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1 Operatory ograniczone na przestrzeni Ba-
nacha

Niech T' : X — X bedzie cigglym operatorem liniowym na przestrzeni
Banacha X. Przypominamy, ze norme operatora 1" okreslamy wzorem

1T = sup{[|T=[| - [lz]| <1},

Symbolem B(X) := B(X, X) oznaczamy przestrzen Banacha wszystkich cig-
glych operatorow liniowych z X w X.

Przyktad 1.1. Rozwazmy odwzorowanie liniowe T : C* — C". Chcemy
zbadaé¢ dla jakich zespolonych liczb A operator (tzn. macierz) A\l — T jest
odwracalny. Jak wiadomo z kursu algebry liniowej warunkiem réwnowaznym
jest det(A — T') # 0. Liczby A, dla ktorych ostatni wyznacznik zeruje sie
nazywamy wartosciami wtasnymi. Wiadomo, ze jesli det(Al — T') = 0, to
istnieje niezerowy wektor v € C" taki, ze Tv = Av. Tzn. macierz AI — T nie
jest réznowartosciowa. Innym réwnowaznym warunkiem jest, ze Im (A\—-T) C

Cn.

Definicja 1.2. Zbiorem rezolwenty p(T) nazywamy zbior tych liczb zespo-
lonych X, dla ktorych operator \I — T jest odwracalny. Dopetnienie C\ p(T)
nazywamy spektrum operatora T i oznaczamy symbolem o(T).
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Definicja 1.3. Spektrum punktowym o,(T) nazywamy zbior wartosci wia-
snych operatora T, tzn. zbior liczb zespolonych X takich, ze N\I — T nie jest

operatorem roznowartosciowym. Wtedy istnieje niezerowy element x w X ta-
ki, ze Tx = Ax.

Definicja 1.4. Spektrum resztowym o.(T) nazywamy zbior liczb zespolonych
A, dla ktorych obraz Im (A — T') nie jest gestq podprzestrzenig w X.

Przyktad 1.5. Rozwazmy przestrzen
X=0r= xnnO.Z|xn|2<oo}

Dla z = (x,,)%2, okreslmy operator S wzorem

_ > 1

n=0.
Tzn.
S([EQ,ZEI, o, .. ) = (0, Lo, T1,T2, .. )
Mamy ||Sz|2 = ||x||2, zatem ||S|| = 1. To oznacza, ze operator S jest
izometria.

Sprawdzamy roéznowarto$ciowosé operatora AI — S. W tym celu rozwia-
zujemy réwnanie (A — S)z = 0, czyli Sz = Ax. Otrzymujemy nieskonczony
cigg rownan

0 = )\IED
Tpo1 = Axp, n> 1.
Jesli A = 0, to x, = 0 dla wszystkich n. Zat6zmy, ze A # 0. Wtedy 2o = 0

oraz

Tp = A Tp_1 = XA "2y =0.

To oznacza, ze operator S nie posiada wartosci wtasnych.

Zbadamy teraz o,.(S). Zalézmy, ze obraz Im (Al — S) nie jest gesty w 2.
Réwnowaznie istnieje niezerowy element y € % taki, ze y L Im (M — S).
Niech V' = lin{ey, €1, €, ...}, gdzie e, = (0,...,0, %, 0...). Przestrzen V jest

gesta w (2, tzn. V = (2. Zatem
(M —=S)(V)CIm (M —S) = (M — S)(£*) = (M = S)(V)c (M = 9)(V).
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SkorzystaliSmy z wlasnosci znanej z kursu topologii, ze obraz przez odwzo-
rowanie ciaggte domkniecia zbioru jest zawarty w domknieciu obrazu tego
zbioru. To oznacza, ze

Im (M — 8) = (A= 9)(V).

Whioskujemy, ze warunek y L Im (A — S) jest réwnowazny z warunkiem
y L (A = S)(V). Ostatni warunek z kolei oznacza, ze y L (A — S)(ex) dla
k=0,1,2,.... Rozwigzujemy uktad réwnan

(y, \[ — S)ex) =0, k=0,1,2,....
Zatem
(y, Nep, —expp1) =0, k=0,1,2,....

Dalej
Yri1 = Mgk, k=0,1,2,....

Otrzymujemy ostatecznie
~k
Yk = A Yo, k> 1.

Jedliyp = 0, toy = 0. Jesli yo # 0, to y € £2 wtedy i tylko wtedy, gdy |\ < 1.
Zatem

0.(S)={AeC : |\ <1}
Pozostaje zbadaé liczby A spetiajace |A| > 1. Sprawdzimy, kiedy AI — S jest
,na”. W tym celu dla y € £? rozwigzujemy réwnanie (A — S)z = y. Wtedy

)\.1'0 = Yo,

)\xn —Tp-1 = Yn, N2 L.
Stad otrzymujemy
Tp = Ailyn + Ailxnfl-

Zatem
T = AN 0 XN 2t . ATy, (1.1)

Niech y = eg, gdzie
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Wtedy

T, =A""1 n>0.

Dla |A| =1 ciag (z,,) nie nalezy do (. Zatem
o(S)2{reC: [N\ <1}.

Niech |A| > 1. Sprawdzamy norme rozwigzania = z (1.1).

%) 0 | n 2 o n
Z |l‘n|2 = Z Z )‘_k_lyn—k < Z Z |/\|_k_1|yn—k| |/\|_l_1|yn—l|
n=0 n=0 k=0 n=0 k,l=0
D DN LY P R N [N | 7
k=0 n=max(k,l)

o s 1/2 oo 1/2
Y IA|TEH A ( > |yn—k|2) ( > |yn—l|2)
(k1) )

k,1=0 n=max n=max(k,l

2
> T 1
< SR b = (5 ) Mol

k,l=0
Zatem
1
M —8) s = < —— ,
It )"yl = llzl2 B Lyl
czyli
1
A —8)7H < :
IO =) < (5=
Podsumowujac
o(S)={ e C: |\ <1}
Uwaga 1.6.

1. W przykladzie mozna zauwazy¢, ze jesli A € o(S5), to |A| < [|S]|. Ta
wlasnos¢ zachodzi dla kazdego ograniczonego operatora (por. Wniosek
1.8).

2. Zbior o(S) jest domkniety i rowniez ta wilasno$¢ jest spelniona dla
dowolnego ograniczonego operatora liniowego (por. Twierdzenie 1.10).
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Twierdzenie 1.7. Zalozmy, ze ograniczony operator lintowy T : X — X,
gdzie X jest przestrzeniq Banacha, spelnia |T| < 1. Wtedy operator I — T
jest odwracalny oraz

Loy
n=0

[ee]
Dowdd. Szereg Z T" jest bezwzglednie zbiezny, bo
n=0

™ T”—
ST < I =

o

Dzieki zupetnosci przestrzeni B(X) symbol A = Z T" okresla ograniczony
n=0

operator liniowy. Zauwazmy, ze

AT =TA=>T""=A-1.
n=0

Zatem
Al -T)=I-T)A=1.

Stad A= (I —T)~". 0

Whiosek 1.8. Niech X bedzie przestrzeniq Banacha oraz T € B(X). Jesli
Al > ||T|, to operator \I — T jest odwracalny, tzn. A € o(T).

Dowod. Mamy

M —T=XI-X\'T), |IXN'T| < 1.
7 poprzedniego twierdzenia operator I — A\~!T jest wiec odwracalny. Zatem
odwracalny jest tez A\ —T. O]

Uwaga 1.9. Z twierdzenia wynika, ze dla ||T'|| < 1 mamy

1

I =17 < :
17|

Zatem przy zalozeniu ||T'|| < |\ otrzymujemy

1 1

I =T) "M = HI = AT ) < AT :
— AT =T
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Twierdzenie 1.10. Dia T € B(X), gdzie X jest przestrzenig Banacha, zbior
rezolwenty o(T) jest otwartym podzbiorem w C. Ponadto funkcja

RA(T) = (:1-T)7", z € o(T)

jest analitycznym odwzorowaniem zbioru o(T) w B(X), tzn. w otoczeniu kaz-
dego punktu zy funkcja R,(T) przedstawia sie za pomocq bezwzglednie zbiez-
nego szeregu potegoweqo postaci

R.(T) = i(z — 20)"A,, A, € B(X).
Zachodzi tez wzor
R.(T) = Ry(T) = —(z — w)Ro(T) Ro(T). (1.2)

Uwaga 1.11. Wzdér (1.2) mozna kojarzy¢ z tozsamoscia

1 L zZ—w
z—t w—t  (z—t)(w—t)

Dowéd. Niech zy € o(T). Pokazemy, ze liczby z lezace blisko zy naleza do
o(T). Mamy

2l —T = (20l =T) — (20 — 2)I = (2ol —T)[I — (20 — 2)(20] —T)7*]. (1.3)
Zaloézmy, ze
1
I(z0 = T)M|I"

|z — 20| <

Wtedy
II(z = 20) (201 — T)_1|| < 1.

Z Twierdzenia 1.7 operator I — (29— z)(20 —T)~! jest odwracalny. Zatem ze
wzoru (1.3) operator zI — T jest odwracalny jako ztozenie dwu operatoréw
odwracalnych. Czyli z € o(T), wiec zbior o(T') jest otwarty.

Ze wzoru (1.3) i Twierdzenia 1.7 otrzymujemy

RUT) = (21 = T)" = 3 (2 — 2)"(z0] = T) """

n=0
9

=Y (2= 20)"An, Ay = (=1)"(2o —T)™""". (14)

n=0
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Obliczamy

RAT) = R,(T) = (2I =T)' — (wl -=T)"
= (2l =T) M(wl —=T) — (2I = T)|(wl —T)*
=—(z—w)z -T) (wl —T) "' = —(2 —w)R.(T)Ry(T)
O
Dla z, z, € o(T) na podstawie (1.4) mamy

(e.¢] o0

R.AT)—R.,(T) = (20—2)"(20]=T) " ' =(2]=T) " = > (20—2)" (2l =T) """

n=0 n=1

Zatem

I1R-(T) = Z\Z—Zo| 1201 =)™

_ 2= alllR (D)
1=z = 2| Rz (T)]]

przy zalozeniu, ze |z — 2| < || R.,(T)||~!. Z obliczeni wynika, ze

lim R.(T) = R.,(T).

z2—20

Zatem, korzystajac z (1.2), otrzymujemy

lim 220 = B (1) lim (—1)R.,(T)R.(T) = —R.,(T)%

2—20 Z— 2 2—20

To oznacza, ze funkcja z — R, (T') posiada pochodna zespolona jako funkcja
z podzbioru o(T) w B(X).

Twierdzenie 1.12. Niech T bedzie ograniczonym operatorem liniowym na
przestrzeni Banacha X. Wtedy spektrum o(T) jest niepustym i domknietym
podzbiorem w C.

Dowdd. Domknietosé zbioru wynika z otwartosci zbioru rezolwenty. Zatézmy,
ze spektrum o(T') jest zbiorem pustym. Wtedy funkcja R,(T') jest okreslo-
na na catej ptaszczyznie zespolonej. Dla ustalonych elementu z € X oraz
funkcjonatu x* € X* rozwazamy funkcje

f(z) = 2*(R(T)x).
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Funkcja f(z) jest holomorficzna w calej plaszczyznie zespolonej. Z zadania
18 mamy, ze ||R.(T)|| i 0. Wtedy f(z) i 0. Funkcja f(z) jest zatem

ograniczona w C. Na podstawie twierdzenia |Liouville’a funkcja f jest stala,
czyli f(z) = 0. Stad z*(R,(T)x) = 0 dla dowolnego funkcjonatu x*, czyli
R.(T)x = 0 dla dowolnego elementu z € X. Zatem R,(T) = 0, co stoi w
sprzecznosci z odwracalnoscia operatora R, (7). O

Uwaga 1.13. Dla X = C" operatory T': X — X utozsamiamy z macierzami
wymiaru nxn. Wtedy z zasadniczego twierdzenia algebry mamy o (T) = {\ €

C : det(A\ —T) # 0} £ 0.

Definicja 1.14. Promieniem spektralnym operatora T € B(X). nazywamy
liczbe
r(T) =max{|\| : A€ o(T)}.

Twierdzenie 1.15. Dia T' € B(X), gdzie X jest przestrzenig Banacha,
istnieje granica 1i7rln ||V oraz granica ta jest réwna v(T). Ponadto, jesli
X jest przestrzeniq Hilberta oraz T* =T, to r(T) = ||T|.

Dowad. Jesli T™ = 0 dla pewnej liczby ng, to T™ = 0 dla n > ny. Wte-
dy lim, ||T7|"/™ = 0. Zalézmy zatem, ze T™ # 0 dla wszystkich poteg n.
Oznaczmy a,, = log ||T"||. Zauwazmy, ze

Aptm < Ap + Q.

Rzeczywiscie

U = log [| 77| = log [ T"T™|| < log || T[T ||
= log ||| + log [ T™[| = an + am.

I[stnienie granicy ciagu a, wynika z nastepnego lematu.

Lemat 1.16. Jesli cigg liczb rzeczywistych a,, spetnia warunek a,i, < a, +
am, to istnieje granica (byé mozie —oo) ciggu a,/n oraz
a a
lim — = inf —.
non non
Dowdd. Mamy
anp—l—r < anp _|_ ar < nap + CLT
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dla dowolnych liczb naturalnych n, p i r. Ustalmy liczbe p. Kazda liczbe m
mozna zapisa¢ w postaci m = np + r, gdzie 0 < r < p — 1. Zatem

a a n 1
= S p+np+ra

= a
m np+7"\np~|—r

.

Gdy m — oo, to n — oo, wiec
a a
limsup — < 2.
m p
Poniewaz p jest dowolng liczba naturalng, to

. a .o a . . eQ
limsup — < inf 2 < liminf —2.
m PP m

Stad granice gérna i dolna musza by¢ sobie réwne. O]

7 lematu wynika, ze
lim [T = in | 7]/

Zatézmy, ze |z| > inf, ||T"]|'/". Pokazemy, ze wtedy operator zI — T jest

odwracalny. Istotnie, dla pewnej liczby n mamy |z| > | T"]|*/™. Stad |z|* >
1 T"||. Wtedy

1
=Tt =" — —=T")

ZTL

jest operatorem odwracalnym, bo ||z~"T"|| < 1. Z drugiej strony mamy
I —T" = (2l =T)S =S5z —-T),
dla S =2""T+2"2T+. .. +2T" 241"

Odwracalno$¢ operatora zI — T wynika z prostego algebraicznego faktu, kto-
rego dowod pozostawiamy czytelnikowi.

Fakt 1.17. Zaloimy, Ze w polgrupie A z jednosciq, element a jest odwracalny
oraz a = bc = cb dla pewnych elementow b i c. Wtedy elementy b i c tez sq
odwracalne.

Zatem z ¢ o(T). W konsekwencji otrzymujemy

o(T)C{zeC: |z < inf leadiaas



Operatory ograniczone 11

To oznacza, ze r(T) < inf |7
Niech teraz r > r(T"). Tzn. operator R,(T') istnieje dla |z| > r. Ustalmy
element x € X i funkcjonal z* € X*. Funkcja

2z " (R,(T)x)

jest holomorficzna dla |z| > r(T). Zatem ta funkcja jest holomorficzna w
pierscieniu r < |z| < s. Wtedy

1 1
I, = %l l[ (R, (T)x)z"dz = %l / (R (T)x)z" dz.
Rozwazmy s > ||T'||. Wtedy dla |z| = s mozemy rozwina¢ R,(7T") w absolutnie
zbiezny szereg
Rz(T) = Z Z_(k+1)Tk>
k=0
Zatem .
I, = Zx (T*z) 2m| |/ 2D dy = ¥ (Th),
bo tylko jeden sktadnik (dla k = n) jest niezerowy. Otrzymujemy zatem

1
o (Thx) =1, = %l |/ (R, (T)x)z" dz.
Dalej
* n 1 n * n *

2" (T"2)| < o - 2 max [ R (T)|| [l l2”[} = ! max || (T} [} ="
Ostatecznie

1™ = ||S*l|1|gl|$ (T"z)| <7 max || 2:(T)]|

lzll<1

Stad

lim 177V < .
Poniewaz r byto dowolng liczba wigksza do r(7T'), to
lim |7 (| < (T).
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Niech T' € B(H). Dla # € H mamy
|IT2|* = (T, Tx) = (T"Tx,z) < |T"Ta||l«| < |T°T||||z]*

Zatem
1T <\ TT|| < IT*NT| = 1T

Stad [|T*T|| = ||T||>. Jesli T* = T, to ||T?|| = ||T||*>. Potegi operatora T sa
roOwniez samosprzezone, wiec

n n—1 n—2 n
1= =177 =17 = = T
Czyli
1712 = |1T.
Przechodzac do granicy otrzymamy r(T') = ||T|. O

Whiosek 1.18. Jesli T € B(H) jest operatorem normalnym, tzn. T*T =
TT*, tor(T) = |T|.

Dowod. Wykonujemy obliczenia

™ TN % n *\ 2™ n * n * n n+1
1T = (T )T || = (T T || = [(T*T)*" | = |T*T|*" = | T||*
Zatem
112" = |7
Przechodzac do granicy otrzymujemy teze. O

Whiosek 1.19. Jesli T € B(H) jest operatorem normalnym, to | T"| =
17])".

Dowdéd. Mamy
7" = r(T™) = lim | T = (tim | 7%/ = ()" = ||T|".
O

Przyktad 1.20. Rozwazmy operator T : L?(0,1) — L?(0, 1) zadany wzorem

(Th)@) = [ F)dy.
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Obraz Im T jest zawarty w C|[0, 1]. Istotnie, z nieréwnosci Schwarza mamy

dlad <z 29«1
/f

< [ fll2lIXzr o ll2 = Vo2 — 1] f]2-

Zatem T nie jest operatorem odwracalnym. Obliczmy T72.

(Tf)(x2) = (Tf)(1)] = L fy) dy| =

T

(T%f)(x) Z/(Tf)(y)dyzi (/yf(z) dZ) dy
if(z) (7 dy) dz:/(x—z)f(z)dz.

Udowodnimy przez indukcje, ze

(T"f)(x o / )" () (1.5)

Zaktadamy, ze wzér jest prawdziwy i sprawdzamy nastepna potege.

T

(T ) () = [T ) ) dy = (n_ll), / ( / (y— 2" (=) dz) dy

0

= (n_ll)!o/xf(Z) (j(y—Z)”‘l dy) dz = ;!O/x(ﬂf—Z)"f(Z) dz.

Korzystajac z (1.5) otrzymujemy

T 2

fie-
12]<f|f |2dy) (/— %dy) s <51 /2:: s
0

1
= )220+ 1)(2n + 2) 1£113 < m”f“z-

dx

1 1 1
I3 = / (@)@ de = o |
0

Zatem || T™"| < Stad lim |T™|™ = 0. W rezultacie o(T) = {0}.

1
(n+ 1)1
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Twierdzenie 1.21. Niech T : X — X bedzie operatorem ograniczonym na
przestrzeni Banacha X. Dla wielomianu p(z), o wspotczynnikach zespolonych,
mamy
o(p(T)) = plo(T),
tzn. kazda liczba w spektrum operatora p(T') ma postaé p(N), gdzie A € o(T).
Dowdéd. Pominiemy przypadek deg p = 0. Zatozmy, ze p(\) ¢ o(P(T'). Wtedy
—p(A

operator p(T') —p(A)1 jest odwracalny. Niech ¢(z) = ZM Wtedy ¢(2)

jest wielomianem oraz p(z) — p(A) = (2 — A)q(2). Zatem
p(T) = p(VT = (T)(P — AI) = (P — AD)q(T).
To oznacza, ze operator P — Al jest odwracalny, czyli A ¢ o(T'). Zatem, jesli
A€ a(T), to p(A) € a(p(T)). Otrzymalismy p(o(T)) C o(p(T)).
Zatézmy, ze o € o(p(T)). Z zasadniczgo twierdzenia algebry wielomian
p(z) — a rozklada sie na czynniki liniowe
p(z) —a=clz—A)(z—A)...(2 — \n), c#0
oraz p(\;) = a, dla j =1,2,...,n. Wtedy
p(T) — al = e(T — MI)(T — o) ... (T — \).

7, zatozenia lewa strona jest operatorem nieodwracalnym. Zatem przynaj-
mniej jeden z czynnikéw po prawej stronie, np. 1" — A;I, jest operatorem
nieodwracalnym. Stad \; € o(T'). Poniewaz p()\;) = «a, to a € p(a(T)).
Otrzymalismy zawieranie o(p(T")) C p(a(T)). O
Uwaga 1.22. Teza jest spelniona dla funkcji catkowitych f(z), tzn. funkcji
postaci

f(z) = i anz",
n=0

przy czym promien zbieznosci szeregu wynosi +o00, lub jest wiekszy niz (7).
Wtedy operator

f(T)=>a,T"
n=0
jest dobrze okreslony, bo szereg jest bezwzglednie zbiezny. Zawieranie f(o(

T)
mozna udowodnié¢ podobnie jak wyzej, korzystajac z faktu, ze ¢(2) = —

)
f
)

jest funkcja catkowita.

f(2)

C o(f(T1))
()
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Twierdzenie 1.23. Dia T € B(H) mamy

o(T*)=0(T)={z: z€0(T)}.

Dowdd. Wiemy, ze jesli operator A € B(H) jest odwracalny, to A* jest tez
odwracalny oraz (A*)™' = (A™Y)*. Niech z ¢ o(T). Tzn. 2I — T jest opera-
torem odwracalnym. Zatem zI — T™ jest tez odwracalny, czyli Z ¢ o(T*). To
daje

Stad wynika, ze
czyli

]

Whniosek 1.24. Niech U : H — H bedzie operatorem unitarnym, tzn. U*U =
UU* = I, lub réwnowaznie U* = UL, Wtedy o(U) C {2 € C : |z| = 1}.

Dowod. Mamy
lU* =lvvl = |1|| = 1.

Zatem ||U|| = 1, skad wynika o(U) C {z € C : |z|] < 1}. Niech |z| < 1.
Chcemy pokazaé, ze zI — U jest odwracalny. Zauwazmy, ze

2l —U =200 —-U=—(I—=2U"U.

U jest odwracalny. Operator I — zU* jest réwniez odwracalny, bo ||zU*|| =
|z| < 1. Stad zI — U jest odwracalny, co dowodzi tezy wniosku. O

Uwaga 1.25. Jedli U jest unitarny, to ||Uz|| = ||z|| dla € H. Rzeczywiscie
lUz||* = (Uz,Uz) = (U'VUz,2) = (z,2) = ||z]*.
Podobnie ||[U*z|| = ||z]|.

Twierdzenie 1.26. Jesli operator T : H — H jest normalny, to ||[Tzx| =
|T*z|| dla x € H.

Dowod. Mamy
|Tx||* = (Tx, Tx) = (T"Tx, ) = (TT*x,2) = (T*z, T*x) = ||T*x|]*.
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Whniosek 1.27. Jesli T' jest operatorem normalnym, to
I = T)z|| = [[(M — T")z|

dla * € H. Ponadto, jesli X jest wartoscig wlasng operator T, to X\ jest
wartosciq wlasng operatora T, z tymi samymi wektorami wtasnymi.

Dowodd. 7 zatozenia wynika, ze A\ — T jest operatorem normalnym, wiec
mozemy zastosowaé poprzednie twierdzenie. Druga czes¢ wniosku wynika z
obserwacji, ze Tx = Az oznacza (Al —T)x = 0. ]

Twierdzenie 1.28. Wektory wtasne odpowiadajgce roznym wartosciom wia-
snym operatora normalnego sq ortogonalne.

Dowdd. Niech T' : 'H — H bedzie operatorem normalnym oraz Tx = Az i
Ty = py dla X # p oraz pewnych niezerowych wektoréw z,y € H. Obliczamy

Mz, y) = (Tz,y) = (2, T"y) = (=, 1y) = 1z, y).
Zatem (x,y) = 0. O

Whniosek 1.29. Niech T' bedzie operatorem normalnym na H = C". Wtedy
istnieje baza ortonormalna vy, ve, ..., v, w C" zloZona z wektoréw wtasnych
operatora T

Uwaga 1.30. Teza wniosku oznacza, ze w bazie wektorow {vy,va, ..., v,}
macierz operatora 1" ma posta¢ diagonalng z liczbami Ay, Ao, ..., A, na prze-
katnej.

Dowdéd. Utozsamimy operator T z macierza w standardowej bazie przestrzeni
C". Rozwiazujemy réwnanie

p(A) =det(A\l —T) =0

ze wzgledu na A. Funkcja p(z) jest wielomianem stopnia n, wiec na podstawie
Zasadniczego Twierdzenia Algebry istnieje rozwigzanie A; € C. Wtedy )\
jest wartoscig wtasng odpowiadajaca pewnemu wektorowi v; € C". Tzn.
Tvi = Mv1. Rozkladamy przestrzen na

Cr = (CUl D Ml, gdzie Ml = {I’l}J'.
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Mamy M; ~ C" ! oraz T (M) C M. Rzeczywiscie, niech v € M;. Chcemy
sprawdzi¢, czy Tv € M. W tym celu obliczamy

<T’U,?}1> = <U7T*U1> = <U7)‘71U1> = )‘1<U7U1> =0.

Traktujemy T jako operator na M; ~ C"!. Powtarzamy cale wczedniejsze
rozumowanie, aby znalezé¢ wartos¢ wtasng Ao, wektor wtasny v, i nastepna
podprzestrzen M. Itd. ]

Twierdzenie 1.31. Dla ograniczonego operatora samosprzezonego w prze-
strzeni Hilberta spektrum jest zawarte w osi rzeczywiste.

Dowadd. Zatézmy, ze z = A + ui, gdzie A\, u € R, oraz u # 0. Pokazemy, ze
operator zI — T jest odwracalny, tzn. z ¢ o(T"). Wykonujemy obliczenia

(2] — T)v|]* = (2] — T)v, (zI —T)v) = (I — T)(zI — T)v,v)
= (N2 + D = 20T + T*)v,v) = ([(M — T)* + 1), v)
= (M = T)v, (A = T)) + p*(v,v) > 1o

Otrzymalismy wiec
11 = T)oll = |ul o]l (1.6)

To oznacza, ze operator zI — T jest réznowarto$ciowy oraz, ze obraz Im (21 —
T) jest domkniety. Korzystajac z zadania 73 [5] mamy

H=ker(zl -T)®Im(z] - T).
Pierwsza podprzestrzen jest zerowa, bo Z ¢ R. Zatem H = Im (21 — T'), tzn.

21 —T jest operatorem ,1-17 1 na”. Stad 2/ —T jest odwracalny algebraicznie.
Ponadto z (1.6) wynika ograniczono$é operatora odwrotnego. O

2 Operatory dodatnie

Definicja 2.1. Operator A € B(H) nazywamy dodatnim, jesli (Av,v) > 0
dla wszystkich wektorow v € H. Piszemy wtedy A > 0.

Fakt 2.2. Kazdy operator dodatni jest samosprzezony.
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Dowéd. 7 zalozenia mamy w szczegdlnosei, ze (Av,v) = (v, Av). Na podsta-
wie tozsamosci polaryzacyjnej otrzymujemy

4
(Av,w) — i S (A + Fw), v + Fw)it
k=0
1 4
= 7 2wt ifw, Ao +ifw))i = (v, Aw) = (A", w).
k=0

Stad A* = A. u

Uwaga 2.3. Warto zapamietac, Ze z tozsamosci polaryzacyjne; wynika, Ze
jesli dla dwu operatoréw A i B z B(H) mamy (Av,v) = (Bv,v), to A= B.

Przyktady. (a) H = C” oraz A jest macierza postaci

(1 0 0 0
020 0
A=10 0 3 0
00 0 ... n

Wtedy (Av,v) = Z klog]? > 0, dla v = (vg)1_;.
k=1

(b) Dla H = L?(0,1) okreslamy (Af)(z) = zf(x). Wtedy

1

(Av,v) = /x|f(x)|2da: > 0.

Lemat 2.4. Jesli A > 0 oraz C € B(H), to C*AC > 0.

Dowéd.
(C*ACv,v) = (A(Cv),Cv) > 0.

Lemat 2.5. Jesli A, B >0 oraz A+ B=0,to A=B=0.
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Dowéd. Mamy
(Av,v) + (Bv,v) = ((A+ B)v,v) = 0.

Poniewaz oba sktadniki sa nieujemne, to oba musza si¢ zerowa¢ dla dowolnego
wektora v. Stad A = B = 0. [

Lemat 2.6. Jesli A jest operatorem samosprzezonym, to

|A[l = sup [(Av,v)| = sup [(Av,v)].

llvll<1 [[vll=1
Dowdd. Mamy

|Al = sup [(Av,w)| = sup Re (Av,w),
ull<1 ul|<1
lvl<1 lvll<1

bo mozna dobraé liczbe zespolona a o module 1 taka, ze
|(Av, w)| = (Av, aw).
7 tozsamos$ci polaryzacyjnej otrzymujemy

Re (A, w) = {{A(v +w), v +w) - i(A@ —w),v— w)

1
= 2 [llv + w4y, y) — [lo —w|*(Az, 2)],

gdzie
U+ w v —w

= —— 2=
Y= ot ol Jo—w]’

oile v + w # 0. Zatem

1
Re (Av,w) < gl -+l + o~ ] sup (Ay.y)
1
= (200 + 2wl?] sup [(Ay, )]
lyll=1

W rezultacie mamy
[All < sup [(Ay,y)l.

llyll=1
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Oczywiscie nieré6wnos¢ przeciwna jest tez spetniona, bo

[{Ay, y)| < [ Ayl llyll < Al Iyl

Czyli
sup [(Ay, y)| < || A]

lyll=1

Lemat 2.7. Mamy

V—a—1-% )

n=1

P -t 1

Y

oraz szereq jest zbieiny jednostajnie.

Dowdéd. Wzoér jest znany z kursu Analiza 1. Wiemy, ze
1 / 2
Vl—x—1+§: : lz] < 1. (2.1)

Po przeksztatceniu mamy

(1 /2) i e

n 2(2n — 1)47

Stad réwnosé w tezie jest spetniona dla |z| < 1. Zatem

"ol Vi<l <1
; 2m4mx v<l ol

Obliczamy kres gérny lewej strony i uzyskujemy

2: 2n—D4<<L

W zwiagzku z tym szereg po prawej stronie (2.1) jest zbiezny jednostajnie
dla |z| <1 z kryterium Weierstrassa. Stad wyrazenie po prawej stronie (2.1)
reprezentuje funkcje ciagta na przedziale [—1,1] réwna /1 — 2 dla |z| < 1.
Zatem rownosé (2.1) jest speliona rowniez dla x = £1. O
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Twierdzenie 2.8. Dla dodatniego operatora A € B(H) istnieje jedyny ope-
rator dodatni B spetniajgcy B? = A, nazywany pierwiastkiem z A i oznaczany
symbolem A2,

Dowéd. Mozemy zalozyé, ze ||Al| < 1, dzielac w razie potrzeby przez liczbe
dodatnig. Oznaczmy X = [ — A. Wtedy

(Xv,v) = (v,v) = (Av,v) > [[o]|* = [|A][[]v]|* > 0.

Ponadto
0 < (Xv,v) = (v,v) — (Av,v) < [Jo]]*.
Z Lematu 2.6 otrzymujemy wiec

1X = sup (Xv,v) < L.
lvll=1

Oznaczmy
(2n)!
(n)2(2n — 1)4n”

Cp =

Okreslmy
B=T1-) e, X",
n=1
przez analogie ze wzorem z Lematu 2.7, bo A = I — X. B jest dobrze okreslo-

nym operatorem, bo szereg jest bezwzglednie zbiezny znowu z Lematu 2.7.
Istotnie

00 [e's) 00
> X"l < Y el X< e = 1.
n=1 n=1 n=1

Uwaga 2.9. W przestrzeni B(H) mozna pomnozy¢ metoda Cauchy’ego dwa
szeregi bezwzglednie zbiezne i otrzymany szereg bedzie bezwzglednie zbiezny.
Dowdd jest taki sam jak dla szeregow liczbowych, tylko symbol wartosci
bezwzglednej |- | trzeba zamieni¢ symbolem normy operatorowej || - ||. Jedyna
roznica polega na tym, ze

|ab] = al o], [[AB] < [|A[]|B]-

Sprawdzamy, czy B? = A.

B = (I -y ch”> (1 -> ch“> =Y d, X",
n=1 n=1 n=0
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o0

gdzie prawa strona jest iloczynem Cauchy’ego szeregu I — Z cn X" przez
n=1
siebie. Ale z Lematu 2.7 mamy
0 2
(1— chx”> =(V1-2)?=1-ux,
n=1
zatem dy = 1, dy = —1 oraz d, = 0 dla n > 2. Czyli
B*=1-X=A.
Sprawdzimy nieujemno$¢ operatora B. Mamy
(Bv,v) = (v,0) = > (X", v)
n=1
> oll* = D2l XM ol* = [lol* = > eallv]* = 0.
n=1 n=1

[ee]
Skorzystalismy z faktu, ze | X"| < || X||" < 1 oraz »_ ¢, = 1, co wynika z
n=1

Lematu 2.7.

Pozostaje sprawdzi¢ jedynos¢. Zatézmy, ze dla innego operatora C' > 0
mamy C? = A. Wtedy CA = C? = AC, tzn. C' i A sa przemienne ze sobg.
Wtedy réwniez C'i B sa przemienne, co wynika z okreslenia operatora B.
Wykonujemy obliczenie

(B-C)B(B-C)+ (B—-C)C(B-20C)
=(B-0)B+C)(B-C)=(B*-C*)(B-C)=0.
Kazdy z poczatkowych sktadnikow jest operatorem dodatnim z Lematu 2.5.

Zatem
(B-C)B(B-C)=(B-C)C(B-C)=0.

Odejmujac te operatory otrzymujemy
0=(B-C)B(B—C)—(B-0C)C(B—-C)=(B-C0)
Operator B — C jest samosprzezony, wiec z Lematu 1.19 wynika, ze
0=(B- | =B~ Cl,
czyli C = B. ]
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Definicja 2.10. Dia A € B(H) okreslamy
|A| = (A*A)YV2,

Definicja 2.11. Operator U € B(H) nazywamy czeSciowq izometrig, jesli
U jest izometrig po obcigciu do podprzestrzeni (ker U)L, tzn.

|Uv|| = |jv]|, dla wszystkich v L ker U.

Uwaga 2.12. Zbior Im U jest domkniety jako izometryczny obraz przestrzeni
domknigtej (ker U)* przez operator U. Rzeczywiscie, poniewaz

H =kerU @ (ker U)™*,

to

ImU = U(H) =U ((kerU)*).

Lemat 2.13. Operator U jest czesSciowq izometrig wtedy i tylko wtedy, gdy
operator UU* jest rzutem, tzn. (UU*)? = UU*.

Dowdd.
(=) Wiemy, ze (ker U)* = Im U*. Ponadto |[UU*v|| = ||[U*v||. Zatem

(UU*)?0,0) = (UU*, UU) = |UU*|? = |[U*0||? = (UU*0, v).

Stad (UU*)? = UU*.

(<) Jedli (UU*)? = UU™, to korzystajac z wezesniejszych obliczeri otrzy-
mamy, ze U jest izometrig na Im U*. Zatem U jest izometria na domknigciu
Im U*, czyli na (ker U)*. O

Dla cze¢sciowej izometrii U mamy dwa ortogonalne rozktady przestrzeni
H=kerU @ (ker U)™*, H=ImU)" @ ImU.
Operator U jest izometria z (ker U)* na Im U.

Lemat 2.14. Jesli U jest czesciowq 1zometrig, to U* jest tez czeSciowq izo-
metriq.

Dowéd. Wiemy, ze (UU*)? = UU*. Z Lematu 2.13 wystarczy dowiesé, ze
(U*U)?* = U*U. Mamy UU*(UU* — I) = 0. Poniewaz U jest izometrig na
(ker U)t = Im U*, to U jest ,1-1” na ImU*. Stad U*(UU* — I) = 0. czyli

Urovr =U*. (2.2)
Mnozymy z prawej strony przez U i uzyskujemy (U*U)? = U*U. O
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Jako czedciowa izometria U* jest izometrig z (ker U*)* na Im U*, czyli z
ImU na = (ker U)* (odwrotnie niz U).

Ponadto UU* jest rzutem na Im U. Istotnie, z (2.2) mamy UU*(Uv) = Uw,
tzn. UU* jest identycznoécig na Im U. Co wiecej UU* zeruje sie na (ImU)+ =
ker U*. Po zamianie rolami U i U* wnioskujemy, ze U*U jest rzutem ortogo-
nalnym na Im U* = (ker U)*.

Twierdzenie 2.15 (Rozktad polarny). Dla operatora A € B(H) istnicje
jedyna czesciowa izometria U spelniajgca A = U |A| oraz ker A = ker U.
Ponadto ImU = Im A.

Dowod. Mamy
(Av, Av) = (A" Av, 0) = (|APo,v) = (| AJo, |A]0)
Zatem
[Av]| = [[|Alv]]-
Stad wynika, ze jesli |Ajv; = |A|vg, to Avy = Awy, bo

[[Alor — [Alva || = [[|A[(v1 = v2)l| = [[A(vr = va2)|| = [[Avy — Ay
Okreslamy odwzorowanie U najpierw na podprzestrzeni Im |A| wzorem
U(|Alv) = Av.

7, poprzednich obliczen operator U jest dobrze okreslony i jest izometrig z
Im |A| na Im A. Zatem U rozszerza si¢ do izometrii z Im |A| na Im A w oparciu
o znany fakt z topologii metrycznej. Potézmy Uv = 0 dla v € (Im |A|)+ =
ker |[A|. Wtedy U staje sie czeSciowa izometria oraz ker U = ker |A| = ker A.
Z definicji operatora U mamy U|A| = A.

Pozostaje sprawdzi¢ jedynosé. Zatdézmy, ze V' jest rOwniez czesciows, izo-
metria speliajaca A = V| A| oraz ker V' = ker A. Zatem

V]Alv = Av = U|Av,

tzn. V i U sa réwne na Im |A]. Stad V' = U na Im | A|, przez ciagtos¢. Z kolei
na dopetnieniu ortogonalnym

Im \A|L = ker |A| =ker A =kerV =kerU

operatory U i V' sg réwne, bo oba sie tam zeruja. To oznacza, ze U = V. [
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Uwaga 2.16. Zauwazmy U*U jest rzutem na

(ker U)* = (ker A)* = (ker |A])* = Im |A].

Czyli
U*A=UU|A| = |A|.

Uwaga 2.17. Jesli A jest operatorem odwracalnym, to rowniez A* i iloczyn
A*A sa odwracalne. W zwiazku z tym |A| jest odwracalny. Wtedy U =
A|A|7t. To oznacza, ze U i U* sa odwracalne.Dalej

UU = |A|7TA*A|A| ™ =1,
zatem U* = U™, co oznacza, ze U jest operatorem unitarnym.

Przyktady. (a) Niech H = C". Wtedy operator A jest dodatni wtedy i
tylko wtedy, gdy wszystkie wartosci wtasne macierzy A sa nieujem-
ne. Rzeczywiscie, niech A > 0. Wtedy jesli Av = v, dla v # 0, to
0 < (Av,v) = XMv,v). Zatem X > 0. Odwrotnie, zatdézmy, ze wartosci
wtasne dla A sg nieujemne. Wiemy, ze A mozna przedstawi¢ w postaci
A = CDC™!, gdzie D jest macierza diagonalna oraz C' jest macierza
unitarna. Tzn. A = CDC*. Elementy na przekatnej macierzy D sa
nieujemne jako wartosci wlasne macierzy A. Zatem D jest operatorem
dodatnim, bo jesli

AN O - 0
0 Ao 0
0 0 An

to
(Dv,v) = > N|vg]? > 0.
k=1
Zatem A > 0. Ponadto AY/? = CDY?C~', gdzie
N2 0 -0
|0 A2 0

0 0 AL/2



26 Analiza funkcjonalna IT
(b) Niech H = L*(0,1) oraz (Af)(z) = z f(x). Wtedy

1 1
(AL = [(An)@)de = [ alf@)*de > 0.
0 0
Ponadto
(A2 f)(x) =V f(x).
(b) Niech H = (2. Okreslmy
U(l’o, T1,T9,.. ) = (ZEl, Lo, T3, .. )

U jest izometrig na V = eg, gdzie ex = (0,...,0, %,0, ...). Ponadto U

zeruje sie na Cey. Zatem U jest czesciowa izometrig. Mamy
U*(Q?o,xl, Lo, .. ) = (O, Lo, L1,y . - )

Rzeczywiscie
(U*x,y) = <$7 Uy) = Z TnYn+1 = Z Tn—1Yn-
n=0 n=1

Zauwazmy, ze

U*U([Eo,xl,l’g,...) = U*($1,l’2,x3,...>:(O,.ﬁﬂl,l'g,...),
UU*(ZE(),.I'l,I'Q,...) = U(O,I’Q,{L‘l,...):(ZL‘(),I'l,JZQ,...).

Tzn. UU* = I oraz U*U jest rzutem na e .

3 Zbieznos$¢ operatorow

Niech X iY beda przestrzeniami unormowanymi. Rozwazmy 7, T' € B(X,Y).

Definicja 3.1. (a) Mowimy, Ze cigg operatorow T, jest zbiezny do opera-
tora T" w normie operatorowey, jesli

||Tn — THB(X,Y) 7 O

(b) Méwimy, zZe cigg T, jest zbieiny do T mocno, jesli dla wszystkich ele-
mentow x € X mamy

| Thx — Tx|ly — 0.
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(c) Mowimy, ze cigg T, jest zbieiny do T stabo, jesli dla wszystkich ele-
mentow x € X oraz wszystkich funkcjonatow y* € Y* mamy

y* (Tox) — y* (Tw)] — 0.
7 nieréwnosci

v (Tox) = y"(Tx)| = [y (Tox = To)| < |ly*lv-
= [ly*lly+ (T = T)zfly <

T.x —Tzxl|y
Y lly-llzllx T = Tl sxy

wynika, ze (a) = (b) = (c).
Przyklad 3.2. Niech X =Y = (? oraz
U(xo, x1,x2,...) = (21,22, T3, . . .).
Dla T}, = U™ mamy
To(xo, 21,2, .. .) = (Tpy Tpa1, Tpio, - - .)-

Zatem -
Tl = 3 fauf? 0
=N

To oznacza, ze ciag T}, jest zbiezny mocno do zera. Poniewaz
ITall > 1 Thenll = lleoll = 1,

to ciag T;, nie dazy do 0 w normie operatorowe;.

Mamy
U*(xg, z1,x2,...) = (0,20, 21, . . .).
Wtedy
(U )" (xo, 1, 22,...) = (0,...,0,20,21,...).
—
Zatem
1U7)"xll2 = [l]]2-
Dalej

(U)"2,y) = (U")'w,y) = (&, U"y) — 0,

bo U™y - 0. To oznacza, ze (U*)™ dazy do 0 stabo, ale nie dazy do 0 mocno.
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Uwaga 3.3. Dla 7,,, T € B('H) mamy T, = T wtedy i tylko wtedy, gdy
(Thr,y) — (Tz,y), xyeH.

Twierdzenie 3.4. Zalozmy, ze X jest przestrzeniq Banacha, a'Y przestrze-
nig unormowang. Wtedy kazdy stabo zbieiny cigg operatorow T, € B(X,Y)
jest ograniczony, tzn. sup, ||T,] < oo.

Dowadd. Zatozmy, ze T, — T stabo, tzn. dla dowolnego elementu x € X

ciag T,x jest stabo zbiezny w przestrzeni Y. Wtedy ciag T),x jest ograniczo-
ny w Y. Zatem z twierdzenia Banacha-Steinhausa normy ||7,,|| sa wspdlnie
ograniczone. O

Rozwazmy przestrzen Hilberta H. Dla A, B € B(H) piszemy A > B jesli
A*= A, B* = Boraz A— B > 0. Ta relacja jest przechodnia, bo jesli A > 0
oraz B> 0,to A+ B > 0.

Lemat 3.5. Dia A > 0 mamy

[(Au, v)]
[ Aul|

(Au, u)Y?(Av, v)/? (3.1)

<
< IV A, w2, (3.2)

Dowéd. Dla z € Ciu,v € 'H rozwazamy wyrazenie
0 < (A(zu+v), zu +v) = |2|*(Au, u) + (Av,v) + 2Re {z(Au, v)}.
Zatozmy, ze (Au,v) # 0. Niech z = —\sgn (Au, v) dla A € R. Wtedy
0 < (A(zu +v), zu + v) =< (Au, u) A2 — 2|{Au, v)| A + (Av, v).

Otrzymali$my nieujemny tréjmian kwadratowy zmiennej . Zatem wyrdznik
A tréjmianu musi by¢ niedodatni. Czyli

A
0> i [(Au, v)|? — (Au, u)(Av, v).

To dowodzi (3.1). W (3.1) podstawmy v = Au. Wtedy

1Aul* < (Au, u) (A%, Au)'/?
< (Au, ) AP 2] Aul2 < (A, )2 AN Aul .

Przy zatozeniu Au # 0 otrzymujemy (3.1). O
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Uwaga 3.6. Dowdd mozna réwniez przeprowadzié przy uzyciu AY2. Rze-
czywiscie

[(Au, v)] = [(AY2u, AV20)| < A2l [ AY20]| = (Au, u)!/*(Av, )72,

[Aul| < [JAVZ(|[AY2ull = AV (Au, u)' 2.

Korzystajac z pierwszej nieréwnosci w lemacie mozna poda¢ inng kon-
strukcje operatora A'/2.

Rozwazmy podprzestrzen Hy = (ker A)L. Wtedy A(Hy) C Ho, bo A(Hp) =
A(ker A) = {0} C Hy. Operator A |, jest réznowartoéciowy i dodatni. Za-
uwazmy, ze forma péttoraliniowa (Au, v) na przestrzeni Hy posiada wlasnosci
iloczynu skalarnego. Rzeczywiscie, jesli (Au,u) = 0, to z nieréwnosci (3.1)
wynika, ze (Au,v) = 0 dla wszystkich v € Hy, w szczegdlnosei dla v = Au.
Stad Au = 0, czyli u = 0. W przestrzeni ‘Hy wprowadzamy norme

|lullo = (Au, u>1/2, uw € Hp.

Przestrzen Hy uzupeliamy w normie ||ul|o otrzymujac przestrzenn Hilberta

Hi D Hp.
Twierdzenie 3.7. Niech T,, € B(H) bedzie rosngcym i ograniczonym cig-
giem operatoréw dodatnich, tzn. T,, < Thi1, oraz sup ||T,|| < co. Wtedy cigg

T, jest zbiezny mocno.

Dowéd. Dla v € H mamy
0 < (Thv,v) < (Th110,v).

Ponadto
0 < (Tho,0) < | To]l[Jvll” < clloll?,

gdzie ¢ = sup ||T,||. Zatem ciag liczbowy (T,v,v) jest rosnacy i ograniczony,

wiec jest zbiezny dla dowolnego elementu v. 7 tozsamosci polaryzacyjnej
wynika, ze réwniez ciag (T, u, v) jest zbiezny dla dowolnych elementéw w i v.
Oznaczmy

B(u,v) = ligbn(THU, v).

Wtedy
|B(u, 0)] < sup [{Tou, v)| < clfull|jo]]
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Zatem B(u,v) jest ograniczong forma hermitowska na H x H. Z Twierdzenia
3.24 i zadania 72 [[5]] istnieje operator samosprzezony 1" taki, ze B(u,v) =
(Tu,v). Tzn.

liyrln<Tnu,1)> = (Tu,v).

Zatem ciag T, jest zbiezny do T' stabo. Operator T' jest dodatni, bo
0 < (Thu,u) /(Tu,u).

Co wiecej T' > T,. Stosujemy (3.2) do A =T — T, i otrzymujemy

|Tu — Toul| = (T = T)ull < |T = Tol|*((T = Tp)u, u)'/?
= ||T — T, ||Y*(Tu — Tyyu, u)*/?.

Poniewaz
1T =Tl < IT[f + 170l < [ + ¢,
to
| Tu — Toul| < (|T]| + )Y (Tu — Ty, u)/?.
Zatem ||Tu — T,ull — 0. Czyli T,y dazy do T" mocno. O

4 Operatory zwarte

Definicja 4.1. Ograniczony operator lintowy T : X — Y, gdzie X 1Y
sq przestrzeniami unormowanymi, nazywamy zwartym jesl obraz dowolnego
ograniczonego podzbioru w X jest warunkowo zwartym podzbiorem w'Y, tzn.
z kazdego ciggu elementow tego obrazu mozna wybrac podcigg zbieiny.

Uwaga 4.2. Aby operator T : X — Y byl zwarty wystarczy, aby zbior
T(By) byt warunkowo zwarty, gdzie B; jest kula jednostkowa w X, tzn. By =
{z € X : ||z]]| < 1}. Rzeczywiscie, kazdy ograniczony zbiér jest zawarty w
wielokrotnosci kuli jednostkowej. Wiec obraz takiego zbioru jest zawarty w
wielokrotnosci obrazu kuli jednostkowe;j.

Przyktad 4.3. Niech T : C[0,1] — C[0, 1] bedzie okreslony wzorem

(T1)@) = [ k(w,y) 1) dy,
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gdzie k(z,y) jest funkcja ciagta dwu zmiennych. Wtedy

ITflloo < sup [k(z, y)] || flloo-
\Iay\

Stad

70 < Wbl = sup_ (ke )l

\x7y\

Rozwazmy zbior T({f € C[0,1] : ||f|loc < 1}. Ten zbidr jest ograniczony, bo
operator T jest ograniczony. Sprawdzamy jednakows ciggltos¢ funkcji z tego
zbioru.

(Tf)(x) = (Tf)(=")] =

[k, y) = k()] S (0) dy

0<y<

1
< /\k(:my) — k@)l dy < Ifll sup [k(z,y) = k(2" )|
0

< flloo sup [k(z,y) — k(' )] (4.1)
O<y<1

Funkcja k(z,y) jest jednostajnie ciagta. Zatem dla ustalonej liczby dodatniej
¢ istnieje liczba dodatnia § taka, ze jesli |z — a'| < 0 oraz |y — y/| < ¢ to
|k(z,y) — k(2',y)| < e. Zatem jesli |x — 2’| < 4, to

sup |k(z,y) — k(2 y)| <e.

O<y<1
Czyli |(T'f)(z) — (Tf)(2")| < e. Reasumujac obraz kuli jednostkowej przez
operator 1" jest ograniczony i jednakowo ciggty. Zatem z twierdzenia Arzeli-
Ascoliego ten obraz jest warunkowo zwarty, wiec operator T jest zwarty.

Twierdzenie 4.4. Niech X,Y,V, 1« W bedq przestrzeniami unormowanymi,
natomiast operatory T : X — Y, A :V — X oraz B :' Y — W bedg
ograniczonymai operatorami lintowymi. Jesli operator T' jest zwarty, to zwarty
jest rowniez operator BTA:V — W.

Uwaga 4.5. Aby pokazaé¢ operator T : X — Y jest zwarty, trzeba udowod-
ni¢, ze dla kazdego ograniczonego ciagu xz,, w X ciag Tx, zawiera podcigg
zbiezny w Y.

Dowaéd. Niech v, bedzie ograniczonym ciagiem w V. Wtedy ciag Av, jest
ograniczony w X. Zatem ciag T'(Av,) zawiera podciag T'(Av,,) zbiezny. Z
ciaglosci operatora B mamy, ze podciag BT Av,, jest tez zbiezny. ]
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Przyktad 4.6. Rozwazmy operator T : L*(0,1) — L*(0,1)

(Th)@) = [ kw,9)f () dy.

gdzie k(z,y) jest funkcja ciaglta dwu zmiennych. Okreslmy operatory S :
C[0,1] — L?(0,1) oraz Sy : L*(0,1) — C[0, 1] wzorami

Sif=1f (S2f)(z /k:xy

Oba operatory sg ograniczone, bo

1 1/2
1917112 = 1 = ( / \f(x)l2d:c) <l
0
oraz

1

(S:20)@)] < [ Ik, y)| 1) dy < |k||oo/|f )l dy

’ 1/2
<[]l ( / If(y)|2dy) = [l 2
0

czyli ||19of]loo < ||klloo| fll2- Mamy T" = S1S5. Pokazemy, Ze operator S jest
zwarty, zatem T' tez bedzie zwarty z poprzedniego twierdzenia. Wykazemy, ze
obraz kuli w L?(0,1) przez S, jest warunkowo zwarty w C[0, 1]. Oczywiscie
obraz kuli jest ograniczony, bo operator Sy jest ograniczony. Sprawdzamy
jednakowsg ciaglo$é funkcji z obrazu kuli. Niech || f]|2 < 1. Wtedy korzystajac
z (4.1) otrzymamy

|(S2f)(x) = (S2/) ()| < sup [k(z,y) — k(=" y)] || ]l

0<y<1
< sup [k(z,y) — k(@' y)| [ f]l2,
0<y<1

wiec

|(S2f)(2) = (S2/)(@)] < sup [k(z,y) — k(2" y)|.

0<y<1

Poniewaz funkcja k(z,y) jest jednostajnie ciagla, to funkcje So2f, dla || f]|2 <
1 sg jednakowo ciggle.
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Przyktad 4.7. Operatory skonczenie wymiarowe, tzn. dimIm7" < oo, sg
zwarte. Istotnie, niech 7' : X — Y bedzie ograniczonym operatorem linio-
wym, dla ktérego T'(X) jest przestrzenia skonczonego wymiaru m. Wtedy
przestrzen T'(X) jest izomorficzna z C™ z norma euklidesowa. W takiej prze-
strzeni kazdy zbior ograniczony jest warunkowo zwarty. W szczego6lnosci ob-
raz kuli jednostkowej przez operator ograniczony T jest taki.

Twierdzenie 4.8. Niech X przestrzeniqg unormowanqg, a'Y przestrzenig Ba-
nacha. Zalozmy, Ze operatory T,, € B(X,Y) sq zwarte oraz zbiezne do opera-
tora T € B(X,Y) w normie operatorowej. Wtedy operator T tez jest zwarty.

Dowdéd. Rozwazamy ciag z,, elementow z kuli jednostkowej w X. Z zalozenia
istnieje podciag 1) ciggu m,, taki, ze ciag TizlV) jest zbiezny, np. do y;. Z
kolei istnieje podciag (2 ciagu (V) taki, ze ciag Thz!?) jest zbiezny, np. do
y». Postepujac tak dalej znajdziemy podciag #(™ ciggu ("~ taki, ze ciag
T,z jest zbiezny, np. do y,. Okreslmy nowy ciag ¥,, = ™. Dla m > n
ciag x,, jest podciagiem ciagu x%‘). Zatem T),%,, = Yn. Sprawdzimy, ze ciag
Yn jest zbiezny. Mamy

190 = yell = lim [ T2, — T3]
Ale
|11 — Ti@m|| = (T — Te)T|| < [|T7 = Ti||||Zm || < ||T7 — Th|l-

Zatem ciag vy, spetnia warunek Cauchy’ego. Z zupetnosci przestrzeni Y ciag
Yn jest zbiezny do pewnego elementu y. Pokazemy, ze T'z,, =Y. Mamy

|1 TZ — yll < TZm — ToZmll + 1 TaZm — ynll + llyn — vl
<AT = Toll + 1T — ynll + llym — vl

Dla liczby dodatniej ¢ wybieramy n odpowiednio duze tak, aby ||T° — T, || <
e/3 oraz ||y, — y|| < €/3. Nastepnie dla ustalonej wartosci n istnieje liczba
myg tak, ze dla m > mg zachodz ||T,Z,, — yn|| < €/3. Wtedy dla m > my
otrzymujemy

|TZ — yl| <e.
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Przyktad 4.9. Rozwazmy ponownie operator T : L*(0,1) — L*(0,1) z
Przyktadu 4.6. Na podstawie twierdzenia Stone’a-Weierstrassa kombinacje
liniowe funkcji postaci a(z)b(y) leza gesto z przestrzeni C([0,1]%). Zatem
istnieje cigg funkcji k,(z,y) postaci k,(z,y) = S0, ax(z)br(y) (przy czym
N i funkcje ay, oraz by zaleza od n) takich, ze k,(z,y) = k(z,y). Okreslmy

operatory

1

(Tu))@) = [ @) dy = 3 an(e) [ 0u(6)70)

0

Zatem
Im 7, Clin{a;(z),az(x),...,ay(z)}.

To oznacza, ze T,, jest operatorem skonczenie wymiarowym. W szczegdlnosci
T, jest operatorem zwartym. Ponadto

(=) 1)) = | [ oal ) = B, ) dy| < [ T, 0) =R, 1) 1) dy
< swp k(e y) = k() 1l < sup (o) = bla )l 1]

0<e,y<1 0<e,y<1

Stad otrzymujemy

(7o = T)flla < sup |kn(z,y) = k(z, y)] || f]l2:

0<z,y<1

Zatem
1T, =TI < sup |kn(z,y) — k(z,y)| — 0.
0<Lz,y<1
Twierdzenie 4.10. Niech T' bedzie ograniczonym operatorem lintowym na
przestrzeni Hilberta. T jest zwarty wtedy @ tylko wtedy, gdy T jest zwarty.

Dowéd. Wiemy, ze operator T mozna zapisaé w postaci 1" = U|T| oraz
U*T = |T|. Jesli T jest zwarty, to zwarty jest tez |T|. Wtedy réwniez
T* = |T|U jest zwarty. O

Twierdzenie 4.11. W osrodkowej przestrzeni Hilberta H ograniczony ope-
rator lintowy T jest zwarty wtedy i tylko wtedy, gdy przeksztatca ciggi stabo
zbiezne do zera w ciggi zbieine do zera w normie przestrzeni.
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Dowad.

(=) Zalbézmy, ze ciag elementéw x, przestrzeni H dazy stabo do zera.
Ten cigg jest wigc ograniczony. Zatem T'zw, zawiera podciag zbiezny Tz, .
Oznaczmy T'z,, — y. Dla z € H otrzymujemy

k

(y,z) = li%:n(Txnk, z) = 1i1£n<:z:nk,T*z> = 0.

Zatem (y, z) = 0 dla wszystkich z € H, czyli y = 0.
7 powyzszego rozumowania wynika, ze kazdy podciag ciagu Tz, zawiera
podciag zbiezny do zera. Zatem ciag T'x,, dazy do zera.

(<) Niech z,, bedzie ograniczonym ciagiem elementéw z H. Z twierdzenia
Banacha-Alaoglu mozemy wybrac podciag x,, , ktory jest x-stabo, czyli stabo,
zbiezny. Niech z,, o stabo. Zatem z,, — x — 0 stabo. Z zalozenia ciag

T(xp, — ) jest zbiezny do zera w normie. Czyli ||Tx,, — Tx|| — 0. O

Lemat 4.12. Niech X, Y i Z bedq przestrzeniami unormowanymsi. Zatézimy,
ze operator T : X — Y jest zwarty oraz, Ze cigg ograniczonych operatorow
S, Y — Z jest mocno zbieiny do operatora S Y — Z. Wtedy cigg
operatorow S, T jest zbiezny do ST w normie operatorowey.

Dowdd. Zatozmy, ze S, T nie jest zbiezny do ST w normie operatorowej.
Zatem dla pewnej dodatniej liczby € mozna znalez¢ rosnacy ciag liczb natu-
ralnych n; oraz ciag elementow x;, € X takich, ze

k]l =1, [[(Sn, T = ST)al| > €.

Ze zwartosci operatora T' ciag T'x zawiera podciag zbiezny. Bez straty ogol-
nosci zalozymy, ze Tx;, jest zbiezny do pewnego elementu y € Y. Wtedy

e < (S, T = ST)ak|l < 15, T — Syl + [1Sn,y — Syll + 1Sy — ST
< Sl T2k = yll + 15wy = Syll + IS ly = Tl — 0.

]

Twierdzenie 4.13. Kazdy zwarty operator pomiedzy przestrzeniami Hilber-
ta jest granicg w normie operatorowej ciggu operatoréow skonczenie wymiaro-
wych.
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Dowéd. Niech T' : 'H; — Hs bedzie zwarty. Rozwazmy przestrzen T(Hi).
Oznaczmy symbolem B kule jednostkowa w H;. Wtedy

T(Hy) = E_le(nB) = f_jl nT(B) C f_jl nT(B).

Zatem przestrzen T'(H;) jest zawarta w przeliczalnej sumie zbioréw zwartych.
Z kursu topologii metrycznej wiemy, ze przestrzen T'(H;) jest wiec osrodkowa.
Zatem rowniez domkniecie Hg := T'(H;) jest osrodkowa przestrzenia Hilber-
ta. Niech {eg}?2, oznacza baze ortonormalna w przestrzeni Hs. Wtedy dla
dowolnego elementu =z € ‘Hs mamy

T = i(m,ek)ek.

k=1

Oznaczmy
n

I,x = Z(x,ek>ek.

k=1
Wtedy I,z - z, dla x € Hg, czyli I,, - I3, mocno. Z Lematu 4.12 wynika,
ze 1,T = I, T =T w normie operatorowe;. O

Twierdzenie 4.14 (Alternatywa Fredholma). Niech T bedzie operatorem
zwartym w przestrzeni Hilberta. Wtedy dla liczby X # 0 operator \I — T jest
odwracalny albo liczba A jest wartoscig wtasng operatora T.

Dowéd. Mamy A\ —T = X\(I—\"'T). Zamieniajac operator T na A\~ 'T’, ktory
tez jest zwarty mozemy ograniczy¢ si¢ do przypadku A = 1. Rozwazamy wiec
operator I — T. 7Z poprzedniego lematu mozna znalezé operator skonczenie
wymiarowy Ky taki, ze ||T — Ky|| < 1. Wtedy

I-T=1—-(T- Ky — Kp.
Operator I — (T — Kj) jest odwracalny na podstawie Twierdzenia 1.7. Zatem
I =T ={I-Ko[l (T = Ko)| '} [I = (T = Ko)].

Oznaczmy

Ky = Ko[I — (T — Ko)] .

Wtedy
I-T=(I-K)(I—-T+ K,). (4.2)
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Operator K7 jest skoriczenie wymiarowy, bo Im K; C Im K. Ze wzoru (4.2)
wynika, ze I — T jest odwracalny wtedy i tylko wtedy, gdy I — K jest
odwracalny. Ponadto I — T jest réznowartosciowy wtedy i tylko wtedy, gdy
I — K; jest roznowartosciowy. Wystarczy zatem pokazaé, ze jesli I — K jest
nieodwracalny, to I — K nie jest roznowartosciowy.

Zatozmy nie wprost, ze [ — K jest roznowartosciowy. Pokazemy, ze [ — K
jest ,na”. Ustalmy y € ‘H. Chcemy rozwiazaé¢ rownanie

(I — Kz =vy. (4.3)
Wybieramy baze¢ ortonormalng eq, es, ..., e, w Im K. Bedziemy szukaé roz-
wigzania x w postaci
r=1y + Z /\j@j. (44)
j=1
Mamy
Kiz = ay(z)es. (4.5)
k=1
Zapis jest jednoznaczny, zatem oy, ao, ..., a, zaleza liniowo od zmiennej x.

Podstawmy (4.4) i (4.5) do (4.3). Wtedy

Yy + Z Akek - Z ozk(y)ek - Z Z )xjozk(ej)ek =Y.
k=1 k=1

k=1 j=1

Po uproszczeniu y, poréwnujemy wspotczynniki przy wektorach bazowych i
dostajemy uktad n réwnan z n niewiadomymi Ay, Ao, ..., \y,.

A= Nowley) = awly), k=1,2,...,n.

J=1

Macierz uktadu ma postac¢ I — A, gdzie A = (ax(e;))} 4=, Uktad réwnaii ma
posta¢ macierzowa

(I—AAX=b, MbecCm

gdzie
M a1 (y)

A «Q
N\ = .2 - 2.(9)

Xn ozn'(y)



38 Analiza funkcjonalna IT

Wyznacznik uktadu det(] — A) jest niezerowy Istotnie, gdyby det(/ —A) = 0,
to réwnanie (I — A)\ = 0 mialoby niezerowe rozwiazanie A € C". Réwnowaz-
nie, przyjmujac y = 0 uzyskamy niezerowe rozwiazanie réwnania (I — K;)x =

0, bo mozna przyja¢ x = Z Axer. To jest sprzeczne z zatozeniem o rézno-
k=1
wartosciowosci I — K. Zatem det(I — A) # 0. Wtedy réownanie (I — A)A = b

posiada rozwiazanie A. Ale to oznacza, ze réwnanie (I — Kj)x = y ma roz-
wigzanie. W rezultacie operator I — K jest ,na”. O

Twierdzenie 4.15 (Riesz-Schauder). Spektrum operatora zwartego na prze-
strzeni Hilberta skltada sie z co najwyze) przeliczalnego zbioru liczb zespolo-
nych nie majgcych punktu skupienia poza byé moze punktem 0. Kazda nie-
zerowa liczba w spektrum jest warto$cig wlasng o skonczonej krotnosci (tzn.
przestrzen wektorow wlasnych odpowiadajgca tej liczbie ma skonczony wy-
miar).

Dowdd. Niech A # 0 oraz A € o(T') dla zwartego operatora T'. Z alternatywy
Fredholma wynika, ze A\ jest warto$cia wlasng operatora T. Niech Tz =
Az, oraz © # 0. Ustalmy liczbe € > 0. Pokazemy, ze przestrzen wektoréw
wlasnych odpowiadajacych wartosciom wlasnym A, |A| > &, ma skonczony
wymiar. To zakonczy dowdd tezy twierdzenia.

Zatézmy nie wprost, ze istnieje nieskonczony uktad liniowo niezalezny
(xn)02 taki, ze Tx, = A\,x, oraz |\,| > €. Zastosujemy proces ortogonaliza-
¢ji Grama-Schmidta do tego ciagu i otrzymamy uktad ortonormalny (y,,)%°
o wlasnosci

Yn € By = ln{zy, 20, ... 20}, yn L Enq.

Niech

n
Yn = Z Ok L, Qnp > 0.
k=1

Wtedy

T(yn) = > apnTzr = Qpnledy

k=1 k=1
n—1 n—1 n—1
= )‘nan,nmn + Z O‘k,n/\kxk - )‘nyn - )\n Z Qe nTh + Z ak,nAkxk-
k=1 k=1 k=1

Tzn.
T(yn) = )‘nyn + U, U, € En—l-
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Zatem
<Tyn7yn> - )\n<ym yn> = )\n

Ciag vy, dazy stabo do zera co wynika z nieréwnosci Bessela. Zatem
[ Tynll — 0.
Stad A\, — 0. ]

Lemat 4.16. Jesli T jest zwartym operatorem liniowym na przestrzeni Hil-
berta, to obraz Im (I — T') jest domknietq podprzestrzeniq liniowq.

Dowdd. Wystarczy udowodnié¢ nieréwnosé |[(I — T)x| > c||z|| dla pewnej
statej ¢ > 0 oraz wszystkich x L ker(I — T'). Rzeczywiscie, dla

Ho = ker(I —T)*
rozwazmy operator [ — T : Hy — H. Zauwazmy, ze
(I =T)(H) = (I =T)(Ho).

Wtedy z nieréwnosci ||(I — T)z|| > c|lz| dla x € Hy wynika, ze I — T jest
operatorem réznowartosciowym na Hj i jego obraz jest domknigty.

Zalézmy nie wprost, ze nierownos¢ nie jest spetniona dla zadnej statej
¢ > 0. Zatem istnieje ciag elementéw z,, L ker(I — T') spelniajacy ||z,| = 1
oraz ||(I — T)x,|| — 0. Z ciggu Tz, mozna wybraé podciag zbiezny Tz, .
Niech Tz, — Y. Wtedy ||zn, — Tz, || - 0. Zatem z,,, — Y Stad

(I-T)y= li]£n(l — Ty, =0,
czyli y € ker(I —T'). Z drugiej strony poniewaz z,,, — Y, toy € ker(I —T)*.
Zatem y = 0. Ale |ly|| = limy ||z, || =1. L O

Uwaga 4.17. Jesli operator T jest zwarty, to réwniez Im (Al —T) dla A # 0
jest domknieta podprzestrzenig liniowa, bo

Im (A —T) =Im (I — A™'T).

Twierdzenie 4.18. Niech T bedzie zwartym operatorem liniowym w B(H).
Réwnanie (I — T)x = y ma rozwigzanie v € H wtedy i tylko wtedy, gdy
y L ker(I —T%).
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Dowéd. Mamy rozktad ortogonalny
H=ker(I -T*)®Im (I —-T)=ker(I] —T*)&Im (I —1T).
Zatem y € Im (I — T) wtedy i tylko wtedy, gdy y L ker(I —T™). O

Twierdzenie 4.19. Niech T € B(H) bedzie zwartym operatorem samosprze-
zZonym w osrodkowej przestrzeni Hilberta. Wtedy istnieje baza ortonormalna
ztozona z wektorow wtasnych operatora T. Tzn. istnieje baza ortonormalna
{on}N_, taka, ze T, = pnen, gdzie i, € R oraz u, — 0. (9dy dim H = oo,
to N =00)

Dowdd. Przeprowadzimy dowdd w przypadku dim’H = oo. Operator T nie
jest odwracalny, bo dla ciggu ortonormalnego e, mamy e, = 0, zatem

st
[Ten|| — 0. Czyli 0 € o(T). Wiemy, ze o(T') C R. Ponadto

o(T) = {#n}ny U {0},
gdzie p,, # 0. Przestrzen wtasna
E,={zx€eH : Tx=pyx}

ma skonczony wymiar. Wiemy tez, ze jesli T* = T, to wektory wtasne od-
powiadajace r6znym wartosciom wtasnym sa ortogonalne. Niech Fy = ker T
Oznaczmy

N

HO - @ En @ Eo.

n=1
Tzn. Hy jest najmniejsza domknieta podprzestrzenia zawierajaca podprze-
strzenie F, dla n = 0,1,2,..., N. Pokazemy, ze Hy = H. Zal6ézmy nie
wprost, ze Hy C H. Zauwazmy, ze T (Hy) C Ho, bo T'(E,) C E, dla kazdego
n=20,1,2,...,N.

Lemat 4.20. Niech T € B(H) oraz T* = T. Jesli dla pewnego podzbioru
M CH mamy T(M) C M, to T (M*) C M*.

Dowéd. Niech x € M*. Dla y € M mamy Ty € M, wicc
(Tz,y) = (z, Ty) = 0.

To oznacza, ze Tx € M*. O
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7 lematu mamy T (H&) C ‘Hg. Niech T oznacza operator 1" ograniczony

do podprzestrzeni niezmienniczej Hg. Operator T jest nadal samosprzezo-
ny. T nie posiada warto$ci wlasnych, bo wszystkie wektory wlasne zostaly
uwzglednione w Hy. Operator ten jest tez zwarty. Zatem o (T I') = {0}. Tzn.
promien spektralny T(T ) jest zerowy. Ale z samosprzezonosci mamy

IT)| = n(T) =0.

Cazyli T = 0. Otrzymujemy sprzecznos$é za wyjatkiem sytuacji Hy = {0}.
Zatem

N

H= @ E, © Ep.

n=1
Wiemy, ze dim E,, < co. W kazdej podprzestrzeni F, wybieramy baze¢ or-
tonormalng. Potaczenie tych zbioréw da nam baze ortonormalng catej prze-
strzeni H. Ustawmy elementy bazy w ciag {©,}22,. Wtedy T, = ptn@n,
dla pewnych liczb p,, € o(T). Poniewaz elementy ¢,, daza stabo do zera, to
fn — 0. O]

Uwaga 4.21. Dla z € H mamy

=D (z,0n)p
n=1

Zatem
[o@)

TQJ:Z< » Pn TSOTL Z,un

n=1

Twierdzenie 4.22. Dla operatora zwartego T' € B(H) istniejq uklady orto-
normalne {p, }2_1, {¥n}N_, oraz liczby dodatnie {\,})_, takie, Ze

N
Te=> Az
n=1

Dowdd. Stosujemy rozktad polarny T = U|T|. Wartosci wtasne operatora
|T| sa nieujemne. Rzeczywiscie, jesli A > 0 oraz Ax = Az, dla x # 0, to

0 < (Ax,z) = \|z||%.

Zatem A > 0. Z poprzedniego twierdzenia istnieje baza ortonormalna {¢, }>
taka, ze

Tz =" pnlz, on)e
n=1
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Zatem

T:U—U|T|x—z,unxg0n Up, = Z:“n z, pn)Upp.

n=1
,u,n;ﬁO

Dla p, # 0 oznaczmy U, = 1,. Mamy |T'|¢, = pnps. Stad ¢, € Im|T|.
Wiemy, ze U jest izometria na Im |T|. Zatem

<¢na¢m> = <an7U77ZJm> = <90n7§0m> - {

Stad uktad {,}72, , .o jest ortonormalny. Niezerowe liczby p, ustawiamy
w ciag { M\, }2_ |, aby uzyskaé teze twierdzenia. O

Uwaga 4.23. Gdy N = o0, to \, — 0.
Definicja 4.24. Wielkosci A\, nazywamy liczbami singularnymi operatora
zwartego T. Mozemy zalozyé, ze Ay = Ay = A3 >

Twierdzenie 4.25 (Zasada minimaksu). Dla operatora zwartego T w prze-
strzeni Hilberta n-ta liczba singularna wyraza sie wzorem

dimV=n—1 |z|=1

Dowod. Niech
N

n=1

Oznaczmy V,, = lin{p1, pa, ..., ¢n_1}. Mamy
| Tz|* = (Tx, Ta) = (T"Tx,x) = (|TPx, ) = (|T|a, [T|a) = |||T]2|?

Wtedy element x € V- ma posta¢

N
T = (x,0k )or+ 0, gdzie xg € ker T = ker [T
k=n

Zatem

N
T)x = el o )or

k=n
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7 nieréwnosci Bessela otrzymujemy

N N
T2 = D2 Xl el <AL Y- Ko eon? < Abll=|.
k=n k=n

W rezultacie
|Tz]| = |T]z]| < Aullz]| < An,  dla [lz]| <1

To daje nieréwnosé¢ ,.>" we wzorze tezy twierdzenia.

Dla dowodu przeciwnej nieréwnosci niech V' < H bedzie podprzestrzenia
wymiaru n — 1. Wtedy istnieje wektor x € V1 taki, ze L V oraz ||z| =1
(por. zadanie 33) Dalej

Tz = kilAk T, Or)Pr = Z i
Zatem
IT2|* = I1T)z]* = Z Ml o) > Aikil [, 00" = Anllz])* = A
Stad max |ITz|| > A,. Biorac kres dolny wzgledem V' otrzymujemy

HIII 1

min  max ||[Tz]| > \,.
V<H zeV+
dimV=n—1 |z||=1

Uwaga 4.26. Prawdziwy jest tez inny wzoér

A, = max min ||Tz|.
V<H zeV
dimV=n |z|=1

Rzeczywiscie, niech V =V, 1. Wtedy dla x € V mamy

Tz = Mz
k=1

Zatem
| Tx||* = |||T|x]]* = Z Al > N2
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Stad
min [|Tz|| = A\,

xEVn+1
lzll=

bo dla x = ¢, uzyskujemy réwnosé¢. To dowodzi nieréwnosci 7 < 7.
Niech dim (V') = n. Na podstawie zadania 33 istnieje wektor x € V' taki,
ze x LV, oraz ||z|| = 1. Wtedy

1|z = Z el Q) Q-

k=n
Dalej
ITx|? = || T|)* = Z Ml (o) [P < N2|a]|? =

Stad

min [|[Tz|| < A,

zeV

lzll=1
czyli

An 2> max min ||[Tz].
V<H zeV
dimV=n |z|=1

Whiosek 4.27. Jesli T jest operatorem zwartym, to ||T|| = ||Txo| dla pew-
nego elementu xy € H takiego, ze ||zo|| = 1.
Dowdad. Istotnie, z zasady minimaksu wynika, ze

A= sup [T} = [T
Liczba A; jest najwieksza wartoscia wtasna operatora |T|. Niech zy € H
bedzie odpowiadajacym jednostkowym wektorem wtasnym. Wtedy

[Taol| = [|T]xoll = Aillzoll = Ar = |||
[

Uwaga 4.28. Wniosek mozna udowodni¢ bezposrednio. Mamy ||T'|| = lim Tz,

dla pewnego ciagu wektoréw spetiajacych ||z, || = 1. Na podstawie Twier-
dzenia Banacha-Alaoglu z ciggu x,, mozna wybra¢ podciag stabo zbiezny.
Niech z,, — Zo. Wtedy ||zo]| < 1. Ponadto x,, — x - 0. Zatem Tz, — Txy—0
w normie przestrzeni H. To oznacza, ze ||Txo|| = lim |Tx,| = ||T||. Poniewaz

T[] = 1T zoll < ITWllzoll, to l[xoll > 1. Cayli [lzoll = 1.
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Definicja 4.29. OperatorT € B(H) nazywamy operatorem Hilberta-Schmidta
jesli dla pewnej bazy ortonormalnej {e,}:2, mamy > ||Te,|* < co. Klase
n=1

tych operatoréow oznaczamy symbolem HS.

Przyktad 4.30. Niech T : CV — C¥ bedzie odwzorowaniem liniowym z ma-
cierza a;; = (Tej, €;), gdzie {e, } | oznacza standardowa baze w przestrzeni
CV. Wtedy

N N N
Yo Tenl? =D lagl,
n=1

i=1j=1
tzn. otrzymujemy sume kwadratow wartosci bezwzglednych wszystkich wy-
razOw macierzy.

Przykiad 4.31. Rozwazmy odwzorowanie liniowe T : (> — (. Oznaczmy
aij = (Tej,e;), gdzie {€,}22, oznacza standardowq baze w przestrzeni (2.
Wiedy

o0 o0 o0
YoTenll? =D Jayl*.
n=1

i=1j=1

Twierdzenie 4.32. Wielkos¢ Y _ ||Te,||* nie zalezy od wyboru bazy ortonor-
n=1
malnej. Ponadto jesli T € HS, toT* € HS.

Dowdd. Niech {f,,}>°_; bedzie dowolna baza ortonormalna przestrzeni H.
Wtedy z rownosci Parsevala mamy

2 ITenll® =32 > [(Ten, fun)l”

n=1m=1
=SS Uew, T fu) 2 = ST full®. (4.6)
n=1m=1 m=1

Podstawiajac { fim}2o_, = {e,}>, otrzymamy

Yo Tenl? =D (1T el (4.7)
n=1 n=1

Dalej stosujemy (4.6) i (4.7) do operatora T*, aby uzyska¢

Do NTenl® =3 N7 enll* = 32 IT) full® = D2 1T funll
n=1 n=1 m=1 m=1
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Twierdzenie 4.33. Kazdy operator Hilberta-Schmidta jest zwarty. Ponadto
liczby singularne operatora Hilberta-Schmidta s¢ sumowalne z kwadratem.

Dowdd. Mozemy zatozyé, ze operator T jest nieskonczenie wymiarowy, bo
teza jest w oczywisty sposéb spetniona dla operatora skonczenie wymiarowe-
go. Ustalmy baze ortonormalna {e,}>2 ;. Dla operatora T' € HS rozwazmy
operatory

N
Tyr = Z(x, en)Tey,.
n=1
Tzn. Ty = TPy, gdzie Py jest rzutem ortogonalnym na podprzestrzen
lin{ey, es,...,en}. Operator Tl jest skonczenie wymiarowy, wiec jest zwarty.

Mamy

To=T (i@ en>en> = S, e) Ten.

n=1 n=1

Zatem z nieréwnosci Schwarza mamy

2 2
1Tz — Tyz||* = || D (v, en)Ten <( ) |<x,en>!HT6nH)
n=N+1 n=N+1
< ( > !<x,en>l2) ( > HTenHQ) < ( ) HTen|!2> B
n=N+1 n=N+1 n=N+1
Stad

- 1/2
IT - T < ( > ||Ten||2) — 0,

n=N-+1 N
Zatem T jest zwarty jako granica w normie operatorowej operatoréw skon-

czenie wymiarowych.
Wiemy, ze

T|x = Z AT, On)Pn,s
n=1

gdzie A, \, 0 oraz {¢,}>°, jest baza ortonormalng obrazu operatora |T|.
Niech {fi.}£ , bedzie baza ortonormalna dla ker |T'| = ker T Wtedy uktad
{pn} U{fe}, jest baza ortonormalng calej przestrzeni H. Ponadto

) K [e'e) [e'S)
00 > > Tl + X_ITfll® = D I Twnll® = > A0
n=1 k=1 n=1 n=1
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Twierdzenie 4.34. Operatory Hilberta-Schmidta tworzg ideat.

Dowdd. Niech T,S € HS. Dla bazy ortonormalnej {e,}5°, na podstawie
nieréwnodci trojkata w £2 mamy

(i I+ 5)6””2>1/2 - (i ITen + SenHQ)m < (i(HTenH + HSenH)2> v

n=1 n=1 n=1
1/2

< <Z HTenH2> + (Z ||Sen||2> < 0.
n=1 n=1
CzyliT +S € HS. Niech T € HS oraz S € B(H). Wtedy

Y lSTenl” < X NISIPITenll® = ISP X 1 Tenll* < oo,
n=1

n=1 n=1

co oznacza ST € HS. Z Twierdzenia 4.32 mamy T* € HS. Zatem S*T™* €
HS. Znowu z Twierdzenia 4.32 otrzymujemy T'S = (S*T™*)* € HS. [

Uwaga 4.35. Operatory HS z norma

00 1/2
I Tllas = (Z HTenH2>

n=1

tworzg unormowang przestrzen liniowa, w ktérej norma pochodzi od iloczynu

skalarnego

(T, S) => (Te,, Se,).

n=1
Mozna udowodnié¢, ze przestrzen HS jest zupela, czyli jest przestrzenia
Hilberta.

5 Operatory unitarne

Operator U € B(H) nazywamy unitarnym, jesli UU* = U*U = I, tzn.
U* = U~L Mamy ||U||?> = |[U*U|| = ||I|| = 1. Zatem o(U) C {z : |2| < 1}.
Ale dla |z| < 1 mamy

2I —U =z20U"—-U=-U(I —=2U").
To oznacza, ze operator zI — U jest odwracalny. Ostatecznie otrzymujemy

oU)CH{z :|z|=1}=T.
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Definicja 5.1. Wielomianem trygonometrycznym nazywamy wyrazenie po-
stact

(Uwaga: Z =271 dla z € T).

Dla operatora unitarnego U oraz wielomianu trygonometrycznego p(z)
okreslamy

p(U) = En: apz®,  gdzie U° = I.
k=—m
Lemat 5.2.
(i) (p+a)(U) =pU) +q(U).
(i) p(U)* =p(U).
(iti) (pg)(U) = p(U)q(U).

(iv) p(U) jest operatorem normalnym.

Dowdad. .
(ii) Mamy p(U)* = Z aU k= p(U).
k=—m
(iii) Niech q(U) = Y bz, Wtedy
l=—m/

(pq)(U) = ( z": i akbleH) (U) = Xn: i arb U = p(U)q(U).

k=—m k=—m/ k=—m k=—m/

Poniewaz p(z)q(2) = q(2)p(z), to p(U)q(U) = q(U)p(U).
(iv) Mamy

p(U)p(U)* = p(U)p(U) = |pI*(U) = p(U)p(U) = p(U)"p(U).
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Twierdzenie 5.3. Mamy o(p(U)) = p(a(U)).

Dowdd. Zatézmy, ze u € o(p(U)). Wtedy z zasadniczego twierdzenia algebry
otrzymujemy

pl —p(z)=2z"""u—2"p(z)] =cz7™(z = M)(z — A2) ... (2 — An). (5.1)
Zatem
ul = p(U) = cU™(U — MI)(U = NoI) ... (U — Ay).

Lewa strona jest operatorem nieodwracalnym. Zatem przynajmniej jeden z
operatoréow U — A;I jest nieodwracalny. Wtedy A\; € o(U). W szczegdlnosci
A;j # 0. Podstawiajac z = A; w (5.1) otrzymamy p = p(A;) € p(a(U)).
Udowodnili$my wiec zawieranie o(p(U)) C p(a(U)).

Niech teraz p € p(o(U)), tzn. p = p(A\) dla pewnej liczby A € o(U).
Wtedy

p(NI —p(U) = an ar( NI — U*) = an ar( AT — U*)

k=—m k=1

S a A FURUR = M) = (M= U)W = VM = U), (5.2)
k=1

dla pewnego operatora V. Pokazemy, ze p(\) € o(p(U)). Zatézmy nie wprost,
ze operator p(A)I —p(U) jest odwracalny. Niech A oznacza operator odwrotny
do p(A\)I — p(U). Wtedy z (5.2) otrzymamy

(M —U)WA=AV(A —U) =1,

co oznacza, ze operator A\I — U jest odwracalny, co przeczy zalozeniu A €
o(U). W rezultacie udowodnilismy, ze p(a(U)) C o(p(U)). O

Whniosek 5.4. [[p(U)|| = max{[p(z)| : z € o(U)} = [[pllc@wy-
Dowdd. Poniewaz operator p(U) jest normalny, to
Ip(U)|| = max{|u| : p € o(p(U))}
— max{u] : € p(o(U))} = max{[p(:)| : = € o(U)}
O]
Whiosek 5.5. Jesli p(z) > 0 dla z € T, to p(U) > 0.
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Dowéd. Zatézmy, ze 0 < p(z) < 1. Okreslmy ¢(z) = 2p(z) — 1. Wtedy ¢(z)
jest wielomianem rzeczywistym oraz |q(z)| < 1. Z poprzedniego wniosku
mamy ||¢(U)|| < 1. Ponadto ¢(U)* = q(U) = q(U), tzn. q(U) jest operatorem
samosprzezonym. Z Lematu 2.6 wynika, ze —I < q(U) < I. W szczegdlnosei
2p(U) — I > —1, czyli p(U) > 0. O

Whniosek wynika tez z nastepnego lematu.

Lemat 5.6 (Riesz-Fejér). Zaloimy, ze wielomian trygonometryczny p(z) jest
nieujemny dla z € T. Wtedy istnieje wielomian trygonometryczny h(z) taki,

ze p(z) = |h(2)[*.
Dowdd. Najpierw rozpatrzymy przypadek, gdy p(z) > 0 dla |z| = 1. Niech

p(z)= > cx2® 7 dodatniosci otrzymujemy
k=—n

p(z)=p(z)= Y Gz = > ezt
k=—-n k=—n
Zatem c¢j, = ¢ dla dowolnego wskaznika k. Zauwazmy, ze stad wynika ¢,, # 0
wtedy i tylko wtedy, gdy ¢_,, # 0.

Zatozmy, ze c_,, # 0. OkreSlmy G(z) = 2"p(2). Wtedy G(z) jest zwyktym
wielomianem stopnia 2n. Wielomian G(z) nie zeruje si¢ na okregu |z| = 1.
Pokazemy, ze

G(z) =2""G(z7"), dlaz#0, z€C. (5.3)
Nietrudno zauwazy¢, ze obie strony sa wielomianami zmiennej z. Wystarczy
zatem sprawdzi¢ réwnoéé dla |z| = 1. Dla |z| = 1 mamy p(z) = p(z). Zatem
27"G(z) = 27"G(z). Poniewaz z = Z7!, to po przeksztalceniu otrzymujemy
(5.3).
Rozkladamy wielomian G(z) na czynniki liniowe

—an kf[z—ﬂk)

gdzie |a;| < 11 |Bk| > 1, oraz r + s = 2n. Ze wzoru (5.3) wynika, ze jesli
« jest pierwiastkiem wielomianu G(z), to réwniez (a)~! jest pierwiastkiem i
to tej samej krotnosci. To oznacza, ze pierwiastki o 1 B, mozna polaczy¢ w
pary, czyli

n n
= [[(z=ay) [T(= = @)™,
i=1 =1
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Zatem

p(2) = G = e [ — o) T[(1 - (@)72)

gdzie

W szczegdlnosei d,, > 0. Teza jest spelniona dla h(z @ H Z — ).
]:

Zalozmy, ze p(z) > 0 dla |z| = 1. Wtedy pn(2) = p(z) + x > 0 dla
|z| = 1. Z pierwszej cze$ci dowodu istnieja wielomiany hy(z), ktorych sto-
pient jest wspolnie ograniczony, takie, ze py(z) = |hn(2)|>. Wspotezynniki
wielomianéw hy sa rowniez wspoélnie ograniczone, bo

hn(2)]* < Ip(2)] + 1.

Zatem z ciagu hy(z) mozna wybraé zbiezny podciag do wielomianu h(z),
ktory spetia p(z) = |h(2)|? dla |z| = 1. O

Powracamy do alternatywnego dowodu Wniosku 5.5 Mamy

p(U) = h*(U) = (hh)(U) = M(U)h(U) = h(U)*h(U) > 0.

Dotychczas potrafiliémy okresli¢ p(U), gdzie p jest wielomianem trygo-
nometrycznym. Naszym celem jest zdefiniowanie f(U), gdzie f jest funkcja
ciagla okreslona na zbiorze o(U) C T. Z twierdzenia Tietzego funkcje f
mozemy rozszerzy¢ do funkceji ciagtej F': T — C tak, ze

max |F(z)| = max |f(2)].

|z|=1 z€o(U)

7 twierdzenia Weierstrassa mozna znalez¢ ciag wielomianow trygonometrycz-
nych p,(z) zbiezny jednostajnie do funkcji F(z) dla |z| = 1. Pokazemy, ze

(1) Ciag operatorow p,(U) jest zbiezny w normie operatorowe;.
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(2) Granica ciagu p,(U) nie zalezy od wyboru wielomianéw p,.
(3) Granica ciagu p,(U) nie zalezy od wyboru rozszerzenia F.

Dowod. Mamy

[P (U) = 2 (O) || = || (Pr. — pi) (U) |

= max |pn(z) _pm(z)| < max |pn(z) _pm(z)|
zeo(U) |z]=1

< max[pn(2) = F(2)] + max|F(2) = pm(2)] |, = 0
Ciag operatorow p,(U) spelnia warunek Cauchy’ego. Zatem jest zbiezny.
Zalézmy, ze réwniez inny cigg wielomianéw ¢, jest zbiezny jednostajnie do
F. Wtedy ciag naprzemienny

P1,491,P2,92,- - -, Pnsqn, - - -

jest tez zbiezny jednostajnie do funkcji F. Z pierwszej czesci dowodu wynika,
ze ciag operatoréw

(), 1 (U), po(U), 2(U), . ... pu(U), g (U), . ..

jest zbiezny. To oznacza, ze ciagi p,(U) i ¢,(U) sa zbiezne do tego samego
operatora.

Oznaczmy symbolem F inne ciggle rozszerzenie funkeji f do okregu |z| =
1. Niech ¢, bedzie ciggiem wielomianow zbieznym jednostajnie do F na okre-
gu T. Z pierwszej czesci dowodu wiemy, ze ciag operatoréw ¢, (U) jest zbiezny.
Ponadto mamy

[Pn(U) = qu(U)|| = [|(Pn — @) (U)]| = nax [Pn(2) — qu(2)|

< max [pa(2) = £(2)] + max |ga(2) = f(2)]

z€o(
< r‘nﬁ)l( Ipn(2) — F(2)] + Tn‘%)l( |gn(2) — ﬁ(z)] e 0

]

Wezesniejsze rozumowanie pokazuje, ze granica p,(U) zalezy jedynie od
funkcji ciggltej f na spektrum operatora unitarnego U. Przyjmujemy ozna-
czenie

f(U) = limp,(U).
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Uwaga 5.7. Jedli f jest wielomianem trygonometrycznym, np. f(z) = z*,

to f(U) = U*.
Twierdzenie 5.8. Niech f,g € C(o(U)). Wtedy
@) (f+9)U) = fU)+gU).
(i) (f9)(U) = f(U)g(U) = g(U)f(U).
(iii) f(U)* = f(U).
) AU = max |f(z)].

z€o(U)

(v) a(f(U)) = f(a(U)).

Uwaga 5.9. Twierdzenie méwi, ze rodzina operatoréw { f(U) : f € C(a(U))}
tworzy algebre ze sprzezeniem i normg operatorowa. Te algebre mozna utoz-
sami¢ z algebra C(a(U)).

(iv

Dowdd.

(i) Niech p, i ¢, beda jednostajnie zbieznymi ciagami wielomianéw trygo-
nometrycznych na T takimi, ze p,(2) — f(z) oraz g,(z) — g(z)dlaz € o(U).
Wtedy

f(U) +g(U) =1limp,(U) + lim ¢, (U) = lim[p, (U) + ¢.(U)]
— lim(pa + 4)(U) = (f + 9)(U),
bo ciag wielomianéw p, + g, jest jednostajnie zbiezny na T oraz p,(z) +

an(z) — f(2) + g(2) dla z € o(U).
(ii) Przy oznaczeniach jak w (i) mamy

f(U)g(U) = limp,(U) lim ¢, (U) = lim p,(U) g (U) = lim(png.)(U) = (f9)(U),

bo ciag wielomianéw p,,q, jest zbiezny jednostajnie na T oraz p,(z)g.(z) —
n

f(2)g(z) dla z € o(U). Dalej g(U) f(U) = (9./)(U) = (f9)(U) = f(U)g(U).

(iii) Jesli p,, jest zbiezny jednostajnie na T oraz p,(z) — f(z) dla z €
a(U), to ciag p, jest tez zbiezny jednostajnie na T oraz p,(z) — f(z) dla
z € o(U). Zatem z Lematu 5.2(ii) mamy

F(U) = kimPe(U) = limp, (V)" = F(U)".
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(iv) Przy oznaczeniach jak w (i), na podstawie Wniosku 5.4 otrzymujemy

IF @) = lim [|pa(U)[} = lim max [pn(2)] = max |f(2)]

n zco z€a(U)

(v) Niech pu ¢ f(o(U)). Rozwazmy funkcje g(z) = [ — f(2)]7!. Mamy
g € C(a(U)). Z whasnosci (ii) otrzymujemy

gU)(p = HU) = (u—HHU)gU) =[(p— fglU) =1(U) = I.

To oznacza, ze operator (p — f)(U) = pl — f(U) jest odwracalny. Czy-
ip ¢ o(f(U)). Zatem o(f(U)) C f(o(U)). Niech teraz u € f(o(U)).
Tzn. p = f(\) dla pewnej liczby E o(U). Wybierzmy ciag wielomianow
trygonometrycznych p,, jednostajnie zbiezny na T, taki, ze p,(2) — f(z)
dla z € o(U). Wiemy, ze operator p,(A)I — p,(U) nie jest odwracalny dla
A € o(U) (por. Twierdzenie 5.3). Ale

Pa(MT = pu(U) — f(NT = f(U)

w normie operatorowej. Zbior operatoréw odwracalnych jest otwarty w B(H),
wiec zbiér operatoréw nieodwracalnych jest domkniety. Zatem operator f(A)I—
f(U) nie jest odwracalny. To oznacza, ze u = f(A) € o(f(U)). Czyli f(o(U ))

a(f(U)).
Twierdzenie 5.10. Jesli funkcja f € C(o(U)) jest nieujemna, to f(U

) >

Dowdd. Zatézmy, ze 0 < f(z) < 2 dla z € o(U). Wtedy funkcja g(z)

f(z) — 1 spelia |g(2)| < 1. Z Twierdzenia 5.8(iii), (iv) mamy ||g(U)]| <
oraz g(U)* = g(U). Zatem —I < g(U) < I. Wtedy

=l

]

Naszym kolejnym celem jest okreslenie operatora f(U) dla pewnych funk-
cji nieciagtych f okreslonych na o(U). Na przyktad niech f(z) przyjmuje
warto$é¢ jeden na otwartym tuku okregu jednostkowego oraz wartos¢ zero w
pozostatych punktach okregu. Funkcje f mozna uzyska¢ jako granice rosna-
cego ciggu funkeji nieujemnych i ciagtych f,, € C(T). Ta wlasnosé umozliwia
okreslenie operatora f(U).
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Niech f, bedzie ciagiem nieujemnych funkeji ciagtych takim, ze f,(z) /
f(z) dla z € o(U). Zatézmy, ze funkcje f,(z) sa wspélnie ograniczone na
o(U), np. przez stala ¢ > 0. Mamy 0 < f,(2) < faoy1(2) < c¢. Zatem
0 < fo(U) < fo1(U) < cl. Ciag operatorow f,(U) jest wtedy rosnacy i
ograniczony. Zatem ciag f,(U) jest mocno (punktowo) zbiezny. Oznaczmy
mocng granice symbolem A, tzn. niech

Av = lij{fn fu(U)v, veH.

Mocna granica A zalezy tylko od funkcji f, a nie od wyboru ciagu f,. Rze-
czywiscie, niech g, € C(o(U)) oraz g,(z) / f(z) dla z € o(U). Mamy
gn(2) < ¢, bo f(z) < cdla z € o(U). Zatem ciag operatoréw ¢, (U) jest tez
mocno zbiezny na podstawie weze$niejszego rozumowania dla ciggu f,(U).
Niech

Bv = 1i7rlngn(U)v, v e H.

Chcemy pokazaé, ze A = B. Dla liczby naturalnej k okredlmy funkcje

hn(2) = min{fu(2), 9(2)}, 2 € o(U).

Mamy h,, € C(o(U)). Ponadto

0< hu(2) " ge(z), ze€a(U).

Poniewaz funkcja gx jest ciagta na zbiorze o(U), to z twierdzenia Diniego
wnioskujemy, ze h, = gx, gdy n — oo. Zatem h,(U) — gx(U) w normie
operatorowej na podstawie Twierdzenia 5.8(iv). Dalej mamy h,(z) < f.(2),
wiec h,(U) < f,(U) z Twierdzenia 5.10. Przechodzac do mocnej granicy,
gdy n — oo, otrzymujemy ¢x(U) < A. Nastepnie przechodzimy do mocnej
granicy, gdy k — oo, aby otrzymaé¢ B < A.

Uwaga 5.11. SkorzystaliSmy z faktu, ze jesli 0 < C,, < D,, oraz operatory
C, i D, sastabo zbiezne do C'i D odpowiednio, to 0 < C' < D. Rzeczywiscie

(Dv,v) — (Cv,v) = ligl(Dnv, vy — liTILn<Cnv,v> = lign((Dn — Cp)v,v) > 0.
Twierdzenie 5.12. Niech f i g bedqg ograniczonymi funkcjami okreslonymsi

na o(U) bedgcymi granicami punktowymi rosngcych i nieujemnych funkcji
cigglych okreslonych na o(U). Wtedy
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(i) (f+9)U) = fU)+g(U).

(i) (fo)(U) = f(U)g(U) = g(U)f(U).
(i) f(U) > 0.

(iv) LF(U)II = sup f(z).

z€a(U)

Dowdd.

(i) Niech f,, i g, beda ciagami nieujemnych funkcji ciagtych takimi, ze f,,(z)
f(2)ign(2) /g(z)dlaz € a(U). Wtedy fn(2)+gn(2) / f(2)+g(2). Zatem
ciagi operatoréw f,,(U), g,(U) oraz (f, + g,)(U) sa zbiezne mocno do ope-
ratoréw f(U), g(U) i (f +¢)(U), odpowiednio. Ponadto z Twierdzenia 5.8(i)
mamy

(f +9)(U) =lim(f + go)(U) = Im[f,(U) + gn(U)]
= lim f,(U) + lim g, (U) = f(U) + g(U).

(ii) Przy oznaczeniach z (i) mamy f,(2)g.(2) " f(2)g(z). Zatem ciag
operatoréw (fng,)(U) jest mocno zbiezny do (fg)(U). Zatem z Twierdzenia
5.8(ii) otrzymujemy

(fg)(U) = lim(f,gn)(U) = lim £, (U)gn(U)
= lim f (U) lim g,,(U) = f(U)g(U).

(iii) Przy oznaczeniach z (i) mamy f,,(U) > 0, na podstawie Twierdzenia
5.10. Zatem f(U) > 0, jako mocna granica operator6w nieujemnych f,(U).
(iv) Oznaczmy ¢ = sup f(z). Jesli f, jest ciagiem nieujemnych funkcji
zeo(U)
ciaglych na o(U) takim, ze f,(2) / f(z) dla z € o(U), to 0 < f(2) < c dla
z € o(U). Wtedy z Twierdzenia 5.8(iv) mamy || f,,(U)| < c. Stad || f(U)] < c.
Otrzymalidmy || f(U)|| < sup f(z).
z€o(U)
Poniewaz 0 < f,,(U) < f(U), to || fo(U)]| < ||f(U)]]. Zatem z Twierdzenia
5.8(iv) mamy
IfO)| > sup fa(z), neN.

zeo(U)
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Zatem
[f(U)|| = sup sup fu(2) = sup f(z).

n zeo(U) z€o(U)

6 Zadania

1. Pokazac, ze jesli operator liniowy T' z przestrzeni Banacha X w prze-
strzen Banacha Y jest ograniczony, to T przeksztalca ciggi stabo zbiez-
ne do zera w X w ciggi stabo zbiezne do zera w Y. Pokazac, ze implikacja
odwrotna tez jest prawdziwa. W dowodzie skorzysta¢ z twierdzenia o
wykresie domknietym.

2. Okreslmy funkcjonaty 9, na przestrzeni > wzorem

on({ertir) = cn-
Pokazaé, ze {9, } nie zawiera podciagu zbieznego x-stabo.

3. {n )52, jest gestym podzbiorem kuli jednostkowej w przestrzeni unor-
mowanej X. W przestrzeni X* wprowadzamy metryke

d(x*7 y*) = Z 2_n|x*(xn) - y*(xn)|
n=0
Pokazaé, ze d(-, -) jest istotnie metryka. Pokazaé, ze x-staba topologia w
kuli jednostkowej jest rownowazna topologii wyznaczonej przez metryke
d(-,-). * Czy topologie te sa réwnowazne na caltej przestrzeni X* ?

4. Pokazac, ze jesli ciag elementow x,, przestrzeni Hilberta jest stabo zbiez-
ny do x oraz ||z,|| — ||z||, to ||z, — z|| — 0. Czy mozna to uogélni¢ na
przestrzenie F dlap > 17

5. p > 1. Pokaza¢, ze ciag x,, w przestrzeni (7 jest stabo zbiezny wtedy i
tylko wtedy, gdy liczby ||x,||, sa wspélnie ograniczone oraz dla kazdego
m ciag x,(m) jest zbiezny.

6. W przestrzeni 7, p > 1 znalez¢ ciag stabo zbiezny , ale nie zbiezny w
normie przestrzeni. * Pokazaé, ze w ¢! kazdy ciag stabo zbiezny jest tez
zbiezny w normie.
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10.

11.

12.

Analiza funkcjonalna IT

Ciag {x,} elementéw przestrzeni unormowanej X jest stabo zbiezny
do z. Pokazaé, ze istnieje ciag postaci {d ;% \;nx;} (gdzie A, € C)
zbiezny do x w normie. Wskazéwka: Rozwazy¢ najmniejszg domknieta
podprzestrzen liniowa Y zawierajaca {x,}. Zauwazy¢, ze teza zadania
jest rownowazna x € Y. Skorzysta¢ z faktu, ze jesli © € Y to istnieje
funkcjonal ograniczony z* taki, ze x*(x) = 1 oraz z*(y) =0 dlay € Y.

. Pokazaé, ze jesli ciag x,, jest stabo zbiezny do z, to ||z|| < liminf ||z,||.

Pokazaé, ze ciag funkcji f,, jest stabo zbiezny do f w LP(0, 1) jesli normy
|| fnllp sa wspdlnie ograniczone oraz f,, jest zbiezny do f wedlug miary,
tzn.

V

lim o £ |fule) — F(2)] >} =0,

dla dowolnego € > 0. Pokaza¢, ze odwrotna implikacja jest fatszywa.

Funkcja rzeczywista f na [0, 1] spelnia warunek Holdera z wyktadni-
kiem «, jedli istnieje stata C taka, ze | f(x)— f(y)| < Clz—y|*. Okreslmy

= max |f(x su M
I Flle = masx | f(2)] + sup 22—

Pokaza¢, ze dla 0 < a < 1, zbiér funkcji spetniajacych || f|lo < 1 jest
zwartym podzbiorem w C10, 1].

Funkcje g, sa ciagte na [0,1]. Czy z ciagu funkcji

= [T oy sinfouls?)} dy

mozna wybra¢ podciag zbiezny ?

Niech K (x,y) bedzie funkcja ciagta na R? taka, ze

/ / K(z,y)|*dx dy < oo.

Niech f(z) € L*(R). Rozwazmy réwnanie catkowe

u(z) )+ A/ u(y)dy,



Zadania 59

13.

14.

15.

16.

17.

18.

19.

20.

gdzie \ jest liczba zespolona. Pokazaé¢, ze réwnanie ma jednoznaczne
rozwiazanie u(x) € L?(R), jesli A ma odpowiednio mata warto$¢ bez-
wzgledna. Wskazéwka: Do operatora

Tu(x) = f(2)+ A [ K(z.y)uy) dy

na L?(R) zastosowaé twierdzenie o odwzorowaniach zwezajacych.

Podprzestrzen Y przestrzeni unormowanej X nazywamy niezmienniczg
dla operatora liniowego T': X — X jesli T(Y) C Y. Podaé przyktady
podprzestrzeni niezmienniczych operatora przesuniecia S okreslonego
na (? wzorem

S($0,LE1,I2, .. ) = (O,JIO,I'l,LUQ, .. )

Dla X = C[0,1] i ¢ € X okreslamy operator 7' : X — X wzorem
Tf = gf (mnozenie punktowe przez funkcje g). Pokazaé, ze operator
T jest ograniczony. Znalezé o(T).

Rozwigza¢ poprzednie zadanie w przypadku, gdy X = L?*(0,1) oraz
g € Cl0,1].

Operator T : £ — (? jest okreslony wzorem
(Tx), = Ay,
gdzie A\, jest ustalonym ciggiem ograniczonym. Znalez¢ o(T") oraz o, (T).

Korzystajac z poprzedniego zadania pokazac, ze istnieje operator T' :
(? — (2, ktérego spektrum jest z gory zadanym zwartym podzbiorem
K cC.

Niech T' € B(X). Pokazaé, ze ||RA(T)| — 0, gdy || — oo.
Niech T : 7 — (P, 1 < p < 00, bedzie okreslony wzorem
T(xo, T1,T9, .. ) = (.C(Zl,$2,$3 .. )

Zmalez¢ spektrum T

Dla T € B(H) pokazaé, ze o(T*) = o(T).
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21. T jest ograniczonym operatorem na przestrzeni Hilberta H. Pokazac,
ze

(a) T jest réznowartoéciowy wtedy i tylko wtedy. gdy obraz T™ jest
gesty;

(b) T* jest réznowartosciowy wtedy i tylko wtedy. gdy obraz T jest
gesty;

(c) Jesli T jest "na”, to istnieje S : H — H taki, ze T'S = I.

(d) T ma domkniety obraz wtedy i tylko wtedy 7 ma domkniety
obraz.

22. Dla T, S € B(X) oraz A € o(S) N o(T) wyprowadzi¢ wzor

RA(T) — RA(S) = RA(S)(T — S)RA(T).

23. Obliczy¢ norme operatora 1" okreslonego wzorem

7f) = [ )y

T

w przestrzeni L?(0,1). ZnaleZ¢ operator sprzezony. Pokazaé, ze istnieje
cigg funkcji f, € L? taki, ze f, — 0 stabo, ale || T f,||» nie dazy do 0.
Wskazéwka. Zauwazyc, ze

Ti(@) = [ Sy

Skorzystac¢ z nieréwnosci

(/01 (/01 g(:v,y)dy>2 dx) - < /01 (/01 g(z, y)Qda:)l/2 dy.

Zbadaé jak zachowuje si¢ iloraz || f||5 |7 f]l2 dla f(z) = 2%, gdy a —
—1/2+.

24. T jest operatorem na L?(0, +0c) okreslonym przez

T(x)= [ e ().
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25.

26.

27.

Dowies¢, ze T jest ograniczonym operatorem na L? i znalez¢ jego norme.
Obliczy¢ T™ i pokazaé, ze operator TT* zadany jest wzorem

+o0
(TT )= [ Fw)+y) " dy.

Wskazéwka. Zauwazy¢, ze

T =+ [T e Gy

X

Skorzysta¢ z nieréwnosci

< ) da:) < [T([ gtwyran) .

Zbadaé zachowanie si¢ ilorazu || f||5 | T f]|2 dla f(z) = 27/?T0e=7 ady
d,e — 0T,

1/2

T jest operatorem na L?(0,1) takim, ze dimIm T < +o0. Pokazaé, ze
istnieje funkcja K (z,y) z L*((0,1) x (0,1)) taka, ze

Ti() = [ K f )y

Wskazéwka. Niech ¢y, ..., @, oraz bedzie baza ortonormalng dla Im 7.

Pokazac, ze
n

K(z,y) = Z(T%)@)%(?/)

i=0
Pokazaé, ze jesli A nie jest samosprzezony na H, to rownosé

[All = sup |[(Az, z)]

(B

nie musi zachodzié.

Operator T jest okreslony na L?(0,1) wzorem

(T5)(@) = [ F)dy.

Znalez¢ jawny wzor catkowy dla operatoréw (21 — T)~!, gdzie z # 0.
Skorzystac z faktu, ze (zI — T)~! = S0° 2~ +DT7 i ze wzoru catkowego
na 1" podanego na wyktadzie. Znalez¢ wzor dla operatora sprzezonego
T*.
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28.

29.

30.

31.

32.

33.

34.
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Ograniczony operator T na przestrzeni Banacha X spelnia warunek
p(T) = 0, dla pewnego wielomianu p(z) = a,2" + ... + ao. Pokazaé, ze
spektrum operatora T jest zawarte w zbiorze pierwiastkow wielomianu
p(z2).

Dla funkcji zespolonej k(z, y) dwu zmiennych na [0, 1] x [0, 1] okreslamy
operator catkowy na L*(0,1) wzorem

1
(K@) = [ kxy)f () dy.
Zmalez¢é wzér dla K*.

Ograniczony operator P na przestrzeni Banacha X nazywamy rzutem
jedli P? = P. Pokazaé, ze ImP jest domkniety. Znalezé spektrum dla
P. Znalez¢ wzér na operatory rezolwenty (zI — P)~L.

Rzut P na przestrzeni Hilberta H nazywamy ortogonalnym jesli Px L
xr — Px dla dowolnego = € 'H. Pokaza¢, ze nastepujace trzy warunki sa
rOwnowazne:

(a) P jest ortogonalny.

(b) [P < 1.

(c) P*=P.
P i@ sarzutami ortogonalnymi w przestrzeni Hilberta takimi, ze PQ) =
QP. Pokaza¢, ze kazdy z operatoréw I — P, [ — @), PQ, P+ Q — PQ

i P+ Q — 2PQ jest rzutem ortogonalnym. Opisa¢ obrazy tych rzutéw
za pomocg podprzestrzeni M = ImP i N = ImQ.

Podprzestrzenie V' i W w przestrzeni Hilberta maja skonczony wymiar
oraz dim(WW) < dim(V'). Pokazaé, ze podprzestrzen V posiada niezero-
wy wektor v ortogonalny do W.

Dla ograniczonego ciagu liczb zespolonych {\,,} okreslamy operator T
na przestrzeni £2 wzorem

T(.Qfl, To,T3, .. ) = ()\133’1, )\Q.CEQ, )\3263, .. )

Zmalez¢ T* oraz (21 —T)7 L.
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35.

36.

37.

38.

39.

40.

Dla ograniczonej zespolonej funkcji ciaglej g(z) na prostej okreslamy
operator T' na L*(R) wzorem (T f)(z) = g(x)f(x). Znalezé spektrum
operatora 1" i jego norme. Pokazac¢, ze T' jest operatorem normalnym.
Przy jakich warunkach T jest samosprzezony 7

Pokazac, ze jesli T jest operatorem normalnym w przestrzeni Hilberta
H, to T jest odwracalny wtedy i tylko wtedy, gdy

[Tv]| > cllvll, ve™H,
dla pewnej statej ¢ > 0.

Pokaza¢, ze jesli liczba z lezy w spektrum operatora normalnego 7', to
liczba |z|? lezy w spektrum operatora T*T.

Niech p(z,y) bedzie wielomianem dwu zmiennych. Pokazaé, ze jesli
liczba z lezy w spektrum operatora normalnego T, to liczba p(z, ) lezy
w spektrum operatora p(7',T*).

U jest ograniczonym i odwracalnym odwzorowaniem liniowym z prze-
strzeni Banacha X na przestrzen Banacha Y. T' i S sa operatorami
ograniczonymi na przestrzeni X i Y odpowiednio, spetniajacymi zwia-
zek S = UTU!. Pokazaé, ze spektra operatoréw S i T’ sg réwne.

Dla funkcji ciagtej g(z) o okresie 27 okreslmy operator 7" na przestrzeni
L*(0,27) wzorem

1

" or

Tf(x) A%Mx—wﬂw@-

Pokazaé, ze T jest operatorem ograniczonym i |T|| < (27)~" 37 |g(z)|d.
* Zmalez¢ spektrum operatora T. Wskazéwka: Rozwazy¢ odwzorowanie

U: L*0,27) — (*(Z)

~ 1

(Uf)(n) = f(n) = D /O27r f(z)e ™ dz.

Pokazaé, ze (UTf)(n) = g(n)f(n) = g(n)(Uf)(n). Wywnioskowaé, ze
UTU! jest operatorem mnozenia przez ciag {g(n)}*>, okreslonym na
(*(Z). Skorzystaé z zadan 7 1 9.
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41.

42.

43.

44.
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Niech T bedzie operatorem samosprzezonym w przestrzeni Hilberta.
Pokazaé, ze:

(a) ||7]| <1 wtedy i tylko wtedy, gdy o(T) C [—1,1].

(b) o(T) C [0,4+00) wtedy i tylko wtedy, gdy T" jest operatorem do-
datnim.

Wskazowka: W (a) skorzystaé z faktu, ze r(T) = ||T']|. W (b) mozna
zatozy¢, ze ||T|| < 1. Wtedy o(T") C [0, 1]. Zatem o (27" — I) C [—1,1].
Z (a) mamy, ze ||[I — 27| < 1. To pociaga (x — 2Tz, z) < (z,z), dla
r €H.

Dla operatora samosprzezonego 1" okreslamy
m = inf{(Tx,x) : ||z| =1} M =sup{(Tz,x) : ||z| =1}.

Pokazaé, ze o(T') C [m, M| oraz m.M € o(T). Wskazéwka: Zauwazy¢,
ze operatory T' — ml oraz M I — T sa dodatnie.

Udowodnié, ze jesli ciag A,, € B(H) jest stabo zbiezny, to réwniez ciag
A? jest stabo zbiezny. Pokazaé, ze stwierdzenie nie jest prawdziwe dla
mocnej zbieznodci.

(a) Niech A,, A € B(H). Pokaza¢, ze jesli A,, > 0 oraz A, jest zbiezny
do A w normie operatorowej, to A > 0 oraz \/4,, — v/A w normie
operatorowe;j.

(b) Pokazaé, ze jesli A, > 0 oraz A, — A mocno, to réwniez /A, —
v/A mocno.

(¢) Pokazaé, ze jesli A, — A w normie operatorowej, to |A,| — |A|
W normie operatorowe;j.

(d) Pokazaé, ze jesli A,, — A oraz AY — A* mocno, to réwniez |A,,| —
|A|] mocno.

(e) Pokazaé na przykladzie, ze poprzednie stwierdzenie nie jest praw-
dziwe dla stabej zbieznosci operatorowe;.

(a) Niech X 1Y beda przestrzeniami Banacha. Pokazaé, ze jesli dla
T, € B(X,Y) oraz {T,z} jest ciagiem Cauchy’ego dla kazdego
x € X, to istnieje T' € B(X,Y) taki, ze T,, — T mocno.
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46.

47.

48.

49.

20.

ol.

92.

(b) Czy poprzednie stwierdzenie jest prawdziwe dla ciagéw uogdlnio-
nych T, ?

Niech T; : f(x) — f(z+t) bedzie operatorem na L*(R). ZnaleZ¢ norme
T;. Do czego sa zbiezne operatory T;, gdy t — oo, i w jaki sposéb ?
Odpowiedzie¢ na te same pytania dla L2(R, e~ dz).

Niech ‘H bedzie nieskoniczenie wymiarowa przestrzenig Hilberta.

(a) Pokazaé, ze jesli A,, B, € B(H) sa mocno zbiezne do A i B od-
powiednio to A, B, jest mocno zbiezny do AB.

(b) Pokaza¢ na przyktadzie, ze jesli A,, B, € B(H) sa stabo zbiezne
do A i B odpowiednio to A, B,, nie musi by¢ stabo zbiezny do AB.

Niech T bedzie operatorem okreslonym na (7, 1 < p < oo, wzorem
(Tx), = Ay, x € LP.
Pokazaé, ze T jest zwarty wtedy i tylko wtedy, gdy A, — 0.

Dla funkcji g ciaglej na [0, 1] okreslamy operator T': LP(0,1) — L*(0, 1)
przez (T'f)(x) = g(x)f(x). Pokazaé, ze T jest zwarty wtedy i tylko
wtedy, gdy g = 0.

Niech K(x,y) bedzie funkcja catkowalng z kwadratem na [0, 1] x [0, 1].
Pokazac, ze operator T okreslony na L*(0,1) wzorem

(1)) = [ K S dy

jest ograniczony i zwarty. Wskazéwka: Wskazaé¢ baze ortonormalng w
L3([0,1] x [0,1]) i rozwina¢ K (z,y) wzgledem tej bazy.

Pokazac, ze jesli T : X — Y jest zwartym operatorem liniowym pomie-
dzy przestrzeniami Banacha X i Y, to T nie moze by¢ "na” chyba, ze
przestrzen Y ma skonczony wymiar.

Pokaza¢, ze rodzina zwartych operatoréw liniowych z przestrzeni Ba-
nacha X w przestrzen Banacha Y tworzy domknietg podprzestrzen
liniowa w B(X,Y).
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23.

o4.

25.

26.

57.
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T jest zwartym operatorem z przestrzeni Banacha X w przestrzen Ba-
nacha Y. Pokazaé, ze jesli obraz operatora zwartego T'(X) jest prze-
strzenig nieskonczonego wymiaru, to obraz ten nie jest domkniety w

Y.

Pokazac, ze obraz operatora zwartego 7" : X — Y jest przestrzenia
oSrodkowa. Wskazéwka: W zupelnej przestrzeni metrycznej podzbior
jest warunkowo zwarty wtedy i tylko wtedy, gdy jest catkowicie ogra-
niczony.

W przestrzeni £2 okreélamy operator T wzorem

0, dlan =0,

%mn,l, dlan > 1.

(T)(n) = {

Pokazaé, ze T jest zwarty. Obliczy¢ || T™|| oraz promien spektralny.

Niech a;, b; beda elementami przestrzeni L?(0,1) dla i = 1,2,...,n.
Niech K (z,y) = Y1 a;(2)bi(y). Okreslmy operator T na L?*(0,1) wzo-
rem

() = [ Kw.u)f)dy

Niech 0 # X\ € C. Pokazaé, ze dla dowolnej ustalonej funkcji g € L?(0, 1)
rownanie T'f — A f = g ma jednoznaczne rozwigzanie f € L*(0,1), albo
dla niektérych g rownanie ma nieskonczenie rozwigzan, a dla pozosta-
tych g, nie ma ich wcale.

Niech

Okreslamy operator T na L*(0,1) wzorem

() = [ Ko f)dy

Pokazaé, ze warto$ciami wlasnymi T sa liczby (nw)™2, n = 1,2,...,
przy czym odpowiadajaca popdprzestrzen wilasna jest jednowymiaro-
wa. Wskazéwka: Pokazaé, ze jesli funkcja f spelia T'f = Af dla
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*H8&.

99.

60.

61.

62.

63.

A # 0, to f jest klasy C™ i spelia réwnanie A\f” + f = 0 z wa-
runkami f(0) = f(1) = 0. Przypadek A\ = 0 rozpatrzy¢ oddziel-
nie. Zbada¢ rozwigzalno$¢ wzgledem f réownania T'f — Af = ¢ dla
g(x) =32 ¢, sinmz.

Niech A, B beda operatorami ograniczonymi na przestrzeni Hilberta H
oraz Im A C Im B. Pokaza¢, ze jesli B jest zwarty, to A tez jest zwarty.

Niech {e, }°°; bedzie baza ortonormalna w przestrzeni Hilberta H. Po-
kazac, ze operator T jest zwarty wtedy i tylko wtedy, gdy

liTanSup{HT:L‘” clzll =1,2 Leg,eq,...,en} =0.

Pokaza¢, ze jesli T' jest zwartym operatorem w przestrzeni Hilberta,
to réownanie Tr = x ma niezerowe rozwigzanie wtedy i tylko wtedy,
gdy réwnanie T*x = x ma niezerowe rozwiazanie. Pokazaé, ze obie
przestrzenie rozwiazan maja ten sam wymiar.

Niech T bedzie zwartym operatorem na przestrzeni Hilberta H. Poka-
zac¢, ze dla dowolnej niezerowej wartosci wlasnej A operatora T kazda
z podprzestrzeni ker(AI — T')" ma skoficzony wymiar, oraz wymiary te
sg wspolnie ograniczone przez liczbe zalezng tylko od A.

Operator A > 0 jest zwarty. Pokazaé, ze AY/? tez jest zwarty. Pokazaé,
ze jesli 0 < B < A, to rébwniez B jest zwarty.

{©n}52, jest baza ortonormalnag w H. Dla operatora dodatniego A €
B(H) okreslamy $lad wzorem

trA = Z(Agpn, On)-

n=1

Pokazaé, ze tr A nie zalezy od wyboru bazy ortonormalnej. Udowodni¢,
VS

(a) tr (A+B) =trA+trB.

(b) tr(AA) = AtrA, A >0.

(c) tr (UAU™! = tr A dla dowolnego operatora unitarnego U.
(d) Jesli0 < A< B, totrA <trB.
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64. Operator A € B('H) nazywamy operatorem sladowym jesli tr |A| < oc.
Rodzine operatoréw $ladowych oznaczamy symbolem C;. Pokazaé, ze

(a) Jesli A € (4, to A € (.

(b) Jesli A € Cl, to A* € Cl-

(c) Jesli Ae C11B € B(H), to AB € C, oraz BA € (. Wskazéwka:
Wykorzysta¢ zasad¢ minimaksu.

(d) Jesli A,B € C4, to A+ B € C}. Wskazéwka: Uzy¢ rozkladu po-
larnego dla operatoréow A, Bi A+ B.

65. Pokazaé, ze kazdy operator sladowy jest zwarty. Wykazac, ze operator
zwarty A jest sladowy wtedy i tylko wtedy, gdy >\, < oo, gdzie A,
jest ciagiem liczb singularnych operatora A.

66. Pokazaé, ze funkcja ||Al|; = tr|A]| jest norma na C,. Pokazaé, ze C) z
norma || - |1 jest przestrzenia Banacha.

67. Niech C5 oznacza rodzine operatoréw Hilberta-Schmidta. Pokazac, ze
jesli A, B € (5, to AB € (. Pokaza¢, ze kazdy operator sladowy jest
iloczynem dwu operatoréw Hilberta-Schmidta.

68. Pokaza¢, ze dla A € C) i dowolnej bazy ortonormalnej {p,}>°, sze-

reg Y (Apn, n) jest zbiezny i jego suma nie zalezy od wyboru ba-

n=1
)

zy. Okredlmy trA = > (Apy, ¢n). Pokazaé, ze tr AB = tr BA, gdzie
n=1
AeCiiBeB(H)lub A, B € Cs.

69. Pokazaé, ze jesli A € C, to Z |{Apn, on)| < oo dla dowolnej bazy
n=1
ortonormalnej. Czy prawdziwa jest implikacja odwrotna ? Pokazaé, ze

jesli Z ||Ap,|| dla pewnej bazy ortonormalnej, to A € Cf.

n=1

x70. P i) sarzutami ortogonalnymi w przestrzeni Hilberta takimi, ze P—()
jest operatorem sladowym. Pokazaé, ze tr (P — Q) jest liczba catkowita.
Wskazéwka: P i Q sa przemienne z (P — Q)?.
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