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Abstract

Let µ denote a symmetric probability measure on [−1, 1] and let
(pn) be the corresponding orthogonal polynomials normalized such
that pn(1) = 1. We prove that the normalized Turán determinant
∆n(x)/(1−x2), where ∆n = p2

n−pn−1pn+1, is a Turán determinant of
order n− 1 for orthogonal polynomials with respect to (1− x2)dµ(x).
We use this to prove lower and upper bounds for the normalized Turán
determinant in the interval −1 < x < 1.
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1 Introduction

In the following we will deal with polynomial sequences (pn) satisfying

xpn(x) = γnpn+1(x) + αnpn−1(x), n ≥ 0,

αn + γn = 1, αn > 0, γn > 0, n ≥ 1, (1)

p0(x) = 1, α0 = 0, 0 < γ0 ≤ 1.
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Note that (pn) is uniquely determined by (1) from the recurrence coefficients
αn, γn. It is well-known that the polynomials pn are orthogonal with respect
to a symmetric probability measure µ with compact support.

Define the Turán determinant by

∆n(x) = p2
n(x)− pn−1(x)pn+1(x), n ≥ 1. (2)

In [11] the second author proved non-negativity of the Turán determi-
nant (2) under certain monotonicity conditions on the recurrence coefficients,
thereby obtaining results for new classes of polynomials and unifying old re-
sults.

If γ0 = 1 the polynomials satisfy pn(1) = 1 and therefore the normalized
Turán determinant ∆n(x)/(1− x2) is a polynomial in x.

We shall prove estimates of the form

c∆n(0) ≤ ∆n(x)

1− x2
≤ C∆n(0), −1 < x < 1, (3)

under certain regularity conditions on the recurrence coefficients. We prove,
e.g., an inequality of the left-hand type if (αn) is increasing and concave, see
Theorem 2.5. In Theorem 2.7 we give an inequality of the right-hand type.

Our results depend on a simple relation between the Turán determinants
of order n and n − 1 (Proposition 2.1) and the following observation: the
normalized Turán determinant is essentially a Turán determinant of order
n − 1 for the polynomials (qn) defined by (15) below, and if µ is the or-
thogonality measure of (pn), then (qn) are orthogonal with respect to the
measure

(1− x2)dµ(x).

See Theorem 2.3 and Remark 2.4 for a precise statement.
In Proposition 2.11 we prove non-negativity of the Turán determinant

for the normalized polynomials qn(x)/qn(1) provided the sequence (αn) is
increasing and concave (or under the weaker condition (19)).

Our work is motivated by results about ultraspherical polynomials, which
we describe next.

For α > −1 let R
(α,α)
n (x) = P

(α,α)
n (x)/P

(α,α)
n (1) denote the symmetric

Jacobi polynomials normalized to be 1 for x = 1, i.e.,

R(α,α)
n (x) =

(−1)n

2n(α + 1)n

(1− x2)−α dn

dxn
(1− x2)n+α, (4)
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cf. [10]. We have used the Pochhammer symbol

(a)n = a(a+ 1) . . . (a+ n− 1).

The polynomials are orthogonal with respect to the symmetric weight func-
tion cα(1 − x2)α on (−1, 1). Here 1/cα = B(α + 1, 1/2), so the weight is a

probability density. We have R
(α,α)
n (x) = P

(λ)
n (x)/P

(λ)
n (1) with α = λ − 1

2
,

where (P
(λ)
n ) are the ultraspherical polynomials in the notation of [10].

The corresponding Turán determinant of order n

∆(α)
n (x) = R(α,α)

n (x)2 −R
(α,α)
n−1 (x)R

(α,α)
n+1 (x), (5)

is clearly a polynomial of degree n in x2 and divisible by 1 − x2 since it
vanishes for x = ±1. The following Theorem was proved in [12, pp. 381-382]
and in [14, sect. 6]:

Theorem 1.1. The normalized Turán determinant

f (α)
n (x) := ∆(α)

n (x)/(1− x2) (6)

is

(i) strictly increasing for 0 ≤ x <∞ when α > −1/2.

(ii) equal to 1 for x ∈ R when α = −1/2.

(iii) strictly decreasing for 0 ≤ x <∞ when −1 < α < −1/2.

It is easy to evaluate f
(α)
n at x = 0, 1 giving

f (α)
n (0) = µ

(α)
[n/2]µ

(α)
[(n+1)/2], f (α)

n (1) =
1

2α + 2
, (7)

where we have used the notation from [1]

µ(α)
n =

µn(
n+α

n

) , (8)

and µn is the normalized binomial mid-coefficient

µn = 2−2n

(
2n

n

)
=

1 · 3 · 5 · . . . · (2n− 1)

2 · 4 · . . . · (2n)
. (9)
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Corollary 1.2. For −1 < x < 1 we have

f (α)
n (0)(1− x2) < ∆(α)

n (x) < f (α)
n (1)(1− x2) for α > −1/2, (10)

while the inequalities are reversed when −1 < α < −1/2. (For α = −1/2 all
three terms are equal to 1− x2.)

For α = 0 the inequalities (10) reduce to (−1 < x < 1)

µ[n/2]µ[(n+1)/2](1− x2) < Pn(x)2 − Pn−1(x)Pn+1(x) <
1

2
(1− x2) (11)

for Legendre polynomials (Pn). This result was recently published in [1]
using a SumCracker Package by Manuel Kauers, and it was conjectured that
the monotonicity result remains true for ultraspherical polynomials when
α ≥ −1/2. Clearly the authors have not been aware of the early results

above.1 Turán [13] proved that ∆
(0)
n (x) > 0 for −1 < x < 1. The proof in

[12] of Theorem 1.1 is based on a formula relating the Turán determinant

∆n,λ(x) = F 2
n,λ(x)− Fn−1,λ(x)Fn+1,λ(x)

of the normalized ultraspherical polynomials Fn,λ(x) = P
(λ)
n (x)/P

(λ)
n (1) and

the expression

Dn,λ(x) = [
d

dx
P (λ)

n (x)]2 − d

dx
P

(λ)
n−1(x)

d

dx
P

(λ)
n+1(x),

namely (see [12, (5.9)])

∆n,λ(x)

1− x2
=

Dn,λ(x)

n(n+ 2λ)[P
(λ)
n (1)]2

. (12)

See also [3]. Using the well-known formula for differentiation of ultraspherical
polynomials

d

dx
P (λ)

n (x) = 2λP
(λ+1)
n−1 (x),

we see that

Dn,λ(x) = (2λ)2
(

[P
(λ+1)
n−1 (x)]2 − P

(λ+1)
n−2 (x)P (λ+1)

n (x)
)
. (13)

1Motivated by this conjecture the present authors found a proof of Theorem 1.1 close
to the old proofs. During the preparation of the paper we found the references [12], [14].
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Except for the factor (2λ)2 this is the Turán determinant of order n− 1 for
the ultraspherical polynomials corresponding to the parameter λ+ 1.

We see that this result is generalized in Theorem 2.3.
Since the proof of the monotonicity in Theorem 1.1 depends on the fact

that the ultraspherical polynomials satisfy a differential equation, there is
little hope of extending the result to classes of orthogonal polynomials which
do not satisfy a differential equation. We have instead attempted to find
bounds for normalized Turán determinants without using monotonicity in
the variable x.

This has also led us to consider the following lower boundedness condition,
which holds for some systems of orthonormal polynomials (Pn) but not for
all:

(LB) inf{P 2
n−1(x) + P 2

n(x) | x ∈ R, n ∈ N} > 0. (14)

If the condition (LB) holds, then necessarily
∑∞

n=0 P
2
n(x) = ∞ for all x ∈ R.

Therefore, the orthogonality measure µ of (Pn) is uniquely determined and
has no mass points.

In Proposition 3.1 we prove that (LB) holds for symmetric orthonormal
polynomials if the recurrence coefficients are increasing and bounded. It turns
out that for the orthonormal symmetric Jacobi polynomials the condition
(LB) holds if and only if α ≥ 1/2.

The theory is applied to continuous q-ultraspherical polynomials in Sec-
tion 4.

Concerning the general theory of orthogonal polynomials we refer the
reader to [10],[9],[6].

2 Main results

Proposition 2.1. In addition to (1), assume αn 6= γn for n = 1, 2 . . . . For
n ≥ 2 we then have

∆n =
(γn − αn)αn−1

(γn−1 − αn−1)γn

∆n−1 +
αn − αn−1

(γn−1 − αn−1)γn

(p2
n−1 + p2

n − 2xpn−1pn).

Proof. By the recurrence relation we can remove either pn+1 or pn−1 from
the formula defining ∆n. In this way we obtain two equalities

γn∆n = αnp
2
n−1 + γnp

2
n − xpn−1pn,

αn∆n = αnp
2
n + γnp

2
n+1 − xpnpn+1.
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We replace n by n − 1 in the second equality and multiply both sides by
γn−αn. Next we subtract the resulting equality from the first one multiplied
by γn−1 − αn−1. In this way we obtain, after obvious simplifications,

(γn−1 − αn−1)γn∆n − (γn − αn)αn−1∆n−1

= (αnγn−1 − αn−1γn)(p2
n−1 + p2

n)− (γn−1 − γn − αn−1 + αn)xpn−1pn.

Taking into account that αk + γk = 1 for k ≥ 1 gives

(γn−1−αn−1)γn∆n−(γn−αn)αn−1∆n−1 = (αn−αn−1)(p
2
n−1+p2

n−2xpn−1pn).

Proposition 2.1 implies

Corollary 2.2. [11, Thm. 1] In addition to (1), assume that one of the
following conditions holds.

(i) (αn) is increasing and αn ≤ γn, n ≥ 1.

(ii) (αn) is decreasing and αn ≥ γn, n ≥ 1. Furthermore, assume γ0 = 1
or γ0 ≤ γ1/(1− γ1).

Then ∆n(x) > 0 for −1 < x < 1.

Proof. Assume first the additional condition αn 6= γn for all n ≥ 0. Since for
−1 < x < 1

p2
n−1(x) + p2

n(x)− 2xpn−1(x)pn(x) > 0,

it suffices in view of Proposition 2.1 to show ∆1(x) > 0 for −1 < x < 1. We
have

γ1∆1(x) = α1p
2
0 + γ1p

2
1 − xp0p1 =

α1γ
2
0 + (γ1 − γ0)x

2

γ2
0

,

hence ∆1 > 0 if γ1 ≥ γ0. If γ1 < γ0 and −1 < x < 1, we have

γ1∆1(x) > γ1∆1(1) =
α1(1− γ0)(γ1/α1 − γ0)

γ2
0

.

The right-hand side is clearly non-negative in case (i) because γ1/α1 ≥ 1,
but also non-negative in case (ii) because of the assumptions on γ0.

Assume next in case (i) that there is an n such that αn = γn. Let n0 ≥ 1
be the smallest n with this property. Denoting α = limαn, then clearly
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αn ≤ α ≤ 1 − α ≤ γn for all n and hence αn = γn = 1/2 for n ≥ n0.
Therefore,

∆n(x) = p2
n−1(x) + p2

n(x)− 2xpn−1(x)pn(x) > 0

for n ≥ n0, −1 < x < 1. The formula of Proposition 2.1 can be applied for
2 ≤ n < n0 and the proof of the first case carries over. Equality in case (ii)
is treated similarly.

From now on we will assume that additionally γ0 = 1. In this way the
polynomials pn are normalized at x = 1 so that pn(1) = 1. It follows by
induction that pn has all its zeros in (−1, 1), hence that the support of the
orthogonality measure µ for (pn) is contained in [−1, 1]. Since pn(−x) =
(−1)npn(x), we conclude that pn(−1) = (−1)n. Therefore, for any n ≥ 0 the
polynomial pn+2 − pn is divisible by x2 − 1. Defining

qn(x) =
pn+2(x)− pn(x)

x2 − 1
, n ≥ 0, (15)

qn is a polynomial of degree n. Moreover, an easy calculation shows that
the polynomials qn are orthogonal with respect to the probability measure
dν(x) = 1

γ1
(1 − x2)dµ(x). By the recurrence relation (1) and by γ0 = 1 we

obtain that the polynomials qn satisfy

xqn(x) = γn+2qn+1(x) + αnqn−1(x), n ≥ 0, q0 = 1/γ1. (16)

The following theorem contains a fundamental formula relating the Turán
determinants of the polynomials pn and qn.

Theorem 2.3. For n ≥ 1 we have

∆n(x)

1− x2
= αnγnq

2
n−1(x)− αn−1γn+1qn−2(x)qn(x). (17)

Proof. By (1) we get

pk+1 − xpk = αk(pk+1 − pk−1) = αk(x2 − 1)qk−1,

xpk − pk−1 = γk(pk+1 − pk−1) = γk(x2 − 1)qk−1.

Therefore,

(x2 − 1)2[αnγnq
2
n−1(x)− αn−1γn+1qn−2(x)qn(x)]

= (pn+1 − xpn)(xpn − pn−1)− (pn − xpn−1)(xpn+1 − pn)

= (1− x2)(p2
n − pn−1pn+1).
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Remark 2.4. If we define q̃0 = γ1q0 = 1 and

q̃n =
γ1 . . . γn+1

α1 . . . αn

qn, n ≥ 1,

we have

∆n(x)

1− x2
=
γn

αn

(
α1 . . . αn

γ1 . . . γn

)2 [
q̃2
n−1(x)− q̃n−2(x)q̃n(x)

]
, (18)

showing that the normalized Turán determinant (17) is proportional to a
Turán determinant of order n−1 of the renormalized polynomials (q̃n). They
satisfy the recursion equation (q̃−1 := 0)

xq̃n = αn+1q̃n+1 + γn+1q̃n−1, n ≥ 0.

Theorem 2.5. Assume that (pn) satisfies (1) with γ0 = 1. Let (αn) be in-
creasing, αn ≤ 1/2 and

αn − αn−1 ≥
αn

1− αn

(αn+1 − αn), n ≥ 1. (19)

(e.g., (19) is satisfied if αn is concave). Then ∆n(x) defined by (2) satisfies

∆n(x)

1− x2
≥ c∆n(0), −1 < x < 1, n ≥ 1,

where c = 2α1γ2/γ1.

Proof. Observe that (19) is equivalent to (αnγn+1) being increasing. Let

Dn(x) = γnq
2
n−1(x)− γn+1qn−2(x)qn(x).

Since αn ≥ αn−1, Theorem 2.3 implies that

∆n(x)

1− x2
≥ αn−1Dn(x). (20)

By (16) we can remove qn or qn−2 from the expression defining Dn. In this
way we obtain

Dn = αn−1q
2
n−2 + γnq

2
n−1 − xqn−2qn−1, (21)

αn−1

γn+1

Dn =
αn−1γn

γn+1

q2
n−1 + γn+1q

2
n − xqn−1qn.
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Replacing n by n−1 in the second equality and subtracting it from the first,
we find

Dn −
αn−2

γn

Dn−1 =
αn−1γn − αn−2γn−1

γn

q2
n−2 ≥ 0.

By iterating the inequality between Dn and Dn−1 we obtain

Dn ≥
α1 . . . αn−2

γ3 . . . γn

D2. (22)

From (21) we get

D2 = α1q
2
0 + γ2q

2
1 − xq0q1 =

α1

γ2
1

+
γ2x

2

γ2
1γ

2
2

− x2

γ2
1γ2

=
α1

γ2
1

, (23)

so (20) implies

∆n(x)

1− x2
≥ α1 . . . αn

γ1 . . . γn

α1γ2

αnγ1

≥ α1 . . . αn

γ1 . . . γn

2α1γ2

γ1

.

The conclusion follows from the next lemma.

Lemma 2.6. Under the assumptions of Theorem 2.5

∆n(0) ≤ α1 . . . αn

γ1 . . . γn

≤ γ1

α1

∆n(0), n ≥ 1.

Proof. Denote

hn =
γ1 . . . γn

α1 . . . αn

.

By (1) we have

p2n(0) = (−1)nα1α3 . . . α2n−1

γ1γ3 . . . γ2n−1

.

Hence

∆2n(0)h2n = p2
2n(0)h2n =

n∏
k=1

α2k−1

α2k

n∏
k=1

γ2k

γ2k−1

≤ 1.

On the other hand

∆2n+1(0)h2n+1 = −p2n(0)p2n+2(0)h2n+1

=
n∏

k=1

α2k−1

α2k

n∏
k=1

γ2k

γ2k−1

= ∆2n(0)h2n ≤ 1.
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Moreover,

∆2n(0)h2n =
n∏

k=1

α2k−1

α2k

n∏
k=1

γ2k

γ2k−1

≥
2n∏

k=2

αk−1

αk

2n∏
k=2

γk

γk−1

=
α1γ2n

γ1α2n

≥ α1

γ1

.

Theorem 2.5 has the following counterpart and the proof is very similar:

Theorem 2.7. Assume that (pn) satisfies (1) with γ0 = 1. Let αn, n ≥ 1 be
decreasing, αn ≥ 1

2
and

αn − αn−1 ≤
αn

1− αn

(αn+1 − αn), n ≥ 2. (24)

Then ∆n(x) defined by (2) satisfies

∆n(x)

1− x2
≤ C∆n(0), −1 < x < 1, n ≥ 1,

where C = 2γ2. (Note that (24) implies convexity of αn, n ≥ 1.)

Remark 2.8. Note that the normalized symmetric Jacobi polynomials pn(x) =

R
(α,α)
n (x) given by (4) satisfy (1) with

γn =
n+ 2α + 1

2n+ 2α + 1
, αn =

n

2n+ 2α + 1
. (25)

(In the case of α = −1/2, i.e., Chebyshev polynomials of the first kind, these
formulas shall be interpreted as γ0 = 1, α0 = 0.)

For α ≥ −1/2 the sequence (αn) is increasing and concave. Furthermore,
c = 1.

For −1 < α ≤ −1/2 the sequence (αn) is decreasing, (24) holds and
C = 1.

The statement about the constants c and C follows from Corollary 1.2.
However, we cannot expect c = 1 in general, because it is easy to construct
an example, where the normalized Turán determinant (17) is not monotone
for 0 < x < 1.

Consider the sequence (αn) = (0, 1/2−3ε, 1/2−2ε, 1/2−ε, 1/2, 1/2, . . .),
which is increasing and concave for 0 < ε < 1/8. In this case the Turán
determinant q̃2

2 − q̃1q̃3 is proportional to f(x) = x4 + A(ε)x2 +B(ε), where

A(ε) = 4ε2 + 3ε− 1/2, B(ε) = (1/2− 3ε)2(1/2− ε)(1/2 + 2ε)2/ε.

Clearly, f is not monotone for 0 < x < 1, when ε is small.

10



Corollary 2.9. Under the assumptions of Theorem 2.5 and the additional
hypothesis lim αn = 1/2, the orthogonality measure µ is absolutely continuous
on (−1, 1) with a strictly positive and continuous density g(x) = dµ(x)/dx
satisfying

g(x) ≤ C√
1− x2

.

Proof. The corresponding orthonormal polynomials (Pn) satisfy

xPn = λnPn+1 + λn−1Pn−1, (26)

where λn =
√
αn+1γn. We also have Pn = δnpn, where

δn =

√
γ0 · · · γn−1

α1 · · ·αn

, n ≥ 1, δ0 = 1,

and limλn = 1/2. Since

λn+1 − λn =
αn+2(γn+1 − γn) + γn(αn+2 − αn+1)√

αn+2γn+1 +
√
αn+1γn

,

the monotonicity of (αn), (γn) implies that

∞∑
n=1

|λn+1 − λn| <∞.

By the theorem in [8] we conclude that the orthogonality measure µ has a
positive continuous density g(x) for −1 < x < 1. Furthermore, it is known
from this theorem that

lim
n→∞

[P 2
n(x)− Pn−1(x)Pn+1(x)] =

2
√

1− x2

πg(x)
,

uniformly on compact subsets of (−1, 1). For another proof of this result
see [5, p. 201], where it is also proved that (Pn(x)) is uniformly bounded on
compact subsets of (−1, 1) for n→∞. We have

∆n(x) =
1

δ2
n

(
P 2

n(x)− knPn−1(x)Pn+1(x)
)
,

where

kn =
δ2
n

δn−1δn+1

=

√
αn+1γn−1

αnγn

,
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and it follows that lim kn = 1. Using

∆n(x)

∆n(0)
=
P 2

n(x)− knPn−1(x)Pn+1(x)

P 2
n(0)− knPn−1(0)Pn+1(0)

,

we get the result.

In analogy with the proof of Corollary 2.9 we get

Corollary 2.10. Under the assumptions of Theorem 2.7 and the additional
hypothesis lim αn = 1/2, the orthogonality measure µ is absolutely continuous
on (−1, 1) with a strictly positive and continuous density g(x) = dµ(x)/dx
satisfying

g(x) ≥ C√
1− x2

.

We now return to the polynomials (qn) defined in (15) and prove that
they have a non-negative Turán determinant after normalization to being 1
at 1. The polynomials qn are orthogonal with respect to a measure supported
by [−1, 1]. Therefore, qn(1) > 0.

Proposition 2.11. Under the assumptions of Theorem 2.5 we have for n ≥ 1

q2
n(x)

q2
n(1)

− qn−1(x)

qn−1(1)

qn+1(x)

qn+1(1)
≥ 0.

Proof. Indeed, let Qn(x) = qn(x)/qn(1). Then

xQn = cnQn+1 + (1− cn)Qn−1,

where cn = γn+2(qn+1(1)/qn(1)). We will show that (cn) is decreasing and
cn ≥ 1/2. Then the conclusion follows from Corollary 2.2. But cn−1 ≥ cn is
equivalent to

Dn+1(1) = γn+1q
2
n(1)− γn+2qn−1(1)qn+1(1) ≥ 0,

which follows from (22) and (23). We will show that cn ≥ 1/2 by induction.
We have

c0 = γ2
q1(1)

q0(1)
= 1.
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Assume cn−1 ≥ 1/2. By (19) the sequence (αnγn+1) is increasing. Putting
α = limαn, we then get

αnγn+1 ≤ α(1− α) ≤ 1

4
.

Using this and (16) leads to

1 = cn +
αnγn+1

cn−1

≤ cn +
1

4cn−1

≤ cn +
1

2
,

hence cn ≥ 1/2.

3 Lower bound estimates

It turns out that Turán determinants can be used to obtain lower bound
estimates for orthonormal polynomials. Recall that if the polynomials (pn)
satisfy the recurrence relation (1), then their orthonormal version (Pn) satis-
fies

xPn = λnPn+1 + λn−1Pn−1,

where λn =
√
αn+1γn.

Proposition 3.1. Assume that the polynomials (Pn(x)) satisfy

xPn = λnPn+1 + λn−1Pn−1, n ≥ 0, (27)

with P−1 = λ−1 = 0, λn > 0, n ≥ 0, and P0 = 1. If the sequence (λn) is
increasing and limλn = L < ∞, then the (LB) condition (14) holds and in
particular

P 2
n(x) + P 2

n−1(x) ≥ λ2
0

2L2
.

Proof. This proof is inspired by [2, Thm. 3]. By replacing the polynomials
Pn(x) by Pn(2Lx) we can assume that limλn = 1/2. This assumption im-
plies that the corresponding Jacobi matrix is a contraction, because it can be
majorized by the Jacobi matrix with entries λn = 1

2
. Therefore, the orthogo-

nality measure is supported by the interval [−1, 1]. In this way it suffices to
consider x from [−1, 1] because the functions P 2

n(x) are increasing on [1,+∞[
and P 2

n(−x) = P 2
n(x). Let

Dn(x) = λn−1P
2
n(x)− λnPn−1(x)Pn+1(x), n ≥ 1.
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By (27) we can remove Pn+1 to get

Dn = λn−1P
2
n−1 + λn−1P

2
n − xPn−1Pn. (28)

Alternatively we can remove Pn−1 and obtain

λn−1

λn

Dn = λnP
2
n+1 +

λ2
n−1

λn

P 2
n − xPnPn+1. (29)

Replacing n by n− 1 in (29) and subtracting it from (28) gives

Dn −
λn−2

λn−1

Dn−1 =
λ2

n−1 − λ2
n−2

λn−1

P 2
n−1 ≥ 0. (30)

By iterating the inequality Dn ≥ (λn−2/λn−1)Dn−1, we obtain

Dn ≥
λ0

λn−1

D1 =
λ2

0

λn−1

≥ 2λ2
0,

because by (28) we have D1 = λ0. Now (28) implies for |x| ≤ 1

Dn ≤ λn−1P
2
n−1 + λn−1P

2
n +

1

2
|x|(P 2

n−1 + P 2
n) ≤ P 2

n−1 + P 2
n . (31)

In the general case the lower bound is 2(λ0/(2L))2.

Corollary 3.2. Under the assumptions of Proposition 3.1 with L = 1/2 the
orthogonality measure µ is absolutely continuous with a continuous density
g = dµ(x)/dx on [−1, 1] satisfying

g(x) ≤ 1

2πλ2
0

√
1− x2.

Furthermore, g(x) > 0 for −1 < x < 1.

Proof. By assumptions the orthogonality measure is supported by [−1, 1].
By the proof of Proposition 3.1 we have

Dn(x) ≥ 2λ2
0.

On the other hand, by [8] and [5, p. 201] the orthogonality measure is
absolutely continuous in the interval (−1, 1) with a strictly positive and con-
tinuous density g such that

lim
n→∞

1

λn−1

Dn(x) =
2
√

1− x2

πg(x)
,

uniformly on compact subsets of (−1, 1), cf. the proof of Corollary 2.9. By
Property (LB) there are no masses at ±1.
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Remark 3.3. Corollary 3.2 is also obtained in [4, p.758].

The Jacobi polynomials P
(α,α)
n (x) in the standard notation of Szegő, cf.

[10], are discussed in the Introduction. The corresponding orthonormal poly-
nomials are denoted Pn(α;x). We recall that

cα

∫ 1

−1

[P (α,α)
n (x)]2(1−x2)α dx =

22α+1Γ(n+ α + 1)2

(2n+ 2α + 1)n!Γ(n+ 2α + 1)B(α + 1, 1/2)
.

(32)

Proposition 3.4. Condition (LB),(14), holds for the orthonormal symme-
tric Jacobi polynomials (Pn(α;x)) if and only if α ≥ 1/2. More precisely we
have:

(i) For α ≥ 1/2

inf{P 2
n(α;x) + P 2

n−1(α;x) | x ∈ R, n ∈ N} ≥ 2

2α + 3
.

(ii) For −1 < α < 1/2

inf{P 2
n(α;x) + P 2

n−1(α;x) | x ∈ R, n ∈ N} = 0.

Proof. Assume α ≥ 1/2. In this case we get from (25)

λ2
n =

1

4

[
1− 4α2 − 1

4(n+ α + 1)2 − 1

]
,

so (λn) is increasing with lim λn = 1/2. By Proposition 3.1 we thus have

P 2
n + P 2

n−1 ≥ 2λ2
0 =

2

2α + 3
,

which shows (i).
In order to show (ii) we will make use of Hilb’s asymptotic formula [10,

Thm 8.21.12]:

θ−1/2

(
sin

θ

2

)α+1/2 (
cos

θ

2

)α+1/2

P (α,α)
n (cos θ)

=
Γ(α + n+ 1)

n!
√

2Nα
Jα(Nθ) +O(n−3/2), (33)
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where θ ∈ [c/n, π/2], N = n + α + 1
2

and c > 0 is fixed. Let jα denote the
smallest positive zero of the Bessel function Jα.

Defining θn = jα/N , we get

n−αP (α,α)
n (θn) = O(n−3/2),

n−αP
(α,α)
n−1 (θn) = (1/

√
2 + o(1))Jα(jα

n+ α− 1/2

n+ α + 1/2
) +O(n−3/2) = O(n−1).

By (32) and Stirling’s formula

cα

∫ 1

−1

[P (α,α)
n (x)]2(1− x2)α dx ∼ 22α

B(α + 1, 1/2)
n−1,

and hence

P 2
n(α; cos θn) = O(n2α−2), P 2

n−1(α; cos θn) = O(n2α−1).

This shows that

P 2
n(α; cos θn) + P 2

n−1(α; cos θn) → 0 when α < 1/2.

Remark 3.5. For −1 < α < −1/2 the observation of (ii) follows easily from
the asymptotic result

Pn(α; 1) ∼ dαn
α+1/2, n→∞,

where dα is a suitable constant, but this simple asymptotic can not be used
when −1/2 ≤ α < 1/2.

Remark 3.6. The example of symmetric Jacobi polynomials suggests that
if (λn) is decreasing, then condition (LB) does not hold. This is not true,
however, because for 1

2
< λ0 <

1√
2

and λn = 1
2

for n ≥ 1 we have a decreasing
sequence. The corresponding Jacobi matrix has norm 1 because this is so
for the cases λ0 = 1

2
and λ0 = 1/

√
2, which correspond to the Chebyshev

polynomials of the second and first kind respectively. Furthermore, for n ≥ 2
we have by (28) and (30)

Dn = λn−1P
2
n − λnPn−1Pn+1 = D2 =

2

λ2
0

[λ4
0 − (λ2

0 −
1

4
)x2]
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and for −1 < x < 1

D2(x) > D2(1) =
2

λ2
0

(λ2
0 −

1

2
)2 > 0.

On the other hand, (31) applies for n ≥ 2, and we see that the orthonormal
polynomials satisfy

inf{P 2
n(x) + P 2

n−1(x) | x ∈ R, n ∈ N} ≥ 2

λ2
0

(λ2
0 −

1

2
)2.

4 Continuous q-ultraspherical polynomials

The continuous q-ultraspherical polynomials Cn(x; β|q) depend on two real
parameters q, β, and for |q|, |β| < 1 they are orthogonal with respect to a
continuous weight function on (−1, 1), cf. [6],[7]. The 3-term recurrence
relation is

xCn(x; β|q) =
1− qn+1

2(1− βqn)
Cn+1(x; β|q) +

1− β2qn−1

2(1− βqn)
Cn−1(x; β|q), n ≥ 0

(34)
with C−1 = 0, C0 = 1. The orthonormal version Cn(x; β|q) satisfies equation
(27) with

λn =
1

2

√
(1− qn+1)(1− β2qn)

(1− βqn)(1− βqn+1)
. (35)

The value Cn(1; β|q) is not explicitly known, and therefore we can only obtain
the recurrence coefficients αn, γn from (1) for pn(x) = Cn(x; β|q)/Cn(1; β|q)
as given by the recursive equations

αn+1 =
λ2

n

1− αn

, α0 = 0, γn = 1− αn, (36)

which we get from the relation λn =
√
αn+1γn.

Theorem 4.1. (i) Assume 0 ≤ β ≤ q < 1. Then the recurrence coefficients
(λn) form an increasing sequence with limit 1/2, and therefore (Cn(x; β|q))
satisfies (LB).

(ii) Assume 0 ≤ q ≤ β < 1. Then the recurrence coefficients (λn) form a
decreasing sequence with limit 1/2, and the sequence (αn) is increasing and
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concave with limit 1/2. In particular, we have

∆n(x)

1− x2
≥ c∆n(0), −1 < x < 1, n ≥ 1,

with c = 2α1(1− α2)/(1− α1).

Proof. The function

ψ(x) =
(1− qx)(1− β2x)

(1− βx)(1− βqx)
= 1 + (1− β)(β − q)

x

(1− βx)(1− βqx)

is decreasing for 0 ≤ β ≤ q < 1 and increasing for 0 ≤ q ≤ β < 1. This
shows that λn = (1/2)

√
ψ(qn) is increasing in case (i) and decreasing in case

(ii). In both cases the limit is 1/2.
In case (ii) we therefore have λ2

n ≥ 1/4 and hence

αn+1 ≥
1

4(1− αn)
≥ αn,

because 4x(1− x) ≤ 1 for 0 ≤ x ≤ 1. This shows that (αn) is increasing and
hence with limit 1/2. We further have

αn+1 − αn = 2(λ2
n −

1

4
) + 2(

1

2
− αn)(

1

2
− αn+1),

which shows that αn+1 − αn is decreasing, i.e., (αn) is concave. We can now
apply Theorem 2.5.
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