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Definicja 1.1. Algebrg nazywamy przestrzen liniowg nad C z mnozeniem.

Mnozenie jest rozdzielne wzgledem dodawania (obustronnie) oraz

a(ry) = (ax)y = z(ay), a€C

Definicja 1.2. Algebrg unormowang nazywamy algebre z normg spetniajgcg

warunek podmultiplikatywnosci

[yl < [l lyll

Jesl algebra jest zupelna, to nazywamy jq¢ algebrq Banacha.

*Wyklad opracowany na podstawie notatek Wiktora Malinowskiego
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Przyktady

(a) C[0,1]
[fllee = max |f(z)|, (fg)(x) = f(x)g(x)

0<z<1

tzn. mnozenie jest punktowe. Przedzial [0, 1] mozna zastapi¢ zwarta
przestrzenia topologiczna.

(b)
Co®) = {f € CR : lm f() =0}, [|fllo = max|f(x)

(¢) B(H) przestrzen operatoréw ograniczonych na przestrzeni Hilberta z

norma operatorowa: [|[AB| < ||A]l||B]|

Definicja 1.3. Algebre nazywamy przemiennq, jesli mnozenie jest przemien-
ne. Element e w algebrze A nazywamy jednosciq, jesli

eca=ae=a, a€A

Twierdzenie 1.4. Kazdg algebre unormowang (algebre Banacha) mozna
rozszerzyc¢ do algebry unormowanej (algebry Banacha) z jednoscig.

Dowdd. Niech A bedzie algebra Banacha bez jednosci. Okreslmy mnozenie
w przestrzeni liniowej A = A ® C wzorem

(a®N)(bdp) = (ab+ \b+ pa) ® Au

Okredlamy normg [la @ A|| = [[a|| +|A[. Wtedy element 0@ 1 jest jednoscia w
A, bo
Oel)(ecdA)=adA=(adN)(0@1)

Norma jest podmultiplikatywna, bo

(@@ )@ p)l| =llab+ b+ pall + Ayl
<l Ioll + [ATION 4 [l llall + [A] |l
=(llall + ADIBI + ul) = lla @ A0 © 4l

Jesli A jest zupelna, to réwniez A jest zupela. O

Przyktady
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(a) co - przestrzen ciagéw o wyrazach zespolonych zbieznych do 0, z norma
|z|| = sup,, |x,|. Wtedy

¢o = c={x : limz, istnieje}
n

(b) Co(R). Wtedy

—~—

ColR) = {f € C(R) : lim_f(x) = lim f(x)}

T—00

W obu przyktadach normy w A sa réwnowazne normom || ||s.
Jesli A # {0} jest algebra Banacha z jednoscia e, to e # 0 oraz

lell = fle-ell < llel[ flel]

zatem || > 1.
Odtad nie bedziemy rozwazaé algebr zerowych A = {0}.

Twierdzenie 1.5. Dla algebry Banacha z jednosciq istnieje norma na A
rownowazna normie wyjsciowej, dla ktorej norma jednosci wynosi 1.

Dowdd. Dla x € A rozwazamy odwzorowanie L, : A — A okreslone wzorem
L,y = xy. Wtedy L, jest operatorem liniowym na A oraz

ILeyll = llzyll < [zl [yl
Zatem L, jest operatorem ograniczonym. Mamy

]| = [| Lael] < [[La]l [[e]]
Zatem ||L|| = |le]|~t|z||. Tzn.

lell =l < Nl Zall < [l (1.1)

Okreslmy ||z||" := ||L.||. Wzbr okresla norme. Sprawdzimy podaddytywnos$é
i podmultiplikatywnosc.

7+ yll" = Loyl = 1La + Lyll < [Lall + 1Ly [l = [l + Iyl
lzyll" = [[Layll = 1 LaLyll < ILall 1Lyl = =l Tyl

Ponadto |le||' = || Le|]| = ||I|| = 1. Na podstawie (|1.1)) normy || || oraz || || sa
réwnowazne. L
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Przyktady

(a)

A={feC(D) : f— holomorficzna w int D},
If]l = max{[f(z)] : [2] =1}

A nazywamy algebrg dyskowa. Funkcja stale rowna 1 jest jednoscig.

A = (Y(Z). Dla a = {a,}_. mamy [la]| = Y |a,|. Okreslamy

n=—oo

mnozenie (splot) wzorem

o0

c=axb, c¢,= Z b1

k=—00

Wspélezynniki ¢, sa dobrze okreslone bo ciag b, jest ograniczony. Mno-
zenie jest przemienne. Reguta mnozenia powstata poprzez analogie z
mnozeniem szeregéw Laurenta w 0.

(5 0} (£ 05) - (£ a)em § wi

n=-—00 n=—00 n=—o00 k=—00

Sprawdzamy podmultiplikatywnosé normy.

oo oo oo oo
lell = > 1> awbai| < Do D faw [basl
n=—00 |k=—o0 n=—00 k=—o00
oo oo
= > lal D2 [ba—kl = lla]l[|5]
k=—00 n=-—0oo

czyli ||a % b]| < ||al| ||b]|. Ciag e = dp(n) jest jednoscia.

Definicja 1.6. W algebrze A z jednoscia e element x nazywamy odwracalnym
jesli istnieje element y € A spelniajocy xy = yxr = e. Element y nazywamy

odwrotnym do x 1 oznaczamy symbolem x=".

1

Element odwrotny do x, o ile istnieje, jest jedyny.
Symbolem G(A) oznaczamy grupe elementéw odwracalnych w algebrze
Banacha A.

Twierdzenie 1.7. Dla algebry Banacha z jednoscia G(A) jest otwartym pod-
zbiorem w A. Ponadto odwzorowanie x — x~1 z G(A) w siebie jest ciggle.



Algebry Banacha 5

Dowéd. Dla y # 0 okredlamy y° = e. Jedli ||y|| < 1, to element e — y jest
odwracalny, bo

[e o]

(e—y)> y"=> y'(le—y) =Dy —> y=e
n=0 n=0 n=0 n=1

Zatem jedli |le — z]] < 1 to element x jest odwracalny, bo z = e — y dla
y=e—x.

lz=H =20y < Do il = =
D A T I e

Zatézmy, 7e 19 € G(A). Dla x € A mamy z = x¢(z; ‘). Wystarczy pokazad,
ze x5 'z jest odwracalny jesli 2 jest dostatecznie blisko xo. Mamy

le = zg ] = 2o (zo — 2)|| < 2 || [l — 2ol

Jesli ||z — o] < ||zg ]| 7Y, to element x5 'z jest odwracalny, co koficzy dowdd
otwartoéci. Ponadto 271 = (x5'2) tay!. Przy zalozeniu ||z — x| < [|ag ]|~
otrzymujemy

o™ 1 = [l (g ) " g | < g (g ")~

S Tl I
T= e =y el ~ 1=l e — o

[El

Sprawdzamy ciagto$é. Niech z, o € G(A). Wtedy

=gl =l (o — @)z < T gl — ol

[l

1= [l [} Iz — ol

2

< [ = ol

]

Definicja 1.8. Dla elementu x € A okreslamy spektrum
o(z) ={A € C : Xe — z jest nieodwracalny }
Zbiorem rezolwenty dla x oznaczamy o(x) = C\ o(z), czyli

o(x) ={A € C : Xe — z jest odwracalny}
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Przyktady

(a) A = M,(C)- macierze kwadratowe wymiaru n X n z norma operatorowa
na C", z normg euklidesowa. Wtedy

0(A) ={ e C : det(A\ — A) =0}
czyli o(A) jest zbiorem wartosci whasnych.
(b) A=C[0,1]. Dla f € C0,1] mamy
o(f) ={reC: flx) #X 0<z <1} =C\ f([0,1])
(c) Algebra dyskowa A(D). Dla f € A(D) zachodzi o(f) = f(D).
Twierdzenie 1.9.

(a) Dla elementu x algebry Banacha z jednoscia istnieje granica lim 2™ ||*/n
oraz

inf fla”|/* = lim [|o"[[/" = sup{|A| : A € o(x)}
(b) o(x) jest zwartym i niepustym podzbiorem w C.
Dowdd. Dow6éd mozna przeprowadzié podobnie jak dla przestrzeni B(X),

gdzie X jest przestrzeniag Banacha. O]

Zauwazmy, ze o(x) C {\ : |\ < ||z]|}. Istotnie dla [A] > ||z|| mamy |A\"'z| <
1, wiec element
e —x = Ne—\"1n)

jest odwracalny.
Twierdzenie 1.10. Dla dowolnych elementow x,y algebry Banacha z jed-
nosciqg mamy

o(zy) U{0} = o(yx) U{0}

Uwaga. Wzor o(zy) = o(yz) nie musi by¢ spetniony. Na przyktad roz-

wazmy operator S : (2(Ny) — ¢?(Ny) okreslony wzorem

S(zo, x1,...) = (x1,22,...)
Wtedy

S*(l’o, L1,y ) = (O, Lo, L1,y . - )

Mamy SS* = I ale S*S jest rzutem na &y . Zatem o(SS*) = {1}, 0(S*S) =
{0,1}.
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Dowéd. Rozwazmy liczbe niezerowag A\ ¢ o(xy). Chcemy pokazaé, ze \ ¢
o(yz). Bez straty ogdlnosci mozemy przyjaé, ze A = 1. Chcemy znalezé wzor
na (e — yx)~! za pomoca (e — xy)~'. Nieformalnie mamy

(e—yo) ' = S (ya) = ety [i(acy)"] r=etyle—wy) e

n=0 n=0

Sprawdzimy, ze faktycznie element e+ y(e — xy) 'z jest odwrotny do e — yu.

(e —yz)le+yle—ay) 'zl =e—yz+yle — ay) 'z — yay(e — ay) 'z

= e—yr+y [(e —zy) Tt —ayle — a:y)_l} r = e—yr+r(e—xy)(e—zy) 'x =c

O
Whniosek 1.11. Nie istniejg elementy x,y € A spelniajgce xy — yr = e.
Dowod. Zatézmy, ze xy — yxr = e. Wtedy
o(zy) =o(yr+e) =o(yr)+1

Stad
[o(yx) + 1] U{0} = o(zy) U{0} = o(yz) U{0}

Oznaczmy C' = o(yz). Zbiér C jest niepusty, ograniczony i spetnia (C' + 1)U
{0} = CU{0}. Otrzymujemy sprzecznos¢. Rzeczywiscie jesli C' zawiera liczbe
niecatkowitg ¢ lub nieujemng liczbe catkowity, to ¢ +n € C dla wszystkich
n. Zatem C' jest skonczonym podzbiorem ujemnych liczb catkowitych. Niech
¢ oznacza najmniejszg z nich. Wtedy najmniejsza liczbg w C' 4 1 jest liczba
¢+ 1, co prowadzi do sprzecznosci. O]

Przyktad Dla przestrzeni funkcji rézniczkowalnych w przedziale [0, 1]
mamy

d d
%(tf) —tgf =f

Zatem operatory (M f)(t) = tf(t) oraz D f = df /dt spelniaja DM —MD = I.

Twierdzenie 1.12 (Gelfand-Mazur). Jesli algebra Banacha A jest pierscie-
niem z dzieleniem, tzn. kazdy niezerowy element jest odwracalny, to A jest
izomorficzna z C.
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Dowdd. Zalézmy, ze A jest cialem. Dla a € A mamy o(a) # (). Niech \ €
o(a). Tzn. element Ae — a jest nieodwracalny. Stad Ae —a = 0, czyli a = Xe.
Zatem A = Ce. m

Uwaga Rozwazmy algebr¢ A, ktéra jest przestrzenia nad ciatem liczb
rzeczywistych. Rozwazamy kompleksyfikacje A = A @& A zadana poprzez
mnozenie

(@ + i) (2" +y/i) = (22’ — yy') ® (2 + 2'y)i
Wtedy A jest algebra zespolong, poprzez okreslenie
0@ i) (2 DY) = (—y) & i

Dla kazdego element = € A jego spektrum w A jest niepuste, tzn. element
x — (a + bi)e jest nieodwracalny dla pewnych a,b € R. Wtedy element

(x —a)* +b%e = [z — (a +bi)e] [z + (a + bi)e]
jest nieodwracalny. Zatem
(z—a)*+b%e=0
Jesli b= 0, to x = a. W przeciwnym wypadku

x — ae?

b +e=0

Réwnanie 22 +e = 0 ma dwa rozwiazania. Rzeczywidcie, jesli 22 +e = y?+e =
0, to
(—y)x+y)=0
W ostattnim wzorze wykorzystalismy przemiennosé algebry. Uzyskujemy x =
y lub x = —y. Oznaczmy symbolem f jedno z tych rozwiazan. Wtedy
T — ae
b

stad x = aetbf. Zatem A = C, albo A = R, o ile b = 0 dla kazdego elementu
x € A

=4f

Definicja 1.13. Podprzestrzen I w algebrze A nazywamy prawostronnym
(odpowiednio lewostronnym) ideatem, jesli ab € I (odpowiednio ba € I) dla
wszystkich a € A oraz b € 1. Podprzestrzen nazywamy ideatem dwustronnym,
jesli jest ideatem zaréwno prawo jak i lewostronnym.
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Przyktady
(a) Dla algebry dyskowej podprzestrzen
I={f€AD): f(0) =0}
jest ideatem dwustronnym.

(b) W algebrze B(H) operatory zwarte, operatory Hilberta-Schmidta oraz
operatory $ladowe sg idealami dwustronnymi.

(c) Dla algebry A = (!(Z) podprzestrzen

[e.e]
]:{(an) : Z an:()}
n=—o0
jest ideatem dwustronnym. Rzeczywiscie, teza wynika ze wzoru

S e (£ ) (S 1)

n=—oo n=—0o0 n=—0oo

Twierdzenie 1.14. Niech A bedzie algebrg Banacha (niekoniecznie z jedno-
$cig) oraz I domknietym ideatem dwustronnym w A. Wtedy algebra ilorazowa
A/I jest algebrg Banacha z normg

la]ll = inf fla + ull

Jesli A posiada jednosé e oraz I C A, to [e] jest jednosciq w AJI oraz ||[e]]| =
1 o ile|le]| = 1.

Dowdd. 7 kursu Analizy Funkcjonalnej 1 wiemy, ze A/I jest przestrzenia
Banacha z normg okre$long w tresci twierdzenia. Z kursy z algebry wiadomo,
ze A jest algebra z dzialaniami

[a] +[b] = [a+ 0], [a] - [b] = [a- b], Ala] = [Ad]
Pozostaje sprawdzi¢ podmultiplikatywnosé normy. Mamy
I[al[6]]] = ||[ab]]| = 113 lab + ul| < iné llab 4+ aw + bv + vw||
= nf fl(a +v)(b+w)l| < inf fla+ o[ {|b+w]| = [[a]|l | [b]]

Z kursu algebry wiadomo, ze jesli e jest jednoscia w A, I C A, to [e] jest
jednoscia w A/I oraz [e] # 0. Mamy ||[e]|] = inf,es |le + v]| < [le|| = 1. Ale
I[e]ll > 1, zatem ||[e]|| = 1. O
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2 Teoria Gelfanda

Definicja 2.1. Ideal I (lewo, prawo-, dwustronny) nazywamy maksymalnym,
jesli I jest wlasciwym podzbiorem A oraz nie istnieje ideal J (lewo, prawo-,
dwustronny) taki, ze I C J C A.

Twierdzenie 2.2. Kazdy ideal maksymalny w algebrze Banacha z jednoscig
jest domkniety.

Dowdd. Zalézmy, ze I jest ideatem maksymalnym. Wtedy TNG(A) = 0, czyli
I c A\ G(A). Poniewaz drugi zbiér jest domkniety, to I € T C A\ G(A).
Zbiér T jest ideatem, wiec z maksymalnoéci otrzymujemy I = 1. O

Definicja 2.3. Funkcje ¢ : A — C nazywamy homomorfizmem algebry A w
algebre C jesli ¢ jest funkcjonatem liniowym oraz p(ab) = ¢(a)p(b).

Uwaga. Dla homomorfizmu ¢ : A — Czbiérkerp ={a € A : p(a) =0}
jest ideatem dwustronnym. Rzeczywiscie, jesli ¢(a) = 0, to

p(ab) = @(a)p(b) = 0, p(ba) = p(b)p(a) =0

Twierdzenie 2.4. Kazdy homomorfizm algebry Banacha w C jest ciggly.
Ponadto norma tego odwzorowania liniowego nie przekracza wartosci 1.

Dowdd. Zatézmy, ze ¢ : A — C jest niezerowym homomorfizmem. Istnieje
element a taki, ze p(a) # 0. Jesli A ma jednosé e, to p(a) = ¢(e)p(a). Zatem
o(e) = 1. Jedli b jest elementem odwracalnym, to

1=p(e) = @(b'b) = e(b~")p(b)

Stad ¢(b) # 0. Dla dowolnego elementu a € A mamy pla — p(a)e] = p(a) —
o(a) = 0. Zatem element a — p(a)e nie jest odwracalny. Czyli

pla) e o(a) C{A e C : Al <lall}

Stad otrzymujemy [p(a)| < |[a]|, co pociaga ciagtos¢ ¢ oraz ||| < 1.
Jesli A nie ma jednosci, to rozwazamy A = A©C oraz p(a®A) = ¢(a)+A.
Wtedy ¢ jest homomorfizmem dla A. Rzeczywiscie
Plla® ) (6@ p)]

e(ab 4+ \b+ pa) + A\
p(a)p(d) + Ap(b) + pp(a) + A
= [p(a) + Al [p(b) + p] = Pla © N)@(b D p)
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Z pierwszej czeéci dowodu wynika, ze @ jest ciagly zatem ¢ = @ |40} tez
jest ciagly.

Jesli A ma jedno$¢, |le|| = 1 oraz ¢ # 0 to, p(e) = 1 = |le||. Zatem
el = 1. O

Definicja 2.5. Niezerowy homomorfizm algebry Banacha w C nazywamy
charakterem.

Twierdzenie 2.6 (Gelfand-Mazur). Istnieje wzajemnie jednoznaczna odpo-
wiedniosé pomiedzy charakterami przemiennej algebry Banacha z jednoscia a
tdeatami maksymalnymi tej algebry, poprzez przyporzgdkownaie charakterow:
jego jadra.

Dowdéd. Rozwazmy charakter ¢. Niech J = ker p. Wtedy J jest ideatem.
Mamy
a=[a—pla)e] +¢a)e C J & Ce

Zatem A = J @ Ce. Stad J jest ideatem maksymalnym, bo J jest podprze-
strzenig kowymiaru 1.

Odwrotnie, niech J bedzie idealem maksymalnym. Wtedy A/J jest al-
gebra Banacha z jednoscia. Z maksymalnosci J wynika, ze A/J jest ciatem.
Rzeczywiscie, zalézmy niewprost, ze 0 # [a] € A/J oraz [a] jest nieodwracal-
ny. Rozwazmy J = J 4+ aA. Wtedy J jest ideatem oraz J - J,bo a e J, ale
a ¢ J. Z maksymalnosci J otrzymujemy J=A=J+aA. W szczegdlnosci
e = j + ab, dla pewnych elementéw j € J oraz b € A. Zatem [e] = [a] [b]. To
oznacza, ze element [a] jest odwracalny w A/J, co prowadzi do sprzecznosci.

Z poprzedniego twierdzenia Gelfanda-Mazura wynika, ze A/J = Cle].
Rozwazmy odwzorowanie

A-L 4175
gdzie j jest odwzorowaniem ilorazowym j(a) = [a] oraz )(\[e]) = A. Zlozenie
jow: A— C jest charakterem oraz ker(j o) = J, (jop)9e) = 1.

Zatézmy, ze istnieja dwa charaktery o i @9 takie, ze ker ¢p; = ker p,.
Element a — ¢;(a)e lezy w ker ¢ = ker o. Zatem

0 = pola — pi(a)e] = p2(a) — ¢1(a)

Czyli 1 = ps. O]
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Twierdzenie 2.7. Kazda przemienna algebra Banacha z jednoscig posiada
charakter.

Dowaod. Jesli A jest ciatem, to A = Ce. Wtedy Ae — A jest charakterem.
Zatozmy, ze A nie jest cialem. Dla niezerowego elementu nieodwracalne-
go a € A zbior aA jest idealem wlasciwym, bo e ¢ aA. Rozwazmy rodzine
wszystkich wtasciwych ideatow zawierajacych aA. Rodzina jest niepusta i
uporzadkowana przez inkluzje. Rozwazmy laiicuch w tej rodzinie. Zaden z
idealéow tancucha nie zawiera e, zatem suma mnogosciowa tancucha (ktéra
jest ideatem) rowniez nie zawiera e. To oznacza, ze kazdy tancuch jest ograni-
czony (przez sume mnogosciowa ideatéw tancucha). Z lematu Kuratowskiego-
Zorna wynika, ze rodzina zawiera element maksymalny. O

Whniosek 2.8. W przemiennej algebrze Banacha z jednoScig element a jest
odwracalny wtedy i tylko wtedy, gdy p(a) # 0 dla kaZdego charakteru ¢ alge-
bry.

Dowdd. (=)

Z dowodu poprzedniego twierdzenia wynika, ze dla elementu nieodwra-
calnego a ideal aA jest zawarty w pewnym ideale maksymalnym /. Niech ¢
oznacza charakter odpowiadajacy idealowi I, tzn. ker p = I. Wtedy ¢(a) = 0.
(=)

Jesli a jest odwracalny, to dla dowolnego charakteru ¢ mamy

1=(e) = plaa™") = p(a)p(a™")
Zatem p(a) # 0. =

Uwaga. Algebra nieprzemienna moze nie mie¢ charakteréw. Np. niech

A = M, (C) tworzy algebre z naturalnymi dzialaniami i norma operatorowa

|Al| = [max ||Az||2. Wtedy ||I|| = 1. Nich e;; oznacza macierz z wyrazem
z|o=

rownym 1 na przecieciu i-tego wiersza i j-tej kolumnie, i zerowymi wyrazami
w pozostatych miejscach. Wtedy

ejeij =0, eyeji =€y, 1F#]
Dla charakteru ¢ otrzymujemy

0= p(esje) = pley)” = pley) =0, i
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Zatem
plein) = pleji)plei) =0, i#j=0
Otrzymujemy

Ll=p()=pler1+ex+...+em) =plerr) + @len) + ...+ vlenm) =0

co prowadzi do sprzecznosci.
Przyktad

Rozwazmy A = (*(Z) ze splotem. Chcemy wyznaczy¢ wszystkie charak-
tery dla A. Dla 6, (k) = 0, mamy 0, * 0, = Opm, 1, M € Z. Rzeczywiscie

(30,00 = 32 0,3l — ) =

k=—o0

{0 n;«él—m:{o l#£n+m

1 n=0l—-m 1 I=n+m

W szczego6lnosei 67" = 6,, dla n € N. Element ¢y jest jednoscia, bo

e}

(axdo)(l) = D alk)do(l— k) =q

k=—00

czyli a * 09 = a. Wzér wynika tez z o, *x o9 = d,,. Poniewaz &1 *x d_; = dg, to
((51)_1 = (571. St@d (51)71 = 571 dlan e Z \ {O}
Rozwazmy charakter o na ¢*(Z). Wtedy

@(0n) = ©((61)™") = [p(01)]", n#0

Oznaczmy A = ¢(01). Wtedy ¢(0,) = A" dla n # 0. Wiemy, ze ||¢| = 1.
Zatem

(X' < llelll|onlls =1, n#0
W szczegblnosci dla n = +1 otrzymujemy |[A| < 1 oraz |A|7! < 1, czyli [\ =
1. To oznacza, ze A = €'t dla pewnej liczby 0 < t < 27. Inne wyjasnienie: dla

|A| # 1 element 0; — Ady. Rzeczywiscie dla A = 0 mamy 07 * 6_; = d. Dalej,
dla A # 0 mamy

51 — >\(50 = —)\((50 — /\_1(51) = (51 * ((50 — /\(5_1)

Zatem dla |A| > 1 z pierwszej réwnosci wynika odwracalnosé. Z kolei druga
réwnosc pociaga odwracalnosé dla |A| < 1. Reasumujac p(d,) = €™ dla
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n € Z.Dlaa € (*(Z) mamy a = Y _ a,0,, przy czy szereg jest zbiezny w

przestrzeni ¢'(Z). Poniewaz kazdy charakter jest ciagly, to

[e.9]

pla) = Y anp(d Z ane’

n=-—oo n=—oo
Mozna sprawdzi¢, ze dla kazdej wartosci 0 <t < 27
o0
Z a eint
n
n=—00

jest charakterem. Rzeczywiscie ¢, jest ciaglym funkcjonatem liniowym, bo
|ee(a)] < llafy. Mamy

n=—oo \k=—o0

axb= Z (Z akbnk)(Sn

Zatem

wi(a*b) = Z ( Z akbn_k) et = Z ( Z akeiktbn_kei("_k)t)
n=—oco \k=—o0 n=—00 \k=-o00

Poniewaz podwdjny szereg jest bezwzglednie zbiezny, to mozna zmieni¢ ko-

lejno$¢ sumowania. Otrzymamy

(@ D) Z ae' ( Z by e’ > = ¢i(a)pe(b)

k=—0o0 n=-—00

Z twierdzenia Stone’a-Weierstrassa przestrzen kombinacji liniowych funk-
cji {e"} ez tworzy gesta podalgebre A w Cpe,[0, 2] w normie jednostajne;.
W szczegdlnosel ta przestrzen jest gesta w Cper[0, 27 w normie L?(0, 27), bo
I fll2 < |If]l2 dla f € Cphe[0, 27]. Poniewaz Cpe,[0, 27] jest gesta w L*(0, 2m),
to przez przechodnio$¢ przestrzen kombinacji liniowych funkcji {€™},cz jest
gesta w L2(0,27). Uklad {e™™},cz jest ortonormalny w L?(0,27), bo

27 27
. . 1 . . 1 ,
<€znt’ ezmt> _ 27 /eznte—zmt dt = 27‘/61(71—771)15 dt
T 0 T 0
1 n=m 1 n=m
— 21 =
o7 gln—m)t n#m 0 n#m
0

Zatem uktad ten jest bazg ortonormalna w L?(0, 27).
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Twierdzenie 2.9 (Wiener). Niech [ bedzie funkcjq ciggle o okresie 2w,

dla ktorej szereg Fouriera, czyli Z f (n)e™ jest bezwzglednie zbieiny. Jesli

n=—oo

ft) # 0 dla wszystkich wartosci t, to szereg Fouriera funkcji 1/f jest tez
bezwglednie zbiezny.

~

Dowdd. Dla funkcji f wspotezynniki f(n) sa okreslone wzorem

1

. 2T . .
f(n) = %/0 f@)e ™ dt = (f, ™) 120,2n)

o0
7 zalozenia liczby a, = f(n) spelniaja Z la,| < co. Tzn. a = {an}tnez

lezy w (1(Z). Zatem szereg

0 .

Z anemt
jest jednostajnie zbiezny i jego suma jest funkcja ciagta o okresie 27. Otrzy-
mujemy

f(t) — Z aneint

przy czym réwno$é jest punktowa (nie tylko w L?(0,27)), bo szereg jest
jednostajnie zbiezny a funkcja f jest ciagla o okresie 2. Zalozenie f(t) # 0,
dla 0 < t < 27, oznacza, ze ¢(a) # 0 dla kazdego charakteru algebry ¢!(Z).

Zatem element a jest odwracalny w ((Z). Czyli istnieje ciag b € ¢(Z) taki,
ze ax b= 9y. Wtedy

1= ¢y(ab) = gyla)p(b) = ( i anemt> ( i bne““> = f(t)g(t)

n=—oo n=—oo

gdzie g(t) = Z b,e™. 7 jednostajnej zbieznosci szeregu wnioskujemy, ze

n=—oo

g(n) =by,. O

Twierdzenie Banacha-Alaoglu moéwi, ze kula jednostkowa przestrzeni A*
(sprzezonej do A) jest zwarta w x-stabej topologii. Jesli przestrzen A jest
o$rodkowa, to x-staba topologia na kuli jednostkowej jest metryzowalna. Wte-
dy zwartos¢ oznacza, ze kazdy ciag zawiera podciag x-stabo zbiezny.
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Definicja 2.10. Spektrum algebry Banacha A nazywamy zbior wszystkich
charakterow algebry A i oznaczamy symbolem Sp(A).

Twierdzenie 2.11. Dia algebry Banacha z jednoscig Sp(A) jest domknie-
tym podzbiorem kuli jednostkowej w *-stabej topologii (sfery jednostkowej jesli
lle|| = 1). W szczegdlnosci spektrum Sp(A) jest zwarte w *-stabej topologii.

Dowdd. Charaktery sa funkcjonatami liniowymi o normie nie przekraczaja-
cej 1. Stad Sp(A) C Aj. Sprawdzamy domknietosé. Uzyjemy ciagéw uogdl-
nionych. Niech ¢, € Sp(A) bedzie ciagiem uogélnionym zbieznym x-stabo
do . To oznacza z definicji, ze dla dowolnego elementu z € A mamy
©Ya(T) — o(x). Wiemy, ze wtedy ¢ € Af. Trzeba sprawdzié, ze ¢ jest
charakterem. Dla z,y € A mamy

p(ry) = Palry) = pa(r)paly) — w()e(y)

czyli o(xy) = @(x)p(y). SkorzystaliSmy z faktu, ze jesli ciggi uogdlnione
liczb t, oraz s, sa zbiezne do t i s, to ciagg uogdlniony t,s, jest zbiezny do
ts (zadanie). Ponadto ¢(e) = lim, @, (e) = 1. Zatem ¢ # 0.

Nastepujacy dowdd nie korzysta z ciggdédw uogoédlnionych . Niech ¢ €
A\ Sp(A). Tzn. ¢ = 0 lub ¢ nie jest funkcjonalem multiplikatywnym.
Rozwazmy drugi przypadek. Wtedy istnieja elementy a,b € A takie, ze
p(ab) # (a)p(b). Dla liczby € > 0 zbiér

Ue={¢ € A" : [¢(a) —p(a)] <&, |(b) = p(b)] <&, [¢(ab) — p(ab)| < e}

jest otoczeniem funkcjonatu ¢ w A* w x-stabej topologii. Wtedy U. N A7 jest
otoczeniem ¢ w Aj. Jesli € > 0 jest dostatecznie mate, to ¢ (ab) # ¥ (a)y(b).
Zatem [U. N (A*)1] N Sp(A) = 0.

Dla ¢ = 0 rozwazamy

v={ve4: el <)

Zbiér V jest otoczeniem ¢ = 0. Otrzymujemy v(e) # 1, zatem V N Sp(A) =
0. O

Uwaga. Zbior Sp(A) jest przestrzenia Hausdorffa w x-stabej topologii na
A3, bo A7 jest przestrzenia Hausdorffa w tej topologii.
Niech C'(Sp(A)) oznacza algebre ciagtych zespolonych funkcji na Sp(A).
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Twierdzenie 2.12. Niech A bedzie przemienng algebrg Banacha z jednosciq.
Dla elementu x € A okreslamy funkcje T : Sp(A) — C wzorem Z(p) = ¢(x).
Wtedy Z(Sp(A)) = o(x). Ponadto funkcja T jest ciggla oraz odwzorowanie
~: A — C(Sp(A)) jest homomorfizmem algebr Banacha oraz %] < ||z
Odwzorowanie ~ nazywamy transformatqe Gelfanda.

Dowdd. Niech ¢ € Sp(A). Wtedy ¢(z) € o(x), bo p(x — p(z)e) = 0, czyli
element © — ¢(x)e = © — Z(p)e nie jest odwracalny. Zatem Z(p) € o(x) co
pociaga Z(Sp(A)) C o(z). Dla dowodu odwrotnego zawierania, niech A €
o(x), tzn. element x — Ae nie jest odwracalny. Wtedy istnieje charakter ¢ €
Sp(A), dla ktorego p(z—Ae) = 0. Tzn. A = p(z) = Z(p), czyli A € Z(Sp(A)).
Otrzymujemy wiec o(z) C Z(Sp(A4)).

Odwzorowanie ~: x +— Z jest liniowe z okreslenia ~. Ponadto

zy(p) = p(ry) = p(x)p(y) = 2()7(p)

czyli = jest homomorfizmem.
Pozostaje uzasadni¢ cigglos¢ funkeji

z:Sp(A) —C
Wtasno$¢ wynika z okreslenia topologii na Sp(A). Niech ¢, — x-stabo,

gdzie @q, ¢ € Sp(A). Zatem

Z(pa) = Pa(r) — p(x) =Z(p), z€A

«

To oznacza cigglo$é funkeji  na Sp(A).
Bez uzycia ciagéw uogoélnionych: ustalmy x € A. Sprawdzamy ciaglto$¢
w punkcie ¢ € Sp(A). Dla € > 0 okreslamy

Ue = { € Sp(A) : [(z) — ¢(z)] < e}

Wtedy U. jest otoczeniem punktu ¢ w *-stabej topologii na Sp(A). Dla
¥ € U, mamy
2(¢) = Z(p)| = [¥(z) — p(z)| <€

Przyklad Rozwazmy A = (!(Z). Charaktery maja postac

oo
{an}el _sor— Y. ane™, 0<t<2m

n=—oo
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Oznaczmy \ = e, Tzn.

e}

{an}s o™ Y aX', N =1
Zatem Sp(A) = T jako zbiory. Pokazemy, ze Sp(A) = T jako przestrzenie
topologiczne. Rozwazmy d1. Wtedy 6, : Sp(A) == T, bo d1(px) = r(d1) =
A. Funkcja d; jest ciagtym réznowartosciowym odwzorowaniem z Sp(A) na

T. Zatem §; jest homeomorfizmem. Dla ustalonego ciagu a = {a,}>2
odwzorowanie a(A) = Y a,\" jest transformaty Gelfanda elementu a.

3 Rachunek symboliczny w algebrze Banacha

Twierdzenie Wienera mozna zinterpretowa¢ w nastepujacy sposob: w prze-
miennej algebrze Banacha jesli dla z € A funkcja T nie zeruje sie, to element
x jest odwracalny. Tzn. na element x mozemy nalozy¢ funkcje z — 27 1. Na-
szym celem jest okreslenie dziatania na elementach algebry wigkszej klasy
funkcji ciaglych

Rozwazmy funkcje ciaglta a : [a,0] — A tzn. dlaa < tp < bie > 0
istnieje liczba 0 > 0 taka, ze jesli |t — to] < 0, to ||a(t) — a(to)|| < €. Mozna
udowodnié, ze kazda funkcja ciagla jest jednostajnie ciggta (zadanie). Dla
podziatu P = {to,11,...,t,} przedzialu [a,b] wybieramy punkty posrednie
tj—1 < s; < t; 1 okreslamy sumy

S(P.f)= 30 At £(s)

b
gdzie f : [a,b] — A. Celem jest okreslenie catki [ f(t)dt. Symbolem d(P) =
max <<, At; oznaczamy srednice podziatu. ’

Lemat 3.1. Dla dwu podziatow Py i Py spetniajacych d(Pr) < 6 oraz d(Ps) <

0 mamy

1S(Py, f) = S(P2, f)I <2(b—a) sup [|f(t) = f(s)l

[t—s|<d

Dowdd. Niech P3 = Py U Py, z punktami posrednimi typu prawy koniec.
Wtedy

[S(P1) = S(P)I < IS(P1) = S(Ps)|| + 15 (Ps — S(P2|l
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Pokazemy, ze

[1S(P1) = S(Ps)| < (b—a) sup [If(t) = f(s)]l

[t—s|<d

Punkty {t] k}Z o 0znaczaja punkty podziatu Ps stanowiace podzial przedzia-
tu [t;_1,t;]. Mamy

n kj
S(Pl) ZAthJ ZZA]kf jk
j=1k=1
n kj
=D Atulf(ss) = ftin)]
Jj=1k=1
k;
bo At;), = At;. Poniewaz s;, tjx € [tj_1,;], to
k=1

1f(s5) = F(tiu)ll < sup [[f(t) = F(s)]

[t—s|<d

Stad wynika oszacowanie. Podobnie otrzymujemy

1S(Ps) = S(Po)|| < (b—a) sup [[f(t) = f(s)]

[t—s|<d
[

Whiosek 3.2. Zaléimy, ze funkcja f : [a,b] — A jest ciggla. Niech P,
oznacza cigg podziatow takich, ze d(P,) — 0. Wtedy cigg S(P,) jest zbieiny.

Dowdd. 7 lematu ciag S(P,) spelnia warunek Cauchy’ego, bo

1S(Pr, f) = S (P Il < 2(b—a) sup (&) = ()]

[t—s|<max{d(Prn),d(Pm)}

Definicja 3.3. Dla funkcji cigglej f : [a,b] — A okreslamy

b

[ 1ty dt=timS(P,, f), d(P.) =0

a
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Catka spehia:
() [1F@)+g@ldt= [ fyde+ [gityar

b
() [Nfe)de = [ f(e)de

a

(c) /bf(t)dt:jf(t)dt+/bf(t)dt, a<c<b
(@ iﬂwm <fwumw

Lemat 3.4. Dia ¢ € A* mamy

b b
w(/ﬂﬂﬁ)=/¢ﬁwﬁ#

Dowdéd. Dla ciagu podziatéw P, takich, ze d(P,) — 0 otrzymujemy

b

b
@ (/f(t) dt) = lim o(S(Pr, f)) = lim S(Py, 0 0 f) = /so(f(t))dt

a

]

Dla krzywej zorientowanej C' klasy C! w plaszczyznie C i funkcji cigglej
f: C — A okreslamy

[1e)dz = [sa@ymd, v:lat—Ccc

Calka nie zalezy od wyboru parametryzacji v(t), bo po natozeniu funkcjonatu
p € A* tak jest (zadanie). Ponadto (zadanie)

w(/ﬂaw)z/puw»w

Catke wzdhuz krzywej C' mozemy okresli¢, gdy krzywa C' jest ciagta, kawat-
kami klasy C', poprzez sume catek wzdtuz fragmentéw krzywej.
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Definicja 3.5. Niech f(z) bedzie funkcjg o wartoSciach w algebrze Banacha
A, okreslong na otwartym obszarze U C C. Mowimy, zZe funkcja f jest holo-
morficzna jesli f(z) posiada pochodng zespolong w kazdym punkcie obszaru
U, tzn. istniejg granice

o) i i TEER G o ) = £2)

h—0 h wW—2z w— z

, zeU

Przyklad Rozwazmy algebre Banacha A z jednoscig. Ustalmy a € A.
wtedy funkcja z — (ze —a)~! dla z € o(a) jest holomorficzna. Rzeczywiscie,
gdy w — z, to (we —a)™! — (ze — a)™! oraz

(we —a)™" = (ze — @)~ = —(w — =) (we — a) " (ze — a)”!
Stad
(we = “)_ul} - i’ze "0 e —a) Mo —a) !
zatem d
T(re—a) = —(ze—a)?

Skorzystaliémy z ciggtosci funkcji w — (we — e)~!. Ta wlasno$é¢ wynika ze
ztozenia funkcji cigglych

w— we — a — (we —a)

Twierdzenie 3.6. Niech C' bedzie prostqg krzywq zamknietq w C. Zatozmy,
ze funkcja f(z) o wartoSciach w A jest okreslona i holomorficzna w obszarze

otwartym U zawierajgcym krzywqg C' oraz obszar ograniczony przez te krzywg.
Wtedy

/f(z)dz:()
c

Dowaéd. Dla ¢ € A* mamy

@(/f(Z)dz) z/go(f(z))dz:()

Poniewaz ¢ jest dowolnym funkcjonalem na A, to / f(z)dz=0. O
c
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Whniosek 3.7. Niech U C C bedzie spéjnym obszarem ograniczonym, ktore-
go brzeg sklada si¢ ze skonczonej liczby prostych krzywych zamknigtych. Dia
funkcji f(2) holomorficznej w obszarze V- zawierajacym U mamy

/f(z) dz=0
oU

Dowdd. Obszar U mozemy podzieli¢ na skonczong liczbe obszarow jedno-
spojnych Uy, Us, ..., U,. Wtedy

/f(z)dz:/f(z)dz+/f(z)dz+...—|—/f(z)dzzo
ou

oy oU3 OUn

[]

Dla algebry Banacha z jednoscia mozemy okresli¢ p(a), gdzie p(z) jest wie-
lomianem. Wtedy (p1p2)(a) = p1(a)p2(a). Mozna rozwazy¢ funkcje catkowita

f(z) =Y 2" izdefiniowaé f(a) = > c,a”. Szereg jest absolutnie zbiezny,
n=0 n=0

bo lim, |c,[Y™ = 0. Zatem ||c,a®|| < |eal|lall™. Wiec 2% |en| |la]|” < oc.
Wystarczy, aby

lim sup | ¢, |/ < —
ol
Jesli f(2) 1 g(z) sa holomorficzne w obszarza otwartym U zawierajacym koto
{z : |z| < |la||} to (fg)(a) = f(a)g(a) w oparciu o mnozenie Cauchy’ego
szeregOw potegowych.

Przyktad. Niech A € M, (C). Zal6zmy, ze A sprowadza sie do postaci
diagonalnej, tzn. A = CDC™!, gdzie D jest macierzg diagonalng z wyrazami
{di}7_, na przekatnej. Dla f : C — C mozemy okresli¢ f(D) jako macierz
diagonalng z wyrazami { f(dy)}?_; na przekatnej. Niech f(A) = Cf(D)C~".
Wtedy (fg)(A) = f(A)g(A), bo

f(A)g(A) = Cf(D)C'Cg(D)C™" = Cf(D)g(D)C™' = C(fg)(D)C™' = (fg)(A)

Dla f = 1 mamy f(A) = Cf(D)C™! = CC™' = I. Z kolei dla f(z) = 2
zachodzi f(A) = CDC™! = A. Funkcja f nie musi by¢ okreslona na C.
Wystarczy, ze znamy jej wartosci na {dy}}_,, czyli na o(A).

Twierdzenie 3.8. Niech C bedzie prostg krzywq zamknietq, kawatkami C1,
obiegajgcq w kierunku dodatnim o(a) dla elementu a € A, lub skoriczong sumg
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takich krzywych, przy czym obszary otoczone przez te krzywe sq roztgczne.

Wiedy
1

e = /(ze—a)_l dz

2w
c
Uwaga Wzor jest podobny do wzoru Cauchy’ego

1—1/dzdz

o) z— 2z
C

gdzie liczba 2 lezy wewnatrz C.

Dowdd. Rozwazmy przypadek C' = C; U Cy. Tzn. o(a) jest zawarte w dwu
obszarach otwartych otoczonych przez te krzywe. Niech Cr oznacza okrag
o $rodku w 0 i promieniu tak duzym, ze krzywa C' lezy wewnatrz kota o
promieniu R. W obszarze otwartym U zawartym pomiedzy C' i Cr funkcja
2+ (ze —a)~! jest holomorficzna, bo obszar jest oddzielony od o (a). Zatem

1 / 1
— [(ze—a)""dz=0
27r26U
Stad
o [Ge—a)y iz = o [(ze—a)
5 | (e —a 2=5 - [(ee—a z
C Cr

Mozna przyjaé, ze R > ||a|. Wtedy

1 1 0
3 /(ze —a) tdz = o / nzzoz_"_la” dz
R Cr

Szereg jest zbiezny jednostajnie na C'r zatem w drugiej calce mozna zmienié¢
kolejnoé¢ catki z sumowaniem. Otrzymamy

0 1
Z —,/z‘”_l dz| a" = ¢
| 2mi

R

Skorzystalismy z faktu, ze jesli f,(z)=f(z) dla z € C, to
/fn(z) dz — /f(z) dz
c 8!

dla funkcji ciagtych f,, f: C' — A. ]



Rachunek symboliczny w algebrze Banacha 24

Whiosek 3.9. Przy zatozeniach poprzedniego twierdzenia, dla funkcji catko-

witej f(z) =Y e,2" spelniony jest wzor
n=0

f0) = 5= [ S e —a) e
C

gdzie f(a) = c,a”.
n=0

N
Dowdd. Wystarczy udowodnié¢ wzér dla wielomianu py(z) = Z cp 2" 1 teze
n=0

uzyskac¢ przez przejécie graniczne, gdy N — oo. Mamy

;Tic/pN(z)(ze —a) tdz = ;mc[[pN(z)e —pn(a)](ze —a) ' dz
—|—pN(a)21_ /(ze —a) tdz

™

Funkcja [py(2)e—pn(a)](ze—a) ™! jest wielomianem zmiennej z ze wspotczyn-
pn(2) — pv(w)

Z—w
uproszczeniu, pierwsza catka jest réwna 0. O

nikami z algebry A, zwigzang z wielomianem z —

. Zatem po

Definicja 3.10. Niech f(z) bedzie funkcjg holomorficzng w obszarze otwar-
tym U, zloZonym ze skonczonej liczby obszarow jednospdinych, zawierajgcym
o(a). Dla C prostej krzywej zamknietej, kawatkami Ct (lub skoticzonej sumy
takich krzywych) obiegajgcej w kierunku dodatnim zbidér o(a) i dla elementu
a € A okreslmy

fla) = 5 [ F)ze —a)dz
C

Uwaga. Definicja f(a) nie zalezy od wyboru krzywej C. Rzeczywiscie
niech Cg bedzie okregiem o promieniu R takim, ze krzywa C' lezy w otwartym
kole o promieniu R. Wtedy funkcja f(z)(ze — a)™' jest holomorficzna w
obszarze pomiedzy C' i Cg. Zatem catka wzdtuz brzegu obszaru wynosi 0,
czyli catki wzdtuz C' i Cg sa réwne.
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Uwaga. Mozna okresli¢ f(a), gdy U sklada sie ze skoniczonej liczby ob-
szaréw spojnych, ale niekoniecznie jednospdjnych. Np. wzor

1/(ze—a)_1dz:e

271

jest spelniony. Rzeczywiscie jedli krzywa C' nie zawiera wewnatrz punktow
z o(a), to calka wzdluz C jest réwna 0, bo funkcja z +— (ze — a)™' jest
holomorficzna w obszarze otwartym ograniczonym przez C.

Twierdzenie 3.11. Jesli funkcje f(2) i g(z) sq holomorficzne w otoczeniu
o(a), to
fla)g(a) = (fg)(a)

Dowdd. Dowdd przeprowadzimy dla przypadku, gdy f i ¢ sa holomorficzne
w otwartym obszarze jednosp6jnym zawierajacym o(a).

Wybierzmy krzywe (byé moze skonczone sumy krzywych) C; i Cy ota-
czajace o(a) takie, ze C lezy w obszarze otwartym ograniczonym przez Cs.
Wtedy

fla)g(a) = — g [ 1) e —a) " dz - [ glw)we —a)™ du
C1 ) Co
= —417r2/f(z) /g(w)(ze—a)_ (we —a) Y dw| dz
1 1C2

= —1/f(z) g(w) [(we —a)™! — (ze —a) ' dw| dz

47r20 zZ—w
_ _1/f(z)(ze—a)_1 /g(w) dw| dz
N 47r20 oWz
1 - f
—Wc/g(w)(we a)™? ) ZEZSU dz| d
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bo /f(z)(z —w) ' dz = 0. Zmiane kolejnosci catkowania mozna uzasadnié
(&5

poprzez natozenie funkcjonatu ¢ € A*. Otrzymujemy wtedy catki z funkcji o
wartosciach w C. O

Niech H(a) oznacza rodzine funkcji holomorficznych w otoczeniu o(a).
Wtedy H(a) tworzy algebre. Odwzorowanie H(a) > f +— f(a) € A jest
homomorfizmem algebr. Ponadto 1 — e oraz z — a.

Lemat 3.12. Niech A bedzie przemienng algebrg Banacha z jednoscig. Dla
a€ A, pe Sp(A) oraz f € H(a) mamy ¢(f(a)) = f(¢(a)). To oznacza, Ze

fla)=foa
Dowod. Mamy
e(f(a)) = (;Ti/f(z)(ze —a)? dz)
C
Y e

Z lematu otrzymujemy
Twierdzenie 3.13. Dia a € A oraz f € H(a) mamy o(f(a)) = f(o(a)).

Twierdzenie 3.14 (Wiener-Lévy). Zalozmy, ze funkcja o okresie 2w ma

absolutnie zbieiny szereg Fouriera, tzn. f(x) = che’m oraz Z len| < oc.
Niech h(z) bedzie funkcjg holomorficzng w otwartym otoczniu zbioru warto$ci
funkcji f. Wtedy szereg Fouriera funkcji h(f(z)) jest absolutnie zbiezny.
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Dowéd. Dla ciagu ¢ = {c,}°°__ € (Y(Z) zbadamy o(c) w algebrze (*(Z).
Funkcjonaty multiplikatywne majg postac

— i Cneinx:f(x)

Zatem o(c) = f([0,27)) = f(R). Z zaloZenia h € H(c), skad wynika, ze
d := h(c) € (*(z). To oznacza, ze h(x Z dne™ oraz i|dn| < 00.
Dalej N n_ioo -

HZOO dne™ = ¢u(d) = @u(h(c)) = h(pz(c)) = h(f(2))

]

Twierdzenie 3.15. Niech f(z) bedzie funkcjg holomorficzng w obszarze otwar-
tym zawierajgcym o(a). Wtedy dla dowolnej funkcji catkowitej g(w) mamy

9(f(a)) = (g f)(a)

Dowdéd. Niech g(z Z gnz". Wtedy

Zgnf Zgn ") (a <Zgnf"> )= (go f)(a)

4 Cr-algebry

Definicja 4.1. Operacje x : A — A w algebrze Banacha nazywamy sprzeze-
niem jesli

(a) (a+b)* =a" +b
(b) (Aa)* =
(c) (ab)" =
(d) (a) =



C*-algebry 28

Uwaga Jesli A ma jedno$c e, to e* = e (zadanie).
Definicja 4.2. Algebre Banacha nazywamy *-algebrg, jesli ||a*|| = ||a]|.
Przyktady

(a) A=/(Z). Dla a € ¢(*(Z) okreslamy a*(n) = a(—n). Np. 6} = 0_,,.

(b) A=C[0,1] lub A = C(K), gdzie K jest zwarta przestrzenia Hausdorf-

fa. Wtedy f*(t) = f(t).
(c) A= B(H) ze sprzezeniem operatorow.
Definicja 4.3. x-algebre Banacha nazywamy C*-algebrq, jesli ||a*a| = | al|?.

Przyktady Algebra ('(Z) nie jest C*-algebra (dlaczego ?). Z kolei C'(K) oraz
B(H) sa C*-algebrami, bo ||ffllsc = [Ilf*lloc = [If]1%; oraz | T*T|| = ||T]*.

Druga réwno$¢ wynika z

IT*T)| > sup (T"Tw,x) = sup |Tz|* =|T|”

Jall=1 Jall=1
oraz [[T*T| < T || = T

Twierdzenie 4.4 (Gelfand-Naimark). Niech A bedzie przemienng C*-algebrq
z jednoscig. Wtedy transformata Gelfanda jest izometrycznym x-izomorfizmem
pomiedzy A oraz C(Sp(A)) z normq || - ||o-

Uwaga Ogoélnie homomorfizm h pomiedzy *-algebrami nazywamy *-homomorfizmem

jesli h(x*) = h(x)*. Izometria oznacza, ze ||Z||e = |||/, a *-izomorfizm, ze
r* =1

Dowadd. Transformata Gelfanda jest liniowym homomorfizmem. Operacja
jest ciagta, bo ||z*|| = ||z||. Niech ¢ € Sp(A) oraz a* = a. Pokazemy, ze
¢(a) € R. Dla t € R rozwazmy elementy

(ita)™

oo
up = exp(ita) = Y o

n=0

Wtedy u; = exp —ita oraz

uju; = exp(—ita) exp(ita) = 1(a) = e
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bo exp(—itz) exp(itz) = 1. Dalej
1= lell = [lufuell = [|ul?
stad ||u:|| = 1. Dla ¢ € Sp(A) otrzymujemy

i (itp(a))"

1 > |§0(ut)| = n'

| = [exp(it p(a))| = exp(— Ran p(a))

n=0

Poniewaz t jest dowolng liczba rzeczywista, to Ran ¢(a) = 0. To oznacza, ze
p(a) € R.

Inny dowdd Niech A\ = = + iy € o(a). Zatem dla ¢t € R mamy A + it €
o(a + ite). Otrzymujemy

A+ it|2 < |la+ ite||? = ||(a + ite)*(a + ite)|| = ||(a — ite)(a + ite)||
= |la® + || < [la* + ¢
7, drugiej strony
A+t =lz+ily+t)) =2+ Y+t =2+ + 2yt +

Zatem
2 +y? 2yt <|a|?, teR

7, dowolnosci t otrzymujemy y = 0.
Dla a € A niech a; = (a+ a*)/2 oraz ay = (a — a*)/(2i). Wtedy af = ay,
a5 = ay oraz a = aj + tag. Zatem

p(a”) = (a1 — iaz) = p(a1) — ip(az) = p(a1) + ip(az) = ¢(a)
Otrzymali$my a* = @, bo dla p € Sp(A) zachodzi

a*(p) = p(a”) = p(a) = aly)
Czyli transformata Gelfanda jest x-homomorfizmem.
Chcemy pokazaé, ze ||a|oo = ||al|. Mamy

[alloc = max{[A] : X € o(a)} = r(a) = lim||a"[|""

Dla a* = a otrzymujemy ||a?|| = ||a*a| = ||a||?>. Poniewaz elementy a* sg
samosprzezone, to przez indukcje otrzymujemy ||a?"|| = ||a||*", czyli r(a) =
la||. Zatem ||@|| = ||a||. Rozwazmy dowolny element a € A. Wtedy

lall* = lla*all = lla*allso = @l = lllalll = l1all%
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Pozostaje do pokazania, ze A = C'(Sp(A)). Skorzystamy z twierdzenia
Stone’a-Weierstrassa. Algebra A jest podalgebra funkcji w C(Sp(A)) za-
mknieta na sprzezenie. Algebra A zawiera € = 1 oraz rozdziela punkty, bo
jesli o1 # o dla 1, o € Sp(A), to pi(a) # pa(a) dla pewnego elementu
a € A Tzn. a(p1) # a(ypy). Zatem A jest gesta podalgebra w C(Sp(A)). Z
drugiej strony A jest domknieta jako izometryczny obraz algebry Banacha

A. Stad A = C(Sp(A)). O

Definicja 4.5. Element a w C*-algebrze B z jednosciq (niekoniecznie prze-
miennej) nazywamy normalnym jesli a*a = aa*.

Niech A oznacza C*-algebre generowana przez a oraz e. Tzn. rozwazamy
Ag = {p(a,a”) : p(z,y) wielomian dwu zmiennych o wspoétczynnikach z C}

Symbolem A oznaczmy domkniecie podalgebry Ay w C*-algebrze B. Wtedy
A jest przemienng C*-algebra z jednoscig.

Whniosek 4.6. Przy powyzszych oznaczeniach otrzymujemy A = C(o(a)),
gdzie o(a) oznacza spektrum elementu a w C*-algebrze B.

Dowdd. 7 zadania 11 listy 5 wynika, ze op(a) = oa(a). Rozwazmy a :
Sp(A) — o(a). Funkcja a jest ciagta oraz a(Sp(A)) = o(a). Ponadto funkcja
a jest réznowartosciowa, bo jesli a(p1) = a(ps), to p1(a) = ps(a). Zatem

p1(a”) = p1(a) = pa(a) = p2(a’)
Multiplikatywnosc¢ pociaga @1 = 9 na Ag. Z kolei z ciaglosci charakterow ¢ i
w9 wynika ¢ = @9 na A. Reasumujac odwzorowanie a jest homeomorfizmem
pomiedzy Sp(A) i o(a). Izomorfizm pomiedzy A oraz C(o(a)) zadany jest
poprzez

A — C(Sp(A)) 2= C(o(a))

Odwzorowanie h zadane jest wzorem

h(f)N) = f@'(N), fe€C(Sp(A)), € a(a)

Przykltad A = (*(N) = C(Sp(A)). Mamy N C Sp(A), bo ¢,(a) = a,
jest charakterem. Zawieranie jest wtasciwe v(dlaczego 7). Mozna pokazaé, ze
Sp(A) = C(K), gdzie K jest uzwarceniem Cecha-Stone’a zbioru N. O

Twierdzenie Gelfanda-Naimarka-Segala méwi, ze C*-algebra z jednoscig
jest izometrycznie izomorficzna z domknieta podalgebra operatoréw, zawiera-
jaca I w B(H), dla pewnej przestrzeni, Hilberta. Np. C[0, 1] mozna utozsamié¢
z algebra operatoréw Mg = fg dla g € L*(0,1).
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5 Operatory nieograniczone na przestrzeni Hil-
berta

Wiele operatorow okreslonych na podprzestrzeni przestrzeni Hilberta jest nie-
ograniczonych. Podprzestrzen, na ktorej operator jest okreslony nazywamy
jego dziedzing.

Przyktady

(a) Operator (T'f)(z) = xf(x) jest okreslony na D(T) = {f € L*([R) :
rf(xr) € L*(R)}, czyli T : D(T) — L*(R). Operator T jest nieograni-
czony, bo

17Tyl = 2L @m0l 2 2l Lol

Przestrzett D(T) jest gesta w L%*(R), bo zawiera wszystkie funkcje o
ograniczonym nosniku.

(b) Dla ' H = L*(0,1) okreslamy T : C*0,1] — H wzorem Tf = f.
D(T) jest gesta podprzestrzenia w H. Dla f,(x) = sin(7nz) mamy
(T'fn)(x) = mncos(mnz). Otrzymujemy ||Tf,|l2 = mn|| fr]]2-

(c) H=/(*N), (Ta), = na,, oraz
D(T) = {a € A(N) : ij:ln2|an|2 < oo}

Podprzestrzen D(T) jest gesta, bo 6, € D(T') dla wszystkich n. Ponad-
to [ T0nll2 = n|0n]l2-

Bedziemy rozwazaé operatory A : D(A) — H o gestej dziedzinie.
Definicja 5.1. Operator A : D(A) — H nazywamy symetrycznym jesli
(Az,y) = (z, Ay), =,y € D(A)

Uwaga 7 tozsamo$ci polaryzacyjnej wynika, ze symetria jest rownowaz-
na warunkowi (Az,z) = (z, Az) dla wszystkich z € D(A), co z kolei jest
réwnowazne (Az,z) € R, dla = € D(A).

Operatory symetryczne o pelnej dziedzinie, tzn. D(A) = H, sa ograni-
czone z twierdzenia Hellingera-Toeplitza.
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Dla dwu operatoréw A i B zawieranie A C B oznacza, ze D(A) C D(B)
oraz Ar = Bz dla © € D(A). Méwimy wtedy, ze B jest rozszerzeniem ope-
ratora A. Dla operatora A wykresem nazywamy podzbiér H x ‘H

Ly ={(z,Az) : x € D(A)}
Zauwazmy, ze A C B wtedy i tylko wtedy, gdy 'y C I'g.

Definicja 5.2. Dla operatora A : D(A) — H operatorem sprzezonym A*
nazywamy operator o dziedzinie

D) = {z €M : (32 € H) (Yy € D(A)) (Ay,z) = {5, 2)}
Dla x € D(A*) okreslamy A*x = z.

Uwaga Element z, o ile istnieje, jest jedyny. Istotnie jesli (y, z) = (y, 2/)
dla wszystkich y € D(A), to z gestosdei dziedziny wynika z = 2/

Uwaga Moze sie zdarzy¢, ze D(A*) = {0}. Naturalnym pytaniem jest
kiedy D(A*) jest gesta podprzestrzenia w H 7 Dla operatora symetrycznego
A mamy D(A) C D(A*). Rzeczywiscie, dla z,y € D(A) otrzymujemy

(Ay,z) = (y, Azr)

zatem D(A) C D(A*) oraz A*xz = Ax. Role elementu z petlni Az. Ponadto
warunek A C A* jest réwnowazny symetrii operatora A.

Uwaga Z twierdzenia Riesza o postaci funkcjonaléw ograniczonych na ‘H
wynika, ze warunek x € D(A*) jest réwnowazny temu, ze funkcjonat liniowy

D(A)>y— (Ay,z) € C

jest ograniczony, tzn. |(Ay, z)| < c||y|| dla pewnej statej ¢ > 0 i wszystkich
y € D(A).
W przestrzeni H x H okreslamy iloczyn skalarny wzorem

<(uv U)’ (u/7 Ul)) = <u’ Ul> + <U7 U,>
Niech J(u,v) = (v, —u). Wtedy J jest izometria na H x H oraz J* = —1.

Lemat 5.3. Dla operatora A : D(A) — H o gestej dziedzinie mamy (z, z) €
La- wtedy i tylko wtedy, gdy (x,z) L J(T4). Ten. Tar = J(Ca)t, w prze-
strzeni H x H. W szczegélnosci wykres operatora A* jest domkniety.
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Dowdéd. Teza wynika z okreslenia (z, z) € I'a- wtedy i tylko wtedy, gdy
<$aAy>_<Z7y> :()7 yGD(A)

tzn.

(z,2) L J(y,Ay), ye D(A)
O

Definicja 5.4. Operator A : D(A) — H nazywamy domykalnym jesli
L4 jest wykresem operatora, oznaczanego symbolem A. Operator : D(A) —
H nazywamy domknietym, jesli wykres 1"y jest domknietq podprzestrzenig

H < H.

Uwaga Kazdy operator symetryczny jest domykalny, bo wykres A* jest
domkniety oraz A C A*.

Twierdzenie 5.5. Dziedzina operatora A* jest gesta wtedy i tylko wtedy, gdy
A jest operatorem domykalnym.

Dowdd. Zalbézmy, ze v L D(A*). Réwnowaznie (v,0) L T4« = J([4)*. Czyli
(v,0) € J(Ta)™ = J(Ta) = J(Ta)

To z kolei jest réwnowazne z warunkiem (0,v) € T4, czyli v = 0. ]

Whiosek 5.6. Dia operatora domykalnego A zachodzi réwnosé A** = A.

Dowod. Mamy

Dpoe = J(Tp:)t = J(J(T ) = J(J(T )

~—

Przyktady
(a) H = L*0,1)
Af=if' D(A)={f€C'0,1] : J(0) = f(1) =0}
Operator A jest symetryczny, bo dla f,g € D(A)

1
(Af.9)=i [ F'gde=ifg
0

1 1
Ow/mmzﬁw>
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(b) (Af)(x) ==f(z), D(A) ={f € L*(R) : f(x) € L*(R)}

(Af.g) = (af.9) = [ af@)g()da = (f.29) = ([, Ag)

—00

Definicja 5.7. Operator symetryczny A nazywamy samosprzezonym jesli
A* = A, tzn. D(A*) = D(A).

Przyktady
(a) Jak wyzej. Wtedy D(A) € C[0,1] € D(A*). Mozna pokazad, ze
D(A*) = {f € L*(0,1) : f absolutnie ciagta, f' € L*(0,1)}
(b) Jak wyzej. Pokazemy, ze A* = A. Wystarczy udowodnié, ze D(A*) C
D(A). Niech f € D(A*). Mamy
D(A") ={f € L*(R) : [(Ag, )| < c|lgll2, dla pewnej stalejcig € D(A)}

Niech gn(z) = x f(x)1(_, ) (x). Wtedy g, € D(A), bo xg,(x) jest ogra-
niczona. Zatézmy, ze f € D(A*). Wtedy

[(2gn, )| = [(Agn, )] < cllgnll2

Zatem -
2l @)Pdr < ( / x2|f<x>|2das>

czyli

/x2|f(x)]2dx < neN

—-n

Poniewaz n jest dowolne, to zf € L*(R).
Lemat 5.8. Jesli A C B, to B* C A*.

Dowéd. Mamy

DAY = {zeH : (FzeH) Vye D(A) (Ay,z) = (y,2)}
D(B*) = {zeH: (Fz€H) (Yy € D(B)) (By,z) = (y,2)}
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Dla y € D(A) mamy Ay = By. Zatem D(B*) C D(A*). Ponadto dla z €
D(B*) odpowiadajacy element z = B*z jest réwny A*x.
Inne wyjasnienie:

Ip = J(g)" D J([a)" =Ta-

Uwaga Zalozmy, ze A C B oraz A i B sa symetryczne. Wtedy
ACBCB"CA"

Zatem jesli A jest samosprzezony, to A = B = B* = A*. Tzn. operator
samosprzezony nie posiada nietrywialnych symetrycznych rozszerzen.

Lemat 5.9. Dla operatora symetrycznego A operator A jest réwniez syme-
tryczny.

Dowdd. Jesli x € D(A), to istnieje ciag x, € D(A) taki, ze z, — x oraz
Az, — Az. Wtedy
(Az, z) = lim(Az,, z,) € R

O
Lemat 5.10. Jesli A jest domykalny, to (A)* = A*.
Dowdd. Wiemy, ze podprzestrzenn D(A*) jest gesta. Dalej
7J_ -
D= J(Ca)t = J(Ta) = J(Ta)" = J([5)" =i
O

Lemat 5.11. Wartosci wiasne operatora symetrycznego sq liczbami rzeczy-
wistyms.

Dowéd. Niech A C A* oraz Av = \v, v # 0. Wtedy R 3 (Av,v) = M|v||?,
czyli A € R. O

Definicja 5.12. Operator symetryczny nazywamy istotnie samosprzezo-
nym jesli jego domkniecie jest operatorem samosprzezonym.
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Uwaga Dla operatora symetrycznego, jesli A* jest symetryczny, to A jest
istotnie samosprzezony. Rzeczywiscie

ACA* cA*=A
Stad A= A*=4".

Twierdzenie 5.13. Operator symetryczny A jest istotnie samosprzezony
wtedy 1 tylko wtedy, gdy dla dowolnej (réwnowaznie pewnej) liczby z € C\ R
przestrzenie Ran (A — zI) oraz Ran (A — Z1I) sq geste w 'H.

Uwaga Gdy A jest ograniczony (niekoniecznie symetryczny), to D(A) =
H (zadanie). Wtedy A jest operatorem ograniczonym okreslonym na H. Jesli
A jest symetryczny, to A jest samosprzezony. Zatem A — 21 jest odwracalny.

Stad Ran (A—zI) = 'H. To oznacza, ze Ran (A — zI) jest gesta podprzestrze-
nia w H.

Lemat 5.14. Dia operatora symetrycznego przestrzen Ran (A—zI) jest gesta
wtedy i tylko wtedy, gdy liczba Z nie jest warto$cig wltasng operatora A*.

Dowdd. Warunek Ran (A — zI) nie jest gesta jest rbwnowazny istnieniu 0 #
v L Ran (A — 2I), tzn. (Aw — zw,v) = 0 dla w € D(A). Réwnowaznie

(Aw,v) = z(w,v) = (w,zv), w € D(A)
Ostatnia réwnos$¢ oznacza, ze v € D(A*) oraz A*v = Zv. O

Przechodzimy do dowodu twierdzenia.

Dowdd. ( = ) Niech A bedzie istotnie samosprzezony. Zatézmy, ze v L
Ran (A—2zI). Z dowodu lematu otrzymujemy A*v = Zv. Z zalozenia operator
A* jest symetryczny, bo A* = (A)* = A. Zatem v = 0.

( <) Zalézmy, ze przestrzenie Ran (A — zI) oraz Ran (A —ZI) sa geste

w H dla pewnej liczby z ¢ R. Pokazemy, ze Ran (A — zI) = ‘H. Mamy

Ran (A —zI) CRan(A—z2I) CH

Wystarczy udowodni¢, ze przestrzefi Ran (A — 21) jest domknigta. Dla v €
D(A) mamy

(A= 2Dv,v) = (Av,v) — z{v,v)
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Zatem B
[Im ((A — 2D, v)| = [Im 2] o[> (%)

Zalozmy, ze cigg w, = (A — zI)v,, v, € D(A) jest zbiezny. Oznaczmy w =
lim,, w,,. Pokazemy, ze w € Ran(A—zI). Ciag v, spelnia warunek Cauchy’ego
na podstawie réwnosci () zastosowanej do v := v, — v,,. Rzeczywiscie

[Tm 2| ||y, — Um||2 = ||Tm <(Z — 21)(Un = Um), Un — V)|

= |Im (W, — Wi, U — V)| < [[wn — Wi | |0 — |

Otrzymujemy ||v,, — vy || < |Im 2| 7w, — wp,||. Oznaczmy v = lim, v,. Ze
zbieznodci w, wynika zbieznosé¢ Av, = w, + 2v, — w + zv. Z domknietodci
wykresu dostajemy v € D(A) oraz Av = w + zv, czyli (A — z[)v = w. To
koticzy dow6d réwnosei Ran(A — 21) = H.

Pokazemy, ze A* = A. Wystarczy udowodnié, ze A* C A. Niech v €

D(A*). Z whasnosci Ran(A — zI) = 'H istnieje wektor w € D(A) C D(A")
taki, ze

(A" —zlv=(A- 2w = (A" — zl)w
Zatem (A* — zI)(v —w) = 0. Tzn. v — w jest wektorem wlasnym operatora
A* 7 wartoscia wlasna z. Jesli v # w to z lematu podprzestrzenn Ran(A —Z1)

nie jest gesta. Zatem v = w, czyli v € D(A). H
Przyktady
(a) H = L*0,1).
Af =if', D(A)={feC0,1] : £(0) = f(1) =0}

Zauwazmy, ze C1[0,1] C D(A*) oraz A*g = ig’ dla g € C'[0,1]. Chcemy
sprawdzi¢, czy A jest istotnie samosprzezony. W tym celu rozwiazujemy
rownanie (A* — zI)g = 0 dla g € D(A*). Zalézmy, ze g € C*[0,1].
Otrzymujemy réwnanie ig = zg, ktérego rozwiazaniem jest g(z) =
e~ € O, Stad A nie jest istotnie samosprzezony.

(b) H = L2(0,1).
Af =if', D(A)={feC'0,1] : f(0)= f(1)}

Pokazemy, ze A jest istotnie samosprzezony. Wystarczy udowodnié, ze
podprzestrzenie Ran(A=+1il) sg geste. Sprawdzimy gesto$¢ Ran(A—il).
Zatozmy, ze f L Ran(A —il). Tzn.

(A—il)g,f) =0, g€ D(A)
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Otrzymujemy warunek

(9. /) =(d. 1), g€ D(A) (xx)

Funkcja F(z) = ff(t) dt jest ciggla. Zatem
0

(9.1) = [ 9@)f@)da = g@)F @)~ [ ¢ @ F @) da = g()YF(L)~(g'. F)

Podstawiajac g = 1 do (xx) dostajemy F(1) = 0. Czyli

(9. f) =19, f)=—(¢", F)

Zbiér {g' : g € D(A)} sktada sie ze wszystkich funkeji ciagtych o calce
0. Ten zbior jest gesty (zadanie) w

L2(0,1) == {h e 12(0,1) : /h(x) dz = o} —1t

Zatem f + F 1 L2(0,1). Czyli f(z) + F(z) = C prawie wszedzie,
dla pewnej statej C. Uzyskujemy f(x) = —F(x) + C prawie wszedzie.
Funkcja F'(x) jest ciagla. Mozemy przyjaé, ze f(x) = —F(x) + C dla
0 < z < 1. Stad f jest ciggla, czyli F jest klasy Ct. Zatem f jest réwniez
klasy C'. Rozniczkujac otrzymujemy f' = —f. Zatem f(x) = de™®. Z
warunku [y f(x)dz = 0 uzyskujemy d = 0, czyli f = 0.

Dla operatora symetrycznego A oraz z ¢ R operator A — z[ jest roznowarto-
Sciowy ze wzoru (x). Jesli A jest samosprzezony, to podprzestrzenn Ran(A—z1)
jest gesta oraz domkniegta, co wynika z dowodu Twierdzenia 5.13. Zatem
Ran(A — zI) = H. Reasumujac

A—zI, A—%I: D(A) 2 H

1-1

Definicja 5.15. Dia z ¢ R i operatora samosprzezonego A okreslamy trans-
formate Cayley’a wzorem

U =—(A—zD)(A-z)"':H 2 H
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Twierdzenie 5.16. Dla operatora samosprzezonego A transformata Cay-
ley’a jest operatorem unitarnym.

Dowdd. Dla v € D(A) mamy
I(A = 2D)v||* = | Av]|* + |2 [[v]]* — 2({Av,v) — 2(v, Av)
= [[Av]]* + [z[*[[lv]]* — 2Re(z) (Av, v)

Poniewaz wynik nie zalezy od Im z, to ||[(A — 2I)v|| = [[(A — ZI)v||. Mamy
U, : (A—zl)v — —(A — zI)v. Poniewaz kazdy wektor w € H ma postaé
w = (A —zI)v dla pewnego v € H, to U, jest izometria z H na siebie. [

Naszym celem jest wyrazenie operatora A za pomocy Us;.

Twierdzenie 5.17. Dla z ¢ R operator I + U, jest réznowartosciowy oraz
Ran(I + U,) = D(A).

Dowdd. Dla v € D(A) mamy U,(A —zl)v = —(A — zI)v. Oznaczmy w =
(A —zI)v. Wtedy
I+U)w=A-ZIlv—(A—z[)v=(z2—Z)v#0, v#0

Zatem Ran(l + U,) O D(A). Z drugiej strony kazdy wektor w € H ma
posta¢ (A — zI)v dla pewnego v € D(A). Czyli Ran({ + U,) C D(A). Ze
wzoru wynika réznowartosciowosé.

Okreslmy U := U; = —(A — il )(A + i)~

U

Twierdzenie 5.18.
A=i(Il-U)(I+U)™?

Dowdéd. Obie strony sa okreslone na D(A), z poprzedniego twierdzenia. Ma-
my

T+U=(A+i)(A+il)™ —(A—di)(A+4iD) ' =2i(A+4iD)" (%)

Dowdd jest tatwy, gdy A jest ograniczonym operatorem samosprzezonym, bo
nie musimy dbaé o dziedziny. Wtedy I + U jest odwracalnyf] Otrzymujemy

A=2(I+U)" ' —il =2i(I+U) ' —i(I+U)I+U) ' =i(I-U)I+U)*

*Gdy I + U jest odwracalny, to —1 ¢ o(U). Zatem o(U) C {e : —m+6 <t <m— 4}
dla pewnej liczby 0 < § < .
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W przypadku ogbélnym mamy

A+il : D(A) > H, [+U:H % D(A)

Dalej

[-U=(A+i)(A+i)" + (A—il)(A+il) ' =2A(A+il)™"

Ponadto z (*) na przestrzeni D(A) zachodzi wzér (I +U)™' = —2(A+4l).
Otrzymujemy
i1 = U)I +U)™" = 2%A(A +il)"! (—;) (A+il)= A
[l

6 Rozklad spektralny operatora unitarnego

Dla liczby —m < A < 7 okreslamy funkcje

1 —7m<t< A
, —T<ALZT
0 A<t

fﬂ_(eit) = 17 f)\(e”) _ {

Funkcje f) mozna uzyska¢ jako wstepujace granice punktowe ciggoéw funkcji
ciagtych i nieujemnych na T. Dla ustalonego operatora unitarnego okreslamy
E(X\) = fo(U). Operatory E()) sa nieujemne. Ponadto dla p < A mamy

EWER) = [u(U)HU) = (fufN)U) = [u(U) = E(u)

W szezegblnosci E(N\)? = E()), czyli E()\) jest rzutem ortogonalnym. Po-
nadto
E(\) = B(u) = BV - B(u)] > 0

Nier6wnos$¢ wynika réwniez z faktu, ze f,(e) < fi(e"), czyli
EQA) = E(p) = (fx— f(U) 20

Twierdzenie 6.1. Dla —m < X\ < 7 zachodzi lim,,_y- E(p)v = E(A)v dla
wszystkich v € H. Rownowaznie rodzina E(\) jest mocno lewostronnie ciggta
dla —m < A <.
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Dowdd. Niech u,, / A. Istnieje rosnacy ciag g, funkcji ciggtych na T, zbiezny
punktowo do fy spetiajacy 0 < g, < f,,,. Wtedy

0 < 9n(U) < [, (U) < /3(U)

Poniewaz f\(U) jest mocng granica operatoréw g,(U), to f, (U) — fr(U)
mocno, czyli E(u,) — E(X) mocno. W tym miejscu korzystamy z

Lemat 6.2. Niech 0 < A, < B, oraz B,, — 0 mocno. Wtedy B,, — 0 mocno.

Dowod. Mamy
0 < (Anv,v) < (B,v,v)

Zatem (A,v,v) — 0. Ciag norm ||A,]|| jest ograniczony. Z nieréwnosci
[Anv]* < 1| Anll{Anv, v)
otrzymujemy teze. O
Lemat stosujemy do B,, = fA(U) — ¢,(U) oraz A, = fA(U) — f..(U). O
Twierdzenie 6.3. R lim EXNv =0 dlaveH.

Dowéd. Niech A\, \, —m. Wtedy ciag E()\,) jest malejacym ciagiem ope-
ratorow nieujemnych, wiec jest mocno zbiezny do pewnego rzutu E. Dla
ustalonej liczby —m < A < 7 istnieje niemalejacy ciag funkcji ciagtych g,
zbiezny punktowo do fy taki, ze g(e”) = 0 dla —m < t < \,. Wtedy

G0V E() = galU) o (U) = (guf)(U) = 0
Z drugiej strony
0= g(U)E(\) — EQNE > E >0
Czyli E = 0. 0
Okreslmy E(—m) = 0. Dla ustalonego wektora v rozwazmy funkcje
t— (E(t)v,v), —-7m<t<T7

Funkcja ta jest rosnaca, lewostronnie ciggta dla —m <t < 7 i prawostronnie
ciaggta w punkcie —m. Ponadto jej wartos¢ w m wynosi 1. Mozemy stosowaé
catke Riemanna-Stieltjesa na przedziale [—7, 7| dla funkcji ciagtych o okresie
27, czyli funkeji ciggltych na T = {e” : —7 <t < 7}.
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Twierdzenie 6.4.

(U™, v) = / ™t q(E(t)v, v)

Dowdd. Dla podziatu P, = {tg,t1,...,t,} przedzialu [—m, 7] na n réwnych

czesci mamy I = > [(E(ty) — E(ty—1]. Oznaczmy P, = E(t) — E(tj_1).
k=1

Wtedy

n n

= Z<UmPkU v Z th PkU U Z th )—E(tkfl)]ka,P]ﬂ»
k=1

Catka po prawej stronie jest granicg sum catkowych postaci

n n

S(Pn) = > e 1 [(E(ty)v, v)—(E(ti—1)v,v)] = > (e"*[E(ty)—E(t)—1)| Pev, Pyv)

k=1 k=1

Istnieja rosnace ciagi gx; funkcji ciagtych i nieujemnych zbiezne punktowo
do f;, takie, ze gr () = gp_14(e") dlat < tx_o oraz 0 < gr_1; < gry. Wtedy

<[]m7j7 (% i imt _ lmtk (U)([E(tk) - E(tk_l]PkU, Pkl}>

=lim » ([e"" — e™*|(U)[grs(U) = gr—12(U)| Prv, Prv)

=lim > ({[e™" — e"™"*][gra(e") — ga-ra(e")}U) Prv, Prv)
Warto$¢ bezwzgledna kazdego sktadnika jest niewieksza niz

lle™ = €™ lgne = ge-rallloo [ Pevll® < ]| Poo]?

Zatem

n

m m = 2 m
(U0, 0) = SPa)| < — 3 1Pevll* = = 3 (Piv,v) = —|lol
k=1

k=1
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Whniosek 6.5. Dla dowolnej funkcji ciggte) f na T +v € H mamy
Uy v) = [ 1) B, v)

Dowdd. Wzér jest speiony dla wielomianéw p(z). Funkcja ciagla f(z) jest
jednostajna granica wielomianéw p,(z). Wtedy p,(U) — f(U) w normie
operatorowej. Zatem

(), 0) = lin(pu(U),0) = Tim [ pu(e) d(B@,0) = [ 1) dBEw,0)

Wzér z twierdzenia zapisujemy skrétowo

™

f) = [ feyas()

Twierdzenie 6.6.
(a) Zaléimy, ze E(A\) = E(X\) dla —m < A1 < Ay < 7. Wtedy
{e" M <t<X}nNoU)=10
(b) Jesli
{e" : M <t< XN}NaoU)=0
to E(\) = E(Xa).

Dowdd. (a) Niech A\ < u < Ag. Wtedy [p — 6, + 0] C (A1, A2) dla pewnej
liczby 6 > 0. Istnieje funkcja ciagla F(t) o okresie 27 taka, ze F'(t) = (e —
e")~t dla |t — p| > 8. Okreslmy f(e") = F(t). Z twierdzenia otrzymujemy

(U= e D) f(U)v,v) = /[6“ — "] f(e") d(E(t)v, v)

—T

— [ = (e d(E @, 0) + [l = ¥ f(e) dlE(Lo,v)

— / d(E(t)v,v) + / d(E(t)v,v) = ] d(E(t)v,v) = (v,v)
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Zatem (U — eI f(U) = f(U)(U — e*I) = I.
(b) Z zalozenia istnieje § > 0 taka, ze

{e" M —6<t< M+ 0tNa(U)=0

Niech F(t) bedzie funkcja ciagla taka, ze F(t) = 1 dla —A\; <t
F(t) =0dlat poza —A\; —§ < t < Ay + 0. Wtedy dla funkeji f(e*)
mamy

< A\ oraz

F(t)
Al = max |f(z)] =0

zeo(U)
bo f zeruje sie na spektrum o(U). Stad f(U) = 0. Otrzymujemy

™

0= (f(U)v,v) = / F(t) d(E(t)o, v)

—T

> [ d(B @) = (Ea)o.0) — (BEOwoo)
Zatem E(\1) = E()\y).

Lemat 6.7. Dia —7 < A < 7 oraz funkcji cigglej h na T mamy

T

MUYEQ) = [ ()1 an(t) dE()

—T

Dowdéd. Niech G, (t) bedzie rosnacym ciagiem funkcji nieujemnych o okresie
21 zbieznym punktowo do L(_x ) (). Wtedy gn(e") sa zbiezne punktowo i
monotonicznie do fy(e'), zatem g, (U) — E()\) mocno. Otrzymujemy

(B(U) B\, 0) = i ((0)gu (U}, 0) = Tign((hgn) (U)o, v)

= lim / h(e")ga(e) d(E(t)v,v) = lim / h(e) G (t) d{E(t)v, v)
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Uwaga Mozemy przyjaé, ze dla ustalonej liczby § > 0 mamy G, (t) = 1
dla —m+ 0 <t < XA — 9. Wtedy

/ ()G (1) d(E(t)v, v) = / h(e) G (1) d(E(t)v, v)

—Tr

A—=0
+ / h(et) d(E(t)v, v) +
-7+ A

h(e™)G,(t) d(E(t)v,v)

&k‘\wy

Skrajne catki mozna oszacowaé przez
[Plloc (E(=m + 0)v, v}, [[hllec[(E(N)v,v) = (E(A = d0)v,0)] (%)
Ponadto

—7+0

/ h(e") d(E(t)v, v) = / h(e") d(E(t)v, v)

—Tr

+ / h(e') d(E(t)o, v) + / h(ett) d(E(t)v, v)

Znowu skrajne calki mozna oszacowaé tak jak w (k).
Dla —m < A < 7 okre$lamy

Py = lim [E(\+6) = BQ)], Py = lim [T = E(r —6)

6—07+
Wtedy P, sa rzutami jako mocne granice przemiennych rzutow.

Twierdzenie 6.8. Operator Py jest rzutem na podprzestrzen wektoréw wia-
snych operatora U odpowiadajgcych wartosci wlasnej e

Dowdd. Korzystamy z twierdzenia dla h(z) = z oraz h(z) = 1. Otrzymujemy

™

(UPy,v) — Py, v) = 6l_i>r(r)1+ [e" — eMpars) () d(E(t)v,v)

Wartos¢ bezwzgledna funkcji podcatkowej jest niewieksza niz d. Zatem U Py, =
i
€ f&.
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Zalozmy, ze Uv = e?v. Wtedy f(U)v = f(e*)v dla dowolnej funk-
cji f € C(T). Rozwazmy przypadek A < 7. Dla 6 > 0 istnieje rosnacy
ciag nieujemnych funkeji ciagltych F,(t), o okresie m, zbiezny punktowo do
L(_rts)(t) taki, ze F(t) =1 dla —m+6 < t <X Wtedy dla f,,(e") = F,(t)
mamy f,(U)v = f,(e)v = v. Zatem

v = lim fule™Mv = lim fo(U)v=E\+0)v

Z drugiej strony E(A)v = 0. Istotnie, niech F,,(¢) bedzie rosnacym ciagiem
funkcji nieujemnych, o okresie 27 zbieznym punktowo do 1(_r ). Wtedy
F,(\) = 0. Zatem f,(e*) = 0. Stad f,(U)v = f.(e?)v = 0. Stad E(\)v = 0.

Reasumujac [E(A+0)—E(N)]v = v. Czyli Pyv = v. Podobne rozumowanie
mozna przeprowadzi¢ dla A = —1 = ¢, O
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