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Abstract

Let u denote a symmetric probability measure on [—1,1] and let
(pn) be the corresponding orthogonal polynomials normalized such
that p,(1) = 1. We prove that the normalized Turdn determinant
Ap(x)/(1—2?), where A, = p2 —pn_1Pn+1, is a Turdn determinant of
order n — 1 for orthogonal polynomials with respect to (1 — 22)du(z).
We use this to prove lower and upper bounds for the normalized Turan
determinant in the interval —1 < x < 1.
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1 Introduction
In the following we will deal with polynomial sequences (p,,) satisfying
xpn(l‘) = ’ann—o—l(x) + Oénpn_1<I>, n >0,

an+ =1 a, >0, v >0 n>1, (1)
po(z) =1, g =0, 0 <o < 1.
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Note that (p,) is uniquely determined by (1) from the recurrence coefficients
Qs Yn- 1t is well-known that the polynomials p,, are orthogonal with respect
to a symmetric probability measure p with compact support.

Define the Turan determinant by

Ap(z) = pio(2) = pao1(@)pnga(z), n > 1. (2)

In [11] the second author proved non-negativity of the Turdn determi-
nant (2) under certain monotonicity conditions on the recurrence coefficients,
thereby obtaining results for new classes of polynomials and unifying old re-
sults.

If 49 = 1 the polynomials satisfy p,(1) = 1 and therefore the normalized
Turdn determinant A, (x)/(1 — 2?) is a polynomial in x.

We shall prove estimates of the form

Anl) CAL0), —l<z<l, (3)

eAa(0) < T8 <

under certain regularity conditions on the recurrence coefficients. We prove,
e.g., an inequality of the left-hand type if () is increasing and concave, see
Theorem 2.5. In Theorem 2.7 we give an inequality of the right-hand type.

Our results depend on a simple relation between the Turan determinants
of order n and n — 1 (Proposition 2.1) and the following observation: the
normalized Turan determinant is essentially a Turan determinant of order
n — 1 for the polynomials (g,) defined by (15) below, and if x is the or-
thogonality measure of (p,), then (g,) are orthogonal with respect to the
measure

(1 - ?)du(x).
See Theorem 2.3 and Remark 2.4 for a precise statement.

In Proposition 2.11 we prove non-negativity of the Turan determinant
for the normalized polynomials ¢,(z)/q,.(1) provided the sequence (o) is
increasing and concave (or under the weaker condition (19)).

Our work is motivated by results about ultraspherical polynomials, which
we describe next.

For a > —1 let Rﬁf‘”)(x) = p{* (x)/P,Ea’O‘)(l) denote the symmetric
Jacobi polynomials normalized to be 1 for x =1, i.e.,

(=" d"

RiN(z) = o (L= 2?) (1

n (o + 1) -2 (4)



cf. [10]. We have used the Pochhammer symbol
(@), =ala+1)...(a+n—1).

The polynomials are orthogonal with respect to the symmetric weight func-
tion ¢, (1 — 2%)® on (—1,1). Here 1/c, = B(a + 1,1/2), so the weight is a
probability density. We have R (z) = P (z)/PM(1) with a = A — 2,
where (P{) are the ultraspherical polynomials in the notation of [10].

The corresponding Turan determinant of order n

A () = R@(2)? — R () R (), (5)

n—1

is clearly a polynomial of degree n in x? and divisible by 1 — 22 since it
vanishes for x = +1. The following Theorem was proved in [12, pp. 381-382]
and in [14, sect. 6]:

Theorem 1.1. The normalized Turdn determinant
[ (@) = A (@) /(1 = 2?) (6)
18
(i) strictly increasing for 0 < x < oo when o > —1/2.
(i1) equal to 1 for x € R when o = —1/2.
(111) strictly decreasing for 0 < x < oo when —1 < a < —1/2.

It is easy to evaluate £\*) at z = 0, 1 giving

0 (0) = @ @ (1) = 1
10) = Bty 570 = 5075 @)
where we have used the notation from [1]
[ Hn
/‘L'Sz ) = W’ (8)

and ., is the normalized binomial mid-coefficient

on(2n\ 1-3-5-...-(2n—1)
o =2 <n>_ 2-4-...-(2n) 9)




Corollary 1.2. For —1 < x < 1 we have

FO0)1 = 2?) < AP(2) < fIP(1)(1 - a?) fora > ~1/2,  (10)

n

while the inequalities are reversed when —1 < o < —1/2. (For oo = —1/2 all
three terms are equal to 1 — x*.)

For a = 0 the inequalities (10) reduce to (=1 <z < 1)

1
[iny2) nr1)/2) (1 — 2°) < Po(2)? — Puy(2) Pasa(2) < (11— «?) (11

for Legendre polynomials (P,). This result was recently published in [1]
using a SumCracker Package by Manuel Kauers, and it was conjectured that
the monotonicity result remains true for ultraspherical polynomials when
a > —1/2. Clearly the authors have not been aware of the early results
above.! Turdn [13] proved that A%O)(m) > 0 for —1 < # < 1. The proof in
[12] of Theorem 1.1 is based on a formula relating the Turédn determinant

Apa(x) = F7\(x) = Fooa(2) P (2)

of the normalized ultraspherical polynomials F,, )(x) = pY (x)/ Pﬁ’\)(l) and
the expression

Doa(e) = [ PO — P2 (2) £ PO (2),
namely (see [12, (5.9)])

AH,A(x) _ DTLJ\(I) (12>

1—a2  p(n+ 20 [PV (1))

See also [3]. Using the well-known formula for differentiation of ultraspherical
polynomials

d
TP (@) = 2P (@),

we see that

n—2

Do) = @0 (BN @) -~ PV @ PO @) . (19

'Motivated by this conjecture the present authors found a proof of Theorem 1.1 close
to the old proofs. During the preparation of the paper we found the references [12], [14].
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Except for the factor (2))? this is the Turdn determinant of order n — 1 for
the ultraspherical polynomials corresponding to the parameter A\ + 1.

We see that this result is generalized in Theorem 2.3.

Since the proof of the monotonicity in Theorem 1.1 depends on the fact
that the ultraspherical polynomials satisfy a differential equation, there is
little hope of extending the result to classes of orthogonal polynomials which
do not satisfy a differential equation. We have instead attempted to find
bounds for normalized Turan determinants without using monotonicity in
the variable z.

This has also led us to consider the following lower boundedness condition,
which holds for some systems of orthonormal polynomials (F,) but not for
all:

(LB) inf{P? ,(z)+ P(x) |z € R,n € N} > 0. (14)

If the condition (LB) holds, then necessarily >, PZ(x) = oo for all z € R.
Therefore, the orthogonality measure p of (P,) is uniquely determined and
has no mass points.

In Proposition 3.1 we prove that (LB) holds for symmetric orthonormal
polynomials if the recurrence coefficients are increasing and bounded. It turns
out that for the orthonormal symmetric Jacobi polynomials the condition
(LB) holds if and only if o > 1/2.

The theory is applied to continuous g-ultraspherical polynomials in Sec-
tion 4.

Concerning the general theory of orthogonal polynomials we refer the
reader to [10],[9],[6].

2 Main results

Proposition 2.1. In addition to (1), assume o, # vy, forn=1,2.... For
n > 2 we then have

(PYn - Oén)&nfl A Op — Qp—1

An = n—1+
(fYn—l - O‘n—l)’yn (777,—1 - Oén—l)’}/n

(p2_y + P2 — 2Tpu_1pn).-

Proof. By the recurrence relation we can remove either p,,, or p,_; from
the formula defining A,,. In this way we obtain two equalities

’VnAn == anpifl + ’ani — TPp—1Pn;
anAn = O‘npi + ’ani-i-l — TPnPn+1-
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We replace n by n — 1 in the second equality and multiply both sides by
Yn — i, Next we subtract the resulting equality from the first one multiplied
by vn_-1 — a,,—1. In this way we obtain, after obvious simplifications,

(’Y’n—l - an—l)'YnAn - (’777, - an)an—lAn—l
= (Oénf)/nfl - anflf}/n)(pifl + pi) - (f)/nfl — Tn — Qn—1 + an) TPn—1Pn-

Taking into account that ag + v, = 1 for k > 1 gives

(ﬁ}/nfl - anfl)’YnAn - (771 - Oén)anflAnfl = (an - anfl) (pi—l +p31, - 2xpn71pn)
[
Proposition 2.1 implies

Corollary 2.2. [11, Thm. 1] In addition to (1), assume that one of the
following conditions holds.

(i) (o) is increasing and oy, < 7, n > 1.

(i1) (o) is decreasing and o, > v,, n > 1. Furthermore, assume o = 1
oryo < m/(1—=m).

Then Ay (z) >0 for =1 <z < 1.

Proof. Assume first the additional condition «,, # 7, for all n > 0. Since for
-l<z<l1

pi—l(x) —f-pi(m) - 2xpn_1(£(:)pn($) >0,
it suffices in view of Proposition 2.1 to show Ay(z) > 0 for —1 <z < 1. We

have ) )
a1 + (1 — )

2
Y0
hence Ay > 0if v; > . If 141 < and —1 < z < 1, we have

1A (2) = capg + Npt — xpopr =

Y

a(l — o —
1A (z) > A1) = 1( %)(Zl/ : %)-
70
The right-hand side is clearly non-negative in case (i) because v;/a; > 1,
but also non-negative in case (ii) because of the assumptions on 7.

Assume next in case (i) that there is an n such that a,, = 7,,. Let ng > 1
be the smallest n with this property. Denoting @ = lim «,, then clearly
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a, < a<1—a <7y, forall n and hence o, = 7, = 1/2 for n > nyg.
Therefore,

An(w) = pp 1 (%) + P (2) — 22pni1 (2)pn(z) > 0

for n > ng, —1 < & < 1. The formula of Proposition 2.1 can be applied for
2 < n < ng and the proof of the first case carries over. Equality in case (ii)
is treated similarly. O

From now on we will assume that additionally 7y = 1. In this way the
polynomials p,, are normalized at + = 1 so that p,(1) = 1. It follows by
induction that p, has all its zeros in (—1, 1), hence that the support of the
orthogonality measure p for (p,) is contained in [—1,1]. Since p,(—z) =
(—1)"pn(x), we conclude that p,(—1) = (—1)". Therefore, for any n > 0 the
polynomial p, .o — p, is divisible by 2% — 1. Defining

_ Pnr2(2) — pa()
N 2 —1 ’
¢n is a polynomial of degree n. Moreover, an easy calculation shows that
the polynomials ¢, are orthogonal with respect to the probability measure
dv(z) = %(1 — 2?)du(z). By the recurrence relation (1) and by vo = 1 we
obtain that the polynomials ¢, satisfy

n>0, (15)

()

x%t(-r) = 7n+2qn+1(x) + O‘nQn—l(x)a n > 07 do = 1/’71 (16)

The following theorem contains a fundamental formula relating the Turan
determinants of the polynomials p,, and g,.

Theorem 2.3. Forn > 1 we have

= Yot (T) = Qe 1Vns1Gn—2(2) g (). (17)

Proof. By (1) we get
Prr1 — Pk = ar(Pri1 — Pr—1) = ax(2® — Dgp1,
TPk — Pk—1 = ’Yk(pkﬂ —pkq) = ’Vk(il?2 - 1)%71-

Therefore,

(2° = 1)?[an i1 () = tn1Vni1@n-2(2)gn()]
= (Pu+1 = ) (¥Pn — Pn1) — (Pn = TPp—1)(¥Pp+1 — Pn)
= (1 - 332)(10721 - pn—lpn+1>'
O



Remark 2.4. If we define ¢y = 7190 = 1 and

C]n:MQm n>1,
a1 ...0,

we have

An(®) (u) (@1 (2) = Gna(2)du()] (18)

1—22 a, \ 7. "

showing that the normalized Turdn determinant (17) is proportional to a
Turdn determinant of order n—1 of the renormalized polynomials (¢, ). They
satisfy the recursion equation (¢_; := 0)

ijn = an+lqn+1 + 7n+16n717 n > 0.

Theorem 2.5. Assume that (p,) satisfies (1) with o = 1. Let (cv,) be in-
creasing, o, < 1/2 and

Qn

Oy — Oy > (ps1 — ), n > 1. (19)

n

(e.g., (19) is satisfied if v, is concave). Then A, (x) defined by (2) satisfies

A,
1_@ > cA0),  —l<az<l1 n>1,

where ¢ = 2a17y2/71.
Proof. Observe that (19) is equivalent to (a,7y,+1) being increasing. Let
Dn(x> = f)/nqiflclj.) - 7n+Ian2($)Qn(x)-

Since «,, > a,_1, Theorem 2.3 implies that

?i(ig > ay—1Dn (). (20)

By (16) we can remove g, or ¢, o from the expression defining D,,. In this
way we obtain

Dn == &n71q72172 + ’an72171 — Tdn—2Qn—1, (21>
Op—1 An—1"n

Dn = %21—1 + '7n+1qq% — T4n—-19n-
Tn+1 Tn+1



Replacing n by n — 1 in the second equality and subtracting it from the first,

we find

Qp—2 Apn—1Yn — Op—2Yn—1 2

Dn—1: = = qn 2>0
Tn Tn

By iterating the inequality between D,, and D,,_; we obtain

D, —

... Oy
D, > -t n2p,

Y3 TIn
From (21) we get
2 2 ar et 22 ay
Dy =a1q5+ %@ — 2001 = 5+ 55— 5 = 5

i e A

o (20) implies

A, (x) SNy 1O 20017
=227 v am M M
The conclusion follows from the next lemma.
Lemma 2.6. Under the assumptions of Theorem 2.5

o1 (7% 71

An(0) < /< A (0), n>1.
Y1 Tn Qq
Proof. Denote
h. — M- Tn
" ap...0p

By (1) we have
n103 ... O2p_1
pon(0) = (—1)" ———.
2 (0) = (=) Y173 - - Von—1
Hence

n a n
A2n<0)h2n - pgn(o)hQn — H 2hl H el S

Qof '72k: 1

On the other hand

ANopt1(0)hons1 = —pon(0)p2nt2(0) hon i1

n

1 V2k—1

(22)



Moreover,

A2n<0)h2n _ HOézk 1H Y2k > HOék 1H Ve Q02n > ﬂ

Q a o
ey 2k ’Y2k1 k k2’7k1 Y10n 4!

]

Theorem 2.5 has the following counterpart and the proof is very similar:

Theorem 2.7. Assume that (p,) satisfies (1) with y9 = 1. Let cvy,n > 1 be

1

decreasing, o, > 5 and

On

ap — 1 < . (ozn+1 —ap), n>2. (24)
Then A, (z) defined by (2) satzsﬁes
An()
< CA, -1 1 >1
1_x2_0 (0), <zr<l, n>1,

where C' = 2vy. (Note that (24) implies convezity of a,,n > 1.)

Remark 2.8. Note that the normalized symmetric Jacobi polynomials p,(x) =
R (2) given by (4) satisfy (1) with

n+2a+1 B n
mt20+1 " m+2a+l

(In the case of @« = —1/2, i.e., Chebyshev polynomials of the first kind, these
formulas shall be interpreted as vy = 1,9 = 0.)

For a > —1/2 the sequence («,) is increasing and concave. Furthermore,
c=1

For —1 < a < —1/2 the sequence («,) is decreasing, (24) holds and
C=1.

The statement about the constants ¢ and C' follows from Corollary 1.2.
However, we cannot expect ¢ = 1 in general, because it is easy to construct
an example, where the normalized Turdn determinant (17) is not monotone
for 0 <z < 1.

Consider the sequence (o) = (0,1/2—3¢,1/2—2¢,1/2—¢,1/2,1/2,...),
which is increasing and concave for 0 < ¢ < 1/8. In this case the Turdn
determinant g3 — G,Gs is proportional to f(z) = z* + A(e)z* + B(g), where

Ale) = 4e* +3e — 1/2, B(e) = (1/2 — 3¢)*(1/2 — ¢)(1/2 + 2¢)?/e.

Yn = (25)

Clearly, f is not monotone for 0 < < 1, when ¢ is small.
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Corollary 2.9. Under the assumptions of Theorem 2.5 and the additional
hypothesis lim «,, = 1/2, the orthogonality measure 1 is absolutely continuous
on (—1,1) with a strictly positive and continuous density g(x) = du(z)/dz

satisfying
C

r) < ———.
AV
Proof. The corresponding orthonormal polynomials (P,) satisfy
xPn = )\nPn—i-l + )\n—IPn—h (26>
where \, = \/a, 17, We also have P, = d,,p,, where

5n: ’70”'7”71777'217 50:17

al DEREEY a{n
and lim \,, = 1/2. Since

(077 ES)) (7n+1 - %1) + ’7n<04n+2 - an-f—l)
\/Oén+27n+1 + \/Oén—s—lr}/n

>\n+1 - /\n =

Y

the monotonicity of (a,,), (7,) implies that

o0
D gt = An| < o0.
n=1

By the theorem in [8] we conclude that the orthogonality measure p has a
positive continuous density g(z) for —1 < 2 < 1. Furthermore, it is known
from this theorem that

lim [P2(2) — Pyos(2) P (a)] = 222

n—oo ﬂg(:[j‘) ’

uniformly on compact subsets of (—1,1). For another proof of this result
see [5, p. 201], where it is also proved that (P,(z)) is uniformly bounded on
compact subsets of (—1,1) for n — co. We have

_ 5l2 (P2(2) = knPo1(2) Pusa (),

b — on _ [%nt1n-1
" 5n—15n+1 QnVn ’

11

Ap(z)

where




and it follows that lim k, = 1. Using

Ay (z) _ Pr%(m) — K Po1(7) Py ()
An(0)  P30) = knFp1(0) Py

we get the result. O
In analogy with the proof of Corollary 2.9 we get

Corollary 2.10. Under the assumptions of Theorem 2.7 and the additional
hypothesis lim «,, = 1/2, the orthogonality measure 1 is absolutely continuous
on (—1,1) with a strictly positive and continuous density g(x) = du(z)/dz

satisfying
C

g9(x) > N

We now return to the polynomials (g,) defined in (15) and prove that
they have a non-negative Turan determinant after normalization to being 1
at 1. The polynomials ¢, are orthogonal with respect to a measure supported
by [—1, 1]. Therefore, g,(1) > 0.

Proposition 2.11. Under the assumptions of Theorem 2.5 we have forn > 1

Qi(aj) . Qn—l(x) qn-i—l(x)
(1) gn-1(1) guya(1)

Proof. Indeed, let Q,(x) = ¢,(z)/q.(1). Then

> 0.

:L‘Qn - CnQn-‘,—l + (1 - Cn)Qn—la

where ¢, = Vni2(qni1(1)/qn(1)). We will show that (¢,) is decreasing and
¢n > 1/2. Then the conclusion follows from Corollary 2.2. But ¢,_1 > ¢, is
equivalent to

Dn+l<1) = ’Yn+lqg<1) - 7n+2Qn71(1)Qn+1(1) > 07

which follows from (22) and (23). We will show that ¢, > 1/2 by induction.
We have

Co =72

12



Assume ¢,_; > 1/2. By (19) the sequence (a;,7V,11) is increasing. Putting
a = lim «,, we then get

1
OpYn+1 S Oé(l - CK) S Z
Using this and (16) leads to
Cn—1 Cn—1 2
hence ¢, > 1/2. O

3 Lower bound estimates

It turns out that Turan determinants can be used to obtain lower bound
estimates for orthonormal polynomials. Recall that if the polynomials (p,)
satisfy the recurrence relation (1), then their orthonormal version (P, ) satis-
fies

P, = ANy Poi1 + A1 Py,

where A\, = \/®117n-

Proposition 3.1. Assume that the polynomials (P,(x)) satisfy
xPn = )\nPnJrl + )\nflpnfl, n > O, (27)

with P.y = A1 =0, A\, >0, n >0, and By = 1. If the sequence (\,) is
increasing and lim \,, = L < oo, then the (LB) condition (14) holds and in
particular
P2 P2 > Ag

Proof. This proof is inspired by [2, Thm. 3]. By replacing the polynomials
P,(x) by P,(2Lz) we can assume that lim A\, = 1/2. This assumption im-
plies that the corresponding Jacobi matrix is a contraction, because it can be
majorized by the Jacobi matrix with entries A\, = % Therefore, the orthogo-
nality measure is supported by the interval [—1,1]. In this way it suffices to

consider z from [—1, 1] because the functions PZ(z) are increasing on [1, +00|
and P?(—z) = P?(x). Let

D, (1) = M1 P2(2) — Ay Py (2) Py (), n > 1.

13



By (27) we can remove P, to get
D, =\ 1 P2+ N\ 1 P?— 2P, P, (28)
Alternatively we can remove P,_; and obtain

An—1 A2

D = M P2+ ;—1133 — 2P, P,y (29)
Replacing n by n — 1 in (29) and subtracting it from (28) gives
>\an /\2—1 - /\2—2 2
D, — —=D, = +——"22P>  >0. 30
>\n—1 ! )\n—l et ( )
By iterating the inequality D,, > (Ay—2/An—1)Dn_1, We obtain
Ao )‘3 2
D, > 20 p = > 9222,
o )\an ! )\nfl - 0

because by (28) we have D; = A\g. Now (28) implies for |z| <1
1
Dy < MtP2 4 At P2+ a2 4 P S P2 4P (3)

In the general case the lower bound is 2(X\g/(2L))>. O

Corollary 3.2. Under the assumptions of Proposition 3.1 with L = 1/2 the
orthogonality measure p is absolutely continuous with a continuous density
g = du(x)/dx on [—1,1] satisfying

1
< V1 — 22,
9(x) < 27 \2 v

Furthermore, g(x) > 0 for —1 <z < 1.

Proof. By assumptions the orthogonality measure is supported by [—1,1].
By the proof of Proposition 3.1 we have
D, (x) > 2)2.

On the other hand, by [8] and [5, p. 201] the orthogonality measure is
absolutely continuous in the interval (—1, 1) with a strictly positive and con-
tinuous density g such that

1 2v1 — 22
lim ——D,(z) = ———
n—00 \p_1 mg(x)
uniformly on compact subsets of (—1,1), cf. the proof of Corollary 2.9. By
Property (LB) there are no masses at +1. [
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Remark 3.3. Corollary 3.2 is also obtained in [4, p.758].

The Jacobi polynomials P\*® (z) in the standard notation of Szegé, cf.
[10], are discussed in the Introduction. The corresponding orthonormal poly-
nomials are denoted P,(c;x). We recall that

1 20+1 2
2 r 1
o [ IPEN @R dr - mratl .
1 (2n 4+ 2a+ 1)n!l'(n+ 20+ 1)B(a + 1,1/2)
(32)

Proposition 3.4. Condition (LB),(14), holds for the orthonormal symme-
tric Jacobi polynomials (P, (a; x)) if and only if « > 1/2. More precisely we
have:

(i) Fora>1/2

2
200+ 3

inf{P?(c;x) + P> ,(a;x) | * € R,n € N} >

(ii) For —1 < a < 1/2

inf{P?(a;x) + P> (a;2) | * € R,n € N} = 0.

Proof. Assume o > 1/2. In this case we get from (25)

e L[, et
! dn+a+1)2-1]"

so (A,) is increasing with lim A, = 1/2. By Proposition 3.1 we thus have

2
PP+ P >2\=——
n+ n—1 = 0 205"’37

which shows (i).
In order to show (ii) we will make use of Hilb’s asymptotic formula [10,
Thm 8.21.12):

§ /2 f @1/
g~1/2 (sin 5) (cos 5) P (cos 0)
MNa+n+1)

e S n =3/
= IVaNe Jo(NO) + O( ), (33)

15



where 0 € [¢/n,7/2], N =n+a+ % and ¢ > 0 is fixed. Let j, denote the
smallest positive zero of the Bessel function J,.

Defining 0,, = jo./N, we get
n-ep@

n

) (Qn) = O(n_S/Q) )
P60, = (1/V2 4 o(1))Ja(j

n+a—1/2

O‘n—l—a—+1/2) +O0(n*?) =0mn™).

By (32) and Stirling’s formula

1 22a
. P(a,a) 21_ 2ad ~ -1
/[ (@1 =) do ~

and hence

P%(a;cosf,) = O(n**?), P2

n—1

(a;cos,) = O(n** ).
This shows that
P?(a;cos6,) + P2 (a;cosf,) — 0 when o < 1/2.
[

Remark 3.5. For —1 < a < —1/2 the observation of (ii) follows easily from
the asymptotic result

Pa(a; 1) ~ dan®™V2, 1 — oo,

where d,, is a suitable constant, but this simple asymptotic can not be used
when —1/2 < a < 1/2.

Remark 3.6. The example of symmetric Jacobi polynomials suggests that
if (A,) is decreasing, then condition (LB) does not hold. This is not true,
however, because for % <A < % and A\, = % for n > 1 we have a decreasing
sequence. The corresponding Jacobi matrix has norm 1 because this is so
for the cases \g = % and Ay = 1/v/2, which correspond to the Chebyshev
polynomials of the second and first kind respectively. Furthermore, for n > 2

we have by (28) and (30)

4 o 1,
[Ao_(Ao_Z)I]

2

Dn - >\n—1P13 - /\nPn—lpn—H - DZ - )\(2)
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and for -1 <z <1

2 1
Dy(z) > Do(1) = F(Ag - 5)2 > 0.
0

On the other hand, (31) applies for n > 2, and we see that the orthonormal
polynomials satisfy

2 1
inf{P2(x) + P _y(a) |2 € Ryn € N} = 55(0 = 2)”
0

4 Continuous g-ultraspherical polynomials

The continuous g-ultraspherical polynomials C,(z; 3|¢) depend on two real
parameters ¢, 3, and for |g|, || < 1 they are orthogonal with respect to a
continuous weight function on (—1,1), cf. [6],[7]. The 3-term recurrence
relation is

1— qn+1 1 — ﬂ2qn—1

2Cn(@; Blg) = 5 Cua(w:010) + 57 gy

o1 AN Cno1(z;8lq), n=>0
=D {0l
(34)
with C_; = 0,Cy = 1. The orthonormal version C,(z; 3|q) satisfies equation

(27) with

1 \/ (1—q)(1 = Fq") 35)

"2\ (=B (1 = Bty
The value C,(1; 3|q) is not explicitly known, and therefore we can only obtain

the recurrence coefficients a,, 7, from (1) for p,(x) = Cy(x; 5|q)/Cn(1; Blq)
as given by the recursive equations

)\2
1—a,’

Qpy1 = ag =0, 7, =1 — ay, (36)

which we get from the relation A\, = /a1 17n-

Theorem 4.1. (i) Assume 0 < < q < 1. Then the recurrence coefficients
(An) form an increasing sequence with limit 1/2, and therefore (C,(x; 5|q))
satisfies (LB).

(i1) Assume 0 < g < 3 < 1. Then the recurrence coefficients (\,) form a
decreasing sequence with limit 1/2, and the sequence (ay,) is increasing and
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concave with limit 1/2. In particular, we have

A, ()
. >cA,(0), —-l<z<l, n>1,

with ¢ = 204 (1 — a2) /(1 — o).
Proof. The function

(1 —qx)(1 - ) . x
(1= Bz)(1 - Bqz) (1 = Bz)(1 - Bqz)

is decreasing for 0 < # < ¢ < 1 and increasing for 0 < ¢ < § < 1. This
shows that A, = (1/2)+/1(¢") is increasing in case (i) and decreasing in case
(ii). In both cases the limit is 1/2.

In case (i) we therefore have A\2 > 1/4 and hence

() = =1+(1=-p5)(B -

1
(077 | Z 4( Z A,

1—ay)

because 4z(1 —z) < 1 for 0 < x < 1. This shows that (a,) is increasing and
hence with limit 1/2. We further have

1 1 1

Q1 = = 2(N], — 1) 725 —an)(g — ),
which shows that a, 1 — «, is decreasing, i.e., (a;,) is concave. We can now
apply Theorem 2.5. O
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