY2) =221 +2:AV £ A> B, >0

Operator eI + A2 jest dodatni i odwracalny. Z pierwszej czeéci dowodu
wynika, ze
el + AY? > B2,

Przechodzac do granicy € — 0% otrzymamy AY/? > B/2, [

Uwaga 5.4. Z warunku A > B > 0 nie wynika nieréwno$¢ A% > B2. Np.

dla macierzy
2 1 10
=)= -(0)

V

mamy A% > B oraz

bo det(A? — B?) = —1.
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Twierdzenie 5.5. Cigg operatoréw dodatnich A, jest zbieiny w normie prze-
strzeni B(H) do operatora A. Wtedy A jest dodatni oraz AL/? jest zbieiny w
normie operatorowej do AY/?.

Dowdd. Operator A jest dodatni, bo
0 < li7rln<An:E, x) = (Az,x), z€H

Dlae > 0 istnieje N takie, ze dlan > N spelniony jest warunek ||A, — Al < 2e.
Zatem
—2el <A, — A< 2]

Otrzymujemy wtedy

0< A, < A+2eI < (AV? 4 el
0< A <

< Ay + 26 < (AY2 4+ \fe])?
Z nieréwnosci Lownera wynikaja nieréwnosci

A}L/2 <A1/2+\/EI, A1/2 <A}L/2+\/EI

Zatem
—VEl S AY? — AY2 L\ Jel

Z ostatniej nierownosci wynika
142 — AV2| < Ve
O

Uwaga 5.6. Dow6d mozna przeprowadzi¢ korzystajac z jawnego wzoru na
pierwiastek z operatora dodatniego A, poprzez absolutnie zbiezny szereg po-
teg operatora I —a *A dla 0 < a < 3||A]|.

Whniosek 5.7. Cligg operatoréw A,, jest zbiezny w normie przestrzeni B(H)
do operatora A. Wtedy |A,| dgzy od |A| w normie operatorowe;.

Dowdéd. 7 zatozenia wynika, ze |A,|? = A*A, — A*A = |A]* w normie w
B(H). Z poprzedniego twierdzenia otrzymujemy, ze |A,| — |A| w normie
operatorowej. O



Operatory unitarne 52

6 Operatory unitarne

Operator U € B(H) nazywamy unitarnym, jesli UU* = U*U = I, tzn.
U* = U=t Mamy [|U||?> = [|[U*U|| = ||I|| = 1. Zatem o(U) C {z : |2| < 1}.
Ale dla |z| < 1 mamy

2l —U=z20U0"—-U=-U(l—zU").
To oznacza, ze operator zI — U jest odwracalny. Ostatecznie otrzymujemy
oU)C{z:|z|=1}=T.

Definicja 6.1. Wielomianem trygonometrycznym nazywamy wyrazenie po-
stact

o) = S ak

k=—m

gdzie ay € C, z € T. Wielomian sprzezony p(z) okreslamy wzorem
p(z) =p(z) = > @z"
k=—m
(Uwaga: z= 27" dla z € T).

Dla operatora unitarnego U oraz wielomianu trygonometrycznego p(z)
okreslamy

p(U)= > ap®, gdzie U’ =1.

k=—m

Lemat 6.2.
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(i) Niech ¢(U) = Y bz'. Wtedy

l=—m/'

) ( DS b) )= 3 3wt = p)g(0).

k=—m k=—m/' k=—m k=—m/'

Poniewaz p(z)q(z) = ¢(2)p(z), to p(U)q(U) = q(U)p(U).
(iv) Mamy

p(U)p(U)* = p(U)p(U) = |p|*(U) = p(U)p(U) = p(U)*p(U).

Twierdzenie 6.3. Mamy o(p(U)) = p(a(U)).

Dowdéd. Zatézmy, ze p € o(p(U)). Wtedy z zasadniczego twierdzenia algebry
otrzymujemy

pl —p(z) =z2""["u—2"p(z)]) =cz7™(z = A1)(z — A2) ... (2 — An). (6.1)

Zatem
pl —p(U) =cU™U — MI)(U = XI) ... (U= AyI).

Lewa strona jest operatorem nieodwracalnym. Zatem przynajmniej jeden z
operatoréw U — ;I jest nieodwracalny. Wtedy A; € o(U). W szczegdlnosci
A; # 0. Podstawiajac z = A\; w (6.1) otrzymamy p = p();) € p(a(U)).
Udowodnili$my wiec zawieranie o(p(U)) C p(a(U)).

Niech teraz p € p(o(U)), tzn. p = p(A) dla pewnej liczby A € o(U).
Wtedy

n

pNI —p(U) = > ax(WI=U") =" ap(NT - U")
k=1

k=—m

+ fj a_ N FUHUR =N = (M -U)WV =V (M -U), (6.2)
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dla pewnego operatora V. Operator AI — U jest nieodwracalny. Zatem ope-
rator p(A)I — p(U) jest nieodwraealny.lﬂ Zatem p(\) € o(p(U)).
W rezultacie udowodnilismy, ze p(a(U)) C o(p(U)). O

Whiosek 6.4. ||p(U)| = max{|p(2)| : z € o(U)} = |Ipllccw)-

Dowdéd. Poniewaz operator p(U) jest normalny, to

(@) = r(p()) = max{lu| : p € o(p(V))}
— max{lu| : p € p(o(U))} = max{|p(z)] : = € o(U)}

O]
Whiosek 6.5. Jesli p(z) > 0 dla z € T, to p(U) > 0.

Dowdd. Zalézmy, ze 0 < p(z) < 1. Okreslmy ¢(z) = 2p(z) — 1. Wtedy ¢(z)
jest wielomianem rzeczywistym oraz |q(z)| < 1. Z poprzedniego wniosku
mamy ||¢(U)|| < 1. Ponadto ¢(U)* =q(U) = q(U), tzn. ¢(U) jest operatorem
samosprzezonym. 7Z Lematu wynika, ze —I < q(U) < I. W szczegdlnosei
2p(U) =1 > —1, czyli p(U) > 0. O

Whiosek wynika tez z nastepnego lematu.

Lemat 6.6 (Riesz-Fejér). Zalozmy, ze wielomian trygonometryczny p(z) jest
nieujemny dla z € T. Wtedy istnieje wielomian trygonometryczny h(z) taki,

ze p(z) = |h(2)[*.
Dowdd. Najpierw rozpatrzymy przypadek, gdy p(z) > 0 dla |z| = 1. Niech
p(z) = > 2" Z dodatniosci otrzymujemy

k=—n

n

p(z) = Wz) = zn: 2k = Z T2t

k=—n k=—n

Zatem c¢j, = ¢_j dla dowolnego wskaznika k. Zauwazmy, ze stad wynika ¢, # 0
wtedy i tylko wtedy, gdy c_,, # 0.

bSkorzystaliémy z faktu, ze jesli AB = BA jest operatorem odwracalnym, to A i B sa
odwracalne
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Zatézmy, ze c_,, # 0. OkreSlmy G(z) = 2"p(2). Wtedy G(z) jest zwyklym
wielomianem stopnia 2n. Ponadto G(0) = c_,, = ¢, # 0. Wielomian G(z) nie
zeruje sie na okregu |z| = 1. Pokazemy, ze

G(z) =2""G(z7"), dlaz#0, z€C. (6.3)

Nietrudno zauwazy¢, ze obie strony sa wielomianami zmiennej z. Wystarczy
zatem sprawdzi¢ réwnosé dla |z| = 1. Dla |z| = 1 mamy p(z) = p(z). Zatem
27"G(z) = 27 "G(z). Poniewaz z = z !, to po przeksztalceniu otrzymujemy
63).

Rozkladamy wielomian G(z) na czynniki liniowe

—an z— ;) H (z = Br),
k=1

gdzie |a;] < 11 |G| > 1, oraz r + s = 2n. Ze wzoru (6.3) wynika, ze jesli
\ jest pierwiastkiem wielomianu G(z), to réwniez A ~! jest pierwiastkiem i
to tej samej krotnosci. To oznacza, ze pierwiastki a; i B mozna polaczy¢ w
pary, czyli

G(z) = ¢y ﬁlz—oz] 1=

7j=1

Zatem
p(z) = 27"G(z) = e [[(z — o) [T(1 —@; 7'2)
j=1 j=1
n n n 2
=d, [[(z =) [IG—a;) = du|]](z — )| ,
j=1 j=1 j=1
gdzie

W szcezegdlnosci d,, > 0. Teza jest spelniona dla h(z) = 4/d, H z— aj).
7j=1

Zatozmy, ze p(z) > 0 dla |z| = 1. Wtedy py(2) = p(z) + & > 0 dla
|z| = 1. Z pierwszej czeSci dowodu istnieja wielomiany hy(z), ktorych sto-
piefi jest wspdlnie ograniczony, takie, ze py(z) = |hn(2)[>. Wspolezynniki
wielomianéw hy sa roéwniez wspoélnie ograniczone, bo

A (2)]” < [p(2)] + 1.
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Zatem z ciagu hy(z) mozna wybraé¢ zbiezny podciag do wielomianu h(z),
ktory spetia p(z) = |h(2)|* dla |z] = 1. O

Powracamy do alternatywnego dowodu Wniosku [6.5] Mamy
p(U) = [h*(U) = (hh)(U) = h(U)R(U) = h(U)*h(U) > 0.

Dotychczas potrafiliémy okresli¢c p(U), gdzie p jest wielomianem trygo-
nometrycznym. Naszym celem jest zdefiniowanie f(U), gdzie f jest funkcja
ciagta okre§lona na zbiorze o(U) C T. Z twierdzenia Tietzego funkcje f
mozemy rozszerzy¢ do funkcji ciagtej F': T — C tak, ze

max |F(2)] max 1f(2)].
Z twierdzenia Weierstrassa mozna znalez¢ ciag wielomianow trygonometrycz-
nych p,(z) zbiezny jednostajnie do funkcji F'(z) dla |z| = 1.
Uwaga. Pokazemy, ze faktycznie poprzednie stwierdzenie mozna wyprowa-
dzi¢ bezposrednio z twierdzenia Weierstrassa.

Rozwazamy funkcje f(z) o wartosciach zespolonych okreslong na okregu
jednostkowym. Wtedy f(z) = Ref(z) +¢Imf(z). Mozemy zatem przyjac, ze
f(2) przyjmuje wartosci rzeczywiste.

Odwzorowanie u(t) = f(e) — f(e™™) jest funkcja nieparzysta na prze-
dziale —7 < t < 7 zatem u(0) = u(w) = u(—m) = 0. Funkcje u(t) mozemy
jednostajnie przyblizy¢ funkcjami nieparzystymi zerujgcymi sie w poblizu 0
i 7, tzn. speliajacymi

u(t) =0 dlalt| <y, m—d<|t| <7 —w<t< 7
Dla 0 < t < 7 okreslmy funkcje
1 u(t)

gleost) = SF(e) + Fe™], hfeost) = 3 51

Otrzymujemy

Fe") = S+ Fe ]+ L) = e )]  gleost) +sint hicost)

Funkcje g(z) i h(zx) sa ciagte jako zlozenia funkcji po prawej stronie z funkcja
x — arccos x. Z twierdzenia Weierstrassa istnieja ciagi wielomianéw p,(z) i
¢n(x) zbiezne jednostajnie do g(x) i h(x), odpowiednio. Wtedy

pn(cost) £sint g, (cost) = g(cost) £ sint h(cost), O0<t<m
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To oznacza, ze
pn(cost) +sint g,(cost) = g(cost) +sint h(cost) = f(e"), —rT<t<mw
Wyrazenie

pn(cost) +sint g, (cost)

jest wielomianem trygonometrycznym, bo 2cost = e 4+ e~ oraz 2isint =
et +e "

Inne dowdéd mozna przeprowadzic uzywajac elementow teorii szeregow
Fouriera: jadra Fejéra lub jadra Poissona.

Pokazemy, ze
(1) Ciag operatoréw p,(U) jest zbiezny w normie operatorowe;.
(2) Granica ciagu p,(U) nie zalezy od wyboru wielomianéw p,,.
(3) Granica ciagu p,(U) nie zalezy od wyboru rozszerzenia F.
Dowod. Mamy

1o (U) = P (U) | = [ (P = P (U]

= max [p,(2) — pm(2)| < max|p,(z) — pm(2)]
z€o(U) |z|=1

<m§>1<|pn(z)—F(z)|+m§>f|F(Z)—pm(2)l — 0

|z| n,m—00

Ciag operator6w p,(U) spelnia warunek Cauchy’ego. Zatem jest zbiezny.
Zatézmy, ze réwniez inny ciag wielomianow ¢, jest zbiezny jednostajnie do
F. Wtedy ciag naprzemienny

P1,q1,P2,492, - - - s Pny4n, - - -

jest tez zbiezny jednostajnie do funkcji F. Z pierwszej czesci dowodu wynika,
ze cigg operatorow

m(U), 1 (U), p2(U), 2(U), ..., pn(U), g (U), . ...

jest zbiezny. To oznacza, ze ciagi p,(U) i ¢,(U) sa zbiezne do tego samego
operatora.
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Oznaczmy symbolem F inne ciggle rozszerzenie funkeji f do okregu |z| =
1. Niech ¢, bedzie ciagiem wielomianéw zbieznym jednostajnie do F' na okre-
gu T. Z pierwszej czesci dowodu wiemy, ze ciag operatorow g, (U) jest zbiezny.
Ponadto mamy

120 (U) = @n(U)| = l[(Pn — ¢)(U)]| = max [pn(z) — gn(2)]

z€o(U)
< max |pn(2) = f(2)] + max |gn(2) = f(2)]
zeo(U) z€a(U)
< max[p(2) = F(2) + maxla.(2) - F) — 0
O

Wezesniejsze rozumowanie pokazuje, ze granica p,(U) zalezy jedynie od
funkcji ciggtej f na spektrum operatora unitarnego U. Przyjmujemy ozna-
czenie

f(U) = limp,(U).

Uwaga 6.7. Jedli f jest wielomianem trygonometrycznym, np. f(z) = 2zF,

to f(U) = U*
Twierdzenie 6.8. Niech f,g € C(c(U)). Wtedy
(i) (f +9)(U) = f(U) +gU).
(ii) (f9)(U) = f(U)g(U) = g(U)f(U).
(iii) f(U)* = f(U).

) IO = max, £ (2)]-

(IV z€o(U)

(v) o(f(U)) = flo(U)).

Uwaga 6.9. Twierdzenie méwi, ze rodzina operatoréw { f(U) : f € C(o(U))}
tworzy algebre ze sprzezeniem i norma operatorowa. Te algebre mozna utoz-
samic¢ z algebrg C'(o(U)).

Dowod.



Operatory unitarne 59

(i) Niech p, i ¢, beda jednostajnie zbieznymi ciggami wielomianéw trygo-
nometrycznych na T takimi, ze p,(2) — f(2) oraz qu(2) — g(z) dla z € o(U).
Wtedy

fU) +g(U) =limp,(U) + lim ¢,(U) = lim[p, (U) + ¢a (V)]
= lim(pn + ¢.)(U) = (f + 9)(U),

bo ciag wielomianéw p, + ¢, jest jednostajnie zbiezny na T oraz p,(z) +
@n(2) = f(2) + g(2) dla z € o(U).
(ii) Przy oznaczeniach jak w (i) mamy

fF(U)g(U) = limp,(U) lim ¢, (U) = lim p, (V) (U) = lim(pag.)(U) = (f9)(U),

bo ciag wielomiandéw p,q, jest zbiezny jednostajnie na T oraz p,(z)g,(z) —
f(2)g(2) dla z € o(U). Dalej g(U)f(U) = (9./)(U) = (fg)(U) = f(U)g(U).
(iii) Jesli p, jest zbiezny jednostajnie na T oraz p,(z) — f(z) dla z €

o(U), to ciag P, jest tez zbiezny jednostajnie na T oraz p,(2) — f(2) dla
z € o(U). Zatem z Lematu [6.2{ii) mamy

F(U) =l BalU) = lim pa(U)" = ()"
(iv) Przy oznaczeniach jak w (i), na podstawie Wniosku [6.4] otrzymujemy

£ = i (0] = lign mas ()] = mas 1))
(v) Niech u ¢ f(o(U)). Rozwazmy funkcje g(z) = [ — f(2)]7'. Mamy
g € C(a(U)). Z whasnosci (ii) otrzymujemy

gU)(p—=HU) = (u—HU)gU) =[(p— fglU) =1(U) = I.

To oznacza, ze operator (u — f)(U) = pul — f(U) jest odwracalny. Czy-

ip ¢ o(f(U)). Zatem o(f(U)) € f(o(U)). Niech teraz p € f(a(U)).
Tzn. p = f(A\) dla pewnej liczby A € o(U). Wybierzmy ciag wielomianéw
trygonometrycznych p,, jednostajnie zbiezny na T, taki, ze p,(2) — f(z)

dla z € o(U). Wiemy, ze operator p,(A)I — p,(U) nie jest odwracalny dla
A € o(U) (por. Twierdzenie [6.3). Ale

Pa(MI =pu(U) — fNI = f(U)
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w normie operatorowej. Zbior operatoréw odwracalnych jest otwarty w B(H),
wiec zbiér operatoréw nieodwracalnych jest domkniety. Zatem operator f(A)I—
f(U) nie jest odwracalny. To oznacza, ze p = f(A) € o(f(U)). Czyli f(o(U)) C
o(f(U)). 0

Twierdzenie 6.10. Jesli funkcja f € C(a(U)) jest nieujemna, to f(U) > 0.
(

Dowdd. Zalézmy, ze 0 < f(z) < 2 dla z € o(U). Wtedy funkcja g(z) =
f(z) — 1 spelnia |g(z)|] < 1. Z Twierdzenia [6.8(iii), (iv) mamy |[g(U)| < 1
oraz g(U)* = g(U). Zatem —I < g(U) < I. Wtedy

]

Naszym kolejnym celem jest okreslenie operatora f(U) dla pewnych funk-
cji nieciagtych f okreslonych na o(U). Na przyklad niech f(z) przyjmuje
warto$¢ jeden na otwartym tuku okregu jednostkowego oraz wartos¢ zero w
pozostatych punktach okregu. Funkcje f mozna uzyska¢ jako granice rosna-
cego ciagu funkeji nieujemnych i ciggtych f,, € C(T). Ta wlasnosé umozliwia
okreslenie operatora f(U).

Niech f, bedzie ciagiem nieujemnych funkeji ciaglych takim, ze f,(z) /
f(z) dla z € o(U). Zatézmy, ze funkcje f,(z) sa wspélnie ograniczone na
o(U), np. przez stala ¢ > 0. Mamy 0 < f,(2) < fur1(2) < ¢ Zatem
0 < fo(U) < fro1(U) < cl. Ciag operatoréow f,(U) jest wtedy rosnacy i
ograniczony. Zatem ciag f,(U) jest mocno (punktowo) zbiezny. Oznaczmy
mocng granice symbolem A, tzn. niech

Av =lim fo(U)v, v eH,

Mocna granica A zalezy tylko od funkcji f, a nie od wyboru ciagu f,,. Rze-
czywiscie, niech g, € C(o(U)) oraz g,(z) / f(z) dla z € o(U). Mamy
gn(z) < ¢, bo f(z) < cdla z € o(U). Zatem ciag operatoréw g, (U) jest tez
mocno zbiezny na podstawie weze$niejszego rozumowania dla ciagu f,(U).
Niech

Bv = li7rlngn(U)'U, veH.

Chcemy pokazaé, ze A = B. Dla liczby naturalnej k£ okreslmy funkcje

hn(2) = min{ fn(2), g(2)}, 2z € o(U).



Operatory unitarne 61

Mamy h,, € C(c(U)). Ponadto
< ha(z) /gr(z), z€o(U).

Poniewaz funkcja g jest ciagla na zbiorze o(U), to z twierdzenia Diniego
wnioskujemy, ze h, = g, gdy n — oo. Zatem h,(U) — gx(U) w normie

operatorowej na podstawie Twierdzenia (iv). Dalej mamy h,(z) < fn(2),
wiec h,(U) < fo(U) z Twierdzenia [6.10] Przechodzac do mocnej granicy,
gdy n — oo, otrzymujemy ¢x(U) < A. Nastepnie przechodzimy do mocnej
granicy, gdy k — oo, aby otrzymaé¢ B < A.

Uwaga 6.11. z faktu, ze jesli 0 < C,, < D,, oraz operatory C,, i D,, sq stabo
zbiezne do C' i D odpowiednio, to 0 < C < D. Rzeczywiscie

(Dv,v) — (Cv,v) = 1171111<Dn1j, V) — liyrln(C'nv,v) = liyrln((Dn —Cy)v,v) > 0.

Twierdzenie 6.12. Niech [ i g bedqg ograniczonymi funkcjami okreslony-
mi na o(U) bedgcymi granicami punktowymi rosngcych ciggow nieujemnych
funkcji cigglych okreslonych na o(U). Wtedy

(i) (f+9)U) = f(U) +g(U).
(i) (fo)(U) = f(U)g(U) = g(U) ().
(i) f(U) >

) LA = sup f(z).

z€o(U)

(v) Jesli f < g, to f(U) < g(U).

(iv

Dowad.
(i) Niech f, i g, beda ciagami nieujemnych funkcji ciagtych takimi, ze f,(z)

f(z)ign(z) /g(z)dlaz € o(U). Wtedy f,.(2)+gn(2) / f(2)+g(2). Zatem
ciagi operatoréw f,,(U), gn(U) oraz (fn + gn)(U) sa zbiezne mocno do ope-

ratorow f(U), g(U) i (f+g)(U), odpowiednio. Ponadto z Twierdzenia[6.8]1)
mamy

(f + 9)(U) = lim(fu + g.)(U) = [ fu(U) + gu(U)]
— lim £,(U) + lim g, (U) = f(U) + g(U).
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(ii) Przy oznaczeniach z (i) mamy f,(2)gn(z) f(2)g(2). Zatem ciag
operator6w (f,g,)(U) jest mocno zbiezny do (fg)(U). Zatem z Twierdzenia

[6.8(ii) otrzymujemy

(f9)(U) = lim(frgn)(U) = lim £, (U)gn(U)
= lim f,(U) lim g, (U) = f(U)g(U).

(iii) Przy oznaczeniach z (i) mamy f,(U) > 0, na podstawie Twierdzenia
6.10L Zatem f(U) > 0, jako mocna granica operatoréw nieujemnych f,(U).
(iv) Oznaczmy ¢ = sup f(z). Jedli f, jest ciagiem nieujemnych funkcji
z€o(U)
ciagtych na o(U) takim, ze f,,(2) / f(z) dla z € o(U), to 0 < fo(2) < c dla
z € o(U). Wtedy z Twierdzenial[6.8(iv) mamy || f,,(U)]| < c. Stad || f(U)| < c.

Otrzymalismy || f(U)|| < sup f(2).
z€o(U)
Poniewaz 0 < f,,(U) < f(U), to || f(U)|| < ||f(U)]|. Zatem z Twierdzenia

(iv) mamy
[f(U)] > sup fu(2), n€N.

z€o(U)

Zatem
[f(U)|| = sup sup fu(z) = sup f(z).

n zeo(U) z€a(U)

(v) Zatézmy, ze f < goraz 0 < f, / f, 0 < h, / g, gdzie f,, h, €
C(o(U)). Okreslmy g, = max{f,, h,}. Ciag g, jest rosnacy, zbiezny punk-
towo do max{f,g} = g oraz g, € C(o(U)). Zatem g,(U) / g(U) oraz
fa(U) /" f(U), mocno. Ponadto f,(U) < ¢,(U), bo f, < g,. Nier6wnosé
przenosi sie na stabe granice, czyli f(U) < g(U). O

7 Operatory Sladowe

Definicja 7.1. Operator A € B(H) nazywamy sladowym, jesli tr |A| < oco.
Rodzine operatorow Sladowych oznaczamy symbolem C.

Twierdzenie 7.2. Kazdy operator $ladowy jest zwarty. Ponadto operator
zwarty jest sladowy wtedy 1 tylko wtedy, gdy

(o]
Z Ap < 00,
n=1
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gdzie N, sq liczbami singularnymi operatora A. Ponadto
tr|Al =Y\,
n=1

Dowdd. Dla bazy ortonormalnej {p,}22

tr Al = > {|Alpn, en) = D 1A ?0nll?
n=1 n=1
Zatem |A|'/? jest operatorem Hilberta-Schmidta, skad wynika, ze |A|'/2 jest

operatorem zwartym. Wtedy operator A = U|A| = U|A|Y2|A|'/? jest tez
zwarty
Zatoézmy, ze operator zwarty A jest sladowy. Z twierdzenia 4.20| wiemy,
ze |A| ma postac
N
[Alz =3 Al on)en
n=1

dla pewnego uktadu ortonormalnego {y, }_,. Niech {1} | bedzie uzpet-
nieniem uktadu {¢, }»_, do bazy ortonormalnej przestrzeni H. Wtedy |A|p,
Antpn oraz |Aly = 0, zatem

N K N
n=1 k=1 n=1

Zatézmy, ze liczby singularne operatora A spelniaja > A, < oco. Wtedy
An — 0. Z zasady minimaksu wynika, ze |A| jest operatorem zwartym. Ze
wzoru ([7.1)) otrzymujemy wtedy A € C4. O

Twierdzenie 7.3.
(a) Jesli A € Cy, to NA € C}.
(b) Jesli A € Cy, to A* € Ch.
(c) Jesli Ae Cy i Be B(H), to AB € Cy oraz BA € (4.
(d) Jesli A,B € Cy, to A+ B € (4.
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Dowdd. Punkt (a) wynika, ze wzoru |AA| = |A] |A].

7 twierdzenia [4.23] N

Ax = Z (T, on)Pn

n=1

Wtedy

(z, A%y) = (Az,y) = > (2, 0n) (Un, y) = <’£ > Ay, <pn>wn>

n=1 n=1
Zatem
N
n=1
Dalej
N N N
(AAY )y =Y Ml A"y, 0n)tn = D Ay, Apn)thn = D A2 (Y, Uy,
n=1 n=1 n=1

Otrzymujemy wiec N
Ay = Zl An Y, V) U
To oznacza, ze liczby singularne operatoréw A i A* sg takie same. Zatem
tr|A*| = tr |A]

To koniczy dowod (b).
Zatozmy, ze B € B(H) 1 A € C}. Z zasady minimaksu wynika

M(BA)= min max |[|[BAz| <||B]|  min max |[|[Az| = ||B||A.(A)
dimV=n—1gcyLl dimV=n—1zcyL
[|lz]|=1 llzl|=1
Zatem

tr | BA| < [|B| tr[A],
czyli BA € (. Dalej

tr|AB| = tr [B*A*| < || B*|| tr|A*| = || B[tz | A

czyli AB € (4.
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Zatozmy, ze A, B € C,. Mamy A = Uy|A|, B = Uy|B| oraz A+ B =
Us|A + B|. Zatem
|A+ B|=U;(A+ B) =U;U,|A| + U;Us| B|

Stad przy oznaczeniach V; = UsU; i Vo = UsU, otrzymujemy

tr|[A+ B| = > (JA+ Blen,en) = Y _(Vi]|Alen, en) + Z (Va| Blen, ,)
= Y (A 2en, [AV i en) + D (IBI 2en, | BV e,)
n=1 n=1

= (|12 A2V s + (IBIY?, | B2V ) s
<A s IAI2VE s + MBI sl B2 V5 [ s
< A2 Es + I1BIV2[hs = tr|Al + tr| B]

]

Z twierdzenia wynika, ze operatory sladowe () tworza *-ideal w prze-
strzeni B(H). Okreslmy
[A[]x = tr[A]

Z dowodu twierdzenia wynika, ze C| z norma || - ||; jest przestrzenia unormo-

wana. Ponadto ||All; > ||All, bo A (A) = ||A]].
Twierdzenie 7.4. Przestrzen Cy z normg || - |1 jest zupelna.

Dowaod. Niech Ay bedzie ciggiem Cauchy’ego w C;. Wtedy

sup | Agll1 =2 M < o0

Operatory Ay tworzg ciag Cauchy’ego w B(H). Oznaczmy A = lim A;. Wte-
dy A jest operatorem zwartym. Pokazemy, ze

A (A) = lim An(Ag)
Rzeczywiscie, dla e > 0 istnieje K takie, ze dla k > K i ||z]| = 1 mamy

[Az]| — e < [[Apz]| < [[Az] + ¢
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Z zasady minimaksu wynika, ze dla £ > K mamy

= i < 1 =
Ml = gl ot sl < g apin,, xasx Al e = dn(d) +e
llell=1 [l2]|=1

Podobnie
M(A) > M) e, k> K

Zatem dla dowolnej liczby N
N N
> A(A) =lim ) A, hm||AkH1
n=1 k n=1

Poniewaz N byto dowolng liczba, to
IAllL < M

czyli A € (Y.
Pozostaje wykazaé, ze ||Ay — Al|1 — 0. Dla liczby € > 0 istnieje K takie,
ze dla k,l > K zachodzi || Ay, — A)|| < €. Niech [ > K. Wtedy

Zatem

N
g A Al th)\ Ak—Al) 11]£II||Ak—Al||1 <€

n=1

Poniewaz N jest dowolng liczba naturalng, to
|A— A <e, [>K
O

Twierdzenie 7.5. Jesli A i B sq operatorami Hilberta-Schmidta, to AB jest
operatorem sladowym. Kazdy operator sladowy jest iloczynem dwu operatorow
Hilberta-Schmidta.

Dowéd. Niech A € C;. Wtedy A = U|A| = U|A|'?|A|*/2. Operator |A|'/?
jest Hilberta-Schmidta, zatem U|A|'? jest réwniez operatorem Hilberta-
Schmidta.
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Zatézmy, ze A i B sg operatorami Hilberta-Schmidta. Pokazemy, ze B*A
jest operatorem sladowym. Z twierdzenia [4.23] mamy

N
B*Az = Au(z, 0n)thn
n=1

Wtedy

N N N
S A=) (B*Apy, i) = Z Ay, By)
=1 =1 =1
1/2

N /2 , N
<3 Al 1B < (Z HAsokH> (Z HBwkH>
k=1 k=1 k=1

Zatem
|B*Ally < |Allmsl| Bl #s

]

Twierdzenie 7.6. Dia A € Cy oraz dowolnej bazy ortonormalnej {e,}>

szereq
oo

Z(Aen, €n)

n=1

jest bezwzglednie zbiezny oraz suma nie zalezy od wyboru bazy.

Dowdd. Operator A mozemy przedstawi¢ w postaci A = C*B, gdzie B i C
sa operatorami Hilberta-Schmidta. Wtedy

[{C"Ben, en)| = [(Ben, Cen)| < [|Ben||[|Cenl|

Zatem - -
Z;I(Aemenﬂ < ZlHBenH [Cenll < I BllaslCllas
Ponadto . o . -
Zl<Aen,en> = Z;(Ben,(}'en> =(B,C)us

i suma nie zalezy od wyboru bazy na podstawie roéwnosci polaryzacyjnej. [

Dla operatora A € C okreslamy

trA="> (Ae,, e,)

n=1
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Twierdzenie 7.7. Dia A € Cy oraz B € B(H) lub dla A, B € HS prawdziwy
jest wzor
tr AB =tr BA

Dowaod. Zatézmy, ze A, B € HS. Z rownosci
(T.T) = |IT\7s = 1T |75 = (T",T7)
i tozsamosci polaryzacyjnej wynika, ze
(A, B) = (B*, A")

Stad
tr B*A = tr AB*

Operator A € C} ma posta¢ A = A;A,, gdzie A, Ay € HS. Wtedy dla
B € B(H) otrzymujemy

tr BA = tr (BAl)AQ = tr AQBAl = tr AlAgB =trAB
[l

Whniosek 7.8. Zatozmy, ze A > B > 0 oraz A jest operatorem Hilberta-
Schmidta. Wtedy B jest operatorem Hilberta-Schmidta.

Dowdd. Dla bazy ortonormalnej {ex}2, okreSlmy A, = P,AP, oraz B,, =
P,BP,, gdzie P, jest rzutem ortogonalnym na przestrzen rozpicta przez
{ex}r_;. Wtedy 0 < B, < A, oraz

ST |[Bex|* = Y || Buer|® = tr B2 = tr BY/* B, B)/?
k=1 k=1
<trBY?A,BY? =tr A, B, = tr AY2B, A}/?

< APAAY =Y Al = Y [Aesl? < 3 [ Acyl
k=1 k=1 k=1

]

Lemat 7.9. Dla operatora samosprzezonego A operatory |A|£ A sq dodatnie.
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Dowdéd. Operatory A i |A| sa przemienne. Operator |A| — A jest samosprze-
zony. Zatem

0 < (JA| — A)? = 2|A]> — 2|A|A = 2(|A| — A) |A|
To oznacza, ze
(JA| = Av,v) >0,  velmlA|

Ostatnia nierownos$¢, poprzez przejécie graniczne, spetniona jest dla v €
Im |A]. Operator |A| — A zeruje si¢ na ker A = ker |A]. Kazdy element u € ‘H
ma posta¢ u = v + w, gdzie w € ker |[A|, v € Im |A| i v L w. Zatem

(1Al = A)u, u) = {(|A] = A)v,v) > 0

O

Whiosek 7.10. Kazdy operator samosprzezony A jest roznicg dwu operato-
row dodatnich Ay i A_ takich, z2e A_ Ay = 0. Ponadto Im A, 1 Im A_ oraz
ImA=ImA, $ImA_.

Dowdd. Okreslmy
Av= (Al +4), A=A~ 4
Operatory A, i A_ sa dodatnie oraz A = A, — A_. Dalej
4ALA- =4A AL = (JA|+ A)(JA| — A) = |A]? — A2 =0
Zatem
ImA_ Cker Ay =Im A7, ImA, CkerA_ =ImA*

Dlax L ker A, otrzymujemy z L Im A_, czylix € ker A_. Zatem Ax = A, x,
czyli ImA, C Im A. Podobnie dla z 1 ker A mamy x | ImA,, czyli
xekerA,. oraz Av = —A_z. Tzn. ImA_ C Im A.
Z rozktadu A = A, — A_ wynika przeciwna inkluzja ImA C ImA_ &
ImA,.
O

Twierdzenie 7.11. Jesli dla dowolnej bazy ortonormalnej {e, }°°, operator
A spetlnia

Z [(Ae,, en)| < o0

n=1

to A jest operatorem Sladowym.
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Dowdd. Niech
A= SA4 A, A= (A an)
1 — 2 ) 2 — 2
Operatory A; i Ay sg samosprzezone oraz A = A; 4+ 1Ay. Ponadto
‘(Aena €n>|2 = <A1€n, en>2 + <A2€n7 €n>2

Z zalozenia -
Z|<Aken,en>| < 00, k=1,2
n+1

Wystarczy wiec udowodnié teze dla operatora samosprzezonego A. Z Wnio-
sku dostajemy A = A, — A_, gdzie ImA_ | Im A,. Wybierzmy bazy
ortonormalne {e, } i {f,} przestrzeni Im A_ oraz Im A, , odpowiednio.Uktady
te speliaja e, L f;. Niech {g,} bedzie baza przestrzeni (Im A_)*N(Im A, )+
(Im A)*. Suma trzech uktadéw ortonormalnych {, } jest baza ortonormalng
H. Otrzymujemy

e}

Z<A—90nv Pn) = Z(A—em en) = Z [(Aen, en)] < 00

n=1

Z Avpn,on) = D AA fus fo) = D (Afn, fa)| < 00
n=1

To oznacza, ze operatory A. sg $ladowe. Stad A jest rowniez operatorem
sladowym. O

Twierdzenie 7.12. Jesli dla pewnej bazy ortonormalnej e, operator A &
B(H) spetnia

Z || Ae,|| < oo

n=1

tOAGCl.

Dowod. Mamy
[Aenl| = [[[Alen]l = ([Alen, en)

Zatem |A] jest $ladowy, skad wynika, ze A € (4. ]
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8

Zadania

. Pokaza¢, ze jesli operator liniowy 1T z przestrzeni Banacha X w prze-

strzen Banacha Y jest ograniczony, to T przeksztalca ciggi stabo zbiez-
ne do zeraw X w ciagi stabo zbiezne do zera w Y. Pokazac¢, ze implikacja
odwrotna tez jest prawdziwa. W dowodzie skorzysta¢ z twierdzenia o
wykresie domknigtym.

. Okreslmy funkcjonaly d,, na przestrzeni /> wzorem

n({cutizs) = cn.

Pokazaé, ze {9, } nie zawiera podciagu zbieznego *-stabo.

Az}, jest gestym podzbiorem kuli jednostkowej w przestrzeni unor-

mowanej X. W przestrzeni X* wprowadzamy metryke
d(z",y") = > 27" 2" (z) — y"(wn)]
n=0

Pokazaé, ze d(-, -) jest istotnie metryka. Pokazaé, ze x-staba topologia w
kuli jednostkowej jest rownowazna topologii wyznaczonej przez metryke
d(-,-). * Czy topologie te sa rownowazne na calej przestrzeni X* 7

. Pokaza¢, ze jesli ciag elementéw x,, przestrzeni Hilberta jest stabo zbiez-

ny do x oraz ||z,| — ||z, to ||z, — z|| — 0. Czy mozna to uogdlni¢ na
przestrzenie P dlap > 17

. p > 1. Pokaza¢, ze ciag x,, w przestrzeni /P jest stabo zbiezny wtedy i

tylko wtedy, gdy liczby ||z,||, sa wspélnie ograniczone oraz dla kazdego
m ciag x,(m) jest zbiezny.

. W przestrzeni 7, p > 1 znalez¢ cigg stabo zbiezny , ale nie zbiezny w

normie przestrzeni. * Pokazaé, ze w ! kazdy ciag stabo zbiezny jest tez
zbiezny w normie.

. Ciag {z,} elementéw przestrzeni unormowanej X jest stabo zbiezny

do z. Pokazaé, ze istnieje ciag postaci {d iy Ainx:} (gdzie A, € C)
zbiezny do z w normie. Wskazéwka: Rozwazy¢ najmniejsza domknieta
podprzestrzen liniowa Y zawierajaca {x,}. Zauwazy¢, ze teza zadania
jest rownowazna x € Y. Skorzysta¢ z faktu, ze jesli x € Y to istnieje
funkcjonal ograniczony z* taki, ze z*(x) = 1 oraz z*(y) =0 dlay € Y.
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8.

9.

10.

11.

12.

Pokaza¢, ze jesli ciag x,, jest stabo zbiezny do z, to ||z|| < liminf ||z,

Pokazaé, ze ciag funkcji f, jest stabo zbiezny do f w L?(0, 1) jesli normy
|| fll, sa wspélnie ograniczone oraz f, jest zbiezny do f wedlug miary,
tzn.

li {2 |fal) = ()] > =} = 0,

dla dowolnego € > 0. Pokaza¢, ze odwrotna implikacja jest falszywa.

Funkcja rzeczywista f na [0, 1] spetnia warunek Héldera z wykladni-
kiem a, jesli istnieje stata C' taka, ze | f(z)— f(y)| < Clx—y|*. Okreslmy

/@) = Fw)]

[ flle = max |f(z)] + sup
171 #(@) E—

Pokaza¢, ze dla 0 < « < 1, zbior funkcji spetiajacych || f]|o < 1 jest
zwartym podzbiorem w C0, 1].

Funkcje g, sa ciagle na [0, 1]. Czy z ciagu funkcji

= [T ey sinfous?)} dy

mozna wybraé¢ podcigg zbiezny ?

Niech K (z,y) bedzie funkcja ciagta na R? taka, ze

/ / K(z,y)|*dz dy < oo.

Niech f(z) € L*(R). Rozwazmy réwnanie catkowe

u(z) )+ A / y)dy,
gdzie \ jest liczba zespolong. Pokazaé¢, ze réwnanie ma jednoznaczne

rozwiazanie u(z) € L*(R), jesli A ma odpowiednio mata warto$¢ bez-
wzgledna. Wskazdéwka: Do operatora

Tu(x) = f(2) + A [ Kz, y)uly) dy

na L?(R) zastosowaé twierdzenie o odwzorowaniach zwezajacych.
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13.

14.

15.

16.

17.

18.
19.

20.
21.

Podprzestrzen Y przestrzeni unormowanej X nazywamy niezmiennicza
dla operatora liniowego 7' : X — X jesli T(Y) C Y. Podaé przyktady
podprzestrzeni niezmienniczych operatora przesuniecia S okreslonego
na ¢? wzorem

S(.I'(),Il,l'g, .. ) = (0,1’0,1’1,.%'2, .. )

Dla X = C[0,1] i ¢ € X okreslamy operator T' : X — X wzorem
Tf = gf (mnozenie punktowe przez funkcje g). Pokazaé, ze operator
T jest ograniczony. Znalezé o(T).

Rozwigza¢ poprzednie zadanie w przypadku, gdy X = L?*(0,1) oraz
g € C[0,1].

Operator T : (? — (2 jest okreélony wzorem
(Tz)n = Ay,
gdzie )\, jest ustalonym ciggiem ograniczonym. Znalez¢ o(T") oraz o, (T).

Korzystajac z poprzedniego zadania pokazaé, ze istnieje operator T :
(? — (%, ktérego spektrum jest z gory zadanym zwartym podzbiorem
K cC.

Niech T' € B(X). Pokazaé, ze | Rx(T)|| — 0, gdy || — oc.

Niech T : /7 — (P, 1 < p < o0, bedzie okreslony wzorem
T(xg, x1,Ta,...) = (T1,T9,23...).

Zmalez¢ spektrum 7.

Dla T € B(H) pokazaé, ze o(T*) = o(T).

T jest ograniczonym operatorem na przestrzeni Hilberta H. Pokazac,
ze

(a) T jest réznowartosciowy wtedy i tylko wtedy. gdy obraz T™ jest
gesty;

(b) T* jest roznowartosciowy wtedy i tylko wtedy. gdy obraz T jest
gesty;
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(c) Jesli T jest "na”, to istnieje operator ograniczony S : H — H
taki, ze T'S = I. Czy operator S jest jedyny ? Pokazaé, ze istnieje
operator Sy, taki, ze TSy, = I oraz ||Spinv|| < [|Sv]|, v € H, dla
kazdego ograniczonego operatora S spetniajacego T'S = I.

(d) T ma domkniety obraz wtedy i tylko wtedy 7% ma domkniety
obraz.

22. Dla T, S € B(X) oraz A € o(S) N o(T) wyprowadzi¢ wzor

RA(T) — Rx(S) = Ra(S)(T' — S)RA(T).

23. Obliczy¢ norme operatora T' okreslonego wzorem

Tf() = - [ Fo)dy

T

w przestrzeni L?(0,1). Znalezé operator sprzezony. Pokazaé, ze istnieje
ciag funkcji f, € L? taki, ze f, — 0 stabo, ale ||T'f,||2 nie dazy do 0.
Wskazéwka. Zauwazy¢, ze

Tf(@) = [ fen)y

Skorzysta¢ z nierownosci
1/2

</01 </Olg($,y)dy)2d$> 1/2 /01 </01 g(x,y)2d1’> dy.

Zbadaé jak zachowuje si¢ iloraz || f||5 | Tfl2 dla f(z) = 2%, gdy a —
—1/2+.

N

24. T jest operatorem na L?(0,4+o00) okreslonym przez

Tf@) = [~ e fway.

Dowieéé, ze T jest ograniczonym operatorem na L? i znalezé jego norme.
Obliczy¢ T™ i pokazacl, ze operator TT™* zadany jest wzorem

@) = [ f) )y
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25.

26.

27.

28.

Wskazéwka. Zauwazy¢, ze

7)== [ e iLyay.

X

Skorzysta¢ z nierownosci

(/OOO (/Ooog(x, y)dy)2 dx) <[ </Ooog(x, y)Qdac)lm dy.

Zbadaé zachowanie si¢ ilorazu || f||5 1| T f]l2 dla f(z) = 27/*T0e=% ady
d,e — 0T,

1/2

T jest operatorem na L?(0,1) takim, ze dimImT < +o0. Pokazaé, ze
istnieje funkcja K (x,y) z L?((0,1) x (0,1)) taka, ze

T = [ K o) f )y

Wskazéwka. Niech ¢y, ..., p, oraz bedzie bazg ortonormalna dla Im 7.

Pokazaé, ze
n

K(z,y) = Z(T%)(x)%(y)

=0
Pokazad, ze jesli A nie jest samosprzezony na H, to rownosé

|All = sup [(Az,z)|

lz)l<1

nie musi zachodzié.

Operator T jest okreslony na L?(0,1) wzorem

(T)() = [ fway.

Zmalez¢ jawny wzor calkowy dla operatoréw (21 — T)~!, gdzie z # 0.
Skorzystaé z faktu, ze (21 — T)~! = 325° 2~ (DT § ze wzoru catkowego
na 1™ podanego na wyktadzie. Znalez¢ wzér dla operatora sprzezonego
.

Ograniczony operator 1" na przestrzeni Banacha X spelnia warunek
p(T) = 0, dla pewnego wielomianu p(z) = a,z" + ... + ag. Pokazaé, ze
spektrum operatora 1" jest zawarte w zbiorze pierwiastkow wielomianu
p(2).
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29.

30.

31.

32.

33.

34.

35.

Dla funkcji zespolonej k(x, y) dwu zmiennych na [0, 1] x [0, 1] okreslamy
operator catkowy na L?(0,1) wzorem

(K@) = [ K f) dy
Zmalez¢ wzor dla K*.

Ograniczony operator P na przestrzeni Banacha X nazywamy rzutem
jesli P? = P. Pokazaé¢, ze ImP jest domkniety. Znalezé spektrum dla
P. Znalez¢ wzér na operatory rezolwenty (21 — P)~1.

Rzut P na przestrzeni Hilberta H nazywamy ortogonalnym jesli Px L
x — Pz dla dowolnego = € 'H. Pokazaé, ze nastepujace trzy warunki sg
rownowazne:

(a) P jest ortogonalny.
(b) P < 1.
(c) P*=P.

P i@ sarzutami ortogonalnymi w przestrzeni Hilberta takimi, ze PQ) =
QP. Pokaza¢, ze kazdy z operatorow [ — P, I — Q, PQ, P+ Q — PQ
i P+ Q — 2PQ jest rzutem ortogonalnym. Opisa¢ obrazy tych rzutéw
za pomocg podprzestrzeni M = ImP i N = ImQ).

Podprzestrzenie V' i W w przestrzeni Hilberta maja skoticzony wymiar
oraz dim(W') < dim(V'). Pokaza¢, ze podprzestrzen V posiada niezero-
wy wektor v ortogonalny do W.

Dla ograniczonego ciagu liczb zespolonych {\,} okreslamy operator T
na przestrzeni (2 wzorem

T(I‘l, T2,T3, .. ) = (/\1371, )\2562, )\3$37 .. )
Znalez¢ T* oraz (21 —T)7h

Dla ograniczonej zespolonej funkcji ciaglej g(z) na prostej okreslamy
operator T' na L?(R) wzorem (T'f)(z) = g(z)f(x). Znalezé spektrum
operatora 1" i jego norme. Pokazac¢, ze T' jest operatorem normalnym.
Przy jakich warunkach T jest samosprzezony 7
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36.

37.

38.

39.

40.

41.

Pokazaé, ze jesli T' jest operatorem normalnym w przestrzeni Hilberta
‘H, to T jest odwracalny wtedy i tylko wtedy, gdy

[To]| > cllvll,  ve™H,
dla pewnej statej ¢ > 0.

Pokazaé, ze jesli liczba z lezy w spektrum operatora normalnego 7', to
liczba |z|? lezy w spektrum operatora T*T.

Niech p(z,y) bedzie wielomianem dwu zmiennych. Pokazaé, ze jesli
liczba z lezy w spektrum operatora normalnego T, to liczba p(z, z) lezy
w spektrum operatora p(T', 7).

U jest ograniczonym i odwracalnym odwzorowaniem liniowym z prze-
strzeni Banacha X na przestrzen Banacha Y. T i S sa operatorami
ograniczonymi na przestrzeni X i Y odpowiednio, spetniajacymi zwig-
zek S = UTU™!. Pokazaé, ze spektra operatoréw S i T' sg réwne.

Dla funkcji ciagtej g(z) o okresie 2w okreslmy operator 7' na przestrzeni
L*(0,2m) wzorem

1
27

T = 5 [ oo =) i)y

Pokazaé, ze T jest operatorem ograniczonym i [|T|| < (27)~! 7™ |g(2)|d.
* Zmalez¢ spektrum operatora T'. Wskazéwka: Rozwazy¢ odwzorowanie
U: L*0,27) — (*(Z)

1

T or

Uf)(n) = f(n) /Ozﬂ f(z)e ™ dz.

Pokazaé, ze (UT f)(n) = g(n)f(n) = g(n)(Uf)(n). Wywnioskowaé, ze
UTU! jest operatorem mnozenia przez ciag {g(n)}>, okreslonym na
(*(Z). Skorzysta¢ z zadan 71 9.

Niech T' bedzie operatorem samosprzezonym w przestrzeni Hilberta.
Pokazac, ze:

(a) |7 < 1 wtedy i tylko wtedy, gdy o(T) C [—1,1].

(b) o(T) C [0,400) wtedy i tylko wtedy, gdy T jest operatorem do-
datnim.
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42.

43.

44.

45.

78

Wskazéwka: W (a) skorzystaé¢ z faktu, ze r(T') = ||T||. W (b) mozna
zatozy¢, ze ||T|| < 1. Wtedy o(T') C [0, 1]. Zatem (2T — I) C [—1,1].
Z (a) mamy, ze || — 27| < 1. To pociaga (x — 2Tz, z) < (x,x), dla
r € H.

Dla operatora samosprzezonego T' okreslamy

m = inf{(Tx,z) : ||z|| = 1} M = sup{(T'z,x) : ||z|| = 1}.

Pokazaé, ze o(T') C [m, M| oraz m.M € o(T). Wskazéwka: Zauwazy¢,
ze operatory T'— ml oraz M1 — T sa dodatnie.

Udowodnié, ze jesli ciag A,, € B(H) jest stabo zbiezny, to réwniez ciag
A? jest stabo zbiezny. Pokazaé, ze stwierdzenie nie jest prawdziwe dla
mocnej zbieznosci.

(b)

Niech A,,, A € B(H). Pokazaé, ze jesli A,, > 0 oraz A,, jest zbiezny
do A w normie operatorowej, to A > 0 oraz v/A4,, — v A w normie
operatorowe;j.

Pokazac, ze jesli A,, > 0 oraz A,, — A mocno, to réwniez /A, —

v A mocno.

Pokazaé, ze jesli A, — A w normie operatorowej, to |A,| — |A]
W normie operatorowe;.

Pokazaé, ze jesli A, — A oraz AX — A* mocno, to réwniez |A,| —
| A] mocno.

Pokazaé¢ na przyktadzie, ze poprzednie stwierdzenie nie jest praw-
dziwe dla stabej zbieznosci operatorowe;.

Niech X 1Y beda przestrzeniami Banacha. Pokazaé, ze jesli dla
T, € B(X,Y) oraz {T,z} jest ciagiem Cauchy’ego dla kazdego
x € X, to istnieje T' € B(X,Y) taki, ze T,, — T mocno.

Czy poprzednie stwierdzenie jest prawdziwe dla ciagéw uogdlnio-
nych T, 7

46. Niech T} : f(x) — f(z+t) bedzie operatorem na L*(R). Znalez¢ norme
T;. Do czego sa zbiezne operatory T}, gdy t — oo, i w jaki sposéb ?
Odpowiedzie¢ na te same pytania dla L*(R, e " dx).

47. Niech 'H bedzie nieskonczenie wymiarows przestrzenig Hilberta.
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48.

49.

50.

ol.

02.

53.

54.

(a) Pokazaéd, ze jesli A, B, € B(H) sa mocno zbiezne do A i B od-
powiednio to A, B,, jest mocno zbiezny do AB.

(b) Pokaza¢ na przyktadzie, ze jesli A,,, B, € B(H) sa stabo zbiezne
do Ai B odpowiednio to A, B, nie musi by¢ stabo zbiezny do AB.

Niech T bedzie operatorem okreslonym na (F, 1 < p < oo, wzorem
(Tz), = Ay, x€LP.
Pokazaé, ze T jest zwarty wtedy i tylko wtedy, gdy A, — 0.

Dla funkcji g ciaglej na [0, 1] okreslamy operator 7" : LP(0,1) — L?(0, 1)
przez (Tf)(z) = g(z)f(x). Pokazaé, ze T jest zwarty wtedy i tylko
wtedy, gdy g = 0.

Niech K (x,y) bedzie funkcja catkowalng z kwadratem na [0, 1] x [0, 1].
Pokazac¢, ze operator T okreslony na L?*(0,1) wzorem

(1) = [ Ko fw) dy

jest ograniczony i zwarty. Wskazéwka: Wskaza¢ baze ortonormalng w
L3([0,1] x [0,1]) i rozwinaé K (z,y) wzgledem tej bazy.

Pokazaé, ze jesli T : X — Y jest zwartym operatorem liniowym pomie-
dzy przestrzeniami Banacha X i Y, to T nie moze by¢ "na” chyba, ze
przestrzen Y ma skonczony wymiar.

Pokazaé, ze rodzina zwartych operatoréw liniowych z przestrzeni Ba-
nacha X w przestrzen Banacha Y tworzy domknieta podprzestrzen

liniowag w B(X,Y).

T jest zwartym operatorem z przestrzeni Banacha X w przestrzen Ba-
nacha Y. Pokazaé, ze jedli obraz operatora zwartego T(X) jest prze-
strzenig nieskonczonego wymiaru, to obraz ten nie jest domkniety w

Y.

Pokaza¢, ze obraz operatora zwartego T : X — Y jest przestrzenia
o$rodkowa. Wskazéwka: W zupelnej przestrzeni metrycznej podzbioér
jest warunkowo zwarty wtedy i tylko wtedy, gdy jest catkowicie ogra-
niczony.
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99.

56.

57.

*D8.

59.

W przestrzeni 2 okredlamy operator 1" wzorem

0, dlan =0,
%xn_l, dlan > 1.

(T)(n) = {

Pokazaé, ze T jest zwarty. Obliczy¢ || T™|| oraz promien spektralny.

Niech a;, b; beda elementami przestrzeni L2(0,1) dla i = 1,2,...,n.
Niech K(z,y) = 3", a;(z)bi(y). Okreslmy operator T'na L*(0, 1) wzo-
rem

(1)) = [ K(wo)f)dy

Niech 0 # X € C. Pokaza¢, ze dla dowolnej ustalonej funkcji g € L*(0, 1)
réwnanie T'f — \f = g ma jednoznaczne rozwiazanie f € L?(0,1), albo
dla niektérych g réwnanie ma nieskonczenie rozwigzan, a dla pozosta-
tych g, nie ma ich wcale.

Niech
1—x)y dla0 1,
K.y)= {0 ")
(I1—y)x dla0 1

<Y<
<z <

VANVAN

x
Y

Okre$lamy operator T' na L?(0,1) wzorem

(TN)) = [ Klo) i) dy.

Pokazaé¢, ze wartosciami wlasnymi T sg liczby (nm)™2, n = 1,2,...,
przy czym odpowiadajaca popdprzestrzen witasna jest jednowymiaro-
wa. Wskazéwka: Pokaza¢, ze jesli funkcja f spetlnia T'f = Af dla
A # 0, to f jest klasy C' i spelia réwnanie A\f” + f = 0 z wa-
runkami f(0) = f(1) = 0. Przypadek A\ = 0 rozpatrzy¢ oddziel-
nie. Zbada¢ rozwigzalno$¢ wzgledem f rownania T'f — Af = g dla
g(x) =300 cpsinme.

Niech A, B beda operatorami ograniczonymi na przestrzeni Hilberta H
oraz Im A C Im B. Pokazac, ze jesli B jest zwarty, to A tez jest zwarty.

Niech {e, }7°, bedzie baza ortonormalng w przestrzeni Hilberta H. Po-
kazac, ze operator T' jest zwarty wtedy i tylko wtedy, gdy

lipsup{||Tx|| x|l =1,z Le,es,....en} =0.
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60.

61.

62.

63.

64.

Pokazac, ze jesli T' jest zwartym operatorem w przestrzeni Hilberta,
to rownanie Tx = x ma niezerowe rozwigzanie wtedy i tylko wtedy,
gdy rownanie T*x = x ma niezerowe rozwiazanie. Pokazac, ze obie
przestrzenie rozwigzan maja ten sam wymiar.

Niech T'" bedzie zwartym operatorem na przestrzeni Hilberta H. Poka-
za¢, ze dla dowolnej niezerowej wartosci wlasnej A operatora T kazda
z podprzestrzeni ker(AI — T')" ma skoficzony wymiar, oraz wymiary te
sg wspolnie ograniczone przez liczbe zalezng tylko od A.

Operator A > 0 jest zwarty. Pokazaé, ze AY/? tez jest zwarty. Pokazaé,
ze jesli 0 < B < A, to rowniez B jest zwarty.

{@n}5°, jest baza ortonormalna w H. Dla operatora dodatniego A €
B(H) okreslamy slad wzorem

trA = Z (AQn, On)-
n=1

Pokazaé, ze tr A nie zalezy od wyboru bazy ortonormalnej. Udowodni¢,
ze

-+

r(A+B)=trA+trB.

r(AA) =AtrA, A >0.

r (UAU™! = tr A dla dowolnego operatora unitarnego U.
Jesi 0 < A< B, totrA <trB.

-+

o
— N N N
-+

Operator A € B(H) nazywamy operatorem $ladowym jesli tr |A| < oo.
Rodzine operatoréw $ladowych oznaczamy symbolem C. Pokaza¢, ze
(a) Jesli A € C1, to N € (.
(b) Jesli A € C, to A* € C.

(c) JeSli Ae CyiB e B(H),to AB € C} oraz BA € (). Wskazéwka:
Wykorzystaé¢ zasade minimaksu.

(d) Jesli A, B € (4, to A+ B € (). Wskazéwka: Uzy¢ rozktadu po-
larnego dla operatoréw A, Bi A+ B.
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65.

66.

67.

68.

69.

*70.

Pokaza¢, ze kazdy operator sladowy jest zwarty. Wykazac, ze operator
zwarty A jest $ladowy wtedy i tylko wtedy, gdy >\, < oo, gdzie A,
jest ciagiem liczb singularnych operatora A.

Pokaza¢, ze funkcja ||A|l; = tr|A| jest norma na C). Pokaza¢, ze C) z
norma || - ||; jest przestrzenia Banacha.

Niech (5 oznacza rodzing operatorow Hilberta-Schmidta. Pokazaé, ze
jesli A, B € (5, to AB € (. Pokaza¢, ze kazdy operator sladowy jest
iloczynem dwu operatoréw Hilberta-Schmidta.

Pokaza¢, ze dla A € C) i dowolnej bazy ortonormalnej {p,}>2, sze-
reg Z<A¢n,g0n> jest zbiezny i jego suma nie zalezy od wyboru ba-
n=1

zy. Okreslmy tr A = Z(A(pn,gon). Pokazaé, ze tr AB = tr BA, gdzie
n=1
AECllBEB(H) lub A7B€CQ.

[e.e]

Pokaza¢, ze jesli A € C1, to Y [(Agn, ¢n)| < oo dla dowolnej bazy
n=1

ortonormalnej. Czy prawdziwa jest implikacja odwrotna 7 Pokazaé, ze

jesli > || Ag,|| dla pewnej bazy ortonormalnej, to A € C.

n=1
P i@ sgrzutami ortogonalnymi w przestrzeni Hilberta takimi, ze P—(Q)
jest operatorem sladowym. Pokazaé, ze tr (P — Q) jest liczba caltkowita.
Wskazéwka: P i Q) sa przemienne z (P — Q).

Literatura

1]

2]

[3]

N. I. Akhiezer, I. M. Glazman, Teoriia lineinykh operatorov v gilberto-
vom prostranstve I, Kharkov, Vyshcha shkola, 1977-78 (ros.); Theory of
Linear Operators in Hilbert Space, New York, Dover, 1993 (ang.).

N. Dunford, J. T. Schwartz, Linear Operators, Spectral Theory, Self
Adjoint Operators in Hilbert Space, Part 2, New York, Wiley, 1988.

E. Kreyszig, Introductory Functional Analysis with Applications, New
York, Wiley 1989.



Zadania 83

[4] M. Reed, B. Simon, Methods of Modern Mathematical Physics: Functio-
nal Analysis, New York, Academic Press 1972.

[5] R. Szwarc, Analiza funkcjonalna I,
http://www.math.uni.wroc.pl/~szwarc/pdf/anfun2007/analiza-
funkcjonalnal.pdf.



	Operatory ograniczone na przestrzeni Banacha
	Operatory dodatnie
	Zbieznosc operatorów
	Operatory zwarte
	Nierównosc Löwnera
	Operatory unitarne
	Operatory sladowe
	Zadania

