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1 Operatory ograniczone na przestrzeni Ba-
nacha

Niech T" : X — X bedzie cigglym operatorem liniowym na przestrzeni
Banacha X. Przypominamy, ze norme operatora 1" okreslamy wzorem

1T = sup{|Tz]| - [lef <13

Symbolem B(X) := B(X, X) oznaczamy przestrzen Banacha wszystkich cia-
glych operatorow liniowych z X w X.

Przyklad 1.1. Rozwazmy odwzorowanie liniowe 7" : C* — C". Chcemy
zbadaé dla jakich zespolonych liczb A operator (tzn. macierz) A — T jest
odwracalny. Jak wiadomo z kursu algebry liniowej warunkiem rownowaznym
jest det(A — T') # 0. Liczby A, dla ktérych ostatni wyznacznik zeruje sie
nazywamy warto$ciami wtasnymi. Wiadomo, ze jesli det(A\ — T') = 0, to
istnieje niezerowy wektor v € C" taki, ze Tv = Av. Tzn. macierz A\l — T nie
jest r6znowartosciowa. Innym réwnowaznym warunkiem jest, ze Im (A\I-T) C

Cn.

Definicja 1.2. Zbiorem rezolwenty p(T) nazywamy zbior tych liczb zespo-
lonych A, dla ktorych operator N\I — T jest odwracalny. Dopetnienie C\ p(T)
nazywamy spektrum operatora T i oznaczamy symbolem o(T)).
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Definicja 1.3. Spektrum punktowym o,(T) nazywamy zbior wartosci wia-
snych operatora T, tzn. zbior liczb zespolonych X\ takich, ze NI — T nie jest
operatorem roznowartosciowym. Wtedy istnieje niezerowy element r w X ta-
ki, ze Tx = \x.

Definicja 1.4. Spektrum resztowym o,.(T) nazywamy zbidr liczb zespolonych
A, dla ktorych obraz Im (A — T) nie jest gestq podprzestrzenig w X.

Przyktad 1.5. Rozwazmy przestrzen
X =0 ={(z,)>, : > |z, | < 0o}
n=0

Dla z = (x,)%2, okreslmy operator S wzorem

Tpo1 nN=1
Sx), =
(Sx) {O

n = 0.
Tzn.
S(l’o, T1,Ta, .. ) = (07ZE0, T1,Ta, .. )
Mamy ||Sz|2 = ||z||2, zatem ||S|| = 1. To oznacza, ze operator S jest
izometria.

Sprawdzamy réznowartosciowosé operatora AI — S. W tym celu rozwig-
zujemy réownanie (A — S)x = 0, czyli Sz = A\x. Otrzymujemy nieskonczony
cigg rOwnan

0 = )\$0
Tpo1 = Axp, n> 1.
Jesli A = 0, to x,, = 0 dla wszystkich n. Zalézmy, ze A\ # 0. Wtedy z¢o = 0

oraz
Tp =N 12p_1 = A "2 =0.

To oznacza, ze operator S nie posiada wartosci wlasnych.

Zbadamy teraz o,.(S). Zatézmy, ze obraz Im (A — S) nie jest gesty w 2.
Réwnowaznie istnieje niezerowy element y € €% taki, ze y L Im (A — S).
Niech V' = lin{eq, e, €9, ...}, gdzie e, = (0, ...,0, %, 0...). Przestrzen V jest

gesta w (2, tzn. V = (2. Zatem
(M —=S)(V)CIm (M —S) = (M —8)(?) = (M = S)(V) c (M = S)(V).
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SkorzystaliSmy z wlasnosci znanej z kursu topologii, ze obraz przez odwzo-
rowanie cigglte domkniecia zbioru jest zawarty w domknieciu obrazu tego
zbioru. To oznacza, ze

Tm (M — S) = (M = 9)(V).

Whioskujemy, ze warunek y L Im (A —5) jest réwnowazny z warunkiem
y L (A = S)(V). Ostatni warunek z kolei oznacza, ze y L (Al — 5)(ex) dla
k=0,1,2,.... Rozwigzujemy uktad rownan

(y,(M — S)ey) =0, k=0,1,2,....
Zatem
(y,Ne, —exs1) =0, k=0,1,2,....

Dalej
Yrp1 = M, k=0,1,2,....

Otrzymujemy ostatecznie
—k
Y = A Yo, k> 1

Jesliyo = 0, toy = 0. Jesli yo # 0, to y € £ wtedy i tylko wtedy, gdy |\ < 1.
Zatem

o.(S)={reC : |\ <1}
Pozostaje zbadaé liczby A spetiajace |A| > 1. Sprawdzimy, kiedy AI — S jest
,na”. W tym celu dla y € £? rozwigzujemy réwnanie (A — S)x = y. Wtedy

AIO = Yo,
ANCp — Tl = Yp, n 2= 1.

Stad otrzymujemy
T, = )flyn + 2 2, .

Zatem
T =N Y + AN 201 . ATy (1.1)

Niech y = ey, gdzie
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Wtedy
T, =A""1 n>0.

Dla [A| = 1 ciag (x,) nie nalezy do (2. Zatem
o(S) D2 {AeC: |N\<1}

Niech |A| > 1. Sprawdzamy norme rozwiazania x z (1.1)).

o0 o0 n 2 oo n

Yolzal =0 DA k] <D0 D T gkl AT g

n=0 n=0 k=0 n=0 k,l=0

= DAY X (vl
k,l1=0 n=max(k,l)
1/2 1/2
- —k—1{y|—I-1 = 2 - 2
k,1=0 n=max(k,l) n=max(k,l)
- —k=1y|—l—1 2 1 ’ 2
< Z Al Al lyllz = |)\|7—1 [yll3-
k,1=0
Zatem ]
M —8)! = < —
17 =)yl = lells < gl
czyli
_ 1
IO =) < 5=
Podsumowujac
o(S) = {\eC: |\ <1}

Uwaga 1.6.

1. W przyktadzie mozna zauwazy¢, ze jesli A € o(S5), to |A| < [|S]. Ta
wlasnosé zachodzi dla kazdego ograniczonego operatora (por. Wniosek

13).

2. Zbiér o(S) jest domkniety i réwniez ta wlasnos$é jest spetniona dla
dowolnego ograniczonego operatora liniowego (por. Twierdzenie |1.10)).
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Twierdzenie 1.7. Zalozmy, Ze ograniczony operator liniowy T : X — X,
gdzie X jest przestrzeniqg Banacha, spetnia |T|| < 1. Wtedy operator I — T
jest odwracalny oraz

Loy,
n=0

(e}
Dowadd. Szereg Z T" jest bezwzglednie zbiezny, bo
n=0

Tn Tn_
I < 3 I =

o0

Dzieki zupetosci przestrzeni B(X) symbol A = Z T" okresla ograniczony
n=0

operator liniowy. Zauwazmy, ze

AT =TA=> T""'"=A-1.
n=0

Zatem
Al -T)=(I-T)A=1.

Stad A= (I —T)"". 0

Whniosek 1.8. Niech X bedzie przestrzeniq Banacha oraz T € B(X). Jesli
IA| > ||T||, to operator \I — T jest odwracalny, tzn. X € o(T).

Dowod. Mamy
M —T=XI-X\'T), |IX'T| < 1.

7 poprzedniego twierdzenia operator I — A~!T jest wiec odwracalny. Zatem
odwracalny jest tez A\ —T. O]

Uwaga 1.9. Z twierdzenia wynika, ze dla ||T']] < 1 mamy

1

I =) <
1= |7

Zatem przy zalozeniu ||T'|| < |A| otrzymujemy

1 1

JAL=T)7 ] = NI = A7) < A - .
L= AT~ W=7
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Twierdzenie 1.10. Dia T € B(X), gdzie X jest przestrzenig Banacha, zbior
rezolwenty o(T) jest otwartym podzbiorem w C. Ponadto funkcja

R(T) = (I - T)™", z € o(T)

jest analitycznym odwzorowaniem zbioru o(T) w B(X), tzn. w otoczeniu kaz-
dego punktu zo funkcja R.(T) przedstawia sie za pomocq bezwzglednie zbiez-
nego szerequ potegowego postacs

R.(T) = i(z —20)"A,, A, € B(X).
Zachodzi tez wzor
R.(T) = Ry(T) = —(z — w)Ro(T) Ru(T). (1.2)

Uwaga 1.11. Wzér (|1.2) mozna kojarzy¢ z tozsamoscia

1 1 Z—w

z—t m:_(z—t)(w—t)'

Dowdéd. Niech zy € o(T). Pokazemy, ze liczby z lezace blisko zy naleza do
o(T). Mamy

2l —T = (20 =T) — (20 — 2)I = (20] —T)[I — (20 — 2)(20] —T)7"]. (1.3)
Zatézmy, ze
1
I(zo =T)7M|1"

|z — 20| <

Wtedy
|(z — 20) (20l — T)_lH < 1.

Z Twierdzenia [1.7|operator I — (2o — 2)(z0I —T) ™! jest odwracalny. Zatem ze
wzoru (|1.3]) operator zI — T jest odwracalny jako ztozenie dwu operatorow
odwracalnych. Czyli z € o(T), wiec zbidr o(T') jest otwarty.

Ze wzoru (|1.3) i Twierdzenia otrzymujemy

RAT) = (2] —T)™' = i (20— 2 (] — )"

=Y (z—20)"Ap, An=(=1)"(zol =T)"" (14)

n=0
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Obliczamy
RAT) = Ry(T) = (2I = T) ' — (wl —=T)™*

= (21 = T) ' {(wl —=T) — (2 = T)](wl —T)™*
= —(z—w) (2l = T) ™ Mwl =T)™' = —(2 — w)R.(T) Ry (T)

]
Dla z, z, € o(T) na podstawie ((1.4)) mamy
RZ(T)—RZO (T) = Z(ZO—Z)n(ZQI—T)_n_l—(Zol—T)_l = Z(Zo—Z)n<Z0[—T)_n_l.
n=0 n=1

Zatem

|R(T) = Rao(T)I| < D |2 = 20|"[[ (0] = T)H|"*
n=1

_ 2= alllR (D)
1 — [z = 2| Rz (T)]]

przy zalozeniu, ze |z — 2| < || R.,(T)|| ™! Z obliczei wynika, ze

lim R.(T) = R, (T).

zZ—20

Zatem, korzystajac z (1.2]), otrzymujemy

lim 220 = B (1) lim (—1)R.,(T)R.(T) = —R.,(T)*%

zZ—20 Z— 2 220

To oznacza, ze funkcja z — R,(T') posiada pochodng zespolona jako funkcja
z podzbioru o(T) w B(X).

Twierdzenie 1.12. Niech T bedzie ograniczonym operatorem liniowym na
przestrzeni Banacha X. Wtedy spektrum o(T) jest niepustym i domknietym
podzbiorem w C.

Dowaod. Domknietos$é zbioru wynika z otwartosci zbioru rezolwenty. Zal6ézmy;,
ze spektrum o(T') jest zbiorem pustym. Wtedy funkcja R,(T') jest okreslo-
na na calej ptaszczyznie zespolonej. Dla ustalonych elementu z € X oraz
funkcjonatu x* € X* rozwazamy funkcje

f(z) = x*(R(T)x).
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Funkcja f(z) jest holomorficzna w calej plaszczyznie zespolonej. Z zadania
18 mamy, ze ||R.(T)|| I\—) 0. Wtedy f(z) \I—) 0. Funkcja f(z) jest zatem
ograniczona w C. Na podstawie twierdzenia Liouville’a funkcja f jest stala,
czyli f(z) = 0. Stad z*(R,(T)x) = 0 dla dowolnego funkcjonatu z*, czyli
R.(T)x = 0 dla dowolnego elementu = € X. Zatem R,(T) = 0, co stoi w
sprzecznosci z odwracalnoscia operatora R, (7). [

Uwaga 1.13. Dla X = C" operatory T : X — X utozsamiamy z macierzami
wymiaru nxn. Wtedy z zasadniczego twierdzenia algebry mamy o (7)) = {\ €

C : det(M —T) #0} # 0.

Definicja 1.14. Promieniem spektralnym operatora T € B(X). nazywamy
liczbe
r(T) = max{|A| : A€ o(T)}.

Twierdzenie 1.15. Dia T € B(X), gdzie X jest przestrzenig Banacha,
istnieje granica lim |T™|*™ oraz granica ta jest réwna r(T). Ponadto, jesli
X jest przestrzeniq Hilberta oraz T* =T, to r(T) = ||T|.

Dowaod. Jesli T™ = 0 dla pewnej liczby ng, to T™ = 0 dla n > ng. Wte-
dy lim, || T"||'/" = 0. Zatézmy zatem, ze T™ # 0 dla wszystkich poteg n.
Oznaczmy a,, = log ||T"||. Zauwazmy, ze

Uptm < Ap + Q.
Rzeczywiscie

U = log |77 = log [ T"T™|| < log | T"[[[|T™||
= log [ T"|[ +1og [ T™|| = an + am.

I[stnienie granicy ciggu a, wynika z nastepnego lematu.

Lemat 1.16. Jesli cigg liczb rzeczywistych a,, spetnia warunek a, ., < a, +
am, to istnieje granica (byé moie —o0) ciggu a,/n oraz
a a
lim — = inf —.
non non
Dowod. Mamy
pptr S App + Ap < NAp +
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dla dowolnych liczb naturalnych n, p i r. Ustalmy liczbe p. Kazdg liczbe m
mozna zapisa¢ w postaci m = np + r, gdzie 0 < r < p — 1. Zatem

a a n 1
Zm o Tmptr it - a
np+r

= < a -
m np+r np+r

Gdy m — oo, to n — o0, wiec
a a
limsup — < 2.
m p

Poniewaz p jest dowolng liczbg naturalna, to

. a .o a .. .Q
limsup — < inf £ < liminf —=.
m P P m

Stad granice gérna i dolna muszg by¢ sobie réwne. O]

7 lematu wynika, ze
lim |77/ = int || 7"/,

Zatézmy, ze |z| > inf, ||[T7Y/". Pokazemy, ze wtedy operator zI — T jest
odwracalny. Istotnie, dla pewnej liczby n mamy |z| > ||77(|*/™. Stad |z|"* >
17" ||. Wtedy

1
=T =" — —=T")

Zn

jest operatorem odwracalnym, bo ||[z7"T"|| < 1. Z drugiej strony mamy
M —T" = (2l =T)S =S5z —-T),
dla S= 2"+ 2" T+ ... +2T" 2+ 7" L

Odwracalno$¢ operatora zI —T" wynika z prostego algebraicznego faktu, kto-
rego dowod pozostawiamy czytelnikowi.

Fakt 1.17. Zalozmy, Ze w polgrupie A z jednosciq, element a jest odwracalny
oraz a = bc = cb dla pewnych elementéow b i c. Wtedy elementy b i c tez sq
odwracalne.

Zatem z ¢ o(T). W konsekwencji otrzymujemy

o(T)C{zeC: |z] < inf |7/}
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To oznacza, ze r(T') < inf |7 ||
Niech teraz r > r(T'). Tzn. operator R,(T') istnieje dla |z| > r. Ustalmy
element x € X i funkcjonal z* € X*. Funkcja

2z 2" (R,(T)x)

jest holomorficzna dla |z| > r(T). Zatem ta funkcja jest holomorficzna w
pierscieniu r < |z| < s. Wtedy
him 5 [ @R e = o [ (BT
n = —— e (R,(T)x)z"dz = — 2 (R,(T)x)z" dz.
27?2‘ L 27rz| a
Rozwazmy s > [|T'||. Wtedy dla |z| = s mozemy rozwinaé¢ R,(7T") w absolutnie
zbiezny szereg

RZ(T) — Z Z_(k+1)Tk,
k=0

Zatem - .
L =Y a*(Trz)— / D gy — ¥ (Thx),
—n 27T’L‘Z|:S

bo tylko jeden sktadnik (dla k = n) jest niezerowy. Otrzymujemy zatem

1
2(T'x) =1, = %‘ l/ (R (T)x)z" dz.
Dalej
* n 1 n * n *
27 (T" )] < o - 2mr " max [ R (T)| [l l2[} = i max || B (Tl [l |2~
Ostatecznie
17" = sup |a*(T"z)] < 7" max || 72:(T)]|

flz=[|<1 2=

llzll<1
Stad

lim |77V < .
Poniewaz r byto dowolna liczba wigksza do r(7T'), to

lim | 77"/ < (7).
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Niech T'€ B(H). Dla x € H mamy
|IT2||* = (T2, Tw) = (T"Tw,x) < |T"Ta|||2|| < |TT|||=|*.

Zatem
1T < T T < IT*|IT) = 1T

Stad || T*T|| = ||T||*. Jesli T* = T, to ||T?|| = ||T||*. Potegi operatora T sa
rowniez samosprzezone, wiec

n n—1 n—2 n
1T =T =T = = T
Czyli
T2 = |7
Przechodzac do granicy otrzymamy r(T') = ||T||. O

Whiosek 1.18. Jesli T € B(H) jest operatorem normalnym, tzn. T*T =
TT*, tor(T) = ||T.

Dowdd. Wykonujemy obliczenia
n N % n *\ 27 n * n % n n+1
172 = [|(T*) T = |(T*)*" T*|| = [(T*D)*" | = |T*T||*" = | T||*

Zatem ’
17" = || 7.

Przechodzac do granicy otrzymujemy teze. O

Whiosek 1.19. Jesli T € B(H) jest operatorem normalnym, to |[T"] =
17[J".

Dowod. Mamy
17" = r(T™) = lim | T/ = (tim || 7%/ = ()" = || T

]

Przyklad 1.20. Rozwazmy operator T': L?(0,1) — L?(0,1) zadany wzorem

(T))@) = [ F)dy.
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Obraz ImT jest zawarty w C0, 1]. Istotnie, z nieréwnosci Schwarza mamy
dlad <z <ay<1

(T f)(x2) — (Tf)(z1)] = L/f(y) dy| = 1(y) dy
< [ fll2liXzr zall2 = Vo2 — 21| f]]2-

Zatem T nie jest operatorem odwracalnym. Obliczmy T2

T @) - [T dy—/(/f )
/f(z) (/dy) dZZi(x—z)f(z)dz.

Udowodnimy przez indukcje, ze

(" f)(a i [0 ) (1.5)

Zaktadamy, ze wzor jest prawdziwy i sprawdzamy nastepna potege.

T

(T () = [ ) ) dy = (nil), / ( / (y— )" f(2) dz) dy

0

_ (n_ll)!jf(z) (/(y — )"t dy) dz = ;,O/(w —2)"f(2) d=.

Korzystajac z (1.5 otrzymujemy
2

dx

/m— y) dy

0

2/1(/m |2dy) (7($— )Q”dy) dz < ||fll3 e /2::11 dx

1
= @@ en gl WWHQ'

1
I+ = / )@= s |
0

Zatem || T"M| <

1
(n+ 1) Stad lim |7V = 0. W rezultacie o(T) = {0}.
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Twierdzenie 1.21. Niech T : X — X bedzie operatorem ograniczonym na
przestrzeni Banacha X. Dla wielomianu p(z), o wspotczynnikach zespolonych,
mamy

o(p(T)) = p(a(T),
tzn. kazda liczba w spektrum operatora p(T') ma postaé p(N), gdzie A € o(T).
Dowdd. Pominiemy przypadek deg p = 0. Zalozmy, ze p(A) ¢ o(P(T'). Wtedy
—p(A
operator p(T') —p(A)[ jest odwracalny. Niech ¢(z) = YM Wtedy ¢(2)

jest wielomianem oraz p(z) — p(A) = (z — A)q(2). Zatem
p(T) = pWNI = q(T)(T' = M) = (T = M)g(T).

To oznacza, ze operator T'— A jest odwracalny, czyli A ¢ o(T'). Zatem, jesli
A€ a(T), to p(A) € a(p(T)). Otrzymalismy p(o(T)) C o(p(T)).

Zatézmy, ze o € o(p(T)). Z zasadniczego twierdzenia algebry wielomian
p(z) — «a rozktada sie na czynniki liniowe

p(z) —a=clz—M)(z—A2)...(2 = \n), c#0
oraz p(\;) = «, dlaj=1,2,...,n. Wtedy
p(T) — ol = (T — MI)(T — NoI)... (T — A1),

7. zatozenia lewa strona jest operatorem nieodwracalnym. Zatem przynaj-
mniej jeden z czynnikéw po prawej stronie, np. 1" — A;I, jest operatorem
nieodwracalnym. Stad \; € o(7'). Poniewaz p(};) = «, to a € p(a(T)).
Otrzymalismy zawieranie o(p(T")) C p(a(T)). O

Uwaga 1.22. Teza jest spetniona dla funkcji catkowitych f(z), tzn. funkcji
postaci

f(z) = i anz",
n=0

przy czym promien zbieznosci szeregu wynosi +oo, lub jest wiekszy niz r(7T).
Wtedy operator

f(r) = i a,T"
T)

jest dobrze okreslony, bo szereg jest bezwzglednie zbiezny. Zawieranie f(o(
)

mozna udowodnié¢ podobnie jak wyzej, korzystajac z faktu, ze g(2) = it

jest funkcja catkowita.

)
2)—f
)

C a(f(T))
(M)
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Twierdzenie 1.23. Dia T € B(H) mamy
o(T*)=0(T)=4{z: z€0(T)}.

Dowdd. Wiemy, ze jesli operator A € B(H) jest odwracalny, to A* jest tez
odwracalny oraz (A*)™' = (A™1)*. Niech z ¢ o(T). Tzn. zI — T jest opera-
torem odwracalnym. Zatem zI — T™ jest tez odwracalny, czyli z ¢ o(T*). To
daje

Stad wynika, ze

czyli

]

Whiosek 1.24. Niech U : H — H bedzie operatorem unitarnym, tzn. U*U =
UU* = I, lub réwnowaznie U* = U™, Wtedy o(U) C {2 € C : |z| = 1}.

Dowod. Mamy
> = uvl = 1]l = 1.

Zatem ||U|| = 1, skad wynika o(U) C {z € C : |z| < 1}. Niech |z| < 1.
Chcemy pokazacé, ze zI — U jest odwracalny. Zauwazmy, ze

2l —U=20"U—-U=—(I —2U")U.

U jest odwracalny. Operator I — zU* jest réwniez odwracalny, bo ||zU*|| =
|z| < 1. Stad zI — U jest odwracalny, co dowodzi tezy wniosku. O

Uwaga 1.25. Jesli U jest unitarny, to ||Uz|| = ||z|| dla z € H. Rzeczywiscie
|Uz||* = (Uz,Uz) = (U"VUz,2) = (z,2) = ||z]*.
Podobnie ||[U*z|| = ||=]|.

Twierdzenie 1.26. Jesli operator T : H — H jest normalny, to |[Tx| =
|T*z|| dla x € H.

Dowod. Mamy
|Tx||* = (Tx, Tx) = (T*Tx, x) = (TT*x,x) = (T*x, T*x) = | T"xz|>.
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Whniosek 1.27. Jesli T' jest operatorem normalnym, to
IAT = T)z|| = [[(A — T")z]|

dla x € H. Ponadto, jesli X\ jest wartoscig wlasng operator T, to X\ jest
wartoscig wltasng operatora T, z tymi samymi wektorams wtasnyms.

Dowaod. 7 zatozenia wynika, ze \I — T jest operatorem normalnym, wiec
mozemy zastosowaé poprzednie twierdzenie. Druga cze$¢ wniosku wynika z
obserwacji, ze Tx = Az oznacza (Al — T)x = 0. ]

Twierdzenie 1.28. Wektory wtasne odpowiadajgce rézinym wartosciom wia-
snym. operatora normalnego sqg ortogonalne.

Dowdd. Niech T : 'H — 'H bedzie operatorem normalnym oraz Tx = Az i
Ty = py dla X\ # p oraz pewnych niezerowych wektoréw z,y € H. Obliczamy

Nz, y) = (Tz,y) = (2, Ty) = (z,fiy) = p(z,y).
Zatem (z,y) = 0. O

Whiosek 1.29. Niech T bedzie operatorem normalnym na H = C". Wtedy
istnieje baza ortonormalna vy, ve, . ..,v, w C" ztozZona z wektorow wiasnych
operatora T

Uwaga 1.30. Teza wniosku oznacza, ze w bazie wektorow {vy,va, ..., v,}
macierz operatora T ma posta¢ diagonalng z liczbami A\, Ao, ..., A\, na prze-
katnej.

Dowdd. Utozsamimy operator T z macierza w standardowej bazie przestrzeni
C". Rozwiazujemy réwnanie

p(A) =det(A\[—T)=0

ze wzgledu na A. Funkcja p(z) jest wielomianem stopnia n, wiec na podstawie
Zasadniczego Twierdzenia Algebry istnieje rozwigzanie \; € C. Wtedy )\,
jest wartodcia wtasng odpowiadajacg pewnemu wektorowi v; € C". Tzn.
Tvy = A\v;. Rozkladamy przestrzen na

C" = (CUl D Ml, gdzie M1 = {Ul}l.
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Mamy M; ~ C" ! oraz T(M;) C M,. Rzeczywiscie, niech v € M;. Chcemy
sprawdzi¢, czy Tv € M;. W tym celu obliczamy

(Tv,v1) = (v, T*v;) = (v, \jv1) = M\ {v,v;) = 0.

Traktujemy 7T jako operator na M; ~ C"~!. Powtarzamy cate wczeéniejsze
rozumowanie, aby znalez¢ wartos¢ wtasna Ao, wektor wtasny vy i nastepna
podprzestrzen Ms. Itd. H

Twierdzenie 1.31. Dla ograniczonego operatora samosprzezonego w prze-
strzeni Hilberta spektrum jest zawarte w 0si rzeczywiste;.

Dowdd. Zatézmy, ze z = X\ + i, gdzie A\, u € R, oraz p # 0. Pokazemy, ze
operator zI — T jest odwracalny, tzn. z ¢ o(T"). Wykonujemy obliczenia

(21 = Tl = (21 = T)v, (2 = T)v) = ((z] = T)(2I = T)v,v)
= (N 4 p®) ] = 20T + T, v) = (((M = T)? + p*1v, v)
= (M = T)v, (A = T)v) + p*(v,v) > pi®[|o]|.
Otrzymalismy wiec
[z = T)vl| = | [[o]l- (1.6)

To oznacza, ze operator zI — T jest réznowarto$ciowy oraz, ze obraz Im (21 —
T) jest domkniety. Korzystajac z zadania 73 [5] mamy

H=ker(zl —T)®Im (I -T).

Pierwsza podprzestrzen jest zerowa, bo Z ¢ R. Zatem H = Im (21 — T), tzn.
2I—T jest operatorem ,1-17 i ,na”. Stad zI/—1T jest odwracalny algebraicznie.
Ponadto z (1.6)) wynika ograniczono$¢ operatora odwrotnego. O

2 Operatory dodatnie

Definicja 2.1. Operator A € B(H) nazywamy dodatnim, jesli (Av,v) > 0
dla wszystkich wektorow v € H. Piszemy wtedy A > 0.

Fakt 2.2. Kazdy operator dodatni jest samosprzezony.
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Dowdéd. Z zatozenia mamy w szczegdlnosci, ze (Av,v) = (v, Av). Na podsta-
wie tozsamosci polaryzacyjnej otrzymujemy

4
(Av,w) = i > (A + i*w), v + iFw)i®
k=0

1

W

4
> (v +iFw, A(v +iFw))it = (v, Aw) = (A% v, w).
k=0

Stad A* = A. O

Uwaga 2.3. Warto zapamietac, zZe z tozZsamosci polaryzacyjnej wynika, ze
jesli dla dwu operatorow A © B z B(H) mamy (Av,v) = (Bv,v), to A= B.

Przyklady. (a) H = C" oraz A jest macierza postaci

100 ...0
020 ..0
A=10 03 ... 0
00 0 n|

Wtedy (Av,v) Z klu|* > 0, dla v = (vp)7_,

(b) Dla H = L?(0,1) okreslamy (Af)(z) = zf(z). Wtedy

(Av,v) = /a;|f(a;)|2da; >0

0

Lemat 2.4. Jesli A > 0 oraz C € B(H), to C*AC > 0

Dowad.
(C*ACv,v) = (A(Cv),Cv) > 0

Lemat 2.5. Jesli A, B> 0 oraz A+ B=0,to A= B =0.
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Dowod. Mamy
(Av,v) + (Bv,v) = ((A+ B)v,v) = 0.

Poniewaz oba sktadniki sg nieujemne, to oba muszg sie zerowac dla dowolnego
wektora v. Stad A = B = 0. n

Lemat 2.6. Jesli A jest operatorem samosprzezonym, to

|A[l = sup [(Av,v)| = sup |[(Av, v}].

vll<1 llvll=1
Dowdd. Mamy

|Al| = sup |(Av,w)| = sup Re (Av,w),
[lull<1 [lul|<1
llv]|<1 llv]|<1

bo mozna dobrac¢ liczbe zespolona o o module 1 taka, ze
|(Av, w)| = (Av, aw).

Z tozsamosci polaryzacyjnej otrzymujemy

Re (Av, w) = i(A(v +w), v+ w) — i(A(v —w),v— w)

1
= 2 [llo+ wlP(4y,y) — o - wl*(Az, 2)],

gdzie
U+ w v — W

= — =
YT ot ol Jo—wl’

oile v +w # 0. Zatem

1
Re (Av,w) < [[lv +w|* + [lv — w||)] sup [{Ay, )|

llyll=1

1
= 1[2llv||2+2\|wll2] sup [(Ay,y)|-
llyll=1

W |

W rezultacie mamy

|A|l < sup [(Ay, y)|.
lyll=1
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Oczywiscie nieréwnos¢ przeciwna jest tez spetniona, bo

IAll = sup [(Av,w)| > sup [(Av,v)]
Jvll<1 el <1

Lemat 2.7. Mamy

& ()
Pmw=1-2 o - D

n=1

", x| <1,

oraz szereq jest zbiezny jednostajnie.

Dowdd. Wzoér jest znany z kursu Analiza 1. Wiemy, ze
o~ (1/2 "
Vi—z=1+) (=), lz| < 1. (2.1)
n=1 n

Po przeksztatceniu mamy

12\ (2n)!
( n )H) U= e e

Stad réwnos¢ w tezie jest spelniona dla |z| < 1. Zatem

> (2n)!
;::1 (n!)2(2n — 1)4»

=1-vV1—-z<1, |[z[<]1.

Obliczamy kres gorny lewej strony i uzyskujemy

> (2n)!
,; (n)2(2n — D)an -

W zwiazku z tym szereg po prawej stronie (2.1) jest zbiezny jednostajnie
dla |z| < 1 z kryterium Weierstrassa. Stad wyrazenie po prawej stronie (2.1)
reprezentuje funkcje ciagta na przedziale [—1,1] réwna /1 — z dla |z| < 1.
Zatem rownosé (2.1) jest spetniona réwniez dla z = +1. O

Twierdzenie 2.8. Dla dodatniego operatora A € B(H) istnieje jedyny opera-
tor dodatni B spetniajocy B* = A, nazywany pierwiastkiem z A i oznaczamy
symbolem A2,
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Dowdéd. Mozemy zatozyé, ze ||A|| < 1, dzielac w razie potrzeby przez liczbe
dodatnig. Oznaczmy X = [ — A. Wtedy

(Xv,v) = (v,v) = (Av,v) > |v]|* = | Al|v]* > 0.
Ponadto
0 < (Xv,v) = (v,v) — (Av,v) < [|o]*.
Z Lematu [2.6| otrzymujemy wiec

IX]l = sup (Xv,v) <1.

f[oll=1

Oznaczmy
(2n)!
(n1)2(2n — 1)4n"

Cp =
Okreslmy
B=1- Z cn X",
n=1

przez analogie ze wzorem z Lematu[2.7, bo A = I — X. B jest dobrze okreslo-
nym operatorem, bo szereg jest bezwzglednie zbiezny znowu z Lematu [2.7]
Istotnie

0o 0o 00
S llen X < D el XM<Y e =1
n=1 n=1 n=1

Uwaga 2.9. W przestrzeni B(H) mozna pomnozy¢ metoda Cauchy’ego dwa
szeregi bezwzglednie zbiezne i otrzymany szereg bedzie bezwzglednie zbiezny.
Dowdd jest taki sam jak dla szeregdéw liczbowych, tylko symbol wartosci

bezwzglednej |- | trzeba zamieni¢ symbolem normy operatorowej || - ||. Jedyna
roznica polega na tym, ze
bl = [al[b],  JAB]| < [[A[l|B]|

Sprawdzamy, czy B? = A.

B = (I -> ch”> (1 -3 ch”> => d, X",
n=1 n=1 n=0

[e.o]

gdzie prawa strona jest iloczynem Cauchy’ego szeregu I — Z cn X" przez
n=1

siebie. Ale z Lematu [2.7 mamy

(1—gcnx">2=(\/E)2=1—x,
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zatem dy = 1, dy = —1 oraz d, = 0 dla n > 2. Czyli
B*=1-X=A.

Sprawdzimy nieujemno$¢ operatora B. Mamy

(Bv,v) = (v,v) — i (X0, v)

=1
" e} [e.9]
2 2 2 2
> [Joll* = 32 el X 0l > Nlol* = D2 eallv]l® = 0.
n=1 n=1
o0
SkorzystaliSmy z faktu, ze | X"|| < || X||" < 1 oraz »_ ¢, = 1, co wynika z
n=1

Lematu 2.7

Pozostaje sprawdzi¢ jedynosé. Zatézmy, ze dla innego operatora C' > 0
mamy C? = A. Wtedy CA = C? = AC, tzn. C' i A sg przemienne ze soba.
Wtedy réwniez C' 1 B sa przemienne, co wynika z okreslenia operatora B.
Wykonujemy obliczenie

(B~ C)B(B~C)+ (B~ C)C(B~C)
= (B~ CO)(B+C)(B—C)=(B*~C*)(B~C)=0.

Kazdy z poczatkowych sktadnikow jest operatorem dodatnim z Lematu [2.5]
Zatem
(B-C)B(B-C)=(B-C)C(B-C)=0.

Odejmujac te operatory otrzymujemy
0=(B-C)B(B-C)—(B-0)0(B—-0C)=(B—-C)
Operator B — C jest samosprzezony, wiec z Lematu [I.19 wynika, ze
0=[I(B-C)| =IIB-Cl
czyli C = B. O
Definicja 2.10. Dila A € B(H) okreslamy

A] = (A7),



Operatory dodatnie 23

Definicja 2.11. Operator U € B(H) nazywamy czeSciowq izometrig, jesli
U jest izometrig po obcigciu do podprzestrzeni (ker U)L, tzn.

|Uv|| = ||v]], dla wszystkich v L kerU.

Uwaga 2.12. Zbiér Im U jest domkniety jako izometryczny obraz przestrzeni
domknigtej (ker U)* przez operator U. Rzeczywiscie, poniewaz

H =ker U @ (ker U)™*,

to

ImU = U(H) = U ((kerU)").
Uwaga 2.13. 7Z tozsamosci polaryzacyjnej wynika
(Uvy,Uvg) = (v1,v2), wv1,v9 L kerU

Lemat 2.14. Jesli U jest czeSciowq izometrig, to U* jest tez czesciowq izo-
metrig. W szczegolnosci podprzestrzen Im U™ jest domknieta.

Dowdd. Niech v € (kerU*)* = ImU. Zatem v = Uw, gdzie w L kerU.
Poniewaz U*Uw L ker U, to

|U])* = (U"Uv,v) = (U(U VW), Uw) = (U Vw,w) = ({Uw, Uw) = |||
O

Twierdzenie 2.15 (Rozktad polarny). Dla operatora A € B(H) istnieje
jedyna czeSciowa izometria U spelniajgca A = U |A| oraz ker A = kerU.
Ponadto ImU = Im A.

Dowod. Mamy
(Av, Av) = (A" Av,v) = (|APv,v) = (|AJv, |AJv)

Zatem
[Av]| = [[[A]v]].

Stad wynika, ze jesli |A|v; = |A|va, to Avy = Avsy, bo

[[Afor = [Afva]| = [[|Al(v1r = v2) || = [[A(vr = o) || = [|Avy = Aws.
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Okre$lamy odwzorowanie U najpierw na podprzestrzeni Im |A| wzorem
U(]Av) = Av.

7, poprzednich obliczen operator U jest dobrze okreslony i jest izometrig z
Im |A| na Im A. Zatem U rozszerza si¢ do izometrii z Im |A| na Im A w oparciu
o znany fakt z topologii metrycznej. Potézmy Uv = 0 dla v € (Im |A|)+ =
ker |A|. Wtedy U staje sie czeSciowa izometria oraz ker U = ker |A| = ker A.
Z definicji operatora U mamy U|A| = A.

Pozostaje sprawdzi¢ jedynosé. Zatozmy, ze V' jest rowniez czesciowq izo-
metrig speliajaca A = V|A| oraz ker V' = ker A. Zatem

V]Alv = Av = U|A|v,

tzn. V i U sa réwne na Im |A|. Stad V' = U na Im |A|, przez ciagtosé. Z kolei
na dopeknieniu ortogonalnym

Im A|L =ker |A] =ker A =ker V =ker U
operatory U i V' sa rowne, bo oba sie tam zeruja. To oznacza, ze U = V. [

Uwaga 2.16. Dla v € H mamy v = vy + vy, v; € (ker|A])t = Im|A|
vg € ker |A]. Wtedy

(U*Av,v)y = (U|Alv, Uv) = (U|A|vy, Uvy) = (|Alv1,v1) = (|Alv,v)
Czyli U*A = |Al.

Uwaga 2.17. Jesli A jest operatorem odwracalnym, to rowniez A* i iloczyn
A*A sa odwracalne. W zwiazku z tym |A| jest odwracalny. Wtedy U =
A|A|™. To oznacza, ze U i U* sa odwracalne.Dalej

UU = |A|7TA*A|A| ™ =1,
zatem U* = U™, co oznacza, ze U jest operatorem unitarnym.

Przyklady.

(a) Niech H = C". Wtedy operator normalny A jest dodatni wtedy i
tylko wtedy, gdy wszystkie wartosci wlasne macierzy A s nieujem-
ne. Rzeczywiscie, niech A > 0. Wtedy jesli Av = v, dla v # 0, to
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0 < (Av,v) = v, v). Zatem A > 0. Odwrotnie, zalézmy, ze wartosci
wlasne dla A sg nieujemne. Wiemy, ze A mozna przedstawi¢ w postaci
A = CDC™!, gdzie D jest macierza diagonalng oraz C' jest macierza
unitarng. Tzn. A = CDC*. Elementy na przekatnej macierzy D sa
nieujemne jako wartosci wtasne macierzy A. Zatem D jest operatorem
dodatnim, bo jesli

A0 0
Do 0 Ao 0 |
0 0 An

to
(Dv,v) Z e og|* >

Zatem A > 0. Ponadto AY? = CDY2C~', gdzie

A2 0 -0
0 0 AL/2

(c) Niech H = L*(0,1) oraz (Af)(z) = z f(x). Wtedy

1 1
(AL = [(AD@) @) de = [ olf@)?de> 0
0 0
Ponadto
(A2 f)(x) = vz f(a).
(b) Niech H = ¢2. Okreslmy
U(ZE(), T1,T9, .. ) = (ZL‘l,ZE27fL’3, .. )

U jest izometrig na V = ey, gdzie e = (0,...,0, %, 0,...). Ponadto U

zeruje sie na Cey. Zatem U jest czesciowa izometrig. Mamy

U*<LUO,.§L’1,I2, .. ) = (O,LU(),SL’l, .. )
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Rzeczywiscie
<U*$7y> = <9§', Uy> = Z TpYn+1 = Z Tn—1Yn-
n=0 n=1

Zauwazmy, ze

U*U<$0,JI1,.T27...) = U*(I1,$2,.T37...):(O,Il,l’g,...),

UU*<£L'0,$1,(E2, .. ) = U(O,.’Eo,.’ﬁl, .. ) = (l‘o,xl,LEQ, .. )

Tzn. UU* = I oraz U*U jest rzutem na e .

3 Zbieznos¢ operatoréow
Niech X 1Y beda przestrzeniami unormowanymi. Rozwazmy 7,,, T' € B(X,Y).

Definicja 3.1. (a) Méwimy, Ze cigg operatorow T, jest zbiezny do opera-
tora T w normie operatorowey, jesli

||Tn — T”B(X,Y) 7 0

(b) Méwimy, Ze cigg T, jest zbieiny do T mocno, jesli dla wszystkich ele-
mentow x € X mamy

| Tz — Tz||y — 0.

(¢c) Mowimy, ze cigg T, jest zbiezny do T stabo, jesli dla wszystkich ele-
mentow v € X oraz wszystkich funkcjonatow y* € Y* mamy

ly* (Tox) — y*(Tz)] — 0.
7 nierOwnosci

Y (o) — y* (T)| = |y (Tox = Tx)| < [ly"[ly-
= [[y" b= 1T = Tfly <

Thx —Tx|y
Ylv-llzl x 170 — Tl sexy)

Y* Y*

wynika, ze (a) = (b) = (c).



Zbieznosé operatoréw 27

Przyklad 3.2. Niech X =Y = {2 oraz
U(xg, x1,x2,...) = (21,2, X3, . ..).
Dla T,, = U™ mamy
To(zo, X1, T2y . .) = (Tpy Tpg1, Ty - - -)-
Zatem -
Tl = 3 fosf? 5 0.
To oznacza, ze ciag T, jest zbiezny mocno do zera. Poniewaz
[Toll > 1 Thenll = [leoll = 1,

to ciag T;, nie dazy do 0 w normie operatorowe;.

Mamy
U*(xo, x1,x2,...) = (0,20, 21,...).
Wtedy
(U*)"(xo, x1, T2, ...) = (0,...,0,20, 21, ...).
——
Zatem
1(U)" (|2 = [|]2-
Dalej

(U)"z,y) = (U")'w,y) = (x,U"y) — 0,

bo U™y - 0. To oznacza, ze (U*)™ dazy do 0 stabo, ale nie dazy do 0 mocno.

Uwaga 3.3. Dla T,,,T € B(H) mamy T, = T wtedy i tylko wtedy, gdy
(Thr,y) — (Tzy),  xyen

Twierdzenie 3.4. Zalozmy, ze X jest przestrzeniq Banacha, a'Y przestrze-
nig unormowang. Wtedy kazdy stabo zbieiny cigg operatorow T, € B(X,Y)
jest ograniczony, tzn. sup, ||T,| < oo.

Dowdd. Zatézmy, ze T, — T stabo, tzn. dla dowolnego elementu z € X ciag
T,z jest stabo zbiezny w przestrzeni Y. Wtedy ciag T,z jest ograniczony w
Y, na podstawie wniosku z twierdzenia Banacha-Steinhausa. Zatem normy
|75 || sa wspélnie ograniczone z twierdzenia Banacha-Steinhausa. O
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Rozwazmy przestrzen Hilberta H. Dla A, B € B(H) piszemy A > B jesli
A*= A, B* = B oraz A— B > 0. Ta relacja jest przechodnia, bo jesli A > 0
oraz B> 0,to A+ B > 0.

Lemat 3.5. Dia A > 0 mamy
(Au,v)| < (Au,u)?(Av,v)Y/?, :
lAull < JLAJY?(Au, u) 72, (3-2)
Dowéd. Dla z € Ciu,v € 'H rozwazamy wyrazenie
0 < (A(zu+v), zu +v) = |2]*(Au, u) + (Av,v) + 2Re {z(Au, v)}.

Zatozmy, ze (Au,v) # 0. Niech z = —Asgn (Au, v) dla A € R. Wtedy

0 < (A(zu+v), zu + v) = (Au,u) \* — 2|(Au, v)| X + (Av, v).
Z nier6wnosci wynika, ze (Au,u) > 0. Podstawmy

_ [(Au, )|
A= (Au, u)

Otrzymamy
[(Au, v)[*

)
To dowodzi (3.1). W (3.1)) podstawmy v = Au. Wtedy
[ Au]|* < (Au, u)'/?(A%u, Au)'/?
< (Au, u) 2| A% V2] Aul[V? < (Au, u) 2L A|V ) Aull.

+ (Av,v)

Przy zalozeniu Au # 0 otrzymujemy . O
Uwaga 3.6. Dow6d mozna réwniez przeprowadzié¢ przy uzyciu A2, Rze-
czywiscie
[(Au,v)| = [(AYu, AV20)| <AVl AP0l = (Au, u)'/2(Av, 0) "2,
1Aul] < AV AY2ul| = (| A2 (Au, u)t/? = (| A (Au, )2,

Twierdzenie 3.7. Niech T,, € B(H) bedzie rosngcym i ograniczonym cig-
giem operatoréw dodatnich, tzn. T, < T,41, oraz sup ||T,| < co. Wtedy cigg

T,, jest zbiezny mocno.
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Dowdd. Dla v € 'H mamy
0 < (Thv,v) < (Thi1v,v).
Ponadto
0 < (T, 0) < | Tallllol® < clfv?,

gdzie ¢ = sup ||T,||. Zatem ciag liczbowy (T,v,v) jest rosnacy i ograniczony,

wiec jest zbiezny dla dowolnego elementu v. 7 tozsamosci polaryzacyjnej
wynika, ze réwniez ciag (T, u, v) jest zbiezny dla dowolnych elementéw w i v.
Oznaczmy

B(u,v) = lim(Tu, v).

Wtedy
| B(u, v)| < sup [{Tou, v)| < clullo]].

Zatem B(u,v) jest ograniczong forma hermitowska na H x H. Z Twierdzenia
3.24 i zadania 72 [5] istnieje operator samosprzezony T' taki, ze B(u,v) =
(T'u,v). Tzn.

1i7£n(Tnu,v> = (Tu,v).

Zatem cigg T, jest zbiezny do T stabo. Operator T jest dodatni, bo
0 < (Thu,u),/(Tu,u).

Co wiecej T' > T,,. Stosujemy (3.2) do A =T — T, i otrzymujemy

|Tu — Tyull = (T — Tp)ul| < |T = Tol|*((T — Tp)u, w)'/?
=T — T, ||Y*(Tu — Tpu, u)*/?.

Poniewaz
17— Tl < ITII
to
| Tu — Toul| < || TV (Tu — Tpu, u)'/?
Zatem ||Tu — Thull — 0. Czyli T;, dazy do T" mocno. O

T = Tl = supyp <1 (T = Tz, 7) < supyy <1 (T, z) = || T
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4 Operatory zwarte

Definicja 4.1. Ograniczony operator liniowy T : X — Y, gdzie X i Y
sq przestrzeniami unormowanymsi, nazywamy zwartym jesl obraz dowolnego
ograniczoneqgo podzbioru w X jest warunkowo zwartym podzbiorem w'Y, tzn.
z kazdego ciggu elementow tego obrazu mozna wybraé podciqg zbieiny.

Uwaga 4.2. Aby operator T' : X — Y byt zwarty wystarczy, aby zbior
T(By) byt warunkowo zwarty, gdzie B, jest kula jednostkowa w X, tzn. By =
{z € X : ||z|| < 1}. Rzeczywiscie, kazdy ograniczony zbidr jest zawarty w
wielokrotnosci kuli jednostkowej. Wiec obraz takiego zbioru jest zawarty w
wielokrotnosci obrazu kuli jednostkowe;j.

Przyktad 4.3. Niech T': C[0,1] — C[0, 1] bedzie okreslony wzorem

(Th)w) = [ kla.y) fl)dy.

gdzie k(x,y) jest funkcja ciagta dwu zmiennych. Wtedy

ITfllo < sup [k(z, y)] || flloo-
0Lz, y<1

Stad

IT)| < |kl := sup [k(z,y)].

\x7y\

Rozwazmy zbior T({f € C[0,1] : || flleo < 1}. Ten zbidr jest ograniczony, bo
operator T' jest ograniczony. Sprawdzamy jednakowsa ciagltosé funkcji z tego
zbioru.

(Tf)(x) = (Tf)(=)] =

[Tk, y) = k(') () dy

1
</|k‘($7y) — k(= )l @)l dy < [Ifll sup [k(z,y) — k(2" y)
0

<y<l

<l sup [k y) = K, y)l. (4.1

Y

Funkcja k(z,y) jest jednostajnie ciagta. Zatem dla ustalonej liczby dodatniej
¢ istnieje liczba dodatnia 0 taka, ze jesli |z — 2| < § oraz |y — ¢'| < § to
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|k(x,y) — k(2',y)| < e. Zatem jesli |x — 2’| < 0, to

sup |k(z,y) — k(2 y)] <e.

0<y<1

Czyli |(Tf)(z) — (T'f)(2")] < e. Reasumujac obraz kuli jednostkowej przez
operator T' jest ograniczony i jednakowo ciggly. Zatem z twierdzenia Arzeli-
Ascoliego ten obraz jest warunkowo zwarty, wiec operator 1" jest zwarty:.

Twierdzenie 4.4. Niech X,Y,V, « W bedq przestrzeniami unormowanyms,
natomiast operatory T : X — Y, A :V — X oraz B :' Y — W bedqg
ograniczonymsi operatoramai lintowyma. Jesli operator T’ jest zwarty, to zwarty
jest rowniez operator BT A :V — W.

Uwaga 4.5. Aby pokazaé operator T : X — Y jest zwarty, trzeba udowod-
ni¢, ze dla kazdego ograniczonego ciagu z,, w X ciag T'x, zawiera podciag
zbiezny w Y.

Dowaéd. Niech v, bedzie ograniczonym ciggiem w V. Wtedy ciag Av, jest
ograniczony w X. Zatem ciag T'(Av,) zawiera podciag T'(Avy,,) zbiezny. Z
ciagtosci operatora B mamy, ze podciag BT Av,, jest tez zbiezny. O]

Przyklad 4.6. Rozwazmy operator T : L?(0,1) — L?(0,1)

(Th)@) = [ k(w,9)f () dy.

gdzie k(z,y) jest funkcja ciagta dwu zmiennych. Okreslmy operatory S; :
C[0,1] — L*(0,1) oraz S, : L*(0,1) — C0, 1] wzorami

Sif =1, ()@ = [ kay)f ) dy.

Oba operatory sg ograniczone, bo

1

1/2
1817112 = [1£1l2 = ( / |f(m)|2dfv) <o

0
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oraz

(S:0)@] < [ )l 1) dy < 6 [ 17)] dy

1 1/2
< 1kl ( / |f(y)|2dy) = Elloll
0

czyli [|Soflco < ||E||lsol| fll2- Mamy T = S1S5. Pokazemy, ze operator Sy jest
zwarty, zatem T' tez bedzie zwarty z poprzedniego twierdzenia. Wykazemy, ze
obraz kuli w L?(0,1) przez Sy jest warunkowo zwarty w C[0, 1]. Oczywiscie
obraz kuli jest ograniczony, bo operator S; jest ograniczony. Sprawdzamy
jednakowsg ciaglo$é funkcji z obrazu kuli. Niech || f||2 < 1. Wtedy korzystajac
z (4.1) otrzymamy

|(S2f)(x) = (S2f)(2")| < sup [k(z,y) — k(=" y)[ [ f]h

0<y<1
< sup [k(z,y) — k(@ y)l 1f]2;
0<y<1

wiec

|(S2f)(2) = (S2f)(2)| < sup [k(z,y) — k(z', y)|.

0<y<1

Poniewaz funkcja k(z, y) jest jednostajnie ciggla, to funkcje So f, dla || f]|2 < 1
sg jednakowo ciagle.

Przyklad 4.7. Operatory skonczenie wymiarowe, tzn. dimIm7 < oo, sa
zwarte. Istotnie, niech 7' : X — Y bedzie ograniczonym operatorem linio-
wym, dla ktérego T'(X) jest przestrzenia skoniczonego wymiaru m. Wtedy
przestrzen T'(X) jest izomorficzna z C™ z norma euklidesowa. W takiej prze-
strzeni kazdy zbior ograniczony jest warunkowo zwarty. W szczegolnosci ob-
raz kuli jednostkowej przez operator ograniczony T jest taki.

Twierdzenie 4.8. Niech X bedzie przestrzeniqg unormowang, a'Y przestrze-
nig Banacha. Zalozmy, ze operatory T,, € B(X,Y') sq zwarte oraz zbiezne do
operatora T € B(X,Y) w normie operatorowej. Wtedy operator T tez jest
zwarty.

Dowdéd. Rozwazamy ciag z,, elementow z kuli jednostkowej w X. Z zatozenia
istnieje podciag x(}) ciagu x,, taki, ze ciag Tiz(V) jest zbiezny, np. do y;. Z



Operatory zwarte 33

kolei istnieje podciag (2 ciggu V) taki, ze ciag Thx(?) jest zbiezny, np. do ys.
Postepujac tak dalej znajdziemy podciag a:fjj) ciggu xﬁl}‘l) taki, ze ciag T, n:c,(];)
jest zbiezny, np. do y,. Okredlmy nowy ciag &, = ™. Dla m > n wyrazy
ciagu ¥,, pochodza z podciggu =™, tzn. ciag Z,,, m > n jest podciagiem
ciagu 2. Zatem T,,%,, = Yn. Sprawdzimy, ze ciag y, jest zbiezny. Mamy

1y = yiell = lim [ T2, — T |-
Ale
|10 — TiZm || = [[(Th = Ti) Tl < (|17 — Telll|Zonl| < |17 — T |-

Zatem ciag vy, speinia warunek Cauchy’ego. Z zupelnosci przestrzeni Y cigg
Yn jest zbiezny do pewnego elementu y. Pokazemy, ze Tz, —y. Mamy

| T% — yll < |T%0 — T || + | 10T — Yl + lyn — vl

Dla liczby dodatniej € wybieramy n odpowiednio duze tak, aby ||T"— T,| <
e/3 oraz ||y, — y|| < /3. Nastepnie dla ustalonej wartosci n istnieje liczba
my tak, ze dla m > mg zachodzi ||T,%,, — yn|| < /3. Wtedy dla m > my
otrzymujemy

|T% — yll <e.

O

Przyktad 4.9. Rozwazmy ponownie operator T' : L*(0,1) — L?*(0,1) z
Przyktadu [4.6l Na podstawie twierdzenia Stone’a-Weierstrassa kombinacje
liniowe funkcji postaci a(z)b(y) leza gesto w przestrzeni C'([0,1]%). Zatem
istnieje ciag funkcji k,(z,%y) postaci k,(z,y) = Sa, ar(2)bi(y) (przy czym
N i funkcje ay oraz by zaleza od n) takich, ze k,(z,y) = k(x,y). Okreslmy

operatory

1

(L)) = [ Ralaw)f ) dy = X asl) [ (o) ) dy.

0

Zatem
Im T, C lin{ai(z),as(x),...,an(z)}.
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To oznacza, ze T), jest operatorem skonczenie wymiarowym. W szczegdlnosci
T, jest operatorem zwartym. Ponadto

1

/[kn(x,y)—k(x,y)]f(y) dy </\kn(x,y)—k(x,y)||f(y)|dy

< sup |ko(z,y) — k(z,y)| | flh < sup  |ka(z,y) — k(z,9)] || f]2-

0<z,y<1 O0<z,y<1

(T, =T)f](x)| =

Stad otrzymujemy

I(To = T)fll2 < sup |kn(z,y) = k(z,y)| [ f]2-

0<z,y<1

Zatem
1T = T|| < sup |kn(z,y) — k(z,y)| — 0.

0<z,y<

Twierdzenie 4.10. Niech T' bedzie ograniczonym operatorem liniowym na
przestrzent Hilberta. T jest zwarty wtedy 1 tylko wtedy, gdy T™ jest zwarty.

Dowéd. Wiemy, ze operator T mozna zapisaé w postaci T = U|T| oraz
U*T = |T|. Jesli T jest zwarty, to zwarty jest tez |T|. Wtedy réwniez
T* = |T|U jest zwarty. O

Twierdzenie 4.11. W osrodkowej przestrzeni Hilberta H ograniczony ope-
rator lintowy T jest zwarty wtedy i tylko wtedy, gdy przeksztalca ciggi stabo
zbiezne do zera w ciggr zbieine do zera w normie przestrzeni.

Dowad.

(=) Zalézmy, ze ciag elementéow x, przestrzeni H dazy stabo do zera.
Ten ciag jest wiec ograniczony. Zatem T'z, zawiera podciag zbiezny T'z,, .
Oznaczmy Tz, — Y Dla z € 'H otrzymujemy

(y,z) = li£n<T$nk> z) = li]£n<a:nk,T*z> = 0.

Zatem (y, z) = 0 dla wszystkich z € H, czyli y = 0.
7, powyzszego rozumowania wynika, ze kazdy podciag ciagu Tz, zawiera
podciag zbiezny do zera. Zatem ciag T'x,, dazy do zera.

(<) Niech x,, bedzie ograniczonym ciagiem elementéw z H. Z twierdzenia
Banacha-Alaoglu mozemy wybra¢ podciag x,, , ktéry jest -stabo, czyli stabo,
zbiezny. Niech z,,, o stabo. Zatem z,, — - 0 stabo. Z zalozenia ciag

T(xp, — x) jest zbiezny do zera w normie. Czyli ||Tz,, — Tx|| — 0. O
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Lemat 4.12. Niech X, Y @ Z bedg przestrzeniami unormowanymi. Zatozmy,
ze operator T' : X — Y jest zwarty oraz, zZe cigg ograniczonych operatorow
Sp Y — Z jest mocno zbieiny do operatora S Y — Z. Wtedy cigg
operatorow S, T jest zbieiny do ST w normie operatorowey.

Dowaod. Zatézmy, ze S, T nie jest zbiezny do ST w normie operatorowe;j.
Zatem dla pewnej dodatniej liczby € mozna znalez¢ rosnacy ciag liczb natu-
ralnych n, oraz cigg elementow x;, € X takich, ze

[zell = 1, [[(Sn, T = ST)al| > e

Ze zwartosci operatora 1T ciag T'z) zawiera podciag zbiezny. Bez straty ogol-
nosci zatozymy, ze T'xj, jest zbiezny do pewnego elementu y € Y. Wtedy

e <|[(Sn, T = ST)aell < 1S, Tww = Swyyll + 1Sn,y — Syl + 15y — STa]
S Sl 1Tz =yl + 190,y = Syl + 151 ly = T[] — 0.

]

Twierdzenie 4.13. Kazdy zwarty operator pomiedzy przestrzeniami Hilber-
ta jest granicg w normie operatorowej ciqggu operatorow skonczenie wymiaro-
wych.

Dowdd. Niech T : Hy — Hs bedzie zwarty. Rozwazmy przestrzen T(H;).
Oznaczmy symbolem B kule jednostkowa w H;. Wtedy

T(Hy) = fle(nB) = GlnT(B) C GlnT(B).

Zatem przestrzen T'(H;) jest zawarta w przeliczalnej sumie zbioréw zwar-
tych. Z kursu topologii metrycznej wiemy, ze przestrzen T'(H;) jest wiec
osrodkowa. Zatem réwniez domkniecie Hy := T(H;) C Ha jest osrodkowa
przestrzeniag Hilberta. Mozemy zastapi¢ Ha przez Hs. Niech {ej}72, oznacza
baze ortonormalna w przestrzeni Hz. Wtedy dla dowolnego elementu = € Hs
mamy

T = i(x,ek>ek.

Oznaczmy

I,x = Z(x,ek>ek, I, : Hy — Hs.

k=1
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Wtedy I,z - x, dla x € Hs, czyli I,, - I, mocno. Z Lematu wynika,
ze I, T = Iy, T =T w normie operatorowe;j. O

Uwaga 4.14. Na podstawie twierdzenie mozna uzyska¢ inny dowod Twier-
dzenia [4.10 Rzeczywiscie, jesli T,, — 1T oraz operatory T, sa skonczenie
wymiarowe, to T,; — T™ oraz 1) sg skonczenie wymiarowe.

Twierdzenie 4.15 (Alternatywa Fredholma). Niech T' bedzie operatorem
zwartym w przestrzeni Hilberta. Wtedy dla liczby A # 0 operator \I — T jest
odwracalny albo liczba X\ jest wartoscig wiasng operatora T

Dowdd. |E|Mamy M — T = M1 — \T). Zamieniajac operator T na \7'T)
ktory tez jest zwarty mozemy ograniczy¢ sie do przypadku A = 1. Rozwa-
zamy wiec operator I — T. 7Z poprzedniego lematu mozna znalez¢é operator
skoniczenie wymiarowy K taki, ze |7 — Ko|| < 1. Wtedy

[—-T=1-(T-K)— K,
Operator I — (T — Kj) jest odwracalny na podstawie Twierdzenia[L.7 Zatem
[T ={I—-Ko[l = (T = Ko)| '} [ = (T — Ko)).

Oznaczmy

K, = Ko[l — (T — Ky)| ™"

Wtedy
I-T=({U-K)I-T+ Kyp). (4.2)

Operator K jest skonczenie wymiarowy, bo Im K; C Im K. Ze wzoru
wynika, ze I — T jest odwracalny wtedy i tylko wtedy, gdy I — K jest
odwracalny. Ponadto I — T jest r6znowartosciowy wtedy i tylko wtedy, gdy
I — K jest réznowartosciowy.

Pokazemy, ze jesli I — K jest roznowartosciowy, to [ — K jest odwracalny.
Stad bedzie wynikaé, ze jesli I — T jest roznowartosciowy, to I — T jest
odwracalny.

Zauwazmy, ze x L Im K7 + Im K7 wtedy i tylko wtedy, gdy = € ker K7 N
ker K7. Przestrzen Im K;+Im K ma skonczony wymiar, zatem jest domknie-
ta. Stad

H = [Im K + Im K7] & [ker K N ker K7].

PDowéd opracowany z Dominikiem Wachowskim
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Obie podprzestrzenie sg niezmiennicze na dziatanie operatora K, czyli row-
niez dla operatora I — K. Operator I — K jest odwracalny wtedy i tylko
wtedy, gdy I — K7 jest odwracalny na kazdej z dwu podprzestrzeni (zadanie).
Operator I — K jest identyczno$cig na drugim sktadniku sumy proste;j.

Zatézmy, ze I — Ky jest roznowartosciowy. Zatem I — K jest réznowarto-
Sciowy na Im K +1Im K7. Z kursu algebry liniowej wiemy, ze operator I — K,
jest wtedy odwracalny na Im K; + Im K7, bo przestrzen ta ma skonczony
wymiar.

]

Twierdzenie 4.16 (Riesz-Schauder). Spektrum operatora zwartego na prze-
strzeni Hilberta skiada sie z co najwyzej przeliczalnego zbioru liczb zespolo-
nych nie majgcych punktu skupienia poza byé moze punktem 0. Kazda nie-
zerowa liczba w spektrum jest wartoscig wlasng o skonczonej krotnosci (tzn.
przestrzen wektorow witasnych odpowiadajgca tej liczbie ma skoriczony wy-
miar).

Dowdéd. Niech A # 0 oraz A € o(T) dla zwartego operatora T'. Z alternatywy
Fredholma wynika, ze A\ jest warto$cia wlasng operatora T. Niech Tz =
Az, oraz x # 0. Ustalmy liczbe € > 0. Pokazemy, ze przestrzen wektorow
wlasnych odpowiadajacych wartosciom wlasnym A, |A| > €, ma skonczony
wymiar. To zakonczy dowdd tezy twierdzenia.

Zat6ézmy nie wprost, ze istnieje nieskonczony uktad liniowo niezalezny
(n)22, taki, ze Tx,, = \,x, oraz |\,| > €. Zastosujemy proces ortogonaliza-
cji Grama-Schmidta do tego ciagu i otrzymamy uktad ortonormalny (y,)>
o wtasnosci

Yn € B :=1in{xy, 20, ... 20}, yn L Eng.

Niech

n
Yn = Z ATk, Qpp > 0.
k=1

Wtedy

n n
Ty, = Z apnTry = Z Ok AT,
k=1 k=1
n—1 n—1 n—1
= )\nan,n-%n + Z ak,nAkxk = )\nyn -\ Z QT + Z ak,n)\kxk'
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Tzn.
Tyn = )\nyn + U, Up € Enfl'

Zatem
<Tyn7 yn> = >\n<yn,yn> = A\

Ciag vy, dazy stabo do zera co wynika z nieréwnosci Bessela. Zatem
[ Tynl| — 0.
Stad A, ~ 0, na podstawie T'wierdzenia . O

Lemat 4.17. Jesli T jest zwartym operatorem liniowym na przestrzeni Hil-
berta, to obraz Im (I — T') jest domknietq podprzestrzeniq liniowq.

Dowéd. Wystarczy udowodnié nieréwnosé ||(I — T)z|| > c||z|| dla pewne]
statej ¢ > 0 oraz wszystkich x L ker(I — T'). Rzeczywiscie, dla

Ho = ker(I —T)*
rozwazmy operator I — T : Hy — ‘H. Zauwazmy, ze
(I =T)(H) = (I =T)(Ho).

Wtedy z nieréwnosci ||(I — T)x|| = ¢||z|| dla 2 € Hy wynika, ze I — T jest
operatorem réznowartosciowym na Hy i jego obraz jest domkniety.

Zatdézmy nie wprost, ze nier6wnos¢ nie jest spetniona dla zadnej stalej
¢ > 0. Zatem istnieje ciag elementow z,, L ker(I — T') spetiajacy ||z,|| =1
oraz ||(I — T)ay|| — 0. Z ciagu Tz, mozna wybra¢ podciag zbiezny T'xy, .
Niech Tz, — Y. Wtedy ||z, — Ty, || — 0. Zatem x,,, — Y. Stad

(I-T)y= h}gn([ — Ty, =0,
czyli y € ker(I —T'). Z drugiej strony poniewaz ., — Y, toy € ker(I —T)*.
Zatem y = 0. Ale ||y|| = limg ||z, || = 1. m

Uwaga 4.18. Jesli operator T jest zwarty, to rowniez Im (Al —T') dla A # 0
jest domknieta podprzestrzenig liniowa, bo

Im (M —T)=1Im (I —\7'T).
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Twierdzenie 4.19. Niech T bedzie zwartym operatorem liniowym w B(H).
Rownanie (I — T)x = y ma rozwigzanie x € H wtedy i tylko wtedy, gdy
y L ker(I —T7).

Dowdd. Mamy rozktad ortogonalny
H=ker(/ —T")®Im (I —-T)=ker(I = T*)®dIm (I —T).
Zatem y € Im (I — T') wtedy i tylko wtedy, gdy y L ker(I —T™). H

Twierdzenie 4.20. Niech T € B(H) bedzie zwartym operatorem samosprze-
zonym w osrodkowej przestrzeni Hilberta. Wtedy istnieje baza ortonormalna
ztoZona z wektorow wilasnych operatora T. Tzn. istnieje baza ortonormalna
{on}N_| taka, ze T, = lnpn, gdzie p, € R oraz u, — 0. (9dy dim H = oo,
to N =00)

Dowad. Przeprowadzimy dowod w przypadku dim’H = oco. Operator T nie
jest odwracalny, bo dla ciagu ortonormalnego e, mamy e, — 0, zatem

stabo
[Ten|| — 0. Czyli 0 € o(T'). Wiemy, ze o(T') C R. Ponadto

o(T) = {n}nzy U {0},
gdzie p, # 0. Przestrzen wtasna
E,={reH :Tv=p,zx}

ma skonczony wymiar. Wiemy tez, ze jesli 7% = T, to wektory wtasne od-
powiadajace roznym wartosciom wlasnym sa ortogonalne. Niech Fy = ker T
Oznaczmy

N

Ho =P E, @ Ey.

n=1

Tzn. Hy jest najmniejszg domknieta podprzestrzenia zawierajaca podprze-
strzenie E, dla n = 0,1,2,..., N. Pokazemy, ze Hy = H. Zalézmy nie
wprost, ze Hy C H. Zauwazmy, ze T'(Hy) C Ho, bo T'(E,) C E, dla kazdego
n=0,1,2... N
Lemat 4.21. Niech T € B(H) oraz T* = T. Jesli dla pewnego podzbioru
M CH mamy T(M) C M, to T (M*) ¢ M*.



Operatory zwarte 40

Dowéd. Niech x € M~+. Dla y € M mamy Ty € M, wicc
(Tz,y) = (z,Ty) = 0.
To oznacza, ze Tx € M*. O

Z lematu mamy 7T’ (H&) C Hg . Niech T ozmacza operator T ograniczony

do podprzestrzeni niezmienniczej Hy . Operator T jest nadal samosprzezo-
ny. T nie posiada wartodci wlasnych, bo wszystkie wektory wlasne zostaly
uwzglednione w Hy. Operator ten jest tez zwarty. Zatem o (7T ) = {0}. Tzn.
promien spektralny r(T) jest zerowy. Ale z samosprzezonosci mamy

|7l = r(T) =0,

Czyli T = 0. Otrzymujemy sprzecznos$é za wyjatkiem sytuacji Hy = {0}.
Zatem

N

H = @ E, & Ey.

n=1
Wiemy, ze dim E,, < oo. W kazdej podprzestrzeni FE, wybieramy baze or-
tonormalna. Potaczenie tych zbiorow da nam baze¢ ortonormalng catej prze-
strzeni H. Ustawmy elementy bazy w ciag {©,}22,. Wtedy T, = pn@n,
dla pewnych liczb u,, € o(T). Poniewaz elementy ¢, daza stabo do zera, to
fin — 0. O]

Uwaga 4.22. Dla z € H mamy

=2 (z en)e
n=1
Zatem -
T$ZZ< » Pn TQOn Z,Un
n=1

Twierdzenie 4.23. Dla operatora zwartego T' € B(H) istniejg uklady orto-
normalne {o, }2_,, {n}N_, oraz liczby dodatnie {\,}2_, takie, ze

N

Tx = Z AT, O )n.

n=1
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Dowdéd. Stosujemy rozktad polarny 7' = U|T|. Wartoséci wtasne operatora
|T| sa nieujemne. Rzeczywiscie, jesli A > 0 oraz Az = Az, dla = # 0, to

< (Az,z) = A*.

Zatem \ > 0. Z poprzedniego twierdzenia istnieje baza ortonormalna {,, }2°
taka, ze
Tz = Z [n{T, On)Pn-
n=1

Zatem

Tr =UlT|z =3 fin(z,¢n)Upn = Z Hn{, 0n)Usprn.
n=1
Mn?ﬁo

Dla u, # 0 oznaczmy U, = ,. Mamy |T|p, = pnpn. Stad ¢, € Im|T.
Wiemy, ze U jest izometrig na Im |T|. Zatem

0, n=#m,

1, n=m.

<77Z)na¢m> = <U90n, UQDm> = <gpn,gpm> = {

Stad uktad {¥n}52; .. 4 jest ortonormalny. Niezerowe liczby pi, ustawiamy
w ciag {\,}2_,, aby uzyskaé teze twierdzenia. O

Uwaga 4.24. Gdy N = oo, to A, ~ 0.

Definicja 4.25. Wielkosci A, nazywamy liczbami singularnymi operatora
zwartego T. Mozemy zalozyé, ze Ay > Ay > A3 >

Twierdzenie 4.26 (Zasada minimaksu). Dla operatora zwartego T w prze-
strzeni Hilberta n-ta liczba singularna wyraza sie wzorem
A= min  max |[Tz|.

V<H vt
dim V=n-1 an 1

Dowod. Niech
N

Te =Y Alz,0n)n, An \, 0.

n=1
Oznaczmy V,, = lin{p1, @a, ..., n_1}. Wtedy element z € V.- ma postaé
N

T = Z(:p, ©K)Yk + o, gdzie zg € ker T' = ker |T'].
k=n
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Zatem
N
Tz=> Mz
k=n

Z nieréwnosci Bessela otrzymujemy

N

| Tx||* = Z Al SN [z, o) P < A2l
k=n
W rezultacie
[Tx]| < Anllz|l < A, dla flzf] <1

To daje nieréwnosé ,.>" we wzorze tezy twierdzenia.

Dla dowodu przeciwnej nierownosci niech V' < 'H bedzie podprzestrzenia
wymiaru n — 1. Wtedy istnieje wektor x € V,, 4 taki, ze x L V oraz ||z|| =1
(por. zadanie 33) Dalej

N
Tz =Y Mz, or)thy, = Z)\k
k=1
Zatem

|1T||* = ZAQ z,n)|” > Z P =Xl = A7

Stad max |Tx|| > A,. Biorac kres dolny wzgledem V' otrzymujemy
eV

llz(l=1

min  max [|[Tz|| > \,.
V<H zeVLi
dim V=n-1 llz||=1

Uwaga 4.27. Prawdziwy jest tez inny wzor

An = max min ||Tz].
V<H z€V
dimV=n |z|=1

Rzeczywiscie, niech V' =V, ;. Wtedy dla x € V mamy

Tl' = zn: >\k<ZC g0k>77/)k
k=1
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Zatem
| Tx||* = ZA > \2|z]|%.
Stad
min ||Tz|| = A,
x€V+1

[lzll=

bo dla x = ¢, uzyskujemy réwnosé. To dowodzi nieréwnosci 7 < 7.
Niech dim(V) = n. Na podstawie zadania 33 istnieje wektor x € V' taki,
ze x LV, oraz ||z|| = 1. Wtedy

N
Te =Y Melz, or)Ur.

k=n
Dalej
1Tz ||* = Z il < Azl = A7

Stad

min ||Tz| < Ay,

eV

llxfl=1
czyli

An > max min ||Tz|.
V<H zeV
dimV=n |z|=1

Whniosek 4.28. Jesli T' jest operatorem zwartym, to ||T|| = ||Txo|| dla pew-
nego elementu xo € H takiego, ze ||xo| = 1.

Dowdd. Istotnie, z zasady minimaksu wynika, ze

A= sup || T[] = |-

llzll=1

Liczba \; jest najwieksza warto$cia wtasna operatora |T|. Niech zp € H
bedzie odpowiadajacym jednostkowym wektorem wtasnym. Wtedy

[Toll = IIT|zoll = Aallzoll = Au = [|IT]-
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Uwaga 4.29. Wniosek mozna udowodni¢ bezposrednio. Mamy || T|| = lim | Tz, ||

dla pewnego ciagu wektoréw spetniajacych ||z, || = 1. Na podstawie Twier-
dzenia Banacha-Alaoglu z ciggu x,, mozna wybraé¢ podciag stabo zbiezny.
Niech z, — . Wtedy ||zo]| < 1. Ponadto x,, — xg - 0. Zatem Tz, — Txy—0

w normie przestrzeni M. To oznacza, ze || Tzo| = lim || Tz, || = ||T]|. Poniewaz
[Tl = 1 Tzoll < [[T'l[llzoll, to [[xo] > 1. Cayli [z = 1.
Definicja 4.30. Operator T € B(H) nazywamy operatorem Hilberta-Schmidta

jesli dla pewnej bazy ortonormalnej {e,}o2, mamy > ||Te,|* < co. Klase
n=1
tych operatorow oznaczamy symbolem HS.

Przyktad 4.31. Niech 7' : CV — CV bedzie odwzorowaniem liniowym z ma-
cierza a;; = (Tej, €;), gdzie {e,} | oznacza standardowq baz¢ w przestrzeni
CY. Wtedy

N N N N N
DolTesl? =D 20 KTejen)> = lagl?,
J=1 j=li=1 j=1i=1

tzn. otrzymujemy sume kwadratow wartosci bezwzglednych wszystkich wy-
raz6w macierzy.

Przyklad 4.32. Rozwaimy odwzorowanie liniowe T : (2 — (2. Oznaczmy
a; = (Tej,eq;), gdzie {e;}32, oznacza standardowq baze w przestrzeni (2.
Wtedy

SolTell? =D KTejen> =D layl*.
j=1

j=1i=1 j=11i=1

Twierdzenie 4.33. Wielkos¢ || Te,||* nie zalezy od wyboru bazy ortonor-
n=1
malnej. Ponadto jesli T € HS, toT* € HS.

Dowdd. Niech {f,,}>°_; bedzie dowolna baza ortonormalna przestrzeni H.
Wtedy z rownosci Parsevala mamy

S lTenl> =30 > (Ten, fn)l?
n=1 n=1m=1
=3 Y Hen T f)P = 30 T full®. (4.3)
m=1

n=1m=1
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Podstawiajac { fm}oo_, = {en}22, otrzymamy
S ITenl = 3 1Tl (1.4)
n=1 n=1
Dalej stosujemy (4.3]) i (4.4]) do operatora T™, aby uzyskaé
D NTenl® =3 T eall* = 3 IT*) full® = D 1T Sl
n=1 n=1 m=1 m=1

]

Twierdzenie 4.34. Kazdy operator Hilberta-Schmidta jest zwarty. Ponadto
liczby singularne operatora Hilberta-Schmidta sq sumowalne z kwadratem.

Dowod. Mozemy zatozyé, ze operator T' jest nieskonczenie wymiarowy, bo
teza jest w oczywisty sposob speliona dla operatora skonczenie wymiarowe-
go. Ustalmy baze ortonormalna {e, }2°,. Dla operatora T' € HS rozwazmy
operatory

Tz = fxx, en)Ten =T (i@: en>en> .

n=1 n=1
Tzn. Ty = TPy, gdzie Py jest rzutem ortogonalnym na podprzestrzen
lin{ey, s, ...,en}. Operator Tl jest skoniczenie wymiarowy, wiec jest zwarty.
Mamy
Te=T <Z<x, en>en> = (z,en)Tey.
n=1 n=1

Zatem z nieréwnosci Schwarza mamy

2 2
ITe - Tyal? = | 3 (2, en)Ten| < ( > |<x,en>|||Ten||)
n=N+1 n=N+1
< ( > |<$7€n>|2> ( > ||T€n||2) < ( > ||T€n||2) ]
n=N+1 n=N+1 n=N+1
Stad

o 1/2
1T = Tn| < ( ) HTenHQ) 2 0

n=N+1
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Zatem T jest zwarty jako granica w normie operatorowej operatoréw skon-
czenie wymiarowych.
Wiemy, ze

‘T’x = Z )‘n<xa ‘Pn>90m
n=1

gdzie A\, \, 0 oraz {p,}>>, jest baza ortonormalng obrazu operatora |T'|.
Niech {f}X , bedzie baza ortonormalng dla ker |T'| = ker T. Wtedy uktad
{on}22, U{fe}i, jest baza ortonormalna calej przestrzeni H. Ponadto

00 K 9] 0
00> > ([ Tnll® + Y ITfll> = Y I1Twnll® = Y2 A7
n=1 k=1 n=1 n=1

]
Twierdzenie 4.35. Operatory Hilberta-Schmidta tworzq ideal.

Dowdd. Niech T,S € HS. Dla bazy ortonormalnej {e,}°, na podstawie
nieréwnoéci trojkata w £2 mamy

(i I S)e””2>1/2 N (i ITen + SenH?)m < (i(HTenH + HSenH)2> v

n=1 n=1 n=1

0 1/2 00 1/2
< (Sirede) + (Shsel) <o
n=1 n=1
CzyliT+ S € HS. Niech T' € HS oraz S € B(H). Wtedy

D NSTenll* < 3 ISIPITenll* = [1S11° X I Tenll? < o0,

n=1 n=1 n=1
co oznacza ST € HS. 7 Twierdzenia [£.33 mamy T* € HS. Zatem S*T* €
HS. Znowu z Twierdzenia otrzymujemy TS = (S*T*)* € HS. O

Uwaga 4.36. Operatory HS z norma

. 1/2
T ls = (Z HTenH2>

n=1
tworzg unormowang przestrzen liniowa, w ktorej norma pochodzi od iloczynu

skalarnego

(T,S) => (Te,, Sey).

n=1
Mozna udowodnié, ze przestrzen HS jest zupelna, czyli jest przestrzenia
Hilberta.
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5 Operatory unitarne

Operator U € B(H) nazywamy unitarnym, jesli UU* = U*U = I, tzn.
U* = U=t Mamy [|U||?> = [|[U*U|| = ||I|| = 1. Zatem o(U) C {z : |2| < 1}.
Ale dla |z| < 1 mamy

2l —U=z20U0"—-U=-U(l—zU").
To oznacza, ze operator zI — U jest odwracalny. Ostatecznie otrzymujemy
oU)C{z:|z|=1}=T.

Definicja 5.1. Wielomianem trygonometrycznym nazywamy wyrazenie po-
stact

o) = S ak

k=—m

gdzie ay € C, z € T. Wielomian sprzezony p(z) okreslamy wzorem
p(z) =p(z) = > @z"
k=—m
(Uwaga: z= 27" dla z € T).

Dla operatora unitarnego U oraz wielomianu trygonometrycznego p(z)
okreslamy

p(U)= > ap®, gdzie U’ =1.

k=—m

Lemat 5.2.
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(i) Niech ¢(U) = Y bz'. Wtedy

l=—m/'

) ( DS b) )= 3 3wt = p)g(0).

k=—m k=—m/' k=—m k=—m/'

Poniewaz p(z)q(z) = ¢(2)p(z), to p(U)q(U) = q(U)p(U).
(iv) Mamy

p(U)p(U)* = p(U)p(U) = |p|*(U) = p(U)p(U) = p(U)*p(U).

Twierdzenie 5.3. Mamy o(p(U)) = p(a(U)).

Dowdéd. Zatézmy, ze p € o(p(U)). Wtedy z zasadniczego twierdzenia algebry
otrzymujemy

pl —p(z)=2""["u—2"p(z)) =cz7™(z = A)(z — A2) ... (2 — An). (5.1)

Zatem
pl —p(U) =cU™U — MI)(U = XI) ... (U= AyI).

Lewa strona jest operatorem nieodwracalnym. Zatem przynajmniej jeden z
operatoréw U — ;I jest nieodwracalny. Wtedy A; € o(U). W szczegdlnosci
A; # 0. Podstawiajac z = A\; w (5.1) otrzymamy p = p();) € p(a(U)).
Udowodnili$my wiec zawieranie o(p(U)) C p(a(U)).

Niech teraz p € p(o(U)), tzn. p = p(A) dla pewnej liczby A € o(U).
Wtedy

n

pNI —p(U) = > ax(WI=U") =" ap(NT - U")
k=1

k=—m

+ fj a_ N FUHUR =N = (M -U)W =V(M -U), (52)
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dla pewnego operatora V. Pokazemy, ze p(\) € o(p(U)). Zalézmy nie wprost,
ze operator p(A) I —p(U) jest odwracalny. Niech A oznacza operator odwrotny
do p(A)I — p(U). Wtedy z (5.2) otrzymamy

M —-U)WVA=AV(N -U) =1,
co oznacza, ze operator A — U jest odwracalny, co przeczy zatozeniu A €
a(U). W rezultacie udowodnili$my, ze p(a(U)) C o(p(U)). O
Whniosek 5.4. [[p(U)]| = max{[p(z)| : z € o(U)} = [Ipllc@w).-

Dowdéd. Poniewaz operator p(U) jest normalny, to

Ip(U)|| = max{|p| : peo(p(U))}
= max{|u| : p€plo(U))} =max{lp(z)| : z € a(U)}

O]
Whiosek 5.5. Jesli p(z) > 0 dla z € T, to p(U) > 0.

Dowdéd. Zatézmy, ze 0 < p(z) < 1. Okreslmy ¢(z) = 2p(z) — 1. Wtedy q(z)
jest wielomianem rzeczywistym oraz |¢(z)| < 1. Z poprzedniego wniosku
mamy ||q(U)|| < 1. Ponadto ¢(U)* = q(U) = q(U), tzn. q(U) jest operatorem
samosprzezonym. Z Lematu wynika, ze —I < q(U) < I. W szczegblnosci
2p(U) — I > —1, czyli p(U) > 0. O

Whiosek wynika tez z nastepnego lematu.

Lemat 5.6 (Riesz-Fejér). Zalozmy, Ze wielomian trygonometryczny p(z) jest
nieujemny dla z € T. Wtedy istnieje wielomian trygonometryczny h(z) taki,

ze p(z) = |[h(2)[*.
Dowdd. Najpierw rozpatrzymy przypadek, gdy p(z) > 0 dla |z| = 1. Niech
p(z)= > 2" 7 dodatniosci otrzymujemy

k=—n

n

P =pF= Y @t = 3 et

k=—n k=—n

Zatem c¢j, = ¢_y dla dowolnego wskaznika k. Zauwazmy, ze stad wynika ¢, # 0
wtedy i tylko wtedy, gdy ¢_,, # 0.
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Zatézmy, ze c_,, # 0. OkreSlmy G(z) = 2"p(2). Wtedy G(z) jest zwyklym
wielomianem stopnia 2n. Wielomian G(z) nie zeruje si¢ na okregu |z| = 1.
Pokazemy, ze

G(z) =2"G(z7'), dlaz#0, z€C. (5.3)
Nietrudno zauwazy¢, ze obie strony sa wielomianami zmiennej z. Wystarczy
zatem sprawdzié¢ réwnosé¢ dla |z| = 1. Dla |z| = 1 mamy p(z) = p(z). Zatem

27"G(z) = Z7"G(z). Poniewaz z = Z7!, to po przeksztalceniu otrzymujemy

63).

Rozkladamy wielomian G(z) na czynniki liniowe

—an z — o) H (z — Br),
k=1

gdzie |a;| < 11 |G| > 1, oraz r + s = 2n. Ze wzoru wynika, ze jesli
« jest pierwiastkiem wielomianu G(z), to réwniez (@)~! jest pierwiastkiem i
to tej samej krotnosci. To oznacza, ze pierwiastki a; i B, mozna polaczy¢ w
pary, czyli

n

- cnf{(z—aj) G- @)™,

j=1
Zatem

gdzie

W szcezegdlnosci d,, > 0. Teza jest spelniona dla h(z) = y/d,, H Z — aj).
7j=1

Zatozmy, ze p(z) > 0 dla |z| = 1. Wtedy py(2) = p(z) + & > 0 dla
|z| = 1. Z pierwszej czeSci dowodu istnieja wielomiany hy(z), ktoérych sto-
piefi jest wspdlnie ograniczony, takie, ze py(z) = |hn(2)[>. Wspolezynniki
wielomiandéw hy sa réwniez wspoélnie ograniczone, bo

A (2)]” < [p(2)] + 1.
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Zatem z ciagu hy(z) mozna wybraé¢ zbiezny podciag do wielomianu h(z),
ktory spetia p(z) = |h(2)|* dla |z] = 1. O

Powracamy do alternatywnego dowodu Wniosku [5.5] Mamy
p(U) = |h[*(U) = (hh)(U) = RU)R(U) = h(U)*h(U) > 0.

Dotychczas potrafiliémy okreslié p(U), gdzie p jest wielomianem trygo-
nometrycznym. Naszym celem jest zdefiniowanie f(U), gdzie f jest funkcja
ciaglta okre$lona na zbiorze o(U) C T. Z twierdzenia Tietzego funkcje f
mozemy rozszerzyC do funkcji ciagtej F': T — C tak, ze

max |F'(z)| = max 2)|.
nax|F(2)| = max |f(2)

Z twierdzenia Weierstrassa mozna znalez¢ ciag wielomianow trygonometrycz-
nych p,(2) zbiezny jednostajnie do funkcji F'(z) dla |z| = 1. Pokazemy, ze

(1) Ciag operatoréw p,(U) jest zbiezny w normie operatorowe;.

(2) Granica ciagu p,(U) nie zalezy od wyboru wielomianéw p;,.

(3) Granica ciagu p,(U) nie zalezy od wyboru rozszerzenia F.
Dowéd. Mamy

120 (U) = P (U) | = [ (P = P (U]

= max [pn(2) — pm(2)| < max [py(2) — pm(2)]
) 21=1

<H1|§>1<|pn(Z)—F(Z)|+1|m‘§>1<IF(Z)—pm(2)\ — 0

|z n,m—00

Ciag operator6w p,(U) spelnia warunek Cauchy’ego. Zatem jest zbiezny.
Zatézmy, ze réwniez inny ciag wielomianow g, jest zbiezny jednostajnie do
F. Wtedy ciag naprzemienny

P1,41,P2,492, - - -y PnyQn; - - -

jest tez zbiezny jednostajnie do funkcji F. Z pierwszej czesci dowodu wynika,
ze ciag operatorow

p(U), qu(U),p2(U), q2(U), . .., pp(U), qu(U), . ..
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jest zbiezny. To oznacza, ze ciagi p,(U) i ¢,(U) sa zbiezne do tego samego
operatora.

Oznaczmy symbolem F inne ciagle rozszerzenie funkcji f do okregu |z| =
1. Niech ¢, bedzie ciagiem wielomianéw zbieznym jednostajnie do F na okre-
gu T. Z pierwszej czesci dowodu wiemy, ze cigg operatorow g, (U) jest zbiezny.
Ponadto mamy

[P (U) = au(U)| = [[(pn — ¢u)(U)]| = max Pn(2) — qu(2)]

z€a(U)
< n - n o
max Ipa(2) — f(2)] + Jnax, |gn(2) — f(2)]
< max [pa(2) = F(2)] + max|ga(z) - F(z)| =0
]

Wezesniejsze rozumowanie pokazuje, ze granica p,(U) zalezy jedynie od
funkcji ciggtej f na spektrum operatora unitarnego U. Przyjmujemy ozna-
czenie

f(U) = limp,(U).

k

Y

Uwaga 5.7. Jedli f jest wielomianem trygonometrycznym, np. f(z) = z

to f(U) = U*

Twierdzenie 5.8. Niech f,g € C(o(U)). Wtedy
(i) (f +9)(U) = f(U)+g(U).

(i) (f9)(U) = fU)g(U) = g(U)f(U).
(iii) f(U)" = f(U).

() AN = max |f(2)].

zeo(U)
(v) o(f(U)) = f(o(U)).

Uwaga 5.9. Twierdzenie méwi, ze rodzina operatoréw { f(U) : f € C(o(U))}
tworzy algebre ze sprzezeniem i norma operatorowa. Te algebre mozna utoz-
sami¢ z algebrag C'(a(U)).
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Dowad.

(i) Niech p, i ¢, beda jednostajnie zbieznymi ciagami wielomianéw trygo-
nometrycznych na T takimi, ze p,,(2) — f(z) oraz g,(z) — g(z)dlaz € a(U).
Wtedy

fFU) +g(U) =limp,(U) + lim ¢, (U) = lim[p, (U) + ¢u(U)]
— lim(pa + ) (U) = (f + 9)(U),
bo ciag wielomianéw p, + ¢, jest jednostajnie zbiezny na T oraz p,(z) +

@n(z) — f(z) +g(2) dla z € o(U).
(i) Przy oznaczeniach jak w (i) mamy

F()g(U) = limp,(U) lim ¢, (U) = lim p,, (V) (U) = lim(png.)(U) = (f9)(U),

bo ciag wielomiandéw p,q, jest zbiezny jednostajnie na T oraz p,(z)g.(z) —

f(2)g(z) dla z € o(U). Dalej g(U) f(U) = (¢f)(U) = (fg)(U) = f(U)g(U).
(iii) Jesli p,, jest zbiezny jednostajnie na T oraz p,(z) — f(z) dla z €

a(U), to ciag p, jest tez zbiezny jednostajnie na T oraz p,(z) — f(z) dla
z € o(U). Zatem z Lematu [5.2{ii) mamy
F(U) = limpa(U) = lim pa(U)* = F(U)",
(iv) Przy oznaczeniach jak w (i), na podstawie Wniosku [5.4 otrzymujemy
17O = Tign (0] = i 13 pa(2)] = ma £(2)

(v) Niech pu ¢ f(o(U)). Rozwazmy funkcje g(z) = [ — f(2)]7'. Mamy
g € C(a(U)). Z whasnosci (ii) otrzymujemy

g(U)(p = NHU) = (p = HU)gU) = [(n = NHgl(U) = LU) = I.

To oznacza, ze operator (u — f)(U) = pul — f(U) jest odwracalny. Czy-

ip ¢ o(f(U)). Zatem o(f(U)) € f(o(U)). Niech teraz p € f(a(U)).
Tzn. p = f(A\) dla pewnej liczby A € o(U). Wybierzmy ciag wielomianéw
trygonometrycznych p,, jednostajnie zbiezny na T, taki, ze p,(2) — f()

dla z € o(U). Wiemy, ze operator p,(A)I — p,(U) nie jest odwracalny dla
A € o(U) (por. Twierdzenie [5.3). Ale

Pu(MI = pu(U) — fNI = f(U)
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w normie operatorowej. Zbior operatoréw odwracalnych jest otwarty w B(H),
wiec zbiér operatoréw nieodwracalnych jest domkniety. Zatem operator f(A)I—
f(U) nie jest odwracalny. To oznacza, ze p = f(A) € o(f(U)). Czyli f(o(U)) C
o(f(U)). 0

Twierdzenie 5.10. Jesli funkcja f € C(a(U)) jest nieujemna, to f(U) > 0.
(

Dowdd. Zalézmy, ze 0 < f(z) < 2 dla z € o(U). Wtedy funkcja g(z) =
f(2) — 1 speia |g(2)| < 1. Z Twierdzenia |5.8(iii), (iv) mamy | g(U)| < 1
oraz g(U)* = g(U). Zatem —I < g(U) < I. Wtedy

]

Naszym kolejnym celem jest okreslenie operatora f(U) dla pewnych funk-
cji nieciagtych f okreslonych na o(U). Na przyklad niech f(z) przyjmuje
warto$¢ jeden na otwartym tuku okregu jednostkowego oraz wartos¢ zero w
pozostatych punktach okregu. Funkcje f mozna uzyska¢ jako granice rosna-
cego ciagu funkeji nieujemnych i ciggtych f,, € C(T). Ta wlasnosé umozliwia
okreslenie operatora f(U).

Niech f, bedzie ciagiem nieujemnych funkeji ciaglych takim, ze f,(z) /
f(z) dla z € o(U). Zatézmy, ze funkcje f,(z) sa wspélnie ograniczone na
o(U), np. przez stala ¢ > 0. Mamy 0 < f,(2) < fur1(2) < ¢ Zatem
0 < fo(U) < fro1(U) < cl. Ciag operatoréow f,(U) jest wtedy rosnacy i
ograniczony. Zatem ciag f,(U) jest mocno (punktowo) zbiezny. Oznaczmy
mocng granice symbolem A, tzn. niech

Av =lim fo(U)v, v eH,

Mocna granica A zalezy tylko od funkcji f, a nie od wyboru ciagu f,,. Rze-
czywiscie, niech g, € C(o(U)) oraz g,(z) / f(z) dla z € o(U). Mamy
gn(z) < ¢, bo f(z) < cdla z € o(U). Zatem ciag operatoréw g, (U) jest tez
mocno zbiezny na podstawie weze$niejszego rozumowania dla ciagu f,(U).
Niech

Bv = li7rlngn(U)'U, veH.

Chcemy pokazaé, ze A = B. Dla liczby naturalnej k£ okreslmy funkcje

hn(2) = min{ fn(2), g(2)}, 2z € o(U).



Operatory unitarne 55

Mamy h,, € C(c(U)). Ponadto

hn(2) /" gi(2), 2z €a(U).

Poniewaz funkcja g jest ciagta na zbiorze o(U), to z twierdzenia Diniego
wnioskujemy, ze h, =2 g, gdy n — oo. Zatem h,(U) — gx(U) w normie
operatorowej na podstawie Twierdzenia [5.8(iv). Dalej mamy h,(z) < f,(2),
wiec h,(U) < fo(U) z Twierdzenia [5.10] Przechodzac do mocnej granicy,
gdy n — oo, otrzymujemy g, (U) < A. Nastepnie przechodzimy do mocnej
granicy, gdy k — oo, aby otrzymaé¢ B < A.

Uwaga 5.11. Skorzystalismy z faktu, ze jesli 0 < C,, < D,, oraz operatory
C, i D, sg stabo zbiezne do C'i D odpowiednio, to 0 < C' < D. Rzeczywiscie

(Dv,v) — (Cv,v) = li}{ﬂ(Dnv, V) — li;bn(C’nv, v) = lign((Dn —Cy)v,v) > 0.

Twierdzenie 5.12. Niech f i g bedg ograniczonymi funkcjami okreslonymi
na o(U) bedgcymi granicami punktowymi rosngcych i nieujemnych funkcji
ciggltych okreslonych na o(U). Wtedy

(i) (f+9)U) = fU) + g(U).
(i) (f9)(U) = f(U)g(U) = g(U) (V).
(ii)) f(U) > 0.

(iv) @) = sup [(2).

z€o(U)

Dowdd.
(i) Niech f, i g, beda ciggami nieujemnych funkcji ciagtych takimi, ze f,,(z)

f(2)1gn(2) /" g(2) dlaz € o(U). Wtedy f,(2)+ga(z) /" f(2)+9(2). Zatem
ciagi operatoréw f,,(U), gn(U) oraz (fn + gn)(U) sa zbiezne mocno do ope-

ratorow f(U), g(U) i (f +¢)(U), odpowiednio. Ponadto z Twierdzenia [5.§]i)

mamy

(f + 9)(U) = lm(f + g)(U) = lim[fu(U) + g, (V)
— lim f,(U) + lim g, (U) = f(U) + g(U).
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(ii) Przy oznaczeniach z (i) mamy f,(2)gn(z) f(2)g(2). Zatem ciag
operator6w (f,g,)(U) jest mocno zbiezny do (fg)(U). Zatem z Twierdzenia

[.8(ii) otrzymujemy

(f9)(U) = lim(frgn)(U) = lim £, (U)gn(U)
= lim f,(U) lim g, (U) = f(U)g(U).

(iii) Przy oznaczeniach z (i) mamy f,(U) > 0, na podstawie Twierdzenia
5.10L Zatem f(U) > 0, jako mocna granica operatoréw nieujemnych f,(U).
(iv) Oznaczmy ¢ = sup f(z). Jedli f, jest ciagiem nieujemnych funkcji
z€o(U)
ciagtych na o(U) takim, ze f,,(2) / f(z) dla z € o(U), to 0 < fo(2) < c dla
z € o(U). Wtedy z Twierdzenia|5.8{(iv) mamy || f,,(U)|| < c. Stad || f(U)|| < c.

Otrzymalismy || f(U)|| < sup f(2).
z€o(U)

Poniewaz 0 < f,,(U) < f(U), to || fu(U)]| < ||f(U)]]. Zatem z Twierdzenia
5Siv) mamy
[f(U)I = sup fu(z), neN.

z€o(U)
Zatem
[f(U)|| = sup sup fu(2) = sup f(z).
n zeo(U) z€a(U)
O
6 Zadania

1. Pokazaé, ze jesli operator liniowy T z przestrzeni Banacha X w prze-
strzen Banacha Y jest ograniczony, to T przeksztalca ciggi stabo zbiez-
ne do zera w X w ciagi stabo zbiezne do zera w Y. Pokazac¢, ze implikacja
odwrotna tez jest prawdziwa. W dowodzie skorzystac¢ z twierdzenia o
wykresie domknietym.

2. Okreslmy funkcjonaty d,, na przestrzeni /> wzorem

On({er}pZe) = cn.

Pokazaé, ze {9, } nie zawiera podciagu zbieznego *-stabo.
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10.

Az}, jest gestym podzbiorem kuli jednostkowej w przestrzeni unor-

mowanej X. W przestrzeni X* wprowadzamy metryke
d(z"y") = > 27"a" (z0) — ¥ (wn)]
n=0

Pokazaé, ze d(-, -) jest istotnie metryka. Pokazaé, ze x-staba topologia w
kuli jednostkowej jest rownowazna topologii wyznaczonej przez metryke
d(-,-). * Czy topologie te sa rownowazne na calej przestrzeni X* 7

. Pokaza¢, ze jesli ciag elementéw x,, przestrzeni Hilberta jest stabo zbiez-

ny do x oraz ||z,| — ||z, to ||z, — z|| — 0. Czy mozna to uogdlni¢ na
przestrzenie P dlap > 17

. p > 1. Pokazac¢, ze ciag x,, w przestrzeni (P jest stabo zbiezny wtedy i

tylko wtedy, gdy liczby ||x,||, sa wspdlnie ograniczone oraz dla kazdego
m ciag x,(m) jest zbiezny.

. W przestrzeni 7, p > 1 znalez¢ cigg stabo zbiezny , ale nie zbiezny w

normie przestrzeni. * Pokazaé, ze w ¢! kazdy ciag stabo zbiezny jest tez
zbiezny w normie.

Ciag {z,} elementéw przestrzeni unormowanej X jest stabo zbiezny
do x. Pokazaé, ze istnieje ciag postaci {d73 N\inz;} (gdzie A;,, € C)
zbiezny do z w normie. Wskazéwka: Rozwazy¢ najmniejszg domknietg
podprzestrzen liniowa Y zawierajaca {x,}. Zauwazy¢, ze teza zadania
jest réwnowazna x € Y. Skorzysta¢ z faktu, ze jesli x € Y to istnieje
funkcjonal ograniczony z* taki, ze z*(x) = 1 oraz z*(y) =0 dlay € Y.

Pokaza¢, ze jesli ciag x,, jest stabo zbiezny do z, to ||z|| < liminf ||z,

Pokazaé, ze ciag funkcji f, jest stabo zbiezny do f w L?(0, 1) jesli normy
|| frll, sa wspélnie ograniczone oraz f,, jest zbiezny do f wedtug miary,
tzn.

lim [{a : | () — f(a)] > £}] =0,
dla dowolnego € > 0. Pokazac, ze odwrotna implikacja jest falszywa.

Funkcja rzeczywista f na [0, 1] spetnia warunek Héldera z wykladni-
kiem a, jesli istnieje stata C' taka, ze | f(z)— f(y)| < Clx—y|*. Okreslmy

/@) = Fw)]

| flla = max |f ()] +sup
|z —y|*
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11.

12.

13.

14.

15.

Pokazaé, ze dla 0 < a < 1, zbiér funkeji spelniajacych || f|lo < 1 jest
zwartym podzbiorem w C0, 1].

Funkcje g, sa ciagle na [0,1]. Czy z ciggu funkcji

= [T a—y sinfoas?)} dy

mozna wybraé¢ podcigg zbiezny ?

Niech K (z,y) bedzie funkcja ciagta na R? taka, ze

/ / K(z,y)|?dx dy < oo.

Niech f(z) € L*(R). Rozwazmy réwnanie catkowe

u(z) )+ /\/ u(y)dy,

gdzie A jest liczba zespolona. Pokazaé¢, ze réwnanie ma jednoznaczne
rozwiazanie u(z) € L*(R), jesli A ma odpowiednio mata warto$¢ bez-
wzgledna. Wskazoéwka: Do operatora

Tu(x) = f(2) + A [ Kz, y)uly) dy

na L*(R) zastosowaé twierdzenie o odwzorowaniach zwezajacych.

Podprzestrzen Y przestrzeni unormowanej X nazywamy niezmiennicza
dla operatora liniowego 7' : X — X jesli T(Y) C Y. Podaé przyktady
podprzestrzeni niezmienniczych operatora przesuniecia S okreslonego
na ¢? wzorem

S(Io,xl,l’g, .. ) = (O,IE'O,Il,.Z’Q, .. )

Dla X = C[0,1] i ¢ € X okreslamy operator 7' : X — X wzorem
Tf = gf (mnozenie punktowe przez funkcje g). Pokazaé, ze operator
T jest ograniczony. Znalezé o(T).

Rozwiaza¢ poprzednie zadanie w przypadku, gdy X = L?*(0,1) oraz
g € C[0,1].
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16.

17.

18.

19.

20.

21.

22.

Operator T': (? — (2 jest okreélony wzorem
(Tz)n = Ay,
gdzie A, jest ustalonym ciggiem ograniczonym. Znalez¢ o(T") oraz o, (7).

Korzystajac z poprzedniego zadania pokazaé, ze istnieje operator T :
(? — (%, ktérego spektrum jest z gory zadanym zwartym podzbiorem

K cC.

Niech T' € B(X). Pokazaé, ze | Rx(T)|| — 0, gdy || — oc.

Niech T : /7 — (P, 1 < p < 00, bedzie okredlony wzorem
T(xo, z1,x9,...) = (T1,T2,23...).

Zmalez¢ spektrum 7.

Dla T € B(H) pokazaé, ze o(T*) = o(T).

T jest ograniczonym operatorem na przestrzeni Hilberta H. Pokazac,
ze

(a) T jest réznowartosciowy wtedy i tylko wtedy. gdy obraz T™ jest
gesty;

(b) T* jest réznowartosciowy wtedy i tylko wtedy. gdy obraz T jest
gesty;

(c) Jesli T jest "na”, to istnieje operator ograniczony S : H — H
taki, ze T'S = I. Czy operator S jest jedyny ? Pokazaé, ze istnieje
operator Sy, taki, ze TSy, = I oraz |[|[Spninv|| < [|Sv]|, v € H, dla
kazdego ograniczonego operatora .S spetniajacego T'S = I.

(d) T ma domkniety obraz wtedy i tylko wtedy 7% ma domkniety
obraz.

Dla T, S € B(X) oraz A € o(S) N o(T") wyprowadzi¢ wzor

RA(T) — RA(S) = Ra(S)(T = S)RA(T).
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23.

24.

Obliczy¢ norme operatora 1" okreslonego wzorem

7)== [ fw)dy

T

w przestrzeni L?(0, 1). Znalezé operator sprzezony. Pokazaé, ze istnieje
cigg funkeji f, € L? taki, ze f, — 0 stabo, ale ||Tf,||2 nie dazy do 0.
Wskazéwka. Zauwazy¢, ze

Tf() = [ fGen)dy

Skorzysta¢ z nierownosci
1/2

</01 (/Olg(:v,y)dy)de> 1/2 /01 (/Olg(x,y)2d$> dy.

Zbadaé jak zachowuje sie iloraz || f||5'|Tf]l2 dla f(z) = 2%, gdy a —
—1/2+,

N

T jest operatorem na L?(0, +00) okreglonym przez

Tfa)= [ e )y

Dowieéé, ze T jest ograniczonym operatorem na L? i znalez¢ jego norme.
Obliczy¢ T™ i pokazac, ze operator 1TT™ zadany jest wzorem

@)@ = [ ) +y) .

Wskazéwka. Zauwazy¢, ze

Skorzysta¢ z nierownosci

(/000 (/000 9(z, y)dy)2 d9€> < /OOO (/Ooo g(x, y)Qdac)l/2 dy.

Zbadaé zachowanie si¢ ilorazu || f||3 1| T f]l2 dla f(z) = 27/?F0e=% ady
d,e — 0T,

1/2
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25.

26.

27.

28.

29.

30.

T jest operatorem na L?*(0,1) takim, ze dimImT < +o0. Pokazaé, ze
istnieje funkcja K (x,y) z L*((0,1) x (0,1)) taka, ze

T = [ K o) f )y

Wskazéwka. Niech ¢y, ..., ¢, oraz bedzie baza ortonormalna dla Im 7.

Pokazac, ze
n

K(z,y) = Z(TSOz)(x)SOz(y)

i=0
Pokazaé, ze jesli A nie jest samosprzezony na H, to rownosé

|All = sup [(Az, z)

=<1

nie musi zachodzié.

Operator T jest okreslony na L*(0,1) wzorem

(T)@) = [ )y

Zmnalez¢ jawny wzor calkowy dla operatoréw (21 — T)~!, gdzie z # 0.
Skorzystac z faktu, ze (zI — T)~! = S50° 2~ +D T i ze wzoru catkowego
na 1™ podanego na wyktadzie. Znalez¢ wzor dla operatora sprzezonego
T*.

Ograniczony operator T na przestrzeni Banacha X spelnia warunek
p(T) = 0, dla pewnego wielomianu p(z) = a, 2" + ... + ag. Pokazaé, ze
spektrum operatora T' jest zawarte w zbiorze pierwiastkow wielomianu
p(z).

Dla funkeji zespolonej k(z, y) dwu zmiennych na [0, 1] x [0, 1] okreslamy
operator catkowy na L?*(0,1) wzorem

1
(K@) = [ k(xy)f () dy.
Znalez¢ wzor dla K*.

Ograniczony operator P na przestrzeni Banacha X nazywamy rzutem
jesli P2 = P. Pokazaé, ze ImP jest domkniety. Znalezé spektrum dla
P. Znalez¢ wzér na operatory rezolwenty (21 — P)™1.
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31.

32.

33.

34.

35.

36.

37.

38.

Rzut P na przestrzeni Hilberta ‘H nazywamy ortogonalnym jesli Pz L
x — Pz dla dowolnego = € H. Pokazaé, ze nastepujace trzy warunki sg
rownowazne:

(a) P jest ortogonalny.

(b) [IP] <1.

(c) P*=P.
P i Q) sa rzutami ortogonalnymi w przestrzeni Hilberta takimi, ze PQ) =
QP. Pokazaé, ze kazdy z operatoréw I — P, I — @, PQ, P+ Q — PQ

i P+ Q — 2PQ jest rzutem ortogonalnym. Opisa¢ obrazy tych rzutéow
za pomocg podprzestrzeni M = ImP i N = ImQ.

Podprzestrzenie V' i W w przestrzeni Hilberta maja skoniczony wymiar
oraz dim(W) < dim(V'). Pokaza¢, ze podprzestrzen V posiada niezero-
wy wektor v ortogonalny do W.

Dla ograniczonego ciagu liczb zespolonych {\,} okreslamy operator T
na przestrzeni ¢ wzorem

T([L’l, T2,T3, .. ) = ()\11’1, )\QZEQ, )\3$3, .. )
Zmalez¢ T* oraz (21 —T) 7.

Dla ograniczonej zespolonej funkcji ciaglej g(z) na prostej okreslamy
operator T na L*(R) wzorem (T'f)(x) = g(z)f(z). Znalez¢ spektrum
operatora 1" i jego norme. Pokaza¢, ze T jest operatorem normalnym.
Przy jakich warunkach T jest samosprzezony 7

Pokazaé, ze jedli T' jest operatorem normalnym w przestrzeni Hilberta
H, to T' jest odwracalny wtedy i tylko wtedy, gdy

[To]| > cfvll, veH,
dla pewnej statej ¢ > 0.

Pokazaé, ze jesli liczba z lezy w spektrum operatora normalnego 7', to
liczba |z|? lezy w spektrum operatora T*T.

Niech p(x,y) bedzie wielomianem dwu zmiennych. Pokazaé, ze jesli
liczba z lezy w spektrum operatora normalnego 7', to liczba p(z,z) lezy
w spektrum operatora p(T',T™).
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39.

40.

41.

42.

U jest ograniczonym i odwracalnym odwzorowaniem liniowym z prze-
strzeni Banacha X na przestrzen Banacha Y. T' i S sa operatorami
ograniczonymi na przestrzeni X i Y odpowiednio, spetniajacymi zwig-
zek S = UTU~!. Pokaza¢, ze spektra operatoréw S i T' sg rowne.

Dla funkcji ciagtej g(z) o okresie 2w okreslmy operator 1" na przestrzeni
L*(0,2m) wzorem

1
27

2m
Tf(z) /0 9z —y)f(y)dy.
Pokazaé, ze T jest operatorem ograniczonym i [|T|| < (27)~! 7™ |g(2)|d.
* Zmalez¢ spektrum operatora T'. Wskazéwka: Rozwazy¢ odwzorowanie
U: L*0,27) — (*(Z)

Iy 1 2m —inx
W) = Fn) = o [ fa)eda.
7 Jo
Pokazaé, ze (UTf)(n) = §(n)f(n) = §(n)(Uf)(n). Wywnioskowaé, ze
UTU! jest operatorem mnozenia przez ciag {g(n)}>, okreslonym na
(%(Z). Skorzysta¢ z zadan 7 1 9.

Niech T bedzie operatorem samosprzezonym w przestrzeni Hilberta.
Pokazac, ze:

(a) |7 < 1 wtedy i tylko wtedy, gdy o(T) C [—1,1].

(b) o(T) C [0,400) wtedy i tylko wtedy, gdy T jest operatorem do-

datnim.

Wskazowka: W (a) skorzystaé z faktu, ze r(7°) = ||T']|. W (b) mozna
zatozy¢, ze ||T|| < 1. Wtedy o(T') C [0, 1]. Zatem (2T — I) C [—1,1].
Z (a) mamy, ze || — 27| < 1. To pociaga (x — 2Tz, z) < (x,x), dla
r€H.

Dla operatora samosprzezonego T' okreslamy
m = inf{(Tx,z) : ||z|| = 1} M = sup{(Tz,x) : ||z| = 1}.

Pokazaé, ze o(T') C [m, M| oraz m.M € o(T'). Wskazéwka: Zauwazy¢,
ze operatory T'— ml oraz M1 — T sa dodatnie.
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43. Udowodni¢, ze jesli ciag A,, € B(H) jest stabo zbiezny, to rowniez ciag
Ay jest stabo zbiezny. Pokazac, ze stwierdzenie nie jest prawdziwe dla
mocnej zbieznosci.

44.

46.

47.

48.

(a)

Niech A,,, A € B('H). Pokazaé, ze jesli A,, > 0 oraz A,, jest zbiezny
do A w normie operatorowej, to A > 0 oraz v/4,, — v/ A w normie
operatorowe;j.

Pokazaé, ze jesli A,, > 0 oraz A, — A mocno, to réwniez /A, —
v A mocno.

Pokazaé, ze jesli A, — A w normie operatorowej, to |A,| — |A]
W normie operatorowe;j.

Pokazaé, ze jesli A, — A oraz AX — A* mocno, to réwniez |A,| —
| A] mocno.

Pokazaé¢ na przyktadzie, ze poprzednie stwierdzenie nie jest praw-
dziwe dla stabej zbieznosci operatorowe;j.

Niech X 1Y beda przestrzeniami Banacha. Pokazac, ze jesli dla
T, € B(X,Y) oraz {T,z} jest ciagiem Cauchy’ego dla kazdego
xr € X, to istnieje T' € B(X,Y) taki, ze T,, — T mocno.

Czy poprzednie stwierdzenie jest prawdziwe dla ciggéw uogdlnio-
nych T, 7

Niech T} : f(x) — f(z+1t) bedzie operatorem na L*(R). Znalezé norme
T;. Do czego sa zbiezne operatory 1;, gdy t — oo, i w jaki sposéb ?
Odpowiedzie¢ na te same pytania dla L?*(R, e’ dx).

Niech H bedzie nieskonczenie wymiarowsa przestrzenig Hilberta.

(a)
(b)

Pokazaé, ze jesli A,, B, € B(H) sa mocno zbiezne do A i B od-
powiednio to A, B,, jest mocno zbiezny do AB.

Pokaza¢ na przyktadzie, ze jesli A,, B, € B(H) sa stabo zbiezne
do Ai B odpowiednio to A, B, nie musi by¢ stabo zbiezny do AB.

Niech T bedzie operatorem okreslonym na /7, 1 < p < oo, wzorem

(Tz), = A\pxn, x € LP.

Pokazaé, ze T jest zwarty wtedy i tylko wtedy, gdy ), — 0.
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49.

50.

ol.

52.

53.

54.

59.

96.

Dla funkcji g ciaglej na [0, 1] okreslamy operator 7" : LP(0,1) — L?(0, 1)
przez (Tf)(xz) = g(z)f(x). Pokazaé, ze T jest zwarty wtedy i tylko
wtedy, gdy g = 0.

Niech K (x,y) bedzie funkcja catkowalng z kwadratem na [0, 1] x [0, 1].
Pokazac, ze operator T okreslony na L?*(0,1) wzorem

(T = [ K9 (o) dy

jest ograniczony i zwarty. Wskazéwka: Wskaza¢ baze ortonormalna w
L?([0,1] x [0,1]) i rozwinaé K (z,y) wzgledem tej bazy.

Pokazacd, ze jesli T : X — Y jest zwartym operatorem liniowym pomie-
dzy przestrzeniami Banacha X i Y, to T" nie moze by¢ "na” chyba, ze
przestrzen Y ma skonczony wymiar.

Pokaza¢, ze rodzina zwartych operatorow liniowych z przestrzeni Ba-
nacha X w przestrzen Banacha Y tworzy domknieta podprzestrzen
liniowg w B(X,Y).

T jest zwartym operatorem z przestrzeni Banacha X w przestrzen Ba-
nacha Y. Pokazaé¢, ze jesli obraz operatora zwartego T'(X) jest prze-
strzenig nieskonczonego wymiaru, to obraz ten nie jest domkniety w

Y.

Pokaza¢, ze obraz operatora zwartego T : X — Y jest przestrzenig
o$rodkowa. Wskazéwka: W zupelnej przestrzeni metrycznej podzbioér
jest warunkowo zwarty wtedy i tylko wtedy, gdy jest catkowicie ogra-
niczony.

W przestrzeni /2 okreélamy operator T wzorem

0, dlan =0,

%xn,l, dlan > 1.

(Tx)(n) = {

Pokazaé, ze T jest zwarty. Obliczy¢ || T™|| oraz promien spektralny.

Niech a;, b; beda elementami przestrzeni L?(0,1) dla i = 1,2,...,n.
Niech K (z,y) = > a;(z)b;(y). Okreslmy operator T na L*(0, 1) wzo-
rem

(1)) = [ Ko i) dy.
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o7.

*D8.

59.

60.

61.

Niech 0 # A\ € C. Pokaza¢, ze dla dowolnej ustalonej funkcji g € L?(0, 1)
rownanie T'f — A\ f = ¢g ma jednoznaczne rozwiazanie f € L?(0,1), albo
dla niektérych g réwnanie ma nieskonczenie rozwiazan, a dla pozosta-
tych g, nie ma ich wcale.

Niech

Okreslamy operator T na L?(0,1) wzorem

(1)) = [ K(wo)f () dy.

Pokazaé¢, ze wartosciami wlasnymi T sg liczby (nm)™2, n = 1,2,...,
przy czym odpowiadajaca popdprzestrzen wtasna jest jednowymiaro-
wa. Wskazéwka: Pokazac, ze jesli funkcja f spelnia T'f = Af dla
A # 0, to f jest klasy C™ i spelia réwnanie A\f” + f = 0 z wa-
runkami f(0) = f(1) = 0. Przypadek A = 0 rozpatrzy¢ oddziel-
nie. Zbadaé¢ rozwigzalnos¢ wzgledem f réownania T'f — A\f = ¢ dla
g(x) =300 cpsinme.

Niech A, B beda operatorami ograniczonymi na przestrzeni Hilberta H
oraz Im A C Im B. Pokaza¢, ze jesli B jest zwarty, to A tez jest zwarty.

Niech {e, }°°, bedzie baza ortonormalna w przestrzeni Hilberta H. Po-
kazac, ze operator T jest zwarty wtedy i tylko wtedy, gdy

li7rlnsup{||T:E|| |zl =1,z Leg,es....en} =0.

Pokazaé, ze jesli T jest zwartym operatorem w przestrzeni Hilberta,
to rownanie Tx = x ma niezerowe rozwigzanie wtedy i tylko wtedy,
gdy rownanie T*xr = x ma niezerowe rozwiazanie. Pokazac, ze obie
przestrzenie rozwigzan maja ten sam wymiar.

Niech T'" bedzie zwartym operatorem na przestrzeni Hilberta H. Poka-
za¢, ze dla dowolnej niezerowej wartosci wlasnej A operatora T kazda
z podprzestrzeni ker(AI — T')" ma skoficzony wymiar, oraz wymiary te
sg wspolnie ograniczone przez liczbe zalezng tylko od .
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62.

63.

64.

65.

66.

67.

Operator A > 0 jest zwarty. Pokazaé, ze AY? tez jest zwarty. Pokazaé,
ze jesli 0 < B < A, to rowniez B jest zwarty.

{en}s2, jest baza ortonormalna w H. Dla operatora dodatniego A €
B(H) okreslamy slad wzorem

trA = Z(A(pn, ©On)-

n=1

Pokazac, ze tr A nie zalezy od wyboru bazy ortonormalnej. Udowodni¢,
ze

Operator A € B(H) nazywamy operatorem $ladowym jesli tr |A| < oo.
Rodzine operatoréw $ladowych oznaczamy symbolem C;. Pokazaé, ze

(a) Jedli A € Cy, to AA € (.

(b) Jesli A € Cy, to A* € (.

(c) Jesli Ae C11B e B(H), to AB € C oraz BA € (. Wskazéwka:
Wykorzystaé¢ zasade minimaksu.

(d) Jesli A, B € (4, to A+ B € (). Wskazéwka: Uzy¢ rozktadu po-
larnego dla operatoréw A, Bi A+ B.

Pokazac, ze kazdy operator sladowy jest zwarty. Wykazac, ze operator
zwarty A jest sladowy wtedy i tylko wtedy, gdy > A, < oo, gdzie \,
jest ciggiem liczb singularnych operatora A.

Pokazaé, ze funkcja ||A||; = tr|A| jest norma na Cy. Pokazaé, ze Cy z
norma || - ||1 jest przestrzenia Banacha.

Niech (5 oznacza rodzine operatoréw Hilberta-Schmidta. Pokazaé, ze
jesli A, B € Oy, to AB € (). Pokazaé, ze kazdy operator $ladowy jest
iloczynem dwu operatoréow Hilberta-Schmidta.
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68.

69.

*70.

Pokaza¢, ze dla A € C) i dowolnej bazy ortonormalnej {p,}>° | sze-
reg Z(Agon,gpn> jest zbiezny i jego suma nie zalezy od wyboru ba-
n=1

zy. Okredlmy trA = > (Apy, o). Pokazaé, ze tr AB = tr BA, gdzie
n=1
Ae(CyiBeB(H)lub A, B € (.

Pokaza¢, ze jesli A € Ci, to Y [(Agn, pn)| < oo dla dowolnej bazy
n=1
ortonormalnej. Czy prawdziwa jest implikacja odwrotna 7 Pokazaé, ze

jesli > || Ag,|| dla pewnej bazy ortonormalnej, to A € C.

n=1
P i () sa rzutami ortogonalnymi w przestrzeni Hilberta takimi, ze P—(Q)
jest operatorem sladowym. Pokazaé, ze tr (P — Q) jest liczba caltkowita.
Wskazéwka: P i Q sa przemienne z (P — Q).
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