
Analiza funkcjonalna II

Ryszard Szwarc

Wykład prowadzony w semestrze letnim 2008

Opracowany na podstawie notatek Wiktora Malinowskiego

Wrocław 2010



Operatory ograniczone 2

Spis treści

1 Operatory ograniczone na przestrzeni Banacha 2

2 Operatory dodatnie 17

3 Zbieżność operatorów 26

4 Operatory zwarte 30

5 Nierówność Löwnera 48

6 Operatory unitarne 52

7 Operatory śladowe 62

8 Zadania 71

1 Operatory ograniczone na przestrzeni Ba-
nacha

Niech T : X −→ X będzie ciągłym operatorem liniowym na przestrzeni
Banacha X. Przypominamy, że normę operatora T określamy wzorem

‖T‖ = sup{‖Tx‖ : ‖x‖ ¬ 1}.

Symbolem B(X) := B(X,X) oznaczamy przestrzeń Banacha wszystkich cią-
głych operatorów liniowych z X w X.

Przykład 1.1. Rozważmy odwzorowanie liniowe T : Cn −→ Cn. Chcemy
zbadać dla jakich zespolonych liczb λ operator (tzn. macierz) λI − T jest
odwracalny. Jak wiadomo z kursu algebry liniowej warunkiem równoważnym
jest det(λI − T ) 6= 0. Liczby λ, dla których ostatni wyznacznik zeruje się
nazywamy wartościami własnymi. Wiadomo, że jeśli det(λI − T ) = 0, to
istnieje niezerowy wektor v ∈ Cn taki, że Tv = λv. Tzn. macierz λI − T nie
jest różnowartościowa. Innym równoważnym warunkiem jest, że Im (λI−T) (
Cn.
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Definicja 1.2. Zbiorem rezolwenty ρ(T ) nazywamy zbiór tych liczb zespo-
lonych λ, dla których operator λI − T jest odwracalny. Dopełnienie C \ ρ(T )
nazywamy spektrum operatora T i oznaczamy symbolem σ(T ).

Definicja 1.3. Spektrum punktowym σp(T ) nazywamy zbiór wartości wła-
snych operatora T, tzn. zbiór liczb zespolonych λ takich, że λI − T nie jest
operatorem różnowartościowym. Wtedy istnieje niezerowy element x w X ta-
ki, że Tx = λx.

Definicja 1.4. Spektrum resztowym σr(T ) nazywamy zbiór liczb zespolonych
λ, dla których obraz Im (λI − T ) nie jest gęstą podprzestrzenią w X.

Przykład 1.5. Rozważmy przestrzeń

X = `2 = {(xn)∞n=0 :
∞∑
n=0

|xn|2 <∞}.

Dla x = (xn)∞n=0 określmy operator S wzorem

(Sx)n =

xn−1 n ­ 1
0 n = 0.

Tzn.
S(x0, x1, x2, . . .) = (0, x0, x1, x2, . . .).

Mamy ‖Sx‖2 = ‖x‖2, zatem ‖S‖ = 1. To oznacza, że operator S jest
izometrią.

Sprawdzamy różnowartościowość operatora λI − S. W tym celu rozwią-
zujemy równanie (λI − S)x = 0, czyli Sx = λx. Otrzymujemy nieskończony
ciąg równań

0 = λx0

xn−1 = λxn, n ­ 1.

Jeśli λ = 0, to xn = 0 dla wszystkich n. Załóżmy, że λ 6= 0. Wtedy x0 = 0
oraz

xn = λ−1xn−1 = λ−nx0 = 0.

To oznacza, że operator S nie posiada wartości własnych.
Zbadamy teraz σr(S). Załóżmy, że obraz Im (λI − S) nie jest gęsty w `2.

Równoważnie istnieje niezerowy element y ∈ `2 taki, że y ⊥ Im (λI − S).
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Niech V = lin{e0, e1, e2, . . .}, gdzie ek = (0, . . . , 0, 1
k
, 0 . . .). Przestrzeń V jest

gęsta w `2, tzn. V = `2. Zatem

(λI − S)(V ) ⊂ Im (λI − S) = (λI − S)(`2) = (λI − S)(V ) ⊂ (λI − S)(V ).

Skorzystaliśmy z własności znanej z kursu topologii, że obraz przez odwzo-
rowanie ciągłe domknięcia zbioru jest zawarty w domknięciu obrazu tego
zbioru. To oznacza, że

Im (λI − S) = (λI − S)(V ).

Wnioskujemy, że warunek y ⊥ Im (λI − S) jest równoważny z warunkiem
y ⊥ (λI − S)(V ). Ostatni warunek z kolei oznacza, że y ⊥ (λI − S)(ek) dla
k = 0, 1, 2, . . . . Rozwiązujemy układ równań

〈y, (λI − S)ek〉 = 0, k = 0, 1, 2, . . . .

Zatem
〈y, λek − ek+1〉 = 0, k = 0, 1, 2, . . . .

Dalej
yk+1 = λyk, k = 0, 1, 2, . . . .

Otrzymujemy ostatecznie

yk = λ
k
y0, k ­ 1.

Jeśli y0 = 0, to y = 0. Jeśli y0 6= 0, to y ∈ `2 wtedy i tylko wtedy, gdy |λ| < 1.
Zatem

σr(S) = {λ ∈ C : |λ| < 1}.

Pozostaje zbadać liczby λ spełniające |λ| ­ 1. Sprawdzimy, kiedy λI−S jest
„na”. W tym celu dla y ∈ `2 rozwiązujemy równanie (λI − S)x = y. Wtedy

λx0 = y0,

λxn − xn−1 = yn, n ­ 1.

Stąd otrzymujemy
xn = λ−1yn + λ−1xn−1.

Zatem
xn = λ−1yn + λ−2yn−1 + . . .+ λ−n−1y0. (1.1)



Operatory ograniczone 5

Niech y = e0, gdzie

e0 =

1, n = 0;
0, n ­ 1.

Wtedy
xn = λ−n−1, n ­ 0.

Dla |λ| = 1 ciąg (xn) nie należy do `2. Zatem

σ(S) ⊇ {λ ∈ C : |λ| ¬ 1}.

Niech |λ| > 1. Sprawdzamy normę rozwiązania x z (1.1).

∞∑
n=0

|xn|2 =
∞∑
n=0

∣∣∣∣∣
n∑
k=0

λ−k−1yn−k

∣∣∣∣∣
2

¬
∞∑
n=0

n∑
k,l=0

|λ|−k−1|yn−k| |λ|−l−1|yn−l|

=
∞∑

k,l=0

|λ|−k−1|λ|−l−1
∞∑

n=max(k,l)

|yn−k||yn−l|

¬
∞∑

k,l=0

|λ|−k−1|λ|−l−1
 ∞∑
n=max(k,l)

|yn−k|2
1/2 ∞∑

n=max(k,l)

|yn−l|2
1/2

¬
∞∑

k,l=0

|λ|−k−1|λ|−l−1 ‖y‖22 =
(

1
|λ| − 1

)2
‖y‖22.

Zatem
‖(λI − S)−1y‖2 = ‖x‖2 ¬

1
|λ| − 1

‖y‖2,

czyli

‖(λI − S)−1‖ ¬ 1
|λ| − 1

.

Podsumowując
σ(S) = {λ ∈ C : |λ| ¬ 1}.

Uwaga 1.6.
1. W przykładzie można zauważyć, że jeśli λ ∈ σ(S), to |λ| ¬ ‖S‖. Ta

własność zachodzi dla każdego ograniczonego operatora (por. Wniosek
1.8).

2. Zbiór σ(S) jest domknięty i również ta własność jest spełniona dla
dowolnego ograniczonego operatora liniowego (por. Twierdzenie 1.10).
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Twierdzenie 1.7. Załóżmy, że ograniczony operator liniowy T : X → X,
gdzie X jest przestrzenią Banacha, spełnia ‖T‖ < 1. Wtedy operator I − T
jest odwracalny oraz

(I − T )−1 =
∞∑
n=0

T n.

Dowód. Szereg
∞∑
n=0

T n jest bezwzględnie zbieżny, bo

∞∑
n=0

‖T n‖ ¬
∞∑
n=0

‖T‖n =
1

1− ‖T‖
.

Dzięki zupełności przestrzeni B(X) symbol A =
∞∑
n=0

T n określa ograniczony

operator liniowy. Zauważmy, że

AT = TA =
∞∑
n=0

T n+1 = A− I.

Zatem
A(I − T ) = (I − T )A = I.

Stąd A = (I − T )−1.

Wniosek 1.8. Niech X będzie przestrzenią Banacha oraz T ∈ B(X). Jeśli
|λ| > ‖T‖, to operator λI − T jest odwracalny, tzn. λ ∈ %(T ).

Dowód. Mamy
λI − T = λ(I − λ−1T ), ‖λ−1T‖ < 1.

Z poprzedniego twierdzenia operator I − λ−1T jest więc odwracalny. Zatem
odwracalny jest też λI − T.

Uwaga 1.9. Z twierdzenia wynika, że dla ‖T‖ < 1 mamy

‖(I − T )−1‖ ¬ 1
1− ‖T‖

.

Zatem przy założeniu ‖T‖ < |λ| otrzymujemy

‖(λI − T )−1‖ = |λ|−1‖(I − λ−1T )−1‖ ¬ |λ|−1 1
1− |λ|−1‖T‖

=
1

|λ| − ‖T‖
.
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Twierdzenie 1.10. Dla T ∈ B(X), gdzie X jest przestrzenią Banacha, zbiór
rezolwenty %(T ) jest otwartym podzbiorem w C. Ponadto funkcja

Rz(T ) = (zI − T )−1, z ∈ %(T )

jest analitycznym odwzorowaniem zbioru %(T ) w B(X), tzn. w otoczeniu każ-
dego punktu z0 funkcja Rz(T ) przedstawia się za pomocą bezwzględnie zbież-
nego szeregu potęgowego postaci

Rz(T ) =
∞∑
n=0

(z − z0)nAn, An ∈ B(X).

Zachodzi też wzór

Rz(T )−Rw(T ) = −(z − w)Rz(T )Rw(T ). (1.2)

Uwaga 1.11. Wzór (1.2) można kojarzyć z tożsamością

1
z − t

− 1
w − t

= − z − w
(z − t)(w − t)

.

Dowód. Niech z0 ∈ %(T ). Pokażemy, że liczby z leżące blisko z0 należą do
%(T ). Mamy

zI − T = (z0I − T )− (z0 − z)I = (z0I − T )[I − (z0 − z)(z0I − T )−1]. (1.3)

Załóżmy, że

|z − z0| <
1

‖(z0I − T )−1‖
.

Wtedy
‖(z − z0)(z0I − T )−1‖ < 1.

Z Twierdzenia 1.7 operator I− (z0−z)(z0I−T )−1 jest odwracalny. Zatem ze
wzoru (1.3) operator zI − T jest odwracalny jako złożenie dwu operatorów
odwracalnych. Czyli z ∈ %(T ), więc zbiór %(T ) jest otwarty.

Ze wzoru (1.3) i Twierdzenia 1.7 otrzymujemy

Rz(T ) = (zI − T )−1 =
∞∑
n=0

(z0 − z)n(z0I − T )−n−1

=
∞∑
n=0

(z − z0)nAn, An = (−1)n(z0I − T )−n−1. (1.4)



Operatory ograniczone 8

Obliczamy

Rz(T )−Rw(T ) = (zI − T )−1 − (wI − T )−1

= (zI − T )−1[(wI − T )− (zI − T )](wI − T )−1

= −(z − w)(zI − T )−1(wI − T )−1 = −(z − w)Rz(T )Rw(T )

Dla z, zo ∈ %(T ) na podstawie (1.4) mamy

Rz(T )−Rz0(T ) =
∞∑
n=0

(z0−z)n(z0I−T )−n−1−(z0I−T )−1 =
∞∑
n=1

(z0−z)n(z0I−T )−n−1.

Zatem

‖Rz(T )−Rz0(T )‖ ¬
∞∑
n=1

|z − z0|n‖(z0I − T )−1‖n+1

=
|z − z0|‖Rz0(T )‖2

1− |z − z0|‖Rz0(T )‖

przy założeniu, że |z − z0| < ‖Rz0(T )‖−1. Z obliczeń wynika, że

lim
z→z0

Rz(T ) = Rz0(T ).

Zatem, korzystając z (1.2), otrzymujemy

lim
z→z0

Rz(T )−Rz0(T )
z − z0

= lim
z→z0

(−1)Rz0(T )Rz(T ) = −Rz0(T )2.

To oznacza, że funkcja z 7→ Rz(T ) posiada pochodną zespoloną jako funkcja
z podzbioru %(T ) w B(X).

Twierdzenie 1.12. Niech T będzie ograniczonym operatorem liniowym na
przestrzeni Banacha X. Wtedy spektrum σ(T ) jest niepustym i domkniętym
podzbiorem w C.

Dowód. Domkniętość zbioru wynika z otwartości zbioru rezolwenty. Załóżmy,
że spektrum σ(T ) jest zbiorem pustym. Wtedy funkcja Rz(T ) jest określo-
na na całej płaszczyźnie zespolonej. Dla ustalonych elementu x ∈ X oraz
funkcjonału x∗ ∈ X∗ rozważamy funkcję

f(z) = x∗(Rz(T )x).
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Funkcja f(z) jest holomorficzna w całej płaszczyźnie zespolonej. Z zadania
18 mamy, że ‖Rz(T )‖ −→

|z|→∞
0. Wtedy f(z) −→

|z|→∞
0. Funkcja f(z) jest zatem

ograniczona w C. Na podstawie twierdzenia Liouville’a funkcja f jest stała,
czyli f(z) ≡ 0. Stąd x∗(Rz(T )x) = 0 dla dowolnego funkcjonału x∗, czyli
Rz(T )x = 0 dla dowolnego elementu x ∈ X. Zatem Rz(T ) = 0, co stoi w
sprzeczności z odwracalnością operatora Rz(T ).

Uwaga 1.13. Dla X = Cn operatory T : X → X utożsamiamy z macierzami
wymiaru n×n.Wtedy z zasadniczego twierdzenia algebry mamy σ(T ) = {λ ∈
C : det(λI − T ) 6= 0} 6= ∅.

Definicja 1.14. Promieniem spektralnym operatora T ∈ B(X). nazywamy
liczbę

r(T ) = max{|λ| : λ ∈ σ(T )}.

Twierdzenie 1.15. Dla T ∈ B(X), gdzie X jest przestrzenią Banacha,
istnieje granica lim

n
‖T n‖1/n oraz granica ta jest równa r(T ). Ponadto, jeśli

X jest przestrzenią Hilberta oraz T ∗ = T, to r(T ) = ‖T‖.

Dowód. Jeśli T n0 = 0 dla pewnej liczby n0, to T n = 0 dla n ­ n0. Wte-
dy limn ‖T n‖1/n = 0. Załóżmy zatem, że T n 6= 0 dla wszystkich potęg n.
Oznaczmy an = log ‖T n‖. Zauważmy, że

an+m ¬ an + am.

Rzeczywiście

an+m = log ‖T n+m‖ = log ‖T nTm‖ ¬ log ‖T n‖‖Tm‖
= log ‖T n‖+ log ‖Tm‖ = an + am.

Istnienie granicy ciągu an wynika z następnego lematu.

Lemat 1.16. Jeśli ciąg liczb rzeczywistych an spełnia warunek an+m ¬ an +
am, to istnieje granica (być może −∞) ciągu an/n oraz

lim
n

an
n

= inf
n

an
n
.

Dowód. Mamy
anp+r ¬ anp + ar ¬ nap + ar
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dla dowolnych liczb naturalnych n, p i r. Ustalmy liczbę p. Każdą liczbę m
można zapisać w postaci m = np+ r, gdzie 0 ¬ r ¬ p− 1. Zatem

am
m

=
anp+r
np+ r

¬ n

np+ r
ap +

1
np+ r

ar.

Gdy m→∞, to n→∞, więc

lim sup
am
m
¬ ap

p
.

Ponieważ p jest dowolną liczbą naturalną, to

lim sup
am
m
¬ inf

p

ap
p
¬ lim inf

am
m
.

Stąd granice górna i dolna muszą być sobie równe.

Z lematu wynika, że

lim
n
‖T n‖1/n = inf

n
‖T n‖1/n.

Załóżmy, że |z| > infn ‖T n‖1/n. Pokażemy, że wtedy operator zI − T jest
odwracalny. Istotnie, dla pewnej liczby n mamy |z| > ‖T n‖1/n. Stąd |z|n >
‖T n‖. Wtedy

znI − T n = zn(I − 1
zn
T n)

jest operatorem odwracalnym, bo ‖z−nT n‖ < 1. Z drugiej strony mamy

znI − T n = (zI − T )S = S(zI − T ),
dla S = zn−1I + zn−2T + . . .+ zT n−2 + T n−1.

Odwracalność operatora zI−T wynika z prostego algebraicznego faktu, któ-
rego dowód pozostawiamy czytelnikowi.

Fakt 1.17. Załóżmy, że w półgrupie A z jednością, element a jest odwracalny
oraz a = bc = cb dla pewnych elementów b i c. Wtedy elementy b i c też są
odwracalne.

Zatem z /∈ σ(T ). W konsekwencji otrzymujemy

σ(T ) ⊆ {z ∈ C : |z| ¬ inf
n
‖T n‖1/n}.
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To oznacza, że r(T ) ¬ inf
n
‖T n‖1/n.

Niech teraz r > r(T ). Tzn. operator Rz(T ) istnieje dla |z| ­ r. Ustalmy
element x ∈ X i funkcjonał x∗ ∈ X∗. Funkcja

z 7→ x∗(Rz(T )x)

jest holomorficzna dla |z| > r(T ). Zatem ta funkcja jest holomorficzna w
pierścieniu r ¬ |z| ¬ s. Wtedy

In :=
1

2πi

∫
|z|=r

x∗(Rz(T )x)zn dz =
1

2πi

∫
|z|=s

x∗(Rz(T )x)zn dz.

Rozważmy s > ‖T‖. Wtedy dla |z| = s możemy rozwinąć Rz(T ) w absolutnie
zbieżny szereg

Rz(T ) =
∞∑
k=0

z−(k+1)T k,

Zatem

In =
∞∑
k=0

x∗(T kx)
1

2πi

∫
|z|=s

zn−(k+1) dz = x∗(T nx),

bo tylko jeden składnik (dla k = n) jest niezerowy. Otrzymujemy zatem

x∗(T nx) = In =
1

2πi

∫
|z|=r

x∗(Rz(T )x)zn dz.

Dalej

|x∗(T nx)| ¬ 1
2π

2πr rn max
|z|=r
‖Rz(T )‖ ‖x‖ ‖x∗‖ = rn+1max

|z|=r
‖Rz(T )‖ ‖x‖ ‖x∗‖.

Ostatecznie

‖T n‖ = sup
‖x∗‖¬1
‖x‖¬1

|x∗(T nx)| ¬ rn+1max
|z|=r
‖Rz(T )‖.

Stąd
lim
n
‖T n‖1/n ¬ r.

Ponieważ r było dowolną liczbą większą do r(T ), to

lim
n
‖T n‖1/n ¬ r(T ).
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Niech T ∈ B(H). Dla x ∈ H mamy

‖Tx‖2 = 〈Tx, Tx〉 = 〈T ∗Tx, x〉 ¬ ‖T ∗Tx‖‖x‖ ¬ ‖T ∗T‖‖x‖2.

Zatem
‖T‖2 ¬ ‖T ∗T‖ ¬ ‖T ∗‖‖T‖ = ‖T‖2.

Stąd ‖T ∗T‖ = ‖T‖2. Jeśli T ∗ = T, to ‖T 2‖ = ‖T‖2. Potęgi operatora T są
również samosprzężone, więc

‖T 2n‖ = ‖T 2n−1‖2 = ‖T 2n−2‖4 = . . . = ‖T‖2n .

Czyli
‖T 2n‖1/2n = ‖T‖.

Przechodząc do granicy otrzymamy r(T ) = ‖T‖.

Wniosek 1.18. Jeśli T ∈ B(H) jest operatorem normalnym, tzn. T ∗T =
TT ∗, to r(T ) = ‖T‖.

Dowód. Wykonujemy obliczenia

‖T 2n‖2 = ‖(T 2n)∗T 2n‖ = ‖(T ∗)2nT 2n‖ = ‖(T ∗T )2
n‖ = ‖T ∗T‖2n = ‖T‖2n+1

Zatem
‖T 2n‖1/2n = ‖T‖.

Przechodząc do granicy otrzymujemy tezę.

Wniosek 1.19. Jeśli T ∈ B(H) jest operatorem normalnym, to ‖T n‖ =
‖T‖n.

Dowód. Mamy

‖T n‖ = r(T n) = lim
k
‖T nk‖1/k = (lim

k
‖T nk‖1/nk)n = r(T )n = ‖T‖n.

Przykład 1.20. Rozważmy operator T : L2(0, 1)→ L2(0, 1) zadany wzorem

(Tf)(x) =
x∫
0

f(y) dy.



Operatory ograniczone 13

Obraz Im T jest zawarty w C[0, 1]. Istotnie, z nierówności Schwarza mamy
dla 0 ¬ x1 ¬ x2 ¬ 1

|(Tf)(x2)− (Tf)(x1)| =

∣∣∣∣∣∣
x2∫
x1

f(y) dy

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1∫
0

f(y)χ[x1,x2](y) dy

∣∣∣∣∣∣
¬ ‖f‖2‖χ[x1,x2]‖2 =

√
x2 − x1‖f‖2.

Zatem T nie jest operatorem odwracalnym. Obliczmy T 2.

(T 2f)(x) =
x∫
0

(Tf)(y) dy =
x∫
0

 y∫
0

f(z) dz

 dy

x∫
0

f(z)

 x∫
z

dy

 dz =
x∫
0

(x− z)f(z) dz.

Udowodnimy przez indukcję, że

(T nf)(x) =
1

(n− 1)!

x∫
0

(x− y)n−1f(y) dy. (1.5)

Zakładamy, że wzór jest prawdziwy i sprawdzamy następną potęgę.

(T n+1f)(x) =
x∫
0

(T nf)(y) dy =
1

(n− 1)!

x∫
0

 y∫
0

(y − z)n−1f(z) dz

 dy

=
1

(n− 1)!

x∫
0

f(z)

 x∫
z

(y − z)n−1 dy

 dz =
1
n!

x∫
0

(x− z)nf(z) dz.

Korzystając z (1.5) otrzymujemy

‖T n+1f‖22 =
1∫
0

|(T n+1f)(x)|2 dx =
1

(n!)2

1∫
0

∣∣∣∣∣∣
x∫
0

(x− y)nf(y) dy

∣∣∣∣∣∣
2

dx

¬ 1
(n!)2

1∫
0

 x∫
0

|f(y)|2 dy

 x∫
0

(x− y)2n dy

 dx ¬ ‖f‖22
1

(n!)2

1∫
0

x2n+1

2n+ 1
dx

=
1

(n!)2(2n+ 1)(2n+ 2)
‖f‖22 ¬

1
((n+ 1)!)2

‖f‖22.

Zatem ‖T n+1‖ ¬ 1
(n+ 1)!

. Stąd lim
n
‖T n‖1/n = 0. W rezultacie σ(T ) = {0}.
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Twierdzenie 1.21. Niech T : X → X będzie operatorem ograniczonym na
przestrzeni Banacha X. Dla wielomianu p(z), o współczynnikach zespolonych,
mamy

σ(p(T )) = p(σ(T ),

tzn. każda liczba w spektrum operatora p(T ) ma postać p(λ), gdzie λ ∈ σ(T ).

Dowód. Pominiemy przypadek deg p = 0. Założmy, że p(λ) /∈ σ(P (T ).Wtedy

operator p(T )−p(λ)I jest odwracalny. Niech q(z) =
p(z)− p(λ)
z − λ

. Wtedy q(z)

jest wielomianem oraz p(z)− p(λ) = (z − λ)q(z). Zatem

p(T )− p(λ)I = q(T )(T − λI) = (T − λI)q(T ).

To oznacza, że operator T − λI jest odwracalny, czyli λ /∈ σ(T ). Zatem, jeśli
λ ∈ σ(T ), to p(λ) ∈ σ(p(T )). Otrzymaliśmy p(σ(T )) ⊂ σ(p(T )).

Załóżmy, że α ∈ σ(p(T )). Z zasadniczego twierdzenia algebry wielomian
p(z)− α rozkłada się na czynniki liniowe

p(z)− α = c(z − λ1)(z − λ2) . . . (z − λn), c 6= 0

oraz p(λi) = α, dla j = 1, 2, . . . , n. Wtedy

p(T )− αI = c(T − λ1I)(T − λ2I) . . . (T − λnI).

Z założenia lewa strona jest operatorem nieodwracalnym. Zatem przynaj-
mniej jeden z czynników po prawej stronie, np. T − λjI, jest operatorem
nieodwracalnym. Stąd λj ∈ σ(T ). Ponieważ p(λj) = α, to α ∈ p(σ(T )).
Otrzymaliśmy zawieranie σ(p(T )) ⊂ p(σ(T )).

Uwaga 1.22. Teza jest spełniona dla funkcji całkowitych f(z), tzn. funkcji
postaci

f(z) =
∞∑
n=0

anz
n,

przy czym promień zbieżności szeregu wynosi +∞, lub jest większy niż r(T ).
Wtedy operator

f(T ) =
∞∑
n=0

anT
n

jest dobrze określony, bo szereg jest bezwzględnie zbieżny. Zawieranie f(σ(T )) ⊂ σ(f(T ))

można udowodnić podobnie jak wyżej, korzystając z faktu, że q(z) =
f(z)− f(λ)

z − λ
jest funkcją całkowitą.
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Twierdzenie 1.23. Dla T ∈ B(H) mamy

σ(T ∗) = σ(T ) := {z : z ∈ σ(T )}.

Dowód. Wiemy, że jeśli operator A ∈ B(H) jest odwracalny, to A∗ jest też
odwracalny oraz (A∗)−1 = (A−1)∗. Niech z /∈ σ(T ). Tzn. zI − T jest opera-
torem odwracalnym. Zatem zI − T ∗ jest też odwracalny, czyli z /∈ σ(T ∗). To
daje

σ(T ∗) ⊆ σ(T ).

Stąd wynika, że
σ(T ) = σ((T ∗)∗) ⊆ σ(T ∗),

czyli
σ(T ) ⊆ σ(T ∗).

Wniosek 1.24. Niech U : H → H będzie operatorem unitarnym, tzn. U∗U =
UU∗ = I, lub równoważnie U∗ = U−1. Wtedy σ(U) ⊆ {z ∈ C : |z| = 1}.

Dowód. Mamy
‖U‖2 = ‖U∗U‖ = ‖I‖ = 1.

Zatem ‖U‖ = 1, skąd wynika σ(U) ⊆ {z ∈ C : |z| ¬ 1}. Niech |z| < 1.
Chcemy pokazać, że zI − U jest odwracalny. Zauważmy, że

zI − U = zU∗U − U = −(I − zU∗)U.

U jest odwracalny. Operator I − zU∗ jest również odwracalny, bo ‖zU∗‖ =
|z| < 1. Stąd zI − U jest odwracalny, co dowodzi tezy wniosku.

Uwaga 1.25. Jeśli U jest unitarny, to ‖Ux‖ = ‖x‖ dla x ∈ H. Rzeczywiście

‖Ux‖2 = 〈Ux, Ux〉 = 〈U∗Ux, x〉 = 〈x, x〉 = ‖x‖2.

Podobnie ‖U∗x‖ = ‖x‖.

Twierdzenie 1.26. Jeśli operator T : H → H jest normalny, to ‖Tx‖ =
‖T ∗x‖ dla x ∈ H.

Dowód. Mamy

‖Tx‖2 = 〈Tx, Tx〉 = 〈T ∗Tx, x〉 = 〈TT ∗x, x〉 = 〈T ∗x, T ∗x〉 = ‖T ∗x‖2.
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Wniosek 1.27. Jeśli T jest operatorem normalnym, to

‖(λI − T )x‖ = ‖(λI − T ∗)x‖

dla x ∈ H. Ponadto, jeśli λ jest wartością własną operator T, to λ jest
wartością własną operatora T ∗, z tymi samymi wektorami własnymi.

Dowód. Z założenia wynika, że λI − T jest operatorem normalnym, więc
możemy zastosować poprzednie twierdzenie. Druga część wniosku wynika z
obserwacji, że Tx = λx oznacza (λI − T )x = 0.

Twierdzenie 1.28. Wektory własne odpowiadające różnym wartościom wła-
snym operatora normalnego są ortogonalne.

Dowód. Niech T : H → H będzie operatorem normalnym oraz Tx = λx i
Ty = µy dla λ 6= µ oraz pewnych niezerowych wektorów x, y ∈ H. Obliczamy

λ〈x, y〉 = 〈Tx, y〉 = 〈x, T ∗y〉 = 〈x, µy〉 = µ〈x, y〉.

Zatem 〈x, y〉 = 0.

Wniosek 1.29. Niech T będzie operatorem normalnym na H = Cn. Wtedy
istnieje baza ortonormalna v1, v2, . . . , vn w Cn złożona z wektorów własnych
operatora T.

Uwaga 1.30. Teza wniosku oznacza, że w bazie wektorów {v1, v2, . . . , vn}
macierz operatora T ma postać diagonalną z liczbami λ1, λ2, . . . , λn na prze-
kątnej.

Dowód. Utożsamimy operator T z macierzą w standardowej bazie przestrzeni
Cn. Rozwiązujemy równanie

p(λ) = det(λI − T ) = 0

ze względu na λ. Funkcja p(z) jest wielomianem stopnia n, więc na podstawie
Zasadniczego Twierdzenia Algebry istnieje rozwiązanie λ1 ∈ C. Wtedy λ1
jest wartością własną odpowiadającą pewnemu wektorowi v1 ∈ Cn. Tzn.
Tv1 = λ1v1. Rozkładamy przestrzeń na

Cn = Cv1 ⊕M1, gdzie M1 = {v1}⊥.
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MamyM1 ' Cn−1 oraz T (M1) ⊆M1. Rzeczywiście, niech v ∈M1. Chcemy
sprawdzić, czy Tv ∈M1. W tym celu obliczamy

〈Tv, v1〉 = 〈v, T ∗v1〉 = 〈v, λ1v1〉 = λ1〈v, v1〉 = 0.

Traktujemy T jako operator na M1 ' Cn−1. Powtarzamy całe wcześniejsze
rozumowanie, aby znaleźć wartość własną λ2, wektor własny v2 i następną
podprzestrzeń M2. Itd.

Twierdzenie 1.31. Dla ograniczonego operatora samosprzężonego w prze-
strzeni Hilberta spektrum jest zawarte w osi rzeczywistej.

Dowód. Załóżmy, że z = λ + µi, gdzie λ, µ ∈ R, oraz µ 6= 0. Pokażemy, że
operator zI − T jest odwracalny, tzn. z /∈ σ(T ). Wykonujemy obliczenia

‖(zI − T )v‖2 = 〈(zI − T )v, (zI − T )v〉 = 〈(zI − T )(zI − T )v, v〉
= 〈(λ2 + µ2)I − 2λT + T 2)v, v〉 = 〈[(λI − T )2 + µ2I]v, v〉

= 〈(λI − T )v, (λI − T )v〉+ µ2〈v, v〉 ­ µ2‖v‖2.

Otrzymaliśmy więc
‖(zI − T )v‖ ­ |µ| ‖v‖. (1.6)

To oznacza, że operator zI−T jest różnowartościowy oraz, że obraz Im (zI−
T) jest domknięty. Korzystając z zadania 73 [5] mamy

H = ker(zI − T )⊕ Im (zI− T).

Pierwsza podprzestrzeń jest zerowa, bo z /∈ R. Zatem H = Im (zI− T), tzn.
zI−T jest operatorem „1-1” i „na”. Stąd zI−T jest odwracalny algebraicznie.
Ponadto z (1.6) wynika ograniczoność operatora odwrotnego.

2 Operatory dodatnie

Definicja 2.1. Operator A ∈ B(H) nazywamy dodatnim, jeśli 〈Av, v〉 ­ 0
dla wszystkich wektorów v ∈ H. Piszemy wtedy A ­ 0.

Fakt 2.2. Każdy operator dodatni jest samosprzężony.
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Dowód. Z założenia mamy w szczególności, że 〈Av, v〉 = 〈v, Av〉. Na podsta-
wie tożsamości polaryzacyjnej otrzymujemy

〈Av,w〉 =
1
4

4∑
k=0

〈A(v + ikw), v + ikw〉ik

=
1
4

4∑
k=0

〈v + ikw,A(v + ikw)〉ik = 〈v, Aw〉 = 〈A∗v, w〉.

Stąd A∗ = A.

Uwaga 2.3. Warto zapamiętać, że z tożsamości polaryzacyjnej wynika, że
jeśli dla dwu operatorów A i B z B(H) mamy 〈Av, v〉 = 〈Bv, v〉, to A = B.

Przykłady. (a) H = Cn oraz A jest macierzą postaci

A =



1 0 0 . . . 0
0 2 0 . . . 0
0 0 3 . . . 0
...

...
... . . . ...

0 0 0 . . . n



Wtedy 〈Av, v〉 =
n∑
k=1

k|vk|2 ­ 0, dla v = (vk)nk=1.

(b) Dla H = L2(0, 1) określamy (Af)(x) = xf(x). Wtedy

〈Av, v〉 =
1∫
0

x|f(x)|2 dx ­ 0.

Lemat 2.4. Jeśli A ­ 0 oraz C ∈ B(H), to C∗AC ­ 0.

Dowód.
〈C∗ACv, v〉 = 〈A(Cv), Cv〉 ­ 0.

Lemat 2.5. Jeśli A,B ­ 0 oraz A+B = 0, to A = B = 0.
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Dowód. Mamy

〈Av, v〉+ 〈Bv, v〉 = 〈(A+B)v, v〉 = 0.

Ponieważ oba składniki są nieujemne, to oba muszą się zerować dla dowolnego
wektora v. Stąd A = B = 0.

Lemat 2.6. Jeśli A jest operatorem samosprzężonym, to

‖A‖ = sup
‖v‖¬1

|〈Av, v〉| = sup
‖v‖=1

|〈Av, v〉|.

Dowód. Mamy

‖A‖ = sup
‖u‖¬1
‖v‖¬1

|〈Av,w〉| = sup
‖u‖¬1
‖v‖¬1

Re 〈Av,w〉,

bo można dobrać liczbę zespoloną α o module 1 taką, że

|〈Av,w〉| = 〈Av, αw〉.

Z tożsamości polaryzacyjnej otrzymujemy

Re 〈Av,w〉 =
1
4
〈A(v + w), v + w〉 − 1

4
〈A(v − w), v − w〉

=
1
4

[
‖v + w‖2〈Ay, y〉 − ‖v − w‖2〈Az, z〉

]
,

gdzie

y =
v + w

‖v + w‖
, z =

v − w
‖v − w‖

,

o ile v ± w 6= 0. Zatem

Re 〈Av,w〉 ¬ 1
4

[
‖v + w‖2 + ‖v − w‖2]

]
sup
‖y‖=1

|〈Ay, y〉|

=
1
4

[
2‖v‖2 + 2‖w‖2

]
sup
‖y‖=1

|〈Ay, y〉|.

W rezultacie mamy
‖A‖ ¬ sup

‖y‖=1
|〈Ay, y〉|.
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Oczywiście nierówność przeciwna jest też spełniona, bo

‖A‖ = sup
‖v‖¬1
‖w‖¬1

|〈Av,w〉| ­ sup
‖v‖¬1

|〈Av, v〉|

Lemat 2.7. Mamy

√
1− x = 1−

∞∑
n=1

(2n)!
(n!)2(2n− 1)4n

xn, |x| ¬ 1,

oraz szereg jest zbieżny jednostajnie.

Dowód. Wzór jest znany z kursu Analiza 1. Wiemy, że

√
1− x = 1 +

∞∑
n=1

(
1/2
n

)
(−x)n, |x| < 1. (2.1)

Po przekształceniu mamy(
1/2
n

)
(−1)n+1 =

(2n)!
(n!)2(2n− 1)4n

> 0.

Stąd równość w tezie jest spełniona dla |x| < 1. Zatem

∞∑
n=1

(2n)!
(n!)2(2n− 1)4n

xn = 1−
√

1− x ¬ 1, |x| < 1.

Obliczamy kres górny lewej strony i uzyskujemy

∞∑
n=1

(2n)!
(n!)2(2n− 1)4n

= 1.

W związku z tym szereg po prawej stronie (2.1) jest zbieżny jednostajnie
dla |x| ¬ 1 z kryterium Weierstrassa. Stąd wyrażenie po prawej stronie (2.1)
reprezentuje funkcję ciągłą na przedziale [−1, 1] równą

√
1− x dla |x| < 1.

Zatem równość (2.1) jest spełniona również dla x = ±1.

Twierdzenie 2.8. Dla dodatniego operatora A ∈ B(H) istnieje jedyny opera-
tor dodatni B spełniający B2 = A, nazywany pierwiastkiem z A i oznaczamy
symbolem A1/2.
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Dowód. Możemy założyć, że ‖A‖ ¬ 1, dzieląc w razie potrzeby przez liczbę
dodatnią. Oznaczmy X = I − A. Wtedy

〈Xv, v〉 = 〈v, v〉 − 〈Av, v〉 ­ ‖v‖2 − ‖A‖‖v‖2 ­ 0.

Ponadto
0 ¬ 〈Xv, v〉 = 〈v, v〉 − 〈Av, v〉 ¬ ‖v‖2.

Z Lematu 2.6 otrzymujemy więc

‖X‖ = sup
‖v‖=1
〈Xv, v〉 ¬ 1.

Oznaczmy

cn =
(2n)!

(n!)2(2n− 1)4n
.

Określmy

B = I −
∞∑
n=1

cnX
n,

przez analogię ze wzorem z Lematu 2.7, bo A = I−X. B jest dobrze określo-
nym operatorem, bo szereg jest bezwzględnie zbieżny znowu z Lematu 2.7.
Istotnie ∞∑

n=1

‖cnXn‖ ¬
∞∑
n=1

cn‖X‖n ¬
∞∑
n=1

cn = 1.

Uwaga 2.9. W przestrzeni B(H) można pomnożyć metodą Cauchy’ego dwa
szeregi bezwzględnie zbieżne i otrzymany szereg będzie bezwzględnie zbieżny.
Dowód jest taki sam jak dla szeregów liczbowych, tylko symbol wartości
bezwzględnej | · | trzeba zamienić symbolem normy operatorowej ‖·‖. Jedyna
różnica polega na tym, że

|ab| = |a| |b|, ‖AB‖ ¬ ‖A‖ ‖B‖.

Sprawdzamy, czy B2 = A.

B2 =
(
I −

∞∑
n=1

cnX
n

)(
I −

∞∑
n=1

cnX
n

)
=
∞∑
n=0

dnX
n,

gdzie prawa strona jest iloczynem Cauchy’ego szeregu I −
∞∑
n=1

cnX
n przez

siebie. Ale z Lematu 2.7 mamy(
1−

∞∑
n=1

cnx
n

)2
= (
√

1− x) 2 = 1− x,
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zatem d0 = 1, d1 = −1 oraz dn = 0 dla n ­ 2. Czyli

B2 = I −X = A.

Sprawdzimy nieujemność operatora B. Mamy

〈Bv, v〉 = 〈v, v〉 −
∞∑
n=1

cn〈Xnv, v〉

­ ‖v‖2 −
∞∑
n=1

cn‖Xn‖ ‖v‖2 ­ ‖v‖2 −
∞∑
n=1

cn‖v‖2 = 0.

Skorzystaliśmy z faktu, że ‖Xn‖ ¬ ‖X‖n ¬ 1 oraz
∞∑
n=1

cn = 1, co wynika z

Lematu 2.7.
Pozostaje sprawdzić jedyność. Załóżmy, że dla innego operatora C ­ 0

mamy C2 = A. Wtedy CA = C3 = AC, tzn. C i A są przemienne ze sobą.
Wtedy również C i B są przemienne, co wynika z określenia operatora B.
Wykonujemy obliczenie

(B − C)B(B − C) + (B − C)C(B − C)
= (B − C)(B + C)(B − C) = (B2 − C2)(B − C) = 0.

Każdy z początkowych składników jest operatorem dodatnim z Lematu 2.5.
Zatem

(B − C)B(B − C) = (B − C)C(B − C) = 0.

Odejmując te operatory otrzymujemy

0 = (B − C)B(B − C)− (B − C)C(B − C) = (B − C)3.

Operator B − C jest samosprzężony, więc z Lematu 1.19 wynika, że

0 = ‖(B − C)3‖ = ‖B − C‖3,

czyli C = B.

Definicja 2.10. Dla A ∈ B(H) określamy

|A| = (A∗A)1/2.
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Definicja 2.11. Operator U ∈ B(H) nazywamy częściową izometrią, jeśli
U jest izometrią po obcięciu do podprzestrzeni (kerU)⊥, tzn.

‖Uv‖ = ‖v‖, dla wszystkich v ⊥ kerU.

Uwaga 2.12. Zbiór Im U jest domknięty jako izometryczny obraz przestrzeni
domkniętej (kerU)⊥ przez operator U. Rzeczywiście, ponieważ

H = kerU ⊕ (kerU)⊥,

to
Im U = U(H) = U

(
(ker U)⊥

)
.

Lemat 2.13. Operator U jest częściową izometrią wtedy i tylko wtedy, gdy
operator UU∗ jest rzutem, tzn. (UU∗)2 = UU∗.

Dowód.
(⇒) Wiemy, że (kerU)⊥ = Im U∗. Ponadto ‖UU∗v‖ = ‖U∗v‖. Zatem

〈(UU∗)2v, v〉 = 〈UU∗v, UU∗v〉 = ‖UU∗v‖2 = ‖U∗v‖2 = 〈UU∗v, v〉.

Stąd (UU∗)2 = UU∗.
(⇐) Jeśli (UU∗)2 = UU∗, to korzystając z wcześniejszych obliczeń otrzy-

mamy, że U jest izometrią na Im U∗. Zatem U jest izometrią na domknięciu
Im U∗, czyli na (kerU)⊥.

Dla częściowej izometrii U mamy dwa ortogonalne rozkłady przestrzeni

H = kerU ⊕ (kerU)⊥, H = (Im U)⊥ ⊕ Im U.

Operator U jest izometrią z (kerU)⊥ na Im U.

Lemat 2.14. Jeśli U jest częściową izometrią, to U∗ jest też częściową izo-
metrią.

Dowód. Wiemy, że (UU∗)2 = UU∗. Z Lematu 2.13 wystarczy dowieść, że
(U∗U)2 = U∗U. Mamy UU∗(UU∗ − I) = 0. Ponieważ U jest izometrią na
(kerU)⊥ = Im U∗, to U jest „1-1” na Im U∗. Stąd U∗(UU∗ − I) = 0. czyli

U∗UU∗ = U∗. (2.2)

Mnożymy z prawej strony przez U i uzyskujemy (U∗U)2 = U∗U.
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Jako częściowa izometria U∗ jest izometrią z (kerU∗)⊥ na Im U∗, czyli z
Im U na = (kerU)⊥ (odwrotnie niż U).

Ponadto UU∗ jest rzutem na Im U. Istotnie, z (2.2) mamy UU∗(Uv) = Uv,
tzn. UU∗ jest identycznością na Im U. Co więcej UU∗ zeruje się na (Im U)⊥ =
ker U∗. Po zamianie rolami U i U∗ wnioskujemy, że U∗U jest rzutem ortogo-
nalnym na Im U∗ = (ker U)⊥.

Twierdzenie 2.15 (Rozkład polarny). Dla operatora A ∈ B(H) istnieje
jedyna częściowa izometria U spełniająca A = U |A| oraz kerA = kerU.
Ponadto Im U = Im A.

Dowód. Mamy

〈Av,Av〉 = 〈A∗Av, v〉 = 〈|A|2v, v〉 = 〈|A|v, |A|v〉

Zatem
‖Av‖ = ‖|A|v‖.

Stąd wynika, że jeśli |A|v1 = |A|v2, to Av1 = Av2, bo

‖|A|v1 − |A|v2‖ = ‖|A|(v1 − v2)‖ = ‖A(v1 − v2)‖ = ‖Av1 − Av2‖.

Określamy odwzorowanie U najpierw na podprzestrzeni Im |A| wzorem

U(|A|v) = Av.

Z poprzednich obliczeń operator U jest dobrze określony i jest izometrią z
Im |A| na Im A. Zatem U rozszerza się do izometrii z Im |A| na Im A w oparciu
o znany fakt z topologii metrycznej. Połóżmy Uv = 0 dla v ∈ (Im |A|)⊥ =
ker |A|. Wtedy U staje się częściową izometrią oraz kerU = ker |A| = kerA.
Z definicji operatora U mamy U |A| = A.

Pozostaje sprawdzić jedyność. Załóżmy, że V jest również częściową izo-
metrią spełniającą A = V |A| oraz kerV = kerA. Zatem

V |A|v = Av = U |A|v,

tzn. V i U są równe na Im |A|. Stąd V = U na Im |A|, przez ciągłość. Z kolei
na dopełnieniu ortogonalnym

Im |A|⊥ = ker |A| = kerA = kerV = kerU

operatory U i V są równe, bo oba się tam zerują. To oznacza, że U = V.
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Uwaga 2.16. Zauważmy U∗U jest rzutem na

(kerU)⊥ = (kerA)⊥ = (ker |A|)⊥ = Im |A|.

Czyli
U∗A = U∗U |A| = |A|.

Uwaga 2.17. Jeśli A jest operatorem odwracalnym, to również A∗ i iloczyn
A∗A są odwracalne. W związku z tym |A| jest odwracalny. Wtedy U =
A|A|−1. To oznacza, że U i U∗ są odwracalne.Dalej

U∗U = |A|−1A∗A|A|−1 = I,

zatem U∗ = U−1, co oznacza, że U jest operatorem unitarnym.

Przykłady.

(a) Niech H = Cn. Wtedy operator normalny A jest dodatni wtedy i
tylko wtedy, gdy wszystkie wartości własne macierzy A są nieujem-
ne. Rzeczywiście, niech A ­ 0. Wtedy jeśli Av = λv, dla v 6= 0, to
0 ¬ 〈Av, v〉 = λ〈v, v〉. Zatem λ ­ 0. Odwrotnie, załóżmy, że wartości
własne dla A są nieujemne. Wiemy, że A można przedstawić w postaci
A = CDC−1, gdzie D jest macierzą diagonalną oraz C jest macierzą
unitarną. Tzn. A = CDC∗. Elementy na przekątnej macierzy D są
nieujemne jako wartości własne macierzy A. Zatem D jest operatorem
dodatnim, bo jeśli

D =


λ1 0 · · · 0
0 λ2 0
... . . .
0 0 λn

 ,
to

〈Dv, v〉 =
n∑
k=1

λk|vk|2 ­ 0.

Zatem A ­ 0. Ponadto A1/2 = CD1/2C−1, gdzie

D1/2 =


λ
1/2
1 0 · · · 0
0 λ

1/2
2 0

... . . .
0 0 λ1/2n

 ,
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(b) Niech H = L2(0, 1) oraz (Af)(x) = x f(x). Wtedy

〈Af, f〉 =
1∫
0

(Af)x)f(x) dx =
1∫
0

x|f(x)|2 dx ­ 0.

Ponadto
(A1/2f)(x) =

√
x f(x).

(b) Niech H = `2. Określmy

U(x0, x1, x2, . . .) = (x1, x2, x3, . . .).

U jest izometrią na V = e⊥0 , gdzie ek = (0, . . . , 0, 1
k
, 0, . . .). Ponadto U

zeruje się na Ce0. Zatem U jest częściową izometrią. Mamy

U∗(x0, x1, x2, . . .) = (0, x0, x1, . . .).

Rzeczywiście

〈U∗x, y〉 = 〈x, Uy〉 =
∞∑
n=0

xnyn+1 =
∞∑
n=1

xn−1yn.

Zauważmy, że

U∗U(x0, x1, x2, . . .) = U∗(x1, x2, x3, . . .) = (0, x1, x2, . . .),
UU∗(x0, x1, x2, . . .) = U(0, x0, x1, . . .) = (x0, x1, x2, . . .).

Tzn. UU∗ = I oraz U∗U jest rzutem na e⊥0 .

3 Zbieżność operatorów

NiechX i Y będą przestrzeniami unormowanymi. Rozważmy Tn, T ∈ B(X, Y ).

Definicja 3.1. (a) Mówimy, że ciąg operatorów Tn jest zbieżny do opera-
tora T w normie operatorowej, jeśli

‖Tn − T‖B(X,Y ) →
n

0.

(b) Mówimy, że ciąg Tn jest zbieżny do T mocno, jeśli dla wszystkich ele-
mentów x ∈ X mamy

‖Tnx− Tx‖Y →
n

0.
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(c) Mówimy, że ciąg Tn jest zbieżny do T słabo, jeśli dla wszystkich ele-
mentów x ∈ X oraz wszystkich funkcjonałów y∗ ∈ Y ∗ mamy

|y∗(Tnx)− y∗(Tx)| →
n

0.

Z nierówności

|y∗(Tnx)− y∗(Tx)| = |y∗(Tnx− Tx)| ¬ ‖y∗‖Y ∗‖Tnx− Tx‖Y
= ‖y∗‖Y ∗‖(Tn − T )x‖Y ¬ ‖y∗‖Y ∗‖x‖X‖Tn − T‖B(X,Y )

wynika, że (a) ⇒ (b) ⇒ (c).

Przykład 3.2. Niech X = Y = `2 oraz

U(x0, x1, x2, . . .) = (x1, x2, x3, . . .).

Dla Tn = Un mamy

Tn(x0, x1, x2, . . .) = (xn, xn+1, xn+2, . . .).

Zatem

‖Tnx‖2 =
∞∑
k=n

|xk|2 →
n

0.

To oznacza, że ciąg Tn jest zbieżny mocno do zera. Ponieważ

‖Tn‖ ­ ‖Tnen‖ = ‖e0‖ = 1,

to ciąg Tn nie dąży do 0 w normie operatorowej.
Mamy

U∗(x0, x1, x2, . . .) = (0, x0, x1, . . .).

Wtedy
(U∗)n(x0, x1, x2, . . .) = (0, . . . , 0︸ ︷︷ ︸

n

, x0, x1, . . .).

Zatem
‖(U∗)nx‖2 = ‖x‖2.

Dalej
〈(U∗)nx, y〉 = 〈(Un)∗x, y〉 = 〈x, Uny〉 →

n
0,

bo Uny →
n

0. To oznacza, że (U∗)n dąży do 0 słabo, ale nie dąży do 0 mocno.
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Uwaga 3.3. Dla Tn, T ∈ B(H) mamy Tn →
słabo

T wtedy i tylko wtedy, gdy

〈Tnx, y〉 →
n
〈Tx, y〉, x, y ∈ H.

Twierdzenie 3.4. Załóżmy, że X jest przestrzenią Banacha, a Y przestrze-
nią unormowaną. Wtedy każdy słabo zbieżny ciąg operatorów Tn ∈ B(X, Y )
jest ograniczony, tzn. supn ‖Tn‖ <∞.

Dowód. Załóżmy, że Tn →
n
T słabo, tzn. dla dowolnego elementu x ∈ X ciąg

Tnx jest słabo zbieżny w przestrzeni Y. Wtedy ciąg Tnx jest ograniczony w
Y, na podstawie wniosku z twierdzenia Banacha-Steinhausa. Zatem normy
‖Tn‖ są wspólnie ograniczone, w oparciu o wspomniany wniosek.

Rozważmy przestrzeń Hilberta H. Dla A,B ∈ B(H) piszemy A ­ B jeśli
A∗ = A, B∗ = B oraz A−B ­ 0. Ta relacja jest przechodnia, bo jeśli A ­ 0
oraz B ­ 0, to A+B ­ 0.

Lemat 3.5. Dla A ­ 0 mamy

|〈Au, v〉| ¬ 〈Au, u〉1/2〈Av, v〉1/2, (3.1)
‖Au‖ ¬ ‖A‖1/2〈Au, u〉1/2. (3.2)

Dowód. Dla z ∈ C i u, v ∈ H rozważamy wyrażenie

0 ¬ 〈A(zu+ v), zu+ v〉 = |z|2〈Au, u〉+ 〈Av, v〉+ 2Re {z〈Au, v〉}.

Załóżmy, że 〈Au, v〉 6= 0. Niech z = −λ sgn 〈Au, v〉 dla λ ∈ R. Wtedy

0 ¬ 〈A(zu+ v), zu+ v〉 = 〈Au, u〉λ2 − 2|〈Au, v〉|λ+ 〈Av, v〉.

Otrzymaliśmy nieujemny trójmian kwadratowy zmiennej λ. Zatem wyróżnik
∆ trójmianu musi być niedodatni. Czyli

0 ­ ∆
4

= |〈Au, v〉|2 − 〈Au, u〉〈Av, v〉.

To dowodzi (3.1). W (3.1) podstawmy v = Au. Wtedy

‖Au‖2 ¬ 〈Au, u〉1/2〈A2u,Au〉1/2

¬ 〈Au, u〉1/2‖A2u‖1/2‖Au‖1/2 ¬ 〈Au, u〉1/2‖A‖1/2‖Au‖.

Przy założeniu Au 6= 0 otrzymujemy (3.1).
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Uwaga 3.6. Dowód można również przeprowadzić przy użyciu A1/2. Rze-
czywiście

|〈Au, v〉| = |〈A1/2u,A1/2v〉| ¬ ‖A1/2u‖ ‖A1/2v‖ = 〈Au, u〉1/2〈Av, v〉1/2,

‖Au‖ ¬ ‖A1/2‖‖A1/2u‖ = ‖A1/2‖〈Au, u〉1/2 = ‖A‖1/2〈Au, u〉1/2.

Twierdzenie 3.7. Niech Tn ∈ B(H) będzie rosnącym i ograniczonym cią-
giem operatorów dodatnich, tzn. Tn ¬ Tn+1, oraz sup

n
‖Tn‖ <∞. Wtedy ciąg

Tn jest zbieżny mocno.

Dowód. Dla v ∈ H mamy

0 ¬ 〈Tnv, v〉 ¬ 〈Tn+1v, v〉.

Ponadto
0 ¬ 〈Tnv, v〉 ¬ ‖Tn‖‖v‖2 ¬ c‖v‖2,

gdzie c = sup
n
‖Tn‖. Zatem ciąg liczbowy 〈Tnv, v〉 jest rosnący i ograniczony,

więc jest zbieżny dla dowolnego elementu v. Z tożsamości polaryzacyjnej
wynika, że również ciąg 〈Tnu, v〉 jest zbieżny dla dowolnych elementów u i v.
Oznaczmy

B(u, v) = lim
n
〈Tnu, v〉.

Wtedy
|B(u, v)| ¬ sup

n
|〈Tnu, v〉| ¬ c‖u‖‖v‖.

Zatem B(u, v) jest ograniczoną formą hermitowską na H×H. Z Twierdzenia
3.24 i zadania 72 [[5]] istnieje operator samosprzężony T taki, że B(u, v) =
〈Tu, v〉. Tzn.

lim
n
〈Tnu, v〉 = 〈Tu, v〉.

Zatem ciąg Tn jest zbieżny do T słabo. Operator T jest dodatni, bo

0 ¬ 〈Tnu, u〉↗〈Tu, u〉.

Co więcej T ­ Tn. Stosujemy (3.2) do A = T − Tn i otrzymujemy

‖Tu− Tnu‖ = ‖(T − Tn)u‖ ¬ ‖T − Tn‖1/2〈(T − Tn)u, u〉1/2

= ‖T − Tn‖1/2〈Tu− Tnu, u〉1/2.
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Ponieważ
‖T − Tn‖ ¬ ‖T‖+ ‖Tn‖ ¬ ‖T‖+ c,

to
‖Tu− Tnu‖ ¬ (‖T‖+ c)1/2〈Tu− Tnu, u〉1/2.

Zatem ‖Tu− Tnu‖ →
n

0. Czyli Tn dąży do T mocno.

4 Operatory zwarte

Definicja 4.1. Ograniczony operator liniowy T : X → Y, gdzie X i Y
są przestrzeniami unormowanymi, nazywamy zwartym jeśli obraz dowolnego
ograniczonego podzbioru w X jest warunkowo zwartym podzbiorem w Y, tzn.
z każdego ciągu elementów tego obrazu można wybrać podciąg zbieżny.

Uwaga 4.2. Aby operator T : X → Y był zwarty wystarczy, aby zbiór
T (B1) był warunkowo zwarty, gdzie B1 jest kulą jednostkową w X, tzn. B1 =
{x ∈ X : ‖x‖ ¬ 1}. Rzeczywiście, każdy ograniczony zbiór jest zawarty w
wielokrotności kuli jednostkowej. Więc obraz takiego zbioru jest zawarty w
wielokrotności obrazu kuli jednostkowej.

Przykład 4.3. Niech T : C[0, 1]→ C[0, 1] będzie określony wzorem

(Tf)(x) =
1∫
0

k(x, y) f(y) dy,

gdzie k(x, y) jest funkcją ciągłą dwu zmiennych. Wtedy

‖Tf‖∞ ¬ sup
0¬x,y¬1

|k(x, y)| ‖f‖∞.

Stąd
‖T‖ ¬ ‖k‖∞ := sup

0¬x,y¬1
|k(x, y)|.

Rozważmy zbiór T ({f ∈ C[0, 1] : ‖f‖∞ ¬ 1}. Ten zbiór jest ograniczony, bo
operator T jest ograniczony. Sprawdzamy jednakową ciągłość funkcji z tego
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zbioru.

|(Tf)(x)− (Tf)(x′)| =

∣∣∣∣∣∣
1∫
0

[k(x, y)− k(x′, y)] f(y) dy

∣∣∣∣∣∣
¬
1∫
0

|k(x, y)− k(x′, y)| |f(y)| dy ¬ ‖f‖1 sup
0¬y¬1

|k(x, y)− k(x′, y)|

¬ ‖f‖∞ sup
0¬y¬1

|k(x, y)− k(x′, y)|. (4.1)

Funkcja k(x, y) jest jednostajnie ciągła. Zatem dla ustalonej liczby dodatniej
ε istnieje liczba dodatnia δ taka, że jeśli |x − x′| < δ oraz |y − y′| < δ to
|k(x, y)− k(x′, y′)| < ε. Zatem jeśli |x− x′| < δ, to

sup
0¬y¬1

|k(x, y)− k(x′, y)| ¬ ε.

Czyli |(Tf)(x) − (Tf)(x′)| ¬ ε. Reasumując obraz kuli jednostkowej przez
operator T jest ograniczony i jednakowo ciągły. Zatem z twierdzenia Arzeli-
Ascoliego ten obraz jest warunkowo zwarty, więc operator T jest zwarty.

Twierdzenie 4.4. Niech X, Y, V, i W będą przestrzeniami unormowanymi,
natomiast operatory T : X → Y, A : V → X oraz B : Y → W będą
ograniczonymi operatorami liniowymi. Jeśli operator T jest zwarty, to zwarty
jest również operator BTA : V → W.

Uwaga 4.5. Aby pokazać operator T : X → Y jest zwarty, trzeba udowod-
nić, że dla każdego ograniczonego ciągu xn w X ciąg Txn zawiera podciąg
zbieżny w Y.

Dowód. Niech vn będzie ograniczonym ciągiem w V. Wtedy ciąg Avn jest
ograniczony w X. Zatem ciąg T (Avn) zawiera podciąg T (Avnk) zbieżny. Z
ciągłości operatora B mamy, że podciąg BTAvnk jest też zbieżny.

Przykład 4.6. Rozważmy operator T : L2(0, 1)→ L2(0, 1)

(Tf)(x) =
1∫
0

k(x, y)f(y) dy,
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gdzie k(x, y) jest funkcją ciągłą dwu zmiennych. Określmy operatory S1 :
C[0, 1]→ L2(0, 1) oraz S2 : L2(0, 1)→ C[0, 1] wzorami

S1f = f, (S2f)(x) =
1∫
0

k(x, y)f(y) dy.

Oba operatory są ograniczone, bo

‖S1f‖2 = ‖f‖2 =

 1∫
0

|f(x)|2 dx

1/2 ¬ ‖f‖∞,
oraz

|(S2f)(x)| ¬
1∫
0

|k(x, y)| |f(y)| dy ¬ ‖k‖∞
1∫
0

|f(y)| dy

¬ ‖k‖∞

 1∫
0

|f(y)|2 dy

1/2 = ‖k‖∞‖f‖2,

czyli ‖S2f‖∞ ¬ ‖k‖∞‖f‖2. Mamy T = S1S2. Pokażemy, że operator S2 jest
zwarty, zatem T też będzie zwarty z poprzedniego twierdzenia. Wykażemy, że
obraz kuli w L2(0, 1) przez S2 jest warunkowo zwarty w C[0, 1]. Oczywiście
obraz kuli jest ograniczony, bo operator S2 jest ograniczony. Sprawdzamy
jednakową ciągłość funkcji z obrazu kuli. Niech ‖f‖2 ¬ 1. Wtedy korzystając
z (4.1) otrzymamy

|(S2f)(x)− (S2f)(x′)| ¬ sup
0¬y¬1

|k(x, y)− k(x′, y)| ‖f‖1

¬ sup
0¬y¬1

|k(x, y)− k(x′, y)| ‖f‖2,

więc
|(S2f)(x)− (S2f)(x′)| ¬ sup

0¬y¬1
|k(x, y)− k(x′, y)|.

Ponieważ funkcja k(x, y) jest jednostajnie ciągła, to funkcje S2f, dla ‖f‖2 ¬ 1
są jednakowo ciągle.

Przykład 4.7. Operatory skończenie wymiarowe, tzn. dim Im T < ∞, są
zwarte. Istotnie, niech T : X → Y będzie ograniczonym operatorem linio-
wym, dla którego T (X) jest przestrzenią skończonego wymiaru m. Wtedy



Operatory zwarte 33

przestrzeń T (X) jest izomorficzna z Cm z normą euklidesową. W takiej prze-
strzeni każdy zbiór ograniczony jest warunkowo zwarty. W szczególności ob-
raz kuli jednostkowej przez operator ograniczony T jest taki.

Twierdzenie 4.8. Niech X będzie przestrzenią unormowaną, a Y przestrze-
nią Banacha. Załóżmy, że operatory Tn ∈ B(X, Y ) są zwarte oraz zbieżne do
operatora T ∈ B(X, Y ) w normie operatorowej. Wtedy operator T też jest
zwarty.

Dowód. Rozważamy ciąg xm elementów z kuli jednostkowej w X. Z założenia
istnieje podciąg x(1)m ciągu xm taki, że ciąg T1x(1)m jest zbieżny, np. do y1. Z
kolei istnieje podciąg x(2)m ciągu x(1)m taki, że ciąg T2x(2)m jest zbieżny, np. do y2.
Postępując tak dalej znajdziemy podciąg x(n)m ciągu x(n−1)m taki, że ciąg Tnx(n)m
jest zbieżny, np. do yn. Określmy nowy ciąg x̃m = x(m)m . Dla m ­ n wyrazy
ciągu x̃m pochodzą z podciągu x(n)m , tzn. ciąg x̃m, m ­ n jest podciągiem
ciągu x(n)m . Zatem Tnx̃m →

m
yn. Sprawdzimy, że ciąg yn jest zbieżny. Mamy

‖yl − yk‖ = lim
m
‖Tlx̃m − Tkx̃m‖.

Ale

‖Tlx̃m − Tkx̃m‖ = ‖(Tl − Tk)x̃m‖ ¬ ‖Tl − Tk‖‖x̃m‖ ¬ ‖Tl − Tk‖.

Zatem ciąg yn spełnia warunek Cauchy’ego. Z zupełności przestrzeni Y ciąg
yn jest zbieżny do pewnego elementu y. Pokażemy, że T x̃m →

m
y. Mamy

‖T x̃m − y‖ ¬ ‖T x̃m − Tnx̃m‖+ ‖Tnx̃m − yn‖+ ‖yn − y‖
¬ ‖T − Tn‖+ ‖Tnx̃m − yn‖+ ‖yn − y‖.

Dla liczby dodatniej ε wybieramy n odpowiednio duże tak, aby ‖T − Tn‖ <
ε/3 oraz ‖yn − y‖ < ε/3. Następnie dla ustalonej wartości n istnieje liczba
m0 tak, że dla m ­ m0 zachodzi ‖Tnx̃m − yn‖ < ε/3. Wtedy dla m ­ m0
otrzymujemy

‖T x̃m − y‖ < ε.

Przykład 4.9. Rozważmy ponownie operator T : L2(0, 1) → L2(0, 1) z
Przykładu 4.6. Na podstawie twierdzenia Stone’a-Weierstrassa kombinacje
liniowe funkcji postaci a(x)b(y) leżą gęsto w przestrzeni C([0, 1]2). Zatem
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istnieje ciąg funkcji kn(x, y) postaci kn(x, y) =
∑N
k=1 ak(x)bk(y) (przy czym

N i funkcje ak oraz bk zależą od n) takich, że kn(x, y) ⇒
n
k(x, y). Określmy

operatory

(Tnf)(x) =
1∫
0

kn(x, y)f(y) dy =
N∑
k=1

ak(x)
1∫
0

bk(y)f(y) dy.

Zatem
Im Tn ⊆ lin{a1(x), a2(x), . . . , aN(x)}.

To oznacza, że Tn jest operatorem skończenie wymiarowym. W szczególności
Tn jest operatorem zwartym. Ponadto

|[(Tn−T )f ](x)| =

∣∣∣∣∣∣
1∫
0

[kn(x, y)− k(x, y)]f(y) dy

∣∣∣∣∣∣ ¬
1∫
0

|kn(x, y)−k(x, y)| |f(y)| dy

¬ sup
0¬x,y¬1

|kn(x, y)− k(x, y)| ‖f‖1 ¬ sup
0¬x,y¬1

|kn(x, y)− k(x, y)| ‖f‖2.

Stąd otrzymujemy

‖(Tn − T )f‖2 ¬ sup
0¬x,y¬1

|kn(x, y)− k(x, y)| ‖f‖2.

Zatem
‖Tn − T‖ ¬ sup

0¬x,y¬1
|kn(x, y)− k(x, y)| →

n
0.

Twierdzenie 4.10. Niech T będzie ograniczonym operatorem liniowym na
przestrzeni Hilberta. T jest zwarty wtedy i tylko wtedy, gdy T ∗ jest zwarty.

Dowód. Wiemy, że operator T można zapisać w postaci T = U |T | oraz
U∗T = |T |. Jeśli T jest zwarty, to zwarty jest też |T |. Wtedy również
T ∗ = |T |U jest zwarty.

Twierdzenie 4.11. W ośrodkowej przestrzeni Hilberta H ograniczony ope-
rator liniowy T jest zwarty wtedy i tylko wtedy, gdy przekształca ciągi słabo
zbieżne do zera w ciągi zbieżne do zera w normie przestrzeni.

Dowód.
(⇒) Załóżmy, że ciąg elementów xn przestrzeni H dąży słabo do zera.
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Ten ciąg jest więc ograniczony. Zatem Txn zawiera podciąg zbieżny Txnk .
Oznaczmy Txnk →

k
y. Dla z ∈ H otrzymujemy

〈y, z〉 = lim
k
〈Txnk , z〉 = lim

k
〈xnk , T ∗z〉 = 0.

Zatem 〈y, z〉 = 0 dla wszystkich z ∈ H, czyli y = 0.
Z powyższego rozumowania wynika, że każdy podciąg ciągu Txn zawiera
podciąg zbieżny do zera. Zatem ciąg Txn dąży do zera.

(⇐) Niech xn będzie ograniczonym ciągiem elementów z H. Z twierdzenia
Banacha-Alaoglu możemy wybrać podciąg xnk , który jest ∗-słabo, czyli słabo,
zbieżny. Niech xnk →

k
x słabo. Zatem xnk − x →

k
0 słabo. Z założenia ciąg

T (xnk − x) jest zbieżny do zera w normie. Czyli ‖Txnk − Tx‖ →
k

0.

Lemat 4.12. Niech X, Y i Z będą przestrzeniami unormowanymi. Załóżmy,
że operator T : X → Y jest zwarty oraz, że ciąg ograniczonych operatorów
Sn : Y → Z jest mocno zbieżny do operatora S : Y → Z. Wtedy ciąg
operatorów SnT jest zbieżny do ST w normie operatorowej.

Dowód. Załóżmy, że SnT nie jest zbieżny do ST w normie operatorowej.
Zatem dla pewnej dodatniej liczby ε można znaleźć rosnący ciąg liczb natu-
ralnych nk oraz ciąg elementów xk ∈ X takich, że

‖xk‖ = 1, ‖(SnkT − ST )xk‖ ­ ε.

Ze zwartości operatora T ciąg Txk zawiera podciąg zbieżny. Bez straty ogól-
ności założymy, że Txk jest zbieżny do pewnego elementu y ∈ Y. Wtedy

ε ¬ ‖(SnkT − ST )xk‖ ¬ ‖SnkTxk − Snky‖+ ‖Snky − Sy‖+ ‖Sy − STxk‖
¬ ‖Snk‖ ‖Txk − y‖+ ‖Snky − Sy‖+ ‖S‖ ‖y − Txk‖ →

k
0.

Twierdzenie 4.13. Każdy zwarty operator pomiędzy przestrzeniami Hilber-
ta jest granicą w normie operatorowej ciągu operatorów skończenie wymiaro-
wych.

Dowód. Niech T : H1 → H2 będzie zwarty. Rozważmy przestrzeń T (H1).
Oznaczmy symbolem B kulę jednostkową w H1. Wtedy

T (H1) =
∞⋃
n=1

T (nB) =
∞⋃
n=1

nT (B) ⊆
∞⋃
n=1

nT (B).
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Zatem przestrzeń T (H1) jest zawarta w przeliczalnej sumie zbiorów zwar-
tych. Z kursu topologii metrycznej wiemy, że przestrzeń T (H1) jest więc
ośrodkowa. Zatem również domknięcie H3 := T (H1) ⊂ H2 jest ośrodkową
przestrzenią Hilberta. Możemy zastąpić H2 przez H3. Niech {ek}∞k=1 oznacza
bazę ortonormalną w przestrzeni H3. Wtedy dla dowolnego elementu x ∈ H3
mamy

x =
∞∑
k=1

〈x, ek〉ek.

Oznaczmy

Inx =
n∑
k=1

〈x, ek〉ek, In : H3 → H3.

Wtedy Inx
n→ x, dla x ∈ H3, czyli In

n→ IH3 mocno. Z Lematu 4.12 wynika,
że InT

n→ IH3T = T w normie operatorowej.

Uwaga 4.14. Na podstawie twierdzenie można uzyskać inny dowód Twier-
dzenia 4.10. Rzeczywiście, jeśli Tn → T oraz operatory Tn są skończenie
wymiarowe, to T ∗n → T ∗ oraz T ∗n są skończenie wymiarowe.

Twierdzenie 4.15 (Alternatywa Fredholma). Niech T będzie operatorem
zwartym w przestrzeni Hilberta. Wtedy dla liczby λ 6= 0 operator λI − T jest
odwracalny albo liczba λ jest wartością własną operatora T.

Dowód. a Mamy λI − T = λ(I − λ−1T ). Zamieniając operator T na λ−1T,
który też jest zwarty możemy ograniczyć się do przypadku λ = 1. Rozwa-
żamy więc operator I − T. Z poprzedniego lematu można znaleźć operator
skończenie wymiarowy K0 taki, że ‖T −K0‖ < 1. Wtedy

I − T = I − (T −K0)−K0.

Operator I− (T −K0) jest odwracalny na podstawie Twierdzenia 1.7. Zatem

I − T =
{
I −K0[I − (T −K0)]−1

}
[I − (T −K0)].

Oznaczmy
K1 = K0[I − (T −K0)]−1.

Wtedy
I − T = (I −K1)(I − T +K0). (4.2)

aDowód opracowany z Dominikiem Wachowskim
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Operator K1 jest skończenie wymiarowy, bo Im K1 ⊆ Im K0. Ze wzoru (4.2)
wynika, że I − T jest odwracalny wtedy i tylko wtedy, gdy I − K1 jest
odwracalny. Ponadto I − T jest różnowartościowy wtedy i tylko wtedy, gdy
I −K1 jest różnowartościowy.

Pokażemy, że jeśli I−K1 jest różnowartościowy, to I−K1 jest odwracalny.
Stąd będzie wynikać, że jeśli I − T jest różnowartościowy, to I − T jest
odwracalny.

Zauważmy, że x ⊥ ImK1 + ImK∗1 wtedy i tylko wtedy, gdy x ∈ kerK1 ∩
kerK∗1 . Przestrzeń ImK1+ImK∗1 ma skończony wymiar, zatem jest domknię-
ta. Stąd

H = [ImK1 + ImK∗1 ]⊕ [kerK1 ∩ kerK∗1 ].

Obie podprzestrzenie są niezmiennicze na działanie operatora K1, czyli rów-
nież dla operatora I − K1. Operator I − K1 jest odwracalny wtedy i tylko
wtedy, gdy I−K1 jest odwracalny na każdej z dwu podprzestrzeni (zadanie).
Operator I −K1 jest identycznością na drugim składniku sumy prostej.

Załóżmy, że I−K1 jest różnowartościowy. Zatem I−K1 jest różnowarto-
ściowy na ImK1+ImK∗1 . Z kursu algebry liniowej wiemy, że operator I−K1
jest wtedy odwracalny na ImK1 + ImK∗1 , bo przestrzeń ta ma skończony
wymiar.

Twierdzenie 4.16 (Riesz-Schauder). Spektrum operatora zwartego na prze-
strzeni Hilberta składa się z co najwyżej przeliczalnego zbioru liczb zespolo-
nych nie mających punktu skupienia poza być może punktem 0. Każda nie-
zerowa liczba w spektrum jest wartością własną o skończonej krotności (tzn.
przestrzeń wektorów własnych odpowiadająca tej liczbie ma skończony wy-
miar).

Dowód. Niech λ 6= 0 oraz λ ∈ σ(T ) dla zwartego operatora T. Z alternatywy
Fredholma wynika, że λ jest wartością własną operatora T. Niech Tx =
λx, oraz x 6= 0. Ustalmy liczbę ε > 0. Pokażemy, że przestrzeń wektorów
własnych odpowiadających wartościom własnym λ, |λ| ­ ε, ma skończony
wymiar. To zakończy dowód tezy twierdzenia.

Załóżmy nie wprost, że istnieje nieskończony układ liniowo niezależny
(xn)∞n=1 taki, że Txn = λnxn oraz |λn| ­ ε. Zastosujemy proces ortogonaliza-
cji Grama-Schmidta do tego ciągu i otrzymamy układ ortonormalny (yn)∞n=1
o własności

yn ∈ En := lin{x1, x2, . . . , xn}, yn ⊥ En−1.
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Niech

yn =
n∑
k=1

αk,nxk, αn,n > 0.

Wtedy

Tyn =
n∑
k=1

αk,nTxk =
n∑
k=1

αk,nλkxk

= λnαn,nxn +
n−1∑
k=1

αk,nλkxk = λnyn − λn
n−1∑
k=1

αk,nxk +
n−1∑
k=1

αk,nλkxk.

Tzn.
Tyn = λnyn + vn, vn ∈ En−1.

Zatem
〈Tyn, yn〉 = λn〈yn, yn〉 = λn.

Ciąg yn dąży słabo do zera co wynika z nierówności Bessela. Zatem

‖Tyn‖ →
n

0.

Stąd λn →
n

0, na podstawie Twierdzenia 4.11.

Lemat 4.17. Jeśli T jest zwartym operatorem liniowym na przestrzeni Hil-
berta, to obraz Im (I− T) jest domkniętą podprzestrzenią liniową.

Dowód. Wystarczy udowodnić nierówność ‖(I − T )x‖ ­ c‖x‖ dla pewnej
stałej c > 0 oraz wszystkich x ⊥ ker(I − T ). Rzeczywiście, dla

H0 = ker(I − T )⊥

rozważmy operator I − T : H0 −→ H. Zauważmy, że

(I − T )(H) = (I − T )(H0).

Wtedy z nierówności ‖(I − T )x‖ ­ c‖x‖ dla x ∈ H0 wynika, że I − T jest
operatorem różnowartościowym na H0 i jego obraz jest domknięty.

Załóżmy nie wprost, że nierówność nie jest spełniona dla żadnej stałej
c > 0. Zatem istnieje ciąg elementów xn ⊥ ker(I − T ) spełniający ‖xn‖ = 1
oraz ‖(I − T )xn‖ →

n
0. Z ciągu Txn można wybrać podciąg zbieżny Txnk .

Niech Txnk →
k
y. Wtedy ‖xnk − Txnk‖ →

k
0. Zatem xnk →

k
y. Stąd

(I − T )y = lim
k

(I − T )xnk = 0,
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czyli y ∈ ker(I −T ). Z drugiej strony ponieważ xnk →
k
y, to y ∈ ker(I −T )⊥.

Zatem y = 0. Ale ‖y‖ = limk ‖xnk‖ = 1.

Uwaga 4.18. Jeśli operator T jest zwarty, to również Im (λI−T) dla λ 6= 0
jest domkniętą podprzestrzenią liniową, bo

Im (λI− T) = Im (I− λ−1T).

Twierdzenie 4.19. Niech T będzie zwartym operatorem liniowym w B(H).
Równanie (I − T )x = y ma rozwiązanie x ∈ H wtedy i tylko wtedy, gdy
y ⊥ ker(I − T ∗).
Dowód. Mamy rozkład ortogonalny

H = ker(I − T ∗)⊕ Im (I− T) = ker(I − T ∗)⊕ Im (I− T).

Zatem y ∈ Im (I− T) wtedy i tylko wtedy, gdy y ⊥ ker(I − T ∗).
Twierdzenie 4.20. Niech T ∈ B(H) będzie zwartym operatorem samosprzę-
żonym w ośrodkowej przestrzeni Hilberta. Wtedy istnieje baza ortonormalna
złożona z wektorów własnych operatora T. Tzn. istnieje baza ortonormalna
{ϕn}Nn=1 taka, że Tϕn = µnϕn, gdzie µn ∈ R oraz µn →

n
0. (gdy dimH =∞,

to N =∞)
Dowód. Przeprowadzimy dowód w przypadku dimH = ∞. Operator T nie
jest odwracalny, bo dla ciągu ortonormalnego en mamy en →

słabo
0, zatem

‖Ten‖ →
n

0. Czyli 0 ∈ σ(T ). Wiemy, że σ(T ) ⊂ R. Ponadto

σ(T ) = {µn}Nn=1 ∪ {0},

gdzie µn 6= 0. Przestrzeń własna

En = {x ∈ H : Tx = µnx}

ma skończony wymiar. Wiemy też, że jeśli T ∗ = T, to wektory własne od-
powiadające różnym wartościom własnym są ortogonalne. Niech E0 = kerT.
Oznaczmy

H0 =
N⊕
n=1

En ⊕ E0.

Tzn. H0 jest najmniejszą domkniętą podprzestrzenią zawierającą podprze-
strzenie En dla n = 0, 1, 2, . . . , N. Pokażemy, że H0 = H. Załóżmy nie
wprost, że H0 ( H. Zauważmy, że T (H0) ⊂ H0, bo T (En) ⊂ En dla każdego
n = 0, 1, 2, . . . , N.
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Lemat 4.21. Niech T ∈ B(H) oraz T ∗ = T. Jeśli dla pewnego podzbioru
M ⊂ H mamy T (M) ⊂M, to T

(
M⊥

)
⊂M⊥.

Dowód. Niech x ∈M⊥. Dla y ∈M mamy Ty ∈M, więc

〈Tx, y〉 = 〈x, Ty〉 = 0.

To oznacza, że Tx ∈M⊥.

Z lematu mamy T
(
H⊥0

)
⊂ H⊥0 . Niech T̃ oznacza operator T ograniczony

do podprzestrzeni niezmienniczej H⊥0 . Operator T̃ jest nadal samosprzężo-
ny. T̃ nie posiada wartości własnych, bo wszystkie wektory własne zostały
uwzględnione w H0. Operator ten jest też zwarty. Zatem σ(T̃ ) = {0}. Tzn.
promień spektralny r(T̃ ) jest zerowy. Ale z samosprzężoności mamy

‖T̃‖ = r(T̃ ) = 0.

Czyli T̃ = 0. Otrzymujemy sprzeczność za wyjątkiem sytuacji H⊥0 = {0}.
Zatem

H =
N⊕
n=1

En ⊕ E0.

Wiemy, że dimEn < ∞. W każdej podprzestrzeni En wybieramy bazę or-
tonormalną. Połączenie tych zbiorów da nam bazę ortonormalną całej prze-
strzeni H. Ustawmy elementy bazy w ciąg {ϕn}∞n=1. Wtedy Tϕn = µnϕn,
dla pewnych liczb µn ∈ σ(T ). Ponieważ elementy ϕn dążą słabo do zera, to
µn →

n
0.

Uwaga 4.22. Dla x ∈ H mamy

x =
∞∑
n=1

〈x, ϕn〉ϕn.

Zatem

Tx =
∞∑
n=1

〈x, ϕn〉Tϕn =
∞∑
n=1

µn〈x, ϕn〉ϕn.

Twierdzenie 4.23. Dla operatora zwartego T ∈ B(H) istnieją układy orto-
normalne {ϕn}Nn=1, {ψn}Nn=1 oraz liczby dodatnie {λn}Nn=1 takie, że

Tx =
N∑
n=1

λn〈x, ϕn〉ψn.
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Dowód. Stosujemy rozkład polarny T = U |T |. Wartości własne operatora
|T | są nieujemne. Rzeczywiście, jeśli A ­ 0 oraz Ax = λx, dla x 6= 0, to

0 ¬ 〈Ax, x〉 = λ‖x‖2.

Zatem λ ­ 0. Z poprzedniego twierdzenia istnieje baza ortonormalna {ϕn}∞n=1
taka, że

|T |x =
∞∑
n=1

µn〈x, ϕn〉ϕn.

Zatem

Tx = U |T |x =
∞∑
n=1

µn〈x, ϕn〉Uϕn =
∞∑
n=1
µn 6=0

µn〈x, ϕn〉Uϕn.

Dla µn 6= 0 oznaczmy Uϕn = ψn. Mamy |T |ϕn = µnϕn. Stąd ϕn ∈ Im |T|.
Wiemy, że U jest izometrią na Im |T|. Zatem

〈ψn, ψm〉 = 〈Uϕn, Uϕm〉 = 〈ϕn, ϕm〉 =

0, n 6= m,

1, n = m.

Stąd układ {ψn}∞n=1,µn 6=0 jest ortonormalny. Niezerowe liczby µn ustawiamy
w ciąg {λn}Nn=1, aby uzyskać tezę twierdzenia.

Uwaga 4.24. Gdy N =∞, to λn →
n

0.

Definicja 4.25. Wielkości λn nazywamy liczbami singularnymi operatora
zwartego T. Możemy założyć, że λ1 ­ λ2 ­ λ3 ­ . . . .

Twierdzenie 4.26 (Zasada minimaksu). Dla operatora zwartego T w prze-
strzeni Hilberta n-ta liczba singularna wyraża się wzorem

λn = min
V <H

dimV=n−1

max
x∈V ⊥
‖x‖=1

‖Tx‖.

Dowód. Niech

Tx =
N∑
n=1

λn〈x, ϕn〉ψn, λn ↘ 0.

Oznaczmy Vn = lin{ϕ1, ϕ2, . . . , ϕn−1}. Wtedy element x ∈ V ⊥n ma postać

x =
N∑
k=n

〈x, ϕk〉ϕk + x0, gdzie x0 ∈ kerT = ker |T |.
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Zatem

Tx =
N∑
k=n

λk〈x, ϕk〉ψk.

Z nierówności Bessela otrzymujemy

‖Tx‖2 =
N∑
k=n

λ2k|〈x, ϕk〉|2 ¬ λ2n

N∑
k=n

|〈x, ϕk〉|2 ¬ λ2n‖x‖2.

W rezultacie
‖Tx‖ ¬ λn‖x‖ ¬ λn, dla ‖x‖ ¬ 1.

To daje nierówność „­” we wzorze tezy twierdzenia.
Dla dowodu przeciwnej nierówności niech V < H będzie podprzestrzenią

wymiaru n− 1. Wtedy istnieje wektor x ∈ Vn+1 taki, że x ⊥ V oraz ‖x‖ = 1
(por. zadanie 33) Dalej

Tx =
N∑
k=1

λk〈x, ϕk〉ψk =
n∑
k=1

λk〈x, ϕk〉ψk.

Zatem

‖Tx‖2 =
n∑
k=1

λ2k|〈x, ϕk〉|2 ­ λ2n

n∑
k=1

|〈x, ϕk〉|2 = λ2n‖x‖2 = λ2n.

Stąd max
x∈V ⊥
‖x‖=1

‖Tx‖ ­ λn. Biorąc kres dolny względem V otrzymujemy

min
V <H

dimV=n−1

max
x∈V ⊥
‖x‖=1

‖Tx‖ ­ λn.

Uwaga 4.27. Prawdziwy jest też inny wzór

λn = max
V <H
dimV=n

min
x∈V
‖x‖=1

‖Tx‖.

Rzeczywiście, niech V = Vn+1. Wtedy dla x ∈ V mamy

Tx =
n∑
k=1

λk〈x, ϕk〉ψk.
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Zatem

‖Tx‖2 =
n∑
k=1

λ2k|〈x, ϕk〉|2 ­ λ2n‖x‖2.

Stąd
min
x∈Vn+1
‖x‖=1

‖Tx‖ = λn,

bo dla x = ϕn uzyskujemy równość. To dowodzi nierówności ” ¬ ”.
Niech dim(V ) = n. Na podstawie zadania 33 istnieje wektor x ∈ V taki,

że x ⊥ Vn oraz ‖x‖ = 1. Wtedy

Tx =
N∑
k=n

λk〈x, ϕk〉ψk.

Dalej

‖Tx‖2 =
N∑
k=n

λ2k|〈x, ϕk〉|2 ¬ λ2n‖x‖2 = λ2n.

Stąd
min
x∈V
‖x‖=1

‖Tx‖ ¬ λn,

czyli
λn ­ max

V <H
dimV=n

min
x∈V
‖x‖=1

‖Tx‖.

Wniosek 4.28. Jeśli T jest operatorem zwartym, to ‖T‖ = ‖Tx0‖ dla pew-
nego elementu x0 ∈ H takiego, że ‖x0‖ = 1.

Dowód. Istotnie, z zasady minimaksu wynika, że

λ1 = sup
‖x‖=1

‖Tx‖ = ‖T‖.

Liczba λ1 jest największą wartością własną operatora |T |. Niech x0 ∈ H
będzie odpowiadającym jednostkowym wektorem własnym. Wtedy

‖Tx0‖ = ‖|T |x0‖ = λ1‖x0‖ = λ1 = ‖T‖.
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Uwaga 4.29. Wniosek można udowodnić bezpośrednio. Mamy ‖T‖ = lim
n
‖Txn‖

dla pewnego ciągu wektorów spełniających ‖xn‖ = 1. Na podstawie Twier-
dzenia Banacha-Alaoglu z ciągu xn można wybrać podciąg słabo zbieżny.
Niech xn →

s
x0. Wtedy ‖x0‖ ¬ 1. Ponadto xn−x0 →

s
0. Zatem Txn−Tx0→0

w normie przestrzeniH. To oznacza, że ‖Tx0‖ = lim
n
‖Txn‖ = ‖T‖. Ponieważ

‖T‖ = ‖Tx0‖ ¬ ‖T‖‖x0‖, to ‖x0‖ ­ 1. Czyli ‖x0‖ = 1.

Definicja 4.30. Operator T ∈ B(H) nazywamy operatorem Hilberta-Schmidta

jeśli dla pewnej bazy ortonormalnej {en}∞n=1 mamy
∞∑
n=1

‖Ten‖2 < ∞. Klasę

tych operatorów oznaczamy symbolem HS.

Przykład 4.31. Niech T : CN → CN będzie odwzorowaniem liniowym z ma-
cierzą aij = 〈Tej, ei〉, gdzie {en}Nn=1 oznacza standardową bazę w przestrzeni
CN . Wtedy

N∑
j=1

‖Tej‖2 =
N∑
j=1

N∑
i=1

|〈Tej, ei〉|2 =
N∑
j=1

N∑
i=1

|aij|2,

tzn. otrzymujemy sumę kwadratów wartości bezwzględnych wszystkich wy-
razów macierzy.

Przykład 4.32. Rozważmy odwzorowanie liniowe T : `2 → `2. Oznaczmy
aij = 〈Tej, ei〉, gdzie {ej}∞j=1 oznacza standardową bazę w przestrzeni `2.
Wtedy

∞∑
j=1

‖Tej‖2 =
∞∑
j=1

∞∑
i=1

|〈Tej, ei〉|2 =
∞∑
j=1

∞∑
i=1

|aij|2.

Twierdzenie 4.33. Wielkość
∞∑
n=1

‖Ten‖2 nie zależy od wyboru bazy ortonor-

malnej. Ponadto jeśli T ∈ HS, to T ∗ ∈ HS.

Dowód. Niech {fm}∞m=1 będzie dowolną bazą ortonormalną przestrzeni H.
Wtedy z równości Parsevala mamy

∞∑
n=1

‖Ten‖2 =
∞∑
n=1

∞∑
m=1

|〈Ten, fm〉|2

=
∞∑
n=1

∞∑
m=1

|〈en, T ∗fm〉|2 =
∞∑
m=1

‖T ∗fm‖2. (4.3)
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Podstawiając {fm}∞m=1 = {en}∞n=1 otrzymamy

∞∑
n=1

‖Ten‖2 =
∞∑
n=1

‖T ∗en‖2. (4.4)

Dalej stosujemy (4.3) i (4.4) do operatora T ∗, aby uzyskać

∞∑
n=1

‖Ten‖2 =
∞∑
n=1

‖T ∗en‖2 =
∞∑
m=1

‖(T ∗)∗fm‖2 =
∞∑
m=1

‖Tfm‖2.

Twierdzenie 4.34. Każdy operator Hilberta-Schmidta jest zwarty. Ponadto
liczby singularne operatora Hilberta-Schmidta są sumowalne z kwadratem.

Dowód. Możemy założyć, że operator T jest nieskończenie wymiarowy, bo
teza jest w oczywisty sposób spełniona dla operatora skończenie wymiarowe-
go. Ustalmy bazę ortonormalną {en}∞n=1. Dla operatora T ∈ HS rozważmy
operatory

TNx =
N∑
n=1

〈x, en〉Ten = T

(
N∑
n=1

〈x, en〉en
)
.

Tzn. TN = TPN , gdzie PN jest rzutem ortogonalnym na podprzestrzeń
lin{e1, e2, . . . , eN}. Operator TN jest skończenie wymiarowy, więc jest zwarty.
Mamy

Tx = T

( ∞∑
n=1

〈x, en〉en
)

=
∞∑
n=1

〈x, en〉Ten.

Zatem z nierówności Schwarza mamy

‖Tx− TNx‖2 =

∥∥∥∥∥∥
∞∑

n=N+1

〈x, en〉Ten

∥∥∥∥∥∥
2

¬

 ∞∑
n=N+1

|〈x, en〉| ‖Ten‖

2

¬

 ∞∑
n=N+1

|〈x, en〉|2
 ∞∑

n=N+1

‖Ten‖2
 ¬

 ∞∑
n=N+1

‖Ten‖2
 ‖x‖2.

Stąd

‖T − TN‖ ¬

 ∞∑
n=N+1

‖Ten‖2
1/2 −→

N→∞
0.
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Zatem T jest zwarty jako granica w normie operatorowej operatorów skoń-
czenie wymiarowych.

Wiemy, że

Tx =
∞∑
n=1

λn〈x, ϕn〉ψn,

gdzie λn ↘ 0 oraz {ϕn}∞n=1 jest bazą ortonormalną obrazu operatora |T |.
Niech {fk}Kk=1 będzie bazą ortonormalną dla ker |T | = kerT. Wtedy układ
{ϕn}∞n=1 ∪ {fk}Kk=1 jest bazą ortonormalną całej przestrzeni H, bo H =
Im |T | ⊕ ker |T |. Ponadto

∞ >
∞∑
n=1

‖Tϕn‖2 +
K∑
k=1

‖Tfk‖2 =
∞∑
n=1

‖Tϕn‖2 =
∞∑
n=1

λ2n. (4.5)

Wniosek 4.35. Dla operatora Hilberta-Schmidta T i bazy ortonormalnej
{en}∞n=1 mamy

‖T‖ ¬
∞∑
n=1

‖Ten‖2

Dowód. Teza wynika bezpośrednio ze wzoru (4.5) i faktu, że λ1 = ‖T‖. Do-
wód można też przeprowadzić bezpośrednio.

Tx =
∞∑
n=1

〈x, en〉Ten,

zatem

‖Tx‖ ¬
∞∑
n=1

|〈x, en〉| ‖Ten‖ ¬
( ∞∑
n=1

|〈x, en〉|2
)1/2 ( ∞∑

n=1

‖Ten‖2
)1/2

¬
( ∞∑
n=1

‖Ten‖2
)1/2

‖x‖

Twierdzenie 4.36. Operatory Hilberta-Schmidta tworzą ideał.
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Dowód. Niech T, S ∈ HS. Dla bazy ortonormalnej {en}∞n=1 na podstawie
nierówności trójkąta w `2 mamy

( ∞∑
n=1

‖(T + S)en‖2
)1/2

=
( ∞∑
n=1

‖Ten + Sen‖2
)1/2

¬
( ∞∑
n=1

(‖Ten‖+ ‖Sen‖)2
)1/2

¬
( ∞∑
n=1

‖Ten‖2
)1/2

+
( ∞∑
n=1

‖Sen‖2
)1/2

<∞.

Czyli T + S ∈ HS. Niech T ∈ HS oraz S ∈ B(H). Wtedy

∞∑
n=1

‖STen‖2 ¬
∞∑
n=1

‖S‖2‖Ten‖2 = ‖S‖2
∞∑
n=1

‖Ten‖2 <∞,

co oznacza ST ∈ HS. Z Twierdzenia 4.33 mamy T ∗ ∈ HS. Zatem S∗T ∗ ∈
HS. Znowu z Twierdzenia 4.33 otrzymujemy TS = (S∗T ∗)∗ ∈ HS.

Uwaga 4.37. Operatory HS z normą

‖T‖HS =
( ∞∑
n=1

‖Ten‖2
)1/2

tworzą unormowaną przestrzeń liniową, w której norma pochodzi od iloczynu
skalarnego

〈T, S〉 =
∞∑
n=1

〈Ten, Sen〉.

Ponadto z (4.5) i (4.4) otrzymujemy

‖T‖2HS = ‖T ∗‖HS =
∞∑
n=1

λ2n,

gdzie λn są liczbami singularnymi operatora T. Prawdziwe są nierówności

‖ST‖HS ¬ ‖S‖‖T‖HS, ‖TS‖HS ¬ ‖S‖‖T‖HS

Twierdzenie 4.38. Przestrzeń HS jest zupełna, czyli jest przestrzenią Hil-
berta.
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Dowód. Załóżmy, że ciąg operatorów Tn spełnia warunek Cauchy’go wzglę-
dem normy Hilberta-Schmidta. W szczególności normy ‖Tn‖HS są wspólnie
ograniczone, czyli C = sup ‖Tn‖HS < ∞. Z Wniosku 4.35 wynika, że opera-
tory Tn tworzą ciąg Cauchy’ego względem normy operatorowej. Zatem ciąg
Tn jest zbieżny do operatora T ∈ B(H). Stąd, dla ustalonej liczby K otrzy-
mujemy

K∑
k=1

‖Tek‖2 = lim
n

K∑
k=1

‖Tnek‖2 ¬ C

Ponieważ K jest dowolną liczbą naturalną, to

∞∑
k=1

‖Tek‖2 ¬ C,

czyli T ∈ HS. Pozostaje udowodnić, że ‖Tn − T‖HS → 0. Dla liczby ε > 0
wybierzmyN takie, że dla n,m > N spełniona jest nierówność ‖ Tn − Tm ‖HS <
ε. Wtedy dla n > N mamy

K∑
k=1

‖(Tn − T )ek‖2 = lim
m

K∑
k=1

‖(Tn − Tm)ek‖2 ¬ ε2.

Ponieważ K jest dowolne, to

‖Tn − T‖2HS =
∞∑
k=1

‖(Tn − T )ek‖2 ¬ ε2.

5 Nierówność Löwnera

Lemat 5.1. Dla operatorów A,B ∈ B(X) spełniona jest równość

σ(AB) ∪ {0} = σ(BA) ∪ {0},

tzn. niezerowe elementy spektrów AB i BA są takie same, czyli promienie
spektralne operatorów AB i BA są równe.
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Dowód. Wystarczy pokazać zawieranie ” ⊂ ”. Załóżmy, że |λ| > ‖AB‖ oraz
|λ| > ‖BA‖. Wtedy operatory AB i BA są odwracalne oraz

(λI − AB)−1 = λ−1(I − λ−1AB)−1 = λ−1
∞∑
n=0

λ−n(AB)n

= λ−1I + λ−2A

( ∞∑
n=1

λ−(n−1)(BA)n−1
)
B

= λ−1I + λ−2A(I − λ−1BA)−1B = λ−1I + λ−1A(λI −BA)−1B

Załóżmy, że 0 6= λ /∈ σ(BA). Bezpośrednim rachunkiem można wtedy poka-
zać, że operator

λ−1I + λ−1A(λI −BA)−1B

jest odwrotny od AB, czyli λ /∈ σ(AB). Np.

[λ−1I + λ−1A(λI −BA)−1B] (λI − AB)
= I − λ−1AB + λ−1A(λI −BA)−1(λI −BA)B

= I − λ−1AB + λ−1AB = I

Uwaga 5.2. Dowód jest łatwiejszy, jeśli jeden z operatorów A lub B jest
odwracalny. Załóżmy, że A jest odwracalny. Wtedy

λI − AB = A(λA−1 −B), λI −BA = (λA−1 −B)A

Stąd widać, że operatory λI−AB i λI−BA są jednocześnie odwracalne lub
jednocześnie nieodwracalne oraz

(λI −BA)−1 = A−1(λI − AB)−1A

Twierdzenie 5.3 (nierówność Löwnera). Dla operatorów dodatnich A,B ∈ B(H)
z nierówności A ­ B wynika A1/2 ­ B1/2.

Dowód. Dla odwracalnego operatora C nierówność A1/2 ­ B1/2 ­ 0 jest
równoważna z nierównością C∗A1/2C − C∗B1/2C ­ 0 (por. Lemat 2.4).

Załóżmy, że operator A jest odwracalny. Wtedy operator A1/2 jest od-
wracalny oraz A−1/2 jest operatorem dodatnim, bo operator odwrotny do
operatora dodatniego jest też dodatni. Rzeczywiście

〈A−1/2x, x〉 = 〈A−1/2A1/2y, A1/2y〉 = 〈y, A1/2y〉 ­ 0, y = A−1/2x
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Podobnie operator A1/4 jest odwracalny. Nierówność w tezie twierdzenia jest
więc równoważna z nierównością

I − A−1/4B1/2A−1/4 ­ 0, C = A−1/4.

Z kolei ostatnia nierówność jest równoważna z warunkiem

‖A−1/4B1/2A−1/4‖ ¬ 1 (5.1)

(por. Lemat 2.6). Dalej, korzystając z Lematu 5.1, dostajemy

‖A−1/4B1/2A−1/4‖ = r(A−1/4B1/2A−1/4) = r(B1/2A−1/2)

Z założenia ‖A−1/2BA−1/2‖ ¬ 1. Stąd, na podstawie równości ‖T‖2 = ‖T ∗T‖,
otrzymujemy

[r(B1/2A−1/2)]2 ¬ ‖B1/2A−1/2‖2 = ‖A−1/2BA−1/2‖ ¬ 1.

Zatem nierówność (5.1) jest spełniona.
Z założenia A ­ B. Zatem(

εI + A1/2
)2

= ε2I + 2εA1/2 + A ­ B, ε > 0

Operator εI + A1/2 jest dodatni i odwracalny. Z pierwszej części dowodu
wynika, że

εI + A1/2 ­ B1/2.

Przechodząc do granicy ε→ 0+ otrzymamy A1/2 ­ B1/2.

Uwaga 5.4. Z warunku A ­ B ­ 0 nie wynika nierówność A2 ­ B2. Np.
dla macierzy

A =
(

2 1
1 1

)
­ B =

(
1 0
0 0

)
mamy A2 ­ B oraz

A2 =
(

5 3
3 2

)
­// B2 =

(
1 0
0 0

)

bo det(A2 −B2) = −1.
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Twierdzenie 5.5. Ciąg operatorów dodatnich An jest zbieżny w normie prze-
strzeni B(H) do operatora A. Wtedy A jest dodatni oraz A1/2n jest zbieżny w
normie operatorowej do A1/2.

Dowód. Operator A jest dodatni, bo

0 ¬ lim
n
〈Anx, x〉 = 〈Ax, x〉, x ∈ H

Dla ε > 0 istniejeN takie, że dla n ­ N spełniony jest warunek ‖An −A‖ ¬ 2ε.
Zatem

−2εI ¬ An − A ¬ 2εI

Otrzymujemy wtedy

0 ¬ An ¬ A+ 2εI ¬ (A1/2 +
√
εI)2

0 ¬ A ¬ An + 2εI ¬ (A1/2n +
√
εI)2

Z nierówności Löwnera wynikają nierówności

A1/2n ¬ A1/2 +
√
εI, A1/2 ¬ A1/2n +

√
εI

Zatem
−
√
εI ¬ A1/2n − A1/2 ¬

√
εI

Z ostatniej nierówności wynika

‖A1/2n − A1/2‖ ¬
√
ε

Uwaga 5.6. Dowód można przeprowadzić korzystając z jawnego wzoru na
pierwiastek z operatora dodatniego A, poprzez absolutnie zbieżny szereg po-
tęg operatora I − a−1A dla 0 < a ¬ 12‖A‖.

Wniosek 5.7. Ciąg operatorów An jest zbieżny w normie przestrzeni B(H)
do operatora A. Wtedy |An| dąży od |A| w normie operatorowej.

Dowód. Z założenia wynika, że |An|2 = A∗nAn → A∗A = |A|2 w normie w
B(H). Z poprzedniego twierdzenia otrzymujemy, że |An| → |A| w normie
operatorowej.
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6 Operatory unitarne

Operator U ∈ B(H) nazywamy unitarnym, jeśli UU∗ = U∗U = I, tzn.
U∗ = U−1. Mamy ‖U‖2 = ‖U∗U‖ = ‖I‖ = 1. Zatem σ(U) ⊆ {z : |z| ¬ 1}.
Ale dla |z| < 1 mamy

zI − U = zUU∗ − U = −U(I − zU∗).

To oznacza, że operator zI − U jest odwracalny. Ostatecznie otrzymujemy

σ(U) ⊆ {z : |z| = 1} = T.

Definicja 6.1. Wielomianem trygonometrycznym nazywamy wyrażenie po-
staci

p(z) =
n∑

k=−m
akz

k,

gdzie ak ∈ C, z ∈ T. Wielomian sprzężony p(z) określamy wzorem

p(z) = p(z) =
n∑

k=−m
akz

−k

(Uwaga: z = z−1 dla z ∈ T).

Dla operatora unitarnego U oraz wielomianu trygonometrycznego p(z)
określamy

p(U) =
n∑

k=−m
akz

k, gdzie U0 = I.

Lemat 6.2.

(i) (p+ q)(U) = p(U) + q(U).

(ii) p(U)∗ = p(U).

(iii) (pq)(U) = p(U)q(U).

(iv) p(U) jest operatorem normalnym.
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Dowód.

(ii) Mamy p(U)∗ =
n∑

k=−m
akU

−k = p(U).

(iii) Niech q(U) =
n′∑

l=−m′
blz

l. Wtedy

(pq)(U) =

 n∑
k=−m

n′∑
k=−m′

akblz
k+l

 (U) =
n∑

k=−m

n′∑
k=−m′

akblU
k+l = p(U)q(U).

Ponieważ p(z)q(z) = q(z)p(z), to p(U)q(U) = q(U)p(U).
(iv) Mamy

p(U)p(U)∗ = p(U)p(U) = |p|2(U) = p(U)p(U) = p(U)∗p(U).

Twierdzenie 6.3. Mamy σ(p(U)) = p(σ(U)).

Dowód. Załóżmy, że µ ∈ σ(p(U)). Wtedy z zasadniczego twierdzenia algebry
otrzymujemy

µI − p(z) = z−m[zmµ− zmp(z)] = cz−m(z − λ1)(z − λ2) . . . (z − λN). (6.1)

Zatem
µI − p(U) = cU−m(U − λ1I)(U − λ2I) . . . (U − λNI).

Lewa strona jest operatorem nieodwracalnym. Zatem przynajmniej jeden z
operatorów U − λjI jest nieodwracalny. Wtedy λj ∈ σ(U). W szczególności
λj 6= 0. Podstawiając z = λj w (6.1) otrzymamy µ = p(λj) ∈ p(σ(U)).
Udowodniliśmy więc zawieranie σ(p(U)) ⊆ p(σ(U)).

Niech teraz µ ∈ p(σ(U)), tzn. µ = p(λ) dla pewnej liczby λ ∈ σ(U).
Wtedy

p(λ)I − p(U) =
n∑

k=−m
ak(λkI − Uk) =

n∑
k=1

ak(λkI − Uk)

+
m∑
k=1

a−kλ
−kU−k(Uk − λkI) = (λI − U)V = V (λI − U), (6.2)
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dla pewnego operatora V. Operator λI − U jest nieodwracalny. Zatem ope-
rator p(λ)I − p(U) jest nieodwracalny.b Zatem p(λ) ∈ σ(p(U)).

W rezultacie udowodniliśmy, że p(σ(U)) ⊆ σ(p(U)).

Wniosek 6.4. ‖p(U)‖ = max{|p(z)| : z ∈ σ(U)} = ‖p‖C(σ(U)).

Dowód. Ponieważ operator p(U) jest normalny, to

‖p(U)‖ = r(p(U)) = max{|µ| : µ ∈ σ(p(U))}
= max{|µ| : µ ∈ p(σ(U))} = max{|p(z)| : z ∈ σ(U)}

Wniosek 6.5. Jeśli p(z) ­ 0 dla z ∈ T, to p(U) ­ 0.

Dowód. Załóżmy, że 0 ¬ p(z) ¬ 1. Określmy q(z) = 2p(z) − 1. Wtedy q(z)
jest wielomianem rzeczywistym oraz |q(z)| ¬ 1. Z poprzedniego wniosku
mamy ‖q(U)‖ ¬ 1. Ponadto q(U)∗ = q(U) = q(U), tzn. q(U) jest operatorem
samosprzężonym. Z Lematu 2.6 wynika, że −I ¬ q(U) ¬ I. W szczególności
2p(U)− I ­ −I, czyli p(U) ­ 0.

Wniosek wynika też z następnego lematu.

Lemat 6.6 (Riesz-Fejér). Załóżmy, że wielomian trygonometryczny p(z) jest
nieujemny dla z ∈ T. Wtedy istnieje wielomian trygonometryczny h(z) taki,
że p(z) = |h(z)|2.

Dowód. Najpierw rozpatrzymy przypadek, gdy p(z) > 0 dla |z| = 1. Niech

p(z) =
n∑

k=−n
ckz

k Z dodatniości otrzymujemy

p(z) = p(z) =
n∑

k=−n
ckz
−k =

n∑
k=−n

c−kz
k.

Zatem ck = c−k dla dowolnego wskaźnika k. Zauważmy, że stąd wynika cn 6= 0
wtedy i tylko wtedy, gdy c−n 6= 0.

bSkorzystaliśmy z faktu, że jeśli AB = BA jest operatorem odwracalnym, to A i B są
odwracalne
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Załóżmy, że c−n 6= 0. Określmy G(z) = znp(z). Wtedy G(z) jest zwykłym
wielomianem stopnia 2n. Ponadto G(0) = c−n = cn 6= 0. Wielomian G(z) nie
zeruje się na okręgu |z| = 1. Pokażemy, że

G(z) = z2nG (z−1), dla z 6= 0, z ∈ C. (6.3)

Nietrudno zauważyć, że obie strony są wielomianami zmiennej z. Wystarczy
zatem sprawdzić równość dla |z| = 1. Dla |z| = 1 mamy p(z) = p(z). Zatem
z−nG(z) = z−nG(z). Ponieważ z = z−1, to po przekształceniu otrzymujemy
(6.3).

Rozkładamy wielomian G(z) na czynniki liniowe

G(z) = cn
r∏
j=1

(z − αj)
s∏

k=1

(z − βk),

gdzie |αj| < 1 i |βk| > 1, oraz r + s = 2n. Ze wzoru (6.3) wynika, że jeśli
λ jest pierwiastkiem wielomianu G(z), to również λ −1 jest pierwiastkiem i
to tej samej krotności. To oznacza, że pierwiastki αj i βk można połączyć w
pary, czyli

G(z) = cn
n∏
j=1

(z − αj)
n∏
j=1

(z − αj −1),

Zatem

p(z) = z−nG(z) = cn
n∏
j=1

(z − αj)
n∏
j=1

(1− αj −1z)

= dn
n∏
j=1

(z − αj)
n∏
j=1

(z − αj) = dn

∣∣∣∣∣∣
n∏
j=1

(z − αj)

∣∣∣∣∣∣
2

,

gdzie

dn = cn(−1)n
n∏
j=1

αj
−1.

W szczególności dn > 0. Teza jest spełniona dla h(z) =
√
dn

n∏
j=1

(z − αj).

Załóżmy, że p(z) ­ 0 dla |z| = 1. Wtedy pN(z) = p(z) + 1
N
> 0 dla

|z| = 1. Z pierwszej części dowodu istnieją wielomiany hN(z), których sto-
pień jest wspólnie ograniczony, takie, że pN(z) = |hN(z)|2. Współczynniki
wielomianów hN są również wspólnie ograniczone, bo

|hN(z)|2 ¬ |p(z)|+ 1.
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Zatem z ciągu hN(z) można wybrać zbieżny podciąg do wielomianu h(z),
który spełnia p(z) = |h(z)|2 dla |z| = 1.

Powracamy do alternatywnego dowodu Wniosku 6.5 Mamy

p(U) = |h|2(U) = (hh)(U) = h(U)h(U) = h(U)∗h(U) ­ 0.

Dotychczas potrafiliśmy określić p(U), gdzie p jest wielomianem trygo-
nometrycznym. Naszym celem jest zdefiniowanie f(U), gdzie f jest funkcją
ciągłą określoną na zbiorze σ(U) ⊂ T. Z twierdzenia Tietzego funkcję f
możemy rozszerzyć do funkcji ciągłej F : T→ C tak, że

max
|z|=1
|F (z)| = max

z∈σ(U)
|f(z)|.

Z twierdzenia Weierstrassa można znaleźć ciąg wielomianów trygonometrycz-
nych pn(z) zbieżny jednostajnie do funkcji F (z) dla |z| = 1.
Uwaga. Pokażemy, że faktycznie poprzednie stwierdzenie można wyprowa-
dzić bezpośrednio z twierdzenia Weierstrassa.

Rozważamy funkcję f(z) o wartościach zespolonych określoną na okregu
jednostkowym. Wtedy f(z) = Ref(z) + i Imf(z). Możemy zatem przyjąć, że
f(z) przyjmuje wartości rzeczywiste.

Odwzorowanie u(t) = f(eit) − f(e−it) jest funkcją nieparzystą na prze-
dziale −π ¬ t ¬ π zatem u(0) = u(π) = u(−π) = 0. Funkcję u(t) możemy
jednostajnie przybliżyć funkcjami nieparzystymi zerującymi się w pobliżu 0
i π, tzn. spełniającymi

u(t) = 0 dla |t| ¬ δ, π − δ ¬ |t| ¬ π, −π ¬ t ¬ π

Dla 0 ¬ t ¬ π określmy funkcje

g(cos t) =
1
2

[f(eit) + f(e−it)], h(cos t) =
1
2
u(t)
sin t

Otrzymujemy

f(eit) =
1
2

[f(eit) + f(e−it)] +
1
2

[f(eit)− f(e−it)] ≈ g(cos t) + sin t h(cos t)

Funkcje g(x) i h(x) są ciągłe jako złożenia funkcji po prawej stronie z funkcją
x 7→ arccosx. Z twierdzenia Weierstrassa istnieją ciągi wielomianów pn(x) i
qn(x) zbieżne jednostajnie do g(x) i h(x), odpowiednio. Wtedy

pn(cos t)± sin t qn(cos t) ⇒ g(cos t)± sin t h(cos t), 0 ¬ t ¬ π
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To oznacza, że

pn(cos t) + sin t qn(cos t) ⇒ g(cos t) + sin t h(cos t) = f(eit), −π ¬ t ¬ π

Wyrażenie
pn(cos t) + sin t qn(cos t)

jest wielomianem trygonometrycznym, bo 2 cos t = eit + e−it oraz 2i sin t =
eit + e−it.

Inne dowód można przeprowadzic używając elementów teorii szeregów
Fouriera: jądra Fejéra lub jądra Poissona.

Pokażemy, że

(1) Ciąg operatorów pn(U) jest zbieżny w normie operatorowej.

(2) Granica ciągu pn(U) nie zależy od wyboru wielomianów pn.

(3) Granica ciągu pn(U) nie zależy od wyboru rozszerzenia F.

Dowód. Mamy

‖pn(U)− pm(U)‖ = ‖(pn − pm)(U)‖
= max

z∈σ(U)
|pn(z)− pm(z)| ¬ max

|z|=1
|pn(z)− pm(z)|

¬ max
|z|=1
|pn(z)− F (z)|+ max

|z|=1
|F (z)− pm(z)| −→

n,m→∞
0

Ciąg operatorów pn(U) spełnia warunek Cauchy’ego. Zatem jest zbieżny.
Załóżmy, że również inny ciąg wielomianów qn jest zbieżny jednostajnie do
F. Wtedy ciąg naprzemienny

p1, q1, p2, q2, . . . , pn, qn, . . .

jest też zbieżny jednostajnie do funkcji F. Z pierwszej części dowodu wynika,
że ciąg operatorów

p1(U), q1(U), p2(U), q2(U), . . . , pn(U), qn(U), . . .

jest zbieżny. To oznacza, że ciągi pn(U) i qn(U) są zbieżne do tego samego
operatora.
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Oznaczmy symbolem F̃ inne ciągłe rozszerzenie funkcji f do okręgu |z| =
1. Niech qn będzie ciągiem wielomianów zbieżnym jednostajnie do F̃ na okrę-
gu T. Z pierwszej części dowodu wiemy, że ciąg operatorów qn(U) jest zbieżny.
Ponadto mamy

‖pn(U)− qn(U)‖ = ‖(pn − qn)(U)‖ = max
z∈σ(U)

|pn(z)− qn(z)|

¬ max
z∈σ(U)

|pn(z)− f(z)|+ max
z∈σ(U)

|qn(z)− f(z)|

¬ max
|z|=1
|pn(z)− F (z)|+ max

|z|=1
|qn(z)− F̃ (z)| −→

n→∞
0

Wcześniejsze rozumowanie pokazuje, że granica pn(U) zależy jedynie od
funkcji ciągłej f na spektrum operatora unitarnego U. Przyjmujemy ozna-
czenie

f(U) = lim
n
pn(U).

Uwaga 6.7. Jeśli f jest wielomianem trygonometrycznym, np. f(z) = zk,
to f(U) = Uk.

Twierdzenie 6.8. Niech f, g ∈ C(σ(U)). Wtedy

(i) (f + g)(U) = f(U) + g(U).

(ii) (fg)(U) = f(U)g(U) = g(U)f(U).

(iii) f(U)∗ = f(U).

(iv) ‖f(U)‖ = max
z∈σ(U)

|f(z)|.

(v) σ(f(U)) = f(σ(U)).

Uwaga 6.9. Twierdzenie mówi, że rodzina operatorów {f(U) : f ∈ C(σ(U))}
tworzy algebrę ze sprzężeniem i normą operatorową. Tę algebrę można utoż-
samić z algebrą C(σ(U)).

Dowód.
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(i) Niech pn i qn będą jednostajnie zbieżnymi ciągami wielomianów trygo-
nometrycznych na T takimi, że pn(z)→

n
f(z) oraz qn(z)→

n
g(z) dla z ∈ σ(U).

Wtedy

f(U) + g(U) = lim
n
pn(U) + lim

n
qn(U) = lim

n
[pn(U) + qn(U)]

= lim
n

(pn + qn)(U) = (f + g)(U),

bo ciąg wielomianów pn + qn jest jednostajnie zbieżny na T oraz pn(z) +
qn(z)→

n
f(z) + g(z) dla z ∈ σ(U).

(ii) Przy oznaczeniach jak w (i) mamy

f(U)g(U) = lim
n
pn(U) lim

n
qn(U) = lim

n
pn(U)qn(U) = lim

n
(pnqn)(U) = (fg)(U),

bo ciąg wielomianów pnqn jest zbieżny jednostajnie na T oraz pn(z)qn(z)→
n

f(z)g(z) dla z ∈ σ(U). Dalej g(U)f(U) = (gf)(U) = (fg)(U) = f(U)g(U).
(iii) Jeśli pn jest zbieżny jednostajnie na T oraz pn(z) →

n
f(z) dla z ∈

σ(U), to ciąg pn jest też zbieżny jednostajnie na T oraz pn(z) → f(z) dla
z ∈ σ(U). Zatem z Lematu 6.2(ii) mamy

f(U) = lim
n
pn(U) = lim

n
pn(U)∗ = f(U)∗.

(iv) Przy oznaczeniach jak w (i), na podstawie Wniosku 6.4 otrzymujemy

‖f(U)‖ = lim
n
‖pn(U)‖ = lim

n
max
z∈σ(U)

|pn(z)| = max
z∈σ(U)

|f(z)|.

(v) Niech µ /∈ f(σ(U)). Rozważmy funkcję g(z) = [µ − f(z)]−1. Mamy
g ∈ C(σ(U)). Z własności (ii) otrzymujemy

g(U)(µ− f)(U) = (µ− f)(U)g(U) = [(µ− f)g](U) = 1(U) = I.

To oznacza, że operator (µ − f)(U) = µI − f(U) jest odwracalny. Czy-
li µ /∈ σ(f(U)). Zatem σ(f(U)) ⊆ f(σ(U)). Niech teraz µ ∈ f(σ(U)).
Tzn. µ = f(λ) dla pewnej liczby λ ∈ σ(U). Wybierzmy ciąg wielomianów
trygonometrycznych pn, jednostajnie zbieżny na T, taki, że pn(z) →

n
f(z)

dla z ∈ σ(U). Wiemy, że operator pn(λ)I − pn(U) nie jest odwracalny dla
λ ∈ σ(U) (por. Twierdzenie 6.3). Ale

pn(λ)I − pn(U)→
n
f(λ)I − f(U)
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w normie operatorowej. Zbiór operatorów odwracalnych jest otwarty w B(H),
więc zbiór operatorów nieodwracalnych jest domknięty. Zatem operator f(λ)I−
f(U) nie jest odwracalny. To oznacza, że µ = f(λ) ∈ σ(f(U)). Czyli f(σ(U)) ⊆
σ(f(U)).

Twierdzenie 6.10. Jeśli funkcja f ∈ C(σ(U)) jest nieujemna, to f(U) ­ 0.

Dowód. Załóżmy, że 0 ¬ f(z) ¬ 2 dla z ∈ σ(U). Wtedy funkcja g(z) =
f(z) − 1 spełnia |g(z)| ¬ 1. Z Twierdzenia 6.8(iii), (iv) mamy ‖g(U)‖ ¬ 1
oraz g(U)∗ = g(U). Zatem −I ¬ g(U) ¬ I. Wtedy

f(U) = g(U) + I ­ 0.

Naszym kolejnym celem jest określenie operatora f(U) dla pewnych funk-
cji nieciągłych f określonych na σ(U). Na przykład niech f(z) przyjmuje
wartość jeden na otwartym łuku okręgu jednostkowego oraz wartość zero w
pozostałych punktach okręgu. Funkcję f można uzyskać jako granicę rosną-
cego ciągu funkcji nieujemnych i ciągłych fn ∈ C(T). Ta własność umożliwia
określenie operatora f(U).

Niech fn będzie ciągiem nieujemnych funkcji ciągłych takim, że fn(z)↗
f(z) dla z ∈ σ(U). Załóżmy, że funkcje fn(z) są wspólnie ograniczone na
σ(U), np. przez stałą c > 0. Mamy 0 ¬ fn(z) ¬ fn+1(z) ¬ c. Zatem
0 ¬ fn(U) ¬ fn+1(U) ¬ cI. Ciąg operatorów fn(U) jest wtedy rosnący i
ograniczony. Zatem ciąg fn(U) jest mocno (punktowo) zbieżny. Oznaczmy
mocną granicę symbolem A, tzn. niech

Av = lim
N
fn(U)v, v ∈ H.

Mocna granica A zależy tylko od funkcji f, a nie od wyboru ciągu fn. Rze-
czywiście, niech gn ∈ C(σ(U)) oraz gn(z) ↗ f(z) dla z ∈ σ(U). Mamy
gn(z) ¬ c, bo f(z) ¬ c dla z ∈ σ(U). Zatem ciąg operatorów gn(U) jest też
mocno zbieżny na podstawie wcześniejszego rozumowania dla ciągu fn(U).
Niech

Bv = lim
n
gn(U)v, v ∈ H.

Chcemy pokazać, że A = B. Dla liczby naturalnej k określmy funkcje

hn(z) = min{fn(z), gk(z)}, z ∈ σ(U).
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Mamy hn ∈ C(σ(U)). Ponadto

0 ¬ hn(z)↗ gk(z), z ∈ σ(U).

Ponieważ funkcja gk jest ciągła na zbiorze σ(U), to z twierdzenia Diniego
wnioskujemy, że hn ⇒ gk, gdy n → ∞. Zatem hn(U) →

n
gk(U) w normie

operatorowej na podstawie Twierdzenia 6.8(iv). Dalej mamy hn(z) ¬ fn(z),
więc hn(U) ¬ fn(U) z Twierdzenia 6.10. Przechodząc do mocnej granicy,
gdy n → ∞, otrzymujemy gk(U) ¬ A. Następnie przechodzimy do mocnej
granicy, gdy k →∞, aby otrzymać B ¬ A.

Uwaga 6.11. z faktu, że jeśli 0 ¬ Cn ¬ Dn oraz operatory Cn i Dn są słabo
zbieżne do C i D odpowiednio, to 0 ¬ C ¬ D. Rzeczywiście

〈Dv, v〉 − 〈Cv, v〉 = lim
n
〈Dnv, v〉 − lim

n
〈Cnv, v〉 = lim

n
〈(Dn −Cn)v, v〉 ­ 0.

Twierdzenie 6.12. Niech f i g będą ograniczonymi funkcjami określony-
mi na σ(U) będącymi granicami punktowymi rosnących ciągów nieujemnych
funkcji ciągłych określonych na σ(U). Wtedy

(i) (f + g)(U) = f(U) + g(U).

(ii) (fg)(U) = f(U)g(U) = g(U)f(U).

(iii) f(U) ­ 0.

(iv) ‖f(U)‖ = sup
z∈σ(U)

f(z).

(v) Jeśli f ¬ g, to f(U) ¬ g(U).

Dowód.
(i) Niech fn i gn będą ciągami nieujemnych funkcji ciągłych takimi, że fn(z)↗
f(z) i gn(z)↗ g(z) dla z ∈ σ(U). Wtedy fn(z)+gn(z)↗ f(z)+g(z). Zatem
ciągi operatorów fn(U), gn(U) oraz (fn + gn)(U) są zbieżne mocno do ope-
ratorów f(U), g(U) i (f + g)(U), odpowiednio. Ponadto z Twierdzenia 6.8(i)
mamy

(f + g)(U) = lim
n

(fn + gn)(U) = lim
n

[fn(U) + gn(U)]

= lim
n
fn(U) + lim

n
gn(U) = f(U) + g(U).
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(ii) Przy oznaczeniach z (i) mamy fn(z)gn(z) ↗ f(z)g(z). Zatem ciąg
operatorów (fngn)(U) jest mocno zbieżny do (fg)(U). Zatem z Twierdzenia
6.8(ii) otrzymujemy

(fg)(U) = lim
n

(fngn)(U) = lim
b
fn(U)gn(U)

= lim
n
fn(U) lim

n
gn(U) = f(U)g(U).

(iii) Przy oznaczeniach z (i) mamy fn(U) ­ 0, na podstawie Twierdzenia
6.10. Zatem f(U) ­ 0, jako mocna granica operatorów nieujemnych fn(U).

(iv) Oznaczmy c = sup
z∈σ(U)

f(z). Jeśli fn jest ciągiem nieujemnych funkcji

ciągłych na σ(U) takim, że fn(z)↗ f(z) dla z ∈ σ(U), to 0 ¬ fn(z) ¬ c dla
z ∈ σ(U).Wtedy z Twierdzenia 6.8(iv) mamy ‖fn(U)‖ ¬ c. Stąd ‖f(U)‖ ¬ c.
Otrzymaliśmy ‖f(U)‖ ¬ sup

z∈σ(U)
f(z).

Ponieważ 0 ¬ fn(U) ¬ f(U), to ‖fn(U)‖ ¬ ‖f(U)‖. Zatem z Twierdzenia
6.8(iv) mamy

‖f(U)‖ ­ sup
z∈σ(U)

fn(z), n ∈ N.

Zatem
‖f(U)‖ ­ sup

n
sup
z∈σ(U)

fn(z) = sup
z∈σ(U)

f(z).

(v) Załóżmy, że f ¬ g oraz 0 ¬ fn ↗ f, 0 ¬ hn ↗ g, gdzie fn, hn ∈
C(σ(U)). Określmy gn = max{fn, hn}. Ciąg gn jest rosnący, zbieżny punk-
towo do max{f, g} = g oraz gn ∈ C(σ(U)). Zatem gn(U) ↗ g(U) oraz
fn(U) ↗ f(U), mocno. Ponadto fn(U) ¬ gn(U), bo fn ¬ gn. Nierówność
przenosi się na słabe granice, czyli f(U) ¬ g(U).

7 Operatory śladowe

Definicja 7.1. Operator A ∈ B(H) nazywamy śladowym, jeśli tr |A| < ∞.
Rodzinę operatorów śladowych oznaczamy symbolem C1.

Twierdzenie 7.2. Każdy operator śladowy jest zwarty. Ponadto operator
zwarty jest śladowy wtedy i tylko wtedy, gdy

∞∑
n=1

λn <∞,
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gdzie λn są liczbami singularnymi operatora A. Ponadto

tr |A| =
∞∑
n=1

λn

Dowód. Dla bazy ortonormalnej {ϕn}∞n=1

tr |A| =
∞∑
n=1

〈|A|ϕn, ϕn〉 =
∞∑
n=1

‖|A|1/2ϕn‖2

Zatem |A|1/2 jest operatorem Hilberta-Schmidta, skąd wynika, że |A|1/2 jest
operatorem zwartym. Wtedy operator A = U |A| = U |A|1/2|A|1/2 jest też
zwarty

Załóżmy, że operator zwarty A jest śladowy. Z twierdzenia 4.20 wiemy,
że |A| ma postać

|A|x =
N∑
n=1

λn〈x, ϕn〉ϕn

dla pewnego układu ortonormalnego {ϕn}Nn=1. Niech {ψk}Kk=1 będzie uzpeł-
nieniem układu {ϕn}Nn=1 do bazy ortonormalnej przestrzeniH.Wtedy |A|ϕn =
λnϕn oraz |A|ψk = 0, zatem

tr |A| =
N∑
n=1

〈|A|ϕn, ϕn〉+
K∑
k=1

〈|A|ψk, ψk〉 =
N∑
n=1

λn (7.1)

Załóżmy, że liczby singularne operatora A spełniają
∑
λn < ∞. Wtedy

λn → 0. Z zasady minimaksu wynika, że |A| jest operatorem zwartym. Ze
wzoru (7.1) otrzymujemy wtedy A ∈ C1.

Twierdzenie 7.3.

(a) Jeśli A ∈ C1, to λA ∈ C1.

(b) Jeśli A ∈ C1, to A∗ ∈ C1.

(c) Jeśli A ∈ C1 i B ∈ B(H), to AB ∈ C1 oraz BA ∈ C1.

(d) Jeśli A,B ∈ C1, to A+B ∈ C1.
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Dowód. Punkt (a) wynika, ze wzoru |λA| = |λ| |A|.
Z twierdzenia 4.23

Ax =
N∑
n=1

〈x, ϕn〉ψn

Wtedy

〈x,A∗y〉 = 〈Ax, y〉 =
N∑
n=1

〈x, ϕn〉〈ψn, y〉 =
〈
x,

N∑
n=1

λn〈y, ϕn〉ψn
〉

Zatem

A∗y =
N∑
n=1

λn〈y, ϕn〉ψn

Dalej

(AA∗)y =
N∑
n=1

λn〈A∗y, ϕn〉ψn =
N∑
n=1

λn〈y, Aϕn〉ψn =
N∑
n=1

λ2n〈y, ψn〉ψn

Otrzymujemy więc

|A∗|y =
N∑
n=1

λn〈y, ψn〉ψn

To oznacza, że liczby singularne operatorów A i A∗ są takie same. Zatem

tr |A∗| = tr |A|

To kończy dowód (b).
Załóżmy, że B ∈ B(H) i A ∈ C1. Z zasady minimaksu wynika

λn(BA) = min
dimV=n−1

max
x∈V ⊥
‖x‖=1

‖BAx‖ ¬ ‖B‖ min
dimV=n−1

max
x∈V ⊥
‖x‖=1

‖Ax‖ = ‖B‖λn(A)

Zatem
tr |BA| ¬ ‖B‖ tr |A|,

czyli BA ∈ C1. Dalej

tr |AB| = tr |B∗A∗| ¬ ‖B∗‖ tr |A∗| = ‖B‖tr |A|

czyli AB ∈ C1.
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Załóżmy, że A,B ∈ C1. Mamy A = U1|A|, B = U2|B| oraz A + B =
U3|A+B|. Zatem

|A+B| = U∗3 (A+B) = U∗3U1|A|+ U∗3U2|B|

Stąd przy oznaczeniach V1 = U∗3U1 i V2 = U∗3U2 otrzymujemy

tr |A+B| =
∞∑
n=1

〈|A+B|en, en〉 =
∞∑
n=1

〈V1|A|en, en〉+
∞∑
n=1

〈V2|B|en, en〉

=
∞∑
n=1

〈|A|1/2en, |A|1/2V ∗1 en〉+
∞∑
n=1

〈|B|1/2en, |B|1/2V ∗2 en〉

= 〈|A|1/2, |A|1/2V ∗1 〉HS + 〈|B|1/2, |B|1/2V ∗2 〉HS
¬ ‖|A|1/2‖HS‖|A|1/2V ∗1 ‖HS + ‖|B|1/2‖HS‖|B|1/2V ∗2 ‖HS

¬ ‖|A|1/2‖2HS + ‖|B|1/2‖2HS = tr |A|+ tr |B|

Z twierdzenia wynika, że operatory śladowe C1 tworzą ∗-ideał w prze-
strzeni B(H). Określmy

‖A‖1 = tr |A|

Z dowodu twierdzenia wynika, że C1 z normą ‖ · ‖1 jest przestrzenią unormo-
waną. Ponadto ‖A‖1 ­ ‖A‖, bo λ1(A) = ‖A‖.

Twierdzenie 7.4. Przestrzeń C1 z normą ‖ · ‖1 jest zupełna.

Dowód. Niech Ak będzie ciągiem Cauchy’ego w C1. Wtedy

sup
k
‖Ak‖1 =: M <∞

Operatory Ak tworzą ciąg Cauchy’ego w B(H). Oznaczmy A = limAk. Wte-
dy A jest operatorem zwartym. Pokażemy, że

λn(A) = lim
k
λn(Ak)

Rzeczywiście, dla ε > 0 istnieje K takie, że dla k > K i ‖x‖ = 1 mamy

‖Ax‖ − ε < ‖Akx‖ < ‖Ax‖+ ε
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Z zasady minimaksu wynika, że dla k > K mamy

λn(Ak) = min
dimV=n−1

max
x∈V ⊥
‖x‖=1

‖Akx‖ ¬ min
dimV=n−1

max
x∈V ⊥
‖x‖=1

‖Ax‖+ ε = λn(A) + ε

Podobnie
λn(Ak) ­ λn(A)− ε, k > K

Zatem dla dowolnej liczby N

N∑
n=1

λn(A) = lim
k

N∑
n=1

λn(Ak) ¬ lim
k
‖Ak‖1 ¬M

Ponieważ N było dowolną liczbą, to

‖A‖1 ¬M,

czyli A ∈ C1.
Pozostaje wykazać, że ‖Ak −A‖1 → 0. Dla liczby ε > 0 istnieje K takie,

że dla k, l > K zachodzi ‖Ak − Al‖ < ε. Niech l > K. Wtedy

λn(A− Al) = lim
k
λn(Ak − Al)

Zatem

N∑
n=1

λn(A− Al) =
N∑
n=1

lim
k
λn(Ak − Al) ¬ lim

k
‖Ak − Al‖1 ¬ ε

Ponieważ N jest dowolną liczbą naturalną, to

‖A− Al‖ ¬ ε, l > K

Twierdzenie 7.5. Jeśli A i B są operatorami Hilberta-Schmidta, to AB jest
operatorem śladowym. Każdy operator śladowy jest iloczynem dwu operatorów
Hilberta-Schmidta.

Dowód. Niech A ∈ C1. Wtedy A = U |A| = U |A|1/2|A|1/2. Operator |A|1/2
jest Hilberta-Schmidta, zatem U |A|1/2 jest również operatorem Hilberta-
Schmidta.
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Załóżmy, że A i B są operatorami Hilberta-Schmidta. Pokażemy, że B∗A
jest operatorem śladowym. Z twierdzenia 4.23 mamy

B∗Ax =
N∑
n=1

λn〈x, ϕn〉ψn

Wtedy

N∑
k=1

λk =
N∑
k=1

〈B∗Aϕk, ψk〉 =
N∑
k=1

〈Aϕk, Bψk〉

¬
N∑
k=1

‖Aϕk‖ ‖Bψk‖ ¬
(

N∑
k=1

‖Aϕk‖
)1/2 ( N∑

k=1

‖Bψk‖
)1/2

Zatem
‖B∗A‖1 ¬ ‖A‖HS‖B‖HS

Twierdzenie 7.6. Dla A ∈ C1 oraz dowolnej bazy ortonormalnej {en}∞n=1
szereg

∞∑
n=1

〈Aen, en〉

jest bezwzględnie zbieżny oraz suma nie zależy od wyboru bazy.

Dowód. Operator A możemy przedstawić w postaci A = C∗B, gdzie B i C
sa operatorami Hilberta-Schmidta. Wtedy

|〈C∗Ben, en〉| = |〈Ben, Cen〉| ¬ ‖Ben‖ ‖Cen‖

Zatem ∞∑
n=1

|〈Aen, en〉| ¬
∞∑
n=1

‖Ben‖ ‖Cen‖ ¬ ‖B‖HS‖C‖HS

Ponadto ∞∑
n=1

〈Aen, en〉 =
∞∑
n=1

〈Ben, Cen〉 = 〈B,C〉HS

i suma nie zależy od wyboru bazy na podstawie równości polaryzacyjnej.

Dla operatora A ∈ C1 określamy

trA =
∞∑
n=1

〈Aen, en〉
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Twierdzenie 7.7. Dla A ∈ C1 oraz B ∈ B(H) lub dla A,B ∈ HS prawdziwy
jest wzór

trAB = trBA

Dowód. Załóżmy, że A,B ∈ HS. Z równości

〈T, T 〉 = ‖T‖2HS = ‖T ∗‖2HS = 〈T ∗, T ∗〉

i tożsamości polaryzacyjnej wynika, że

〈A,B〉 = 〈B∗, A∗〉

Stąd
trB∗A = trAB∗

Operator A ∈ C1 ma postać A = A1A2, gdzie A1, A2 ∈ HS. Wtedy dla
B ∈ B(H) otrzymujemy

trBA = tr (BA1)A2 = trA2BA1 = trA1A2B = trAB

Wniosek 7.8. Załóżmy, że A ­ B ­ 0 oraz A jest operatorem Hilberta-
Schmidta. Wtedy B jest operatorem Hilberta-Schmidta.

Dowód. Dla bazy ortonormalnej {ek}∞k=1 określmy An = PnAPn oraz Bn =
PnBPn, gdzie Pn jest rzutem ortogonalnym na przestrzeń rozpiętą przez
{ek}nk=1. Wtedy 0 ¬ Bn ¬ An oraz

n∑
k=1

‖Bek‖2 =
∞∑
k=1

‖Bnek‖2 = trB2n = trB1/2n BnB
1/2
n

¬ trB1/2n AnB
1/2
n = trAnBn = trA1/2n BnA

1/2
n

¬ trA1/2n AnA
1/2
n =

∞∑
k=1

‖Anek‖2 =
n∑
k=1

‖Aek‖2 ¬
∞∑
k=1

‖Aek‖2

Lemat 7.9. Dla operatora samosprzężonego A operatory |A|±A są dodatnie.
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Dowód. Operatory A i |A| są przemienne. Operator |A| −A jest samosprzę-
żony. Zatem

0 ¬ (|A| − A)2 = 2|A|2 − 2|A|A = 2(|A| − A) |A|

To oznacza, że
〈(|A| − A)v, v〉 ­ 0, v ∈ Im |A|

Ostatnia nierówność, poprzez przejście graniczne, spełniona jest dla v ∈
Im |A|. Operator |A| −A zeruje się na kerA = ker |A|. Każdy element u ∈ H
ma postać u = v + w, gdzie w ∈ ker |A|, v ∈ Im |A| i v ⊥ w. Zatem

〈(|A| − A)u, u〉 = 〈(|A| − A)v, v〉 ­ 0

Wniosek 7.10. Każdy operator samosprzężony A jest różnicą dwu operato-
rów dodatnich A+ i A− takich, że A−A+ = 0. Ponadto ImA+ ⊥ ImA− oraz
ImA = ImA+ ⊕ ImA−.

Dowód. Określmy

A+ =
1
2

(|A|+ A), A− =
1
2

(|A| − A)

Operatory A+ i A− są dodatnie oraz A = A+ − A−. Dalej

4A+A− = 4A−A+ = (|A|+ A)(|A| − A) = |A|2 − A2 = 0

Zatem

ImA− ⊂ kerA+ = ImA⊥+, ImA+ ⊂ kerA− = ImA⊥−

Dla x ⊥ kerA+ otrzymujemy x ⊥ ImA−, czyli x ∈ kerA−. Zatem Ax = A+x,
czyli ImA+ ⊂ ImA. Podobnie dla x ⊥ kerA− mamy x ⊥ ImA+, czyli
x ∈ kerA+. oraz Ax = −A−x. Tzn. ImA− ⊂ ImA.

Z rozkładu A = A+ − A− wynika przeciwna inkluzja ImA ⊂ ImA− ⊕
ImA+.

Twierdzenie 7.11. Jeśli dla dowolnej bazy ortonormalnej {en}∞n=1 operator
A spełnia

∞∑
n=1

|〈Aen, en〉| <∞

to A jest operatorem śladowym.
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Dowód. Niech

A1 =
1
2

(A+ A∗), A2 =
1
2i

(A− A∗)

Operatory A1 i A2 są samosprzężone oraz A = A1 + iA2. Ponadto

|〈Aen, en〉|2 = 〈A1en, en〉2 + 〈A2en, en〉2

Z założenia ∞∑
n+1

|〈Aken, en〉| <∞, k = 1, 2

Wystarczy więc udowodnić tezę dla operatora samosprzężonego A. Z Wnio-
sku 7.10 dostajemy A = A+ − A−, gdzie ImA− ⊥ ImA+. Wybierzmy bazy
ortonormalne {en} i {fn} przestrzeni ImA− oraz ImA+, odpowiednio.Układy
te spełniają ek ⊥ fl.Niech {gn} będzie bazą przestrzeni (ImA−)⊥∩(ImA+)⊥ =
(ImA)⊥. Suma trzech układów ortonormalnych {ϕn} jest baza ortonormalną
H. Otrzymujemy

∞∑
n=1

〈A−ϕn, ϕn〉 =
∑
〈A−en, en〉 =

∑
|〈Aen, en〉| <∞

∞∑
n=1

〈A+ϕn, ϕn〉 =
∑
〈A+fn, fn〉 =

∑
|〈Afn, fn〉| <∞

To oznacza, że operatory A± są śladowe. Stąd A jest również operatorem
śladowym.

Twierdzenie 7.12. Jeśli dla pewnej bazy ortonormalnej en operator A ∈
B(H) spełnia

∞∑
n=1

‖Aen‖ <∞

to A ∈ C1.

Dowód. Mamy
‖Aen‖ = ‖|A|en‖ ­ 〈|A|en, en〉

Zatem |A| jest śladowy, skąd wynika, że A ∈ C1.
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8 Zadania

1. Pokazać, że jeśli operator liniowy T z przestrzeni Banacha X w prze-
strzeń Banacha Y jest ograniczony, to T przekształca ciągi słabo zbież-
ne do zera wX w ciągi słabo zbieżne do zera w Y. Pokazać, że implikacja
odwrotna też jest prawdziwa. W dowodzie skorzystać z twierdzenia o
wykresie domkniętym.

2. Określmy funkcjonały δn na przestrzeni `∞ wzorem

δn({ck}∞k=1) = cn.

Pokazać, że {δn} nie zawiera podciągu zbieżnego ∗-słabo.

3. {xn}∞n=0 jest gęstym podzbiorem kuli jednostkowej w przestrzeni unor-
mowanej X. W przestrzeni X∗ wprowadzamy metrykę

d(x∗, y∗) =
∞∑
n=0

2−n|x∗(xn)− y∗(xn)|

Pokazać, że d(·, ·) jest istotnie metryką. Pokazać, że ∗-słaba topologia w
kuli jednostkowej jest równoważna topologii wyznaczonej przez metrykę
d(·, ·). ∗ Czy topologie te są równoważne na całej przestrzeni X∗ ?

4. Pokazać, że jeśli ciąg elementów xn przestrzeni Hilberta jest słabo zbież-
ny do x oraz ‖xn‖ → ‖x‖, to ‖xn− x‖ → 0. Czy można to uogólnić na
przestrzenie `p dla p > 1 ?

5. p > 1. Pokazać, że ciąg xn w przestrzeni `p jest słabo zbieżny wtedy i
tylko wtedy, gdy liczby ‖xn‖p są wspólnie ograniczone oraz dla każdego
m ciąg xn(m) jest zbieżny.

6. W przestrzeni `p, p > 1 znaleźć ciąg słabo zbieżny , ale nie zbieżny w
normie przestrzeni. ∗ Pokazać, że w `1 każdy ciąg słabo zbieżny jest też
zbieżny w normie.

7. Ciąg {xn} elementów przestrzeni unormowanej X jest słabo zbieżny
do x. Pokazać, że istnieje ciąg postaci {∑mn

i=1 λi,nxi} (gdzie λi,n ∈ C)
zbieżny do x w normie. Wskazówka: Rozważyć najmniejszą domkniętą
podprzestrzeń liniową Y zawierającą {xn}. Zauważyć, że teza zadania
jest równoważna x ∈ Y. Skorzystać z faktu, że jeśli x 6∈ Y to istnieje
funkcjonał ograniczony x∗ taki, że x∗(x) = 1 oraz x∗(y) = 0 dla y ∈ Y.
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8. Pokazać, że jeśli ciąg xn jest słabo zbieżny do x, to ‖x‖ ¬ lim inf ‖xn‖.

9. Pokazać, że ciąg funkcji fn jest słabo zbieżny do f w Lp(0, 1) jeśli normy
‖fn‖p są wspólnie ograniczone oraz fn jest zbieżny do f według miary,
tzn.

lim
n
|{x : |fn(x)− f(x)| ­ ε}| = 0,

dla dowolnego ε > 0. Pokazać, że odwrotna implikacja jest fałszywa.

10. Funkcja rzeczywista f na [0, 1] spełnia warunek Höldera z wykładni-
kiem α, jeśli istnieje stała C taka, że |f(x)−f(y)| ¬ C|x−y|α. Określmy

‖f‖α = max |f(x)|+ sup
|f(x)− f(y)|
|x− y|α

.

Pokazać, że dla 0 < α ¬ 1, zbiór funkcji spełniających ‖f‖α ¬ 1 jest
zwartym podzbiorem w C[0, 1].

11. Funkcje gn są ciągłe na [0, 1]. Czy z ciągu funkcji

fn(x) =
∫ 1
0

√
1 + x− y sin{gn(y2)} dy

można wybrać podciąg zbieżny ?

12. Niech K(x, y) będzie funkcją ciągłą na R2 taką, że∫ ∞
−∞

∫ ∞
−∞
|K(x, y)|2dx dy <∞.

Niech f(x) ∈ L2(R). Rozważmy równanie całkowe

u(x) = f(x) + λ
∫ ∞
−∞

K(x, y)u(y)dy,

gdzie λ jest liczbą zespoloną. Pokazać, że równanie ma jednoznaczne
rozwiązanie u(x) ∈ L2(R), jeśli λ ma odpowiednio małą wartość bez-
względną. Wskazówka: Do operatora

Tu(x) = f(x) + λ
∫
K(x, y)u(y) dy

na L2(R) zastosować twierdzenie o odwzorowaniach zwężających.
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13. Podprzestrzeń Y przestrzeni unormowanej X nazywamy niezmienniczą
dla operatora liniowego T : X → X jeśli T (Y ) ⊂ Y. Podać przykłady
podprzestrzeni niezmienniczych operatora przesunięcia S określonego
na `2 wzorem

S(x0, x1, x2, . . .) = (0, x0, x1, x2, . . .).

14. Dla X = C[0, 1] i g ∈ X określamy operator T : X → X wzorem
Tf = gf (mnożenie punktowe przez funkcję g). Pokazać, że operator
T jest ograniczony. Znaleźć σ(T ).

15. Rozwiązać poprzednie zadanie w przypadku, gdy X = L2(0, 1) oraz
g ∈ C[0, 1].

16. Operator T : `2 → `2 jest określony wzorem

(Tx)n = λnxn,

gdzie λn jest ustalonym ciągiem ograniczonym. Znaleźć σ(T ) oraz σp(T ).

17. Korzystając z poprzedniego zadania pokazać, że istnieje operator T :
`2 → `2, którego spektrum jest z góry zadanym zwartym podzbiorem
K ⊂ C.

18. Niech T ∈ B(X). Pokazać, że ‖Rλ(T )‖ → 0, gdy |λ| → ∞.

19. Niech T : `p → `p, 1 ¬ p ¬ ∞, będzie określony wzorem

T (x0, x1, x2, . . .) = (x1, x2, x3 . . .).

Znaleźć spektrum T.

20. Dla T ∈ B(H) pokazać, że σ(T ∗) = σ(T ).

21. T jest ograniczonym operatorem na przestrzeni Hilberta H. Pokazać,
że

(a) T jest różnowartościowy wtedy i tylko wtedy. gdy obraz T ∗ jest
gęsty;

(b) T ∗ jest różnowartościowy wtedy i tylko wtedy. gdy obraz T jest
gęsty;
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(c) Jeśli T jest ”na”, to istnieje operator ograniczony S : H −→ H
taki, że TS = I. Czy operator S jest jedyny ? Pokazać, że istnieje
operator Smin taki, że TSmin = I oraz ‖Sminv‖ ¬ ‖Sv‖, v ∈ H, dla
każdego ograniczonego operatora S spełniającego TS = I.

(d) T ma domknięty obraz wtedy i tylko wtedy T ∗ ma domknięty
obraz.

22. Dla T, S ∈ B(X) oraz λ ∈ %(S) ∩ %(T ) wyprowadzić wzór

Rλ(T )−Rλ(S) = Rλ(S)(T − S)Rλ(T ).

23. Obliczyć normę operatora T określonego wzorem

Tf(x) =
1
x

∫ x

0
f(y)dy

w przestrzeni L2(0, 1). Znaleźć operator sprzężony. Pokazać, że istnieje
ciąg funkcji fn ∈ L2 taki, że fn → 0 słabo, ale ‖Tfn‖2 nie dąży do 0.
Wskazówka. Zauważyć, że

Tf(x) =
∫ 1
0
f(xy)dy.

Skorzystać z nierówności(∫ 1
0

(∫ 1
0
g(x, y)dy

)2
dx

)1/2
¬
∫ 1
0

(∫ 1
0
g(x, y)2dx

)1/2
dy.

Zbadać jak zachowuje się iloraz ‖f‖−12 ‖Tf‖2 dla f(x) = xa, gdy a →
−1/2+.

24. T jest operatorem na L2(0,+∞) określonym przez

Tf(x) =
∫ ∞
0

e−xyf(y)dy.

Dowieść, że T jest ograniczonym operatorem na L2 i znaleźć jego normę.
Obliczyć T ∗ i pokazać, że operator TT ∗ zadany jest wzorem

(TT ∗f)(x) =
∫ +∞
0

f(y)(x+ y)−1dy.
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Wskazówka. Zauważyć, że

Tf(x) =
1
x

∫ ∞
0

e−yf(
y

x
)dy.

Skorzystać z nierówności(∫ ∞
0

(∫ ∞
0

g(x, y)dy
)2
dx

)1/2
¬
∫ ∞
0

(∫ ∞
0

g(x, y)2dx
)1/2

dy.

Zbadać zachowanie się ilorazu ‖f‖−12 ‖Tf‖2 dla f(x) = x−1/2+δe−εx, gdy
δ, ε→ 0+.

25. T jest operatorem na L2(0, 1) takim, że dim ImT < +∞. Pokazać, że
istnieje funkcja K(x, y) z L2((0, 1)× (0, 1)) taka, że

Tf(x) =
∫ 1
0
K(x, y)f(y)dy.

Wskazówka. Niech ϕ1, . . . , ϕn oraz będzie bazą ortonormalną dla ImT ∗.
Pokazać, że

K(x, y) =
n∑
i=0

(Tϕi)(x)ϕi(y).

26. Pokazać, że jeśli A nie jest samosprzężony na H, to równość

‖A‖ = sup
‖x‖¬1

|〈Ax, x〉|

nie musi zachodzić.

27. Operator T jest określony na L2(0, 1) wzorem

(Tf)(x) =
∫ x

0
f(y)dy.

Znaleźć jawny wzór całkowy dla operatorów (zI − T )−1, gdzie z 6= 0.
Skorzystać z faktu, że (zI − T )−1 =

∑∞
0 z
−(n+1)T n i ze wzoru całkowego

na T n podanego na wykładzie. Znaleźć wzór dla operatora sprzężonego
T ∗.

28. Ograniczony operator T na przestrzeni Banacha X spełnia warunek
p(T ) = 0, dla pewnego wielomianu p(z) = anz

n + . . .+ a0. Pokazać, że
spektrum operatora T jest zawarte w zbiorze pierwiastków wielomianu
p(z).
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29. Dla funkcji zespolonej k(x, y) dwu zmiennych na [0, 1]×[0, 1] określamy
operator całkowy na L2(0, 1) wzorem

(Kf)(x) =
∫ 1
0
k(x, y)f(y) dy.

Znaleźć wzór dla K∗.

30. Ograniczony operator P na przestrzeni Banacha X nazywamy rzutem
jeśli P 2 = P. Pokazać, że ImP jest domknięty. Znaleźć spektrum dla
P. Znaleźć wzór na operatory rezolwenty (zI − P )−1.

31. Rzut P na przestrzeni Hilberta H nazywamy ortogonalnym jeśli Px ⊥
x− Px dla dowolnego x ∈ H. Pokazać, że następujące trzy warunki są
równoważne:

(a) P jest ortogonalny.

(b) ‖P‖ ¬ 1.

(c) P ∗ = P.

32. P i Q są rzutami ortogonalnymi w przestrzeni Hilberta takimi, że PQ =
QP. Pokazać, że każdy z operatorów I − P, I − Q, PQ, P + Q − PQ
i P +Q− 2PQ jest rzutem ortogonalnym. Opisać obrazy tych rzutów
za pomocą podprzestrzeni M = ImP i N = ImQ.

33. Podprzestrzenie V i W w przestrzeni Hilberta mają skończony wymiar
oraz dim(W ) < dim(V ). Pokazać, że podprzestrzeń V posiada niezero-
wy wektor v ortogonalny do W.

34. Dla ograniczonego ciągu liczb zespolonych {λn} określamy operator T
na przestrzeni `2 wzorem

T (x1, x2, x3, . . .) = (λ1x1, λ2x2, λ3x3, . . .).

Znaleźć T ∗ oraz (zI − T )−1.

35. Dla ograniczonej zespolonej funkcji ciągłej g(x) na prostej określamy
operator T na L2(R) wzorem (Tf)(x) = g(x)f(x). Znaleźć spektrum
operatora T i jego normę. Pokazać, że T jest operatorem normalnym.
Przy jakich warunkach T jest samosprzężony ?
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36. Pokazać, że jeśli T jest operatorem normalnym w przestrzeni Hilberta
H, to T jest odwracalny wtedy i tylko wtedy, gdy

‖Tv‖ ­ c‖v‖, v ∈ H,

dla pewnej stałej c > 0.

37. Pokazać, że jeśli liczba z leży w spektrum operatora normalnego T, to
liczba |z|2 leży w spektrum operatora T ∗T.

38. Niech p(x, y) będzie wielomianem dwu zmiennych. Pokazać, że jeśli
liczba z leży w spektrum operatora normalnego T, to liczba p(z, z) leży
w spektrum operatora p(T, T ∗).

39. U jest ograniczonym i odwracalnym odwzorowaniem liniowym z prze-
strzeni Banacha X na przestrzeń Banacha Y. T i S są operatorami
ograniczonymi na przestrzeni X i Y odpowiednio, spełniającymi zwią-
zek S = UTU−1. Pokazać, że spektra operatorów S i T są równe.

40. Dla funkcji ciągłej g(x) o okresie 2π określmy operator T na przestrzeni
L2(0, 2π) wzorem

Tf(x) =
1

2π

∫ 2π
0

g(x− y)f(y)dy.

Pokazać, że T jest operatorem ograniczonym i ‖T‖ ¬ (2π)−1
∫ 2π
0 |g(x)|dx.

∗ Znaleźć spektrum operatora T. Wskazówka: Rozważyć odwzorowanie
U : L2(0, 2π)→ `2(Z)

(Uf)(n) = f̂(n) =
1

2π

∫ 2π
0

f(x)e−inxdx.

Pokazać, że (UTf)(n) = ĝ(n)f̂(n) = ĝ(n)(Uf)(n). Wywnioskować, że
UTU−1 jest operatorem mnożenia przez ciąg {ĝ(n)}∞−∞ określonym na
`2(Z). Skorzystać z zadań 7 i 9.

41. Niech T będzie operatorem samosprzężonym w przestrzeni Hilberta.
Pokazać, że:

(a) ‖T‖ ¬ 1 wtedy i tylko wtedy, gdy σ(T ) ⊂ [−1, 1].

(b) σ(T ) ⊂ [0,+∞) wtedy i tylko wtedy, gdy T jest operatorem do-
datnim.
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Wskazówka: W (a) skorzystać z faktu, że r(T ) = ‖T‖. W (b) można
założyć, że ‖T‖ ¬ 1. Wtedy σ(T ) ⊂ [0, 1]. Zatem σ(2T − I) ⊂ [−1, 1].
Z (a) mamy, że ‖I − 2T‖ ¬ 1. To pociąga 〈x− 2Tx, x〉 ¬ 〈x, x〉, dla
x ∈ H.

42. Dla operatora samosprzężonego T określamy

m = inf{〈Tx, x〉 : ‖x‖ = 1} M = sup{〈Tx, x〉 : ‖x‖ = 1}.

Pokazać, że σ(T ) ⊂ [m,M ] oraz m.M ∈ σ(T ). Wskazówka: Zauważyć,
że operatory T −mI oraz MI − T są dodatnie.

43. Udowodnić, że jeśli ciąg An ∈ B(H) jest słabo zbieżny, to również ciąg
A∗n jest słabo zbieżny. Pokazać, że stwierdzenie nie jest prawdziwe dla
mocnej zbieżności.

44. (a) Niech An, A ∈ B(H). Pokazać, że jeśli An ­ 0 oraz An jest zbieżny
do A w normie operatorowej, to A ­ 0 oraz

√
An →

√
A w normie

operatorowej.

(b) Pokazać, że jeśli An ­ 0 oraz An → A mocno, to również
√
An →√

A mocno.

(c) Pokazać, że jeśli An → A w normie operatorowej, to |An| → |A|
w normie operatorowej.

(d) Pokazać, że jeśli An → A oraz A∗n → A∗ mocno, to również |An| →
|A| mocno.

(e) Pokazać na przykładzie, że poprzednie stwierdzenie nie jest praw-
dziwe dla słabej zbieżności operatorowej.

45. (a) Niech X i Y będą przestrzeniami Banacha. Pokazać, że jeśli dla
Tn ∈ B(X, Y ) oraz {Tnx} jest ciągiem Cauchy’ego dla każdego
x ∈ X, to istnieje T ∈ B(X, Y ) taki, że Tn → T mocno.

(b) Czy poprzednie stwierdzenie jest prawdziwe dla ciągów uogólnio-
nych Tα ?

46. Niech Tt : f(x) 7→ f(x+ t) będzie operatorem na L2(R). Znaleźć normę
Tt. Do czego są zbieżne operatory Tt, gdy t → ∞, i w jaki sposób ?
Odpowiedzieć na te same pytania dla L2(R, e−x2 dx).

47. Niech H będzie nieskończenie wymiarową przestrzenią Hilberta.
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(a) Pokazać, że jeśli An, Bn ∈ B(H) są mocno zbieżne do A i B od-
powiednio to AnBn jest mocno zbieżny do AB.

(b) Pokazać na przykładzie, że jeśli An, Bn ∈ B(H) są słabo zbieżne
do A i B odpowiednio to AnBn nie musi być słabo zbieżny do AB.

48. Niech T będzie operatorem określonym na `p, 1 ¬ p <∞, wzorem

(Tx)n = λnxn, x ∈ `p.

Pokazać, że T jest zwarty wtedy i tylko wtedy, gdy λn
n→ 0.

49. Dla funkcji g ciągłej na [0, 1] określamy operator T : Lp(0, 1)→ Lp(0, 1)
przez (Tf)(x) = g(x)f(x). Pokazać, że T jest zwarty wtedy i tylko
wtedy, gdy g = 0.

50. Niech K(x, y) będzie funkcją całkowalną z kwadratem na [0, 1]× [0, 1].
Pokazać, że operator T określony na L2(0, 1) wzorem

(Tf)(x) =
∫ 1
0
K(x, y)f(y) dy

jest ograniczony i zwarty. Wskazówka: Wskazać bazę ortonormalną w
L2([0, 1]× [0, 1]) i rozwinąć K(x, y) względem tej bazy.

51. Pokazać, że jeśli T : X → Y jest zwartym operatorem liniowym pomię-
dzy przestrzeniami Banacha X i Y, to T nie może być ”na” chyba, że
przestrzeń Y ma skończony wymiar.

52. Pokazać, że rodzina zwartych operatorów liniowych z przestrzeni Ba-
nacha X w przestrzeń Banacha Y tworzy domkniętą podprzestrzeń
liniową w B(X, Y ).

53. T jest zwartym operatorem z przestrzeni Banacha X w przestrzeń Ba-
nacha Y. Pokazać, że jeśli obraz operatora zwartego T (X) jest prze-
strzenią nieskończonego wymiaru, to obraz ten nie jest domknięty w
Y.

54. Pokazać, że obraz operatora zwartego T : X → Y jest przestrzenią
ośrodkową. Wskazówka: W zupełnej przestrzeni metrycznej podzbiór
jest warunkowo zwarty wtedy i tylko wtedy, gdy jest całkowicie ogra-
niczony.
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55. W przestrzeni `2 określamy operator T wzorem

(Tx)(n) =

0, dla n = 0,
1
n
xn−1, dla n ­ 1.

Pokazać, że T jest zwarty. Obliczyć ‖T n‖ oraz promień spektralny.

56. Niech ai, bi będą elementami przestrzeni L2(0, 1) dla i = 1, 2, . . . , n.
Niech K(x, y) =

∑n
i=1 ai(x)bi(y). Określmy operator T na L2(0, 1) wzo-

rem
(Tf)(x) =

∫ 1
0
K(x, y)f(y) dy.

Niech 0 6= λ ∈ C. Pokazać, że dla dowolnej ustalonej funkcji g ∈ L2(0, 1)
równanie Tf −λf = g ma jednoznaczne rozwiązanie f ∈ L2(0, 1), albo
dla niektórych g równanie ma nieskończenie rozwiązań, a dla pozosta-
łych g, nie ma ich wcale.

57. Niech

K(x, y) =

(1− x)y dla 0 ¬ y ¬ x ¬ 1,
(1− y)x dla 0 ¬ x ¬ y ¬ 1.

Określamy operator T na L2(0, 1) wzorem

(Tf)(x) =
∫ 1
0
K(x, y)f(y) dy.

Pokazać, że wartościami własnymi T są liczby (nπ)−2, n = 1, 2, . . . ,
przy czym odpowiadająca popdprzestrzeń własna jest jednowymiaro-
wa. Wskazówka: Pokazać, że jeśli funkcja f spełnia Tf = λf dla
λ 6= 0, to f jest klasy C∞ i spełnia równanie λf ′′ + f = 0 z wa-
runkami f(0) = f(1) = 0. Przypadek λ = 0 rozpatrzyć oddziel-
nie. Zbadać rozwiązalność względem f równania Tf − λf = g dla
g(x) =

∑∞
n=1 cn sin πx.

∗58. Niech A,B będą operatorami ograniczonymi na przestrzeni Hilberta H
oraz Im A ⊂ Im B. Pokazać, że jeśli B jest zwarty, to A też jest zwarty.

59. Niech {en}∞n=1 będzie bazą ortonormalną w przestrzeni Hilberta H. Po-
kazać, że operator T jest zwarty wtedy i tylko wtedy, gdy

lim
n

sup{‖Tx‖ : ‖x‖ = 1, x ⊥ e1, e2, . . . , en} = 0.
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60. Pokazać, że jeśli T jest zwartym operatorem w przestrzeni Hilberta,
to równanie Tx = x ma niezerowe rozwiązanie wtedy i tylko wtedy,
gdy równanie T ∗x = x ma niezerowe rozwiązanie. Pokazać, że obie
przestrzenie rozwiązań mają ten sam wymiar.

61. Niech T będzie zwartym operatorem na przestrzeni Hilberta H. Poka-
zać, że dla dowolnej niezerowej wartości własnej λ operatora T każda
z podprzestrzeni ker(λI − T )n ma skończony wymiar, oraz wymiary te
są wspólnie ograniczone przez liczbę zależną tylko od λ.

62. Operator A ­ 0 jest zwarty. Pokazać, że A1/2 też jest zwarty. Pokazać,
że jeśli 0 ¬ B ¬ A, to również B jest zwarty.

63. {ϕn}∞n=1 jest bazą ortonormalną w H. Dla operatora dodatniego A ∈
B(H) określamy ślad wzorem

trA =
∞∑
n=1

〈Aϕn, ϕn〉.

Pokazać, że trA nie zależy od wyboru bazy ortonormalnej. Udowodnić,
że

(a) tr (A + B) = tr A + tr B.

(b) tr (λA) = λtr A, λ ­ 0.

(c) tr (UAU−1 = tr A dla dowolnego operatora unitarnego U.

(d) Jeśli 0 ¬ A ¬ B, to tr A ¬ tr B.

64. Operator A ∈ B(H) nazywamy operatorem śladowym jeśli tr |A| <∞.
Rodzinę operatorów śladowych oznaczamy symbolem C1. Pokazać, że

(a) Jeśli A ∈ C1, to λA ∈ C1.
(b) Jeśli A ∈ C1, to A∗ ∈ C1.
(c) Jeśli A ∈ C1 i B ∈ B(H), to AB ∈ C1 oraz BA ∈ C1. Wskazówka:

Wykorzystać zasadę minimaksu.

(d) Jeśli A,B ∈ C1, to A + B ∈ C1. Wskazówka: Użyć rozkładu po-
larnego dla operatorów A, B i A+B.
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65. Pokazać, że każdy operator śladowy jest zwarty. Wykazać, że operator
zwarty A jest śladowy wtedy i tylko wtedy, gdy

∑
λn < ∞, gdzie λn

jest ciągiem liczb singularnych operatora A.

66. Pokazać, że funkcja ‖A‖1 = tr|A| jest normą na C1. Pokazać, że C1 z
normą ‖ · ‖1 jest przestrzenią Banacha.

67. Niech C2 oznacza rodzinę operatorów Hilberta-Schmidta. Pokazać, że
jeśli A,B ∈ C2, to AB ∈ C1. Pokazać, że każdy operator śladowy jest
iloczynem dwu operatorów Hilberta-Schmidta.

68. Pokazać, że dla A ∈ C1 i dowolnej bazy ortonormalnej {ϕn}∞n=1 sze-

reg
∞∑
n=1

〈Aϕn, ϕn〉 jest zbieżny i jego suma nie zależy od wyboru ba-

zy. Określmy tr A =
∞∑
n=1

〈Aϕn, ϕn〉. Pokazać, że tr AB = tr BA, gdzie

A ∈ C1 i B ∈ B(H) lub A,B ∈ C2.

69. Pokazać, że jeśli A ∈ C1, to
∞∑
n=1

|〈Aϕn, ϕn〉| < ∞ dla dowolnej bazy

ortonormalnej. Czy prawdziwa jest implikacja odwrotna ? Pokazać, że

jeśli
∞∑
n=1

‖Aϕn‖ dla pewnej bazy ortonormalnej, to A ∈ C1.

∗70. P i Q są rzutami ortogonalnymi w przestrzeni Hilberta takimi, że P−Q
jest operatorem śladowym. Pokazać, że tr (P−Q) jest liczbą całkowitą.
Wskazówka: P i Q są przemienne z (P −Q)2.
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