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1 Introduction

Projection formulas of the type

gu(z) = / D) (dy), (11)

where {v,} is a family of probability measures, are of interest in the theory of
orthogonal polynomials and in probability.

Explicit formulas for measure v, have been known since [2] when ¢, (x) and
pn(y) are both Jacobi polynomials. These formulas were extended to pairs of
Askey-Wilson polynomials in [11, 12] and to pairs of associated Askey-Wilson
polynomials in [13]. The proofs rely on explicit evaluation of certain integrals,
which is a topic of independent interest.

Projection formulas of the type (1.1) were used as a basis of construction of
certain Markov processes in [7, 6, 3, 4]. The technique of proof in these papers
is less constructive and relies on implicit definition of probability measure v,
as the orthogonality measure of the auxiliary family of orthogonal polynomials.
With the exception of [4], these projection formulas dealt with the pairs of
polynomials within the Askey-Wilson class and in fact differ from [11, 12] only
in the allowed ranges for the parameters. The purpose of this note is to provide
a related projection formula outside of the Askey-Wilson class. Our method
does not rely on the knowledge of explicit orthogonality measures and has more
combinatorial character.

Our goal is to analyze in detail the family of orthogonal polynomials
D,(y;t) = ﬁ,(ln’e’f’q)(y;t) which appeared in the study of stochastic processes
with linear regressions and quadratic conditional variances in [5, Theorem 4.5].
Let p_y =0,po=1. Fixn,0d e R, 7>0,-1<¢g<1 Fort>0,n>0let

YDy (Y3 ) = Prg1 (U3 1) + 00 (8)D,, (Y5 1) + an—1¢n(t)D,—1 (35 1), (1.2)

where for n # 0

an = n '4+0n],+ [n]im’, (1.3)
bu(t) = (tn+6+ ([nfg + [n—1g)n7) [n]g,
en(t) = n(t+7ln—1g)[nlg . (1.5)

For n = 0 we need to interpret a,_1c,(t) as (t + 7[n — 1]4)[n]s. Our reason for
the separation of these two factors is that for n > 0 we have

bn(t) = an + cn(t) — %, (1.6)

a property which will be exploited later on. We use the notation

=1l = R fle |



with the usual conventions [0}, = 0, [0],! = 1.

Throughout this paper, by u; we denote the orthogonality measure of poly-
nomials {p, (y;t)}. A sufficient condition for existence of such a probability
measure is that n8 > 0, 7 > 0, and 0 < g < 1. It is possible that our results are
valid for a more general range of the parameters (compare [3] and [4]), but an
attempt to cover such a range is likely to lead to additional technical complica-
tions which should be avoided in a paper that already has a significant degree
of computational complexity.

To compare the polynomials defined by (1.2) with the monic Askey-Wilson
polynomials @, recall that the latter are defined by the recurrence

1 1
LW, (T) = Wy (z) + 5(@ +at = (A, +C))w, + ZAn,lc*nmn,l(gc), (1.7)

where
(1 — abedg™ 1) (1 — abg™)(1 — acq™)(1 — adq™)
An = ’
a(l — abedg®—1) (1 — abedg®™)
o = 90 =)L = beg" (1 = bdg""T)(1 — cdg" )

(1 — abedg®—2)(1 — abedg?n—1)

A linear transformation y = ax + § with p,(y) = a"w,(z) transforms this
recurrence into

YPn(Y) = Prsa(v) + & An + Cn)Pa(y) + 0*CrAn 1Py 1 ().
On the other hand, recurrence (1.2) can be written as

Yo (y) = ﬁn+1(y) + (adn + acCh)p,(y) + asacAn 10D, _1(y),

with d = 0,
2nt b 2nt
a = B - 9
W+ (1—q)(0 — V%2 —4r) 27 + (1 — q)(0 + V0% — 47)
T oo L=+ 00 —g) +n’r n(l—q)t+7
:77 A: 3 = . <~ a
(I-git+7 n(1l —q)? ¢ (1—-q)?

This is equivalent to the Askey-Wilson recurrence only when ay = ag¢, i.e. at a
single value of t = % + 17]_2‘1 only. (The latter plays a role in the proof of Lemma
4.2 below.)

Our main result is the following projection formula.

Theorem 1.1. If0<s<t, 0<¢qg<1,7n0 >0, 7 >0, then for all x in the
support of pus there exists a unique probability measure vy = vy 1 s such that

Pl ) = / B (1 ) (dy). (18)



Of course, probability measure v, = v+, depends also on parameters 0 <
s <t as well as on the remaining parameters 7,6, 7, q.

The proof of Theorem 1.1 appears in Section 5.4, after a number of prelimi-
nary results. The plan of the proof is as follows. In Section 5 we define a family
of monic polynomials {Q,,} in variable y. We verify that the assumptions of
Favard’s theorem are satisfied for the relevant pairs (x, s), so that their orthog-
onality measure v, exists. We show that this measure is unique (a fact that
is nontrivial only when ¢ = 1). We then use the formula for the connection
coefficients between polynomials {Q, } and the monic version of polynomials
{pn} to deduce (1.8).

When 7 > 0, we will find it convenient to consider the following non-monic
polynomials

YPn(Yit) = anprs1(y;t) + bn(O)pn(y:it) + cn(t)pn—1(y;t). (1.9)

Clearly they have the same orthogonality measure u; as the monic polynomials.

2 Identities

We will need a number of auxiliary identities.

Lemma 2.1. Fiz a sequence {py : n > 0} of real numbers. Let {Bp 1 : 0 <k <
n,n=0,1,...} be defined by Bn =0 forn <0 ork >n and for 0 <k <n by
the recurrence

[k +1gBn i1 = ¢"[n = KlgBnk + [M]gBn1k, 0 <k <, (2.1)
with the initial values Bp0 = pn, n=0,1,.... Then
k
B = { " } 3 [ ’;’ ] gD =i=0/2y, (2.2)
7 =0 q

Proof. This follows by a routine induction argument with respect to k. Clearly
(2.2) holds true for £k = 0 and all n > 0. Suppose (2.2) holds true for some
k>0 and all n > 0. Then by (2.1) and the induction assumption, we have

k
[n — k|, { n } { k ] k4(k—j)(k—j—1)/2
n = . n—jt
Fnets k+1g | Kk q;o il 1 Pn=j

[n]y {”_1}i{k q(kj(le)/2 1
[k + 1], k B -

{ ]pn (k+1) +[ 1 ] g kDR 2p,
+

k CN(b s
; ] k } >q<k+1 D=2y
j q



The well known formula [9, (1.45)]

5] e Ll L[ s
J q J q J_l q J q J_l q

(2.3)
ends the proof. O

It turns out that expressions of the form (2.2) can sometimes be written as
products.

Proposition 2.2. If polynomials {p,(y;t)} satisfy recurrence (1.9) and
Ap(z,s) = an+q"z—sng"n|q, (2.4)
then for all k > 1 we have

k k—1
k e Ai(z,s
Z[ ; } gFm D=2, sy = T J(. ). (2.5)
q j=0 J

a
i—o b7

Proof. We proceed by induction with respect to k. Formula (2.5) holds true for
k = 0 by convention, and for k = 1 by a calculation: p;(x; s)+po(z;s) = 1+nz.

Let Bk (z,s) be defined by (2.2) with p, = pp(z;s), n = 0,1,.... The
induction assumption says that

B,k (@, 5) (2.6)

for some k > 1. From (2.1) we see that

k
k — ) (—j—
Brnin(8) = o)+ 3 | B ] a0 . 2)
j = q

On the other hand, multiplying both sides of (2.6) by %ch) =1+ %qk
and using (1.9) we see that

k
Aj(z,s)
11 (

k
S . .
ﬂkk(x S 7qk 77 q Z |: :| (k— j>(k7]71)/2pk_j(x;s)
q

=0 Y =0
¢ <
+- Z { } g EI=02 (ap_ipreia_j (2 8) + b (8)pr—j (a3 5)
]:0 q

+ ch—j(8)pr—1-j(z;8)). (2.8)

Writing the right hand side of (2.8) as

k k+1
q k (ki
ﬂk,k<x,s>+ak2[j] gFIEID 2y o (), (2.9)
j=0 a



from (1.3), (1.4) and (1.5) it is not difficult to see that vy 0 = ar and vy x41 =
—snlk]q + snlk]y = 0. Similarly, for 1 < j < k we have

kg1,
s = ke + T by () k)
q2k72j+1mq[j — 1]

[k ) —J] [k 1 —J] Ck+2—j(5) = 7771 + H[k *j]q + W[k - ]]3 + [j]qaqkij
q q

o ([flal + 1= 516 + 1ok = laa™™7 + [l = Ugg® )
=0+ 0 (k= jlg +d" i)
o (0 = (0~ g+ @ 0) + Ulod®™ (1 5]+ [ — 1141
=07t + 0kl +n7lk]2. (2.10)
(Here we used repeatedly the identity [k —j],+¢*~7[j], = [k]4.) Thus v ; = ax,

which shows that the right hand sides of equations (2.7) and (2.8) are equal.
Therefore their left hand sides are equal, ending the proof. O

Forn >0, n# 0, and ¢ # 0 let

(sng™ = 0)[n]g —n~" —n7n];
qn

Ty (s) = (2.11)

be the zero of A, (x,s), see (2.4). It turns out that (2.5) extends to higher order
polynomials p,, when the polynomials are evaluated at xy.

Lemma 2.3. If {p,(y;t)} satisfies recurrence (1.9) and n,q > 0 then forn >k
we have

k k—1
k YR )"k T Aj(zk(s), s
Z[ ; ] gEDETD2) 0 (6):s) = (k(gik) [] i ""‘< )9 (212)
J 14 q i=o a;

3=0
(For k = 0 this should be interpreted as pn(xo;s) = (—=1)", n >0.)
Proof. Let By, k(x,s) be defined by (2.2) with p, = p,(z;s), n=0,1,.... Then
the left hand side of (2.12) is B, k(zk(s),s)/ [ Z ] . We first prove an aux-

iliary fact that for all 0 < j < k < n we have /Bn’Z(acj(s),s) = 0. We prove
this by induction with respect to n — k. Suppose there is m > 0 such that
Bnk(xj(s),s) = 0 for all triplets (j,k,n) such that 0 < j < k and n — k = m.
By (2.5) this holds true for m = 0. Given j < k and n such that n —k =m+1
by (2.1) we have

([nlq = [k]q)Bn.k (2, 8) = [k + 1o Bnk+1(2, 8) — [n]Bn—1,k(z, 5). (2.13)

By induction assumption the right hand side of (2.13) evaluated at (z;(s),s)
vanishes. As ¢ # 0 and n = k+m + 1 > k, we have [n], — [k], # 0, so
Bk (z;(s),8) =0.



We now prove (2.12). From (1.6) it is easy to see by induction that
(03 8) = pu(—n~15s) = (=1)". For k > 1, we will prove (2.12) by induc-
tion with respect to n.

If n = k then formula (2.12) holds by Proposition 2.2. Suppose (2.12) holds
for some n > k. Then from (2.1) and the fact that By41 x+1(zk(s),s) = 0 we
see that

_ [n+ 1],
¢n+1-k|,

I+, [n] DRI A((s),s)
——MMW—ME 0

Bk (x(5), 8)

Brt1,k(Tk(8),8) =

Therefore,

i { y ] gFmDE=ImDRp L (ak(s)s) = Bri1k(zn(s), 5)
q

per [ n+1 }
k
q
_1\n+1—k k—1 .
e A5(@n(s),s)
gFF1I=R) 5 a;

We need to analyze equation (2.12) in more detail.

Lemma 2.4. Fiz k > 1, ¢ # 0, II; > 0. Suppose that (p,)n>0 s the general
solution of the recurrence

k
k o (_1)n—k
Z[ ' } QD02 o e n 2 (2.14)
§=0 q
Then
n k n
_ (_1\n—k, —nk k(k+1)/2 nr
pn = (=1)""*q7"q ([k] +Y Cug [k_T}>Hk,nZO,
¢ r=1 q
(2.15)
where C1,...,Cy are arbitrary constants.

Proof. Substitute
(_1)nfqu:(2n7k71)/2
Yn = i Pn-
Then with y = (yn)n>0 the equation takes the form of an initial value problem
for a linear recurrence with constant coefficients:

(Aq,ky)n = 17 n > k, (216)



where
k

(Agiy)n =Y _(=1) [ : ] gUtI 2y,
q

j=0 J

We remark that when ¢ = 1 we trivially have A; ; = A’f,l. Since Aq is
the usual difference operator, in this case the general solution of (2.16) is well
known. The g-generalization of this formula follows from (2.3) by induction
with respect to k. We have

Agx = RiRy... Ry, (2.17)

where R; = A, ; are commuting difference operators, (Rjy)n = Yn — ¢/Yn—1
forn > 1.

The general theory of linear difference equations implies that (2.15) is a
consequence of the following two observations.

Claim 2.5. (i) (Agry)n =1 for n >k when
n
Y = [ . ] : (2.18)
a
(i1) (Agxy)n =0 for n >k —r when
y":[k—r]qq ,r=1,2,... k. (2.19)

Proof of Claim 2.5. We note that (2.18) is just r = 0 case of (2.19).
For fixed » > 0 and n > k > r we have

(R’“ ({ = ]">>= RN P R

=q™ [n_k+?k+_l]74‘1}‘;!"[n_l]q ([n]q_qk—r[n—k‘—Fr]Q)
min—k+r+1]g...[n—1],

Therefore

, . .
<RT+1RT+2...Rk <|: kﬁr :| q'rn)) — [ n 0 r :| qrn :qu,
q " q

If » = 0 this implies (2.18) by (2.17). If » > 1 then to prove (2.19) it remains to
notice that since n > k > r > 1 we have (R,.(¢"")), =¢"" —¢"¢"" V" =0. O



The constants C1, ..., are determined from the condition that formula
(2.15) holds for po, ..., Pk—1. O

Proposition 2.6. Suppose {p,(y;t)} satisfies recurrence (1.9). Then there are
constants c(s) that do not depend on n such that:

(i) if 0 < q <1 then |pn(zr(s);s)| < crls)a™";
(ii) if ¢ =1 then |p,(zr(s);s)| < cr(s)n”.

Proof. This follows from (2.15) and (2.12). O

3 Uniqueness of the moment problem

Proposition 3.1. Suppose 0 < ¢<1,1n>0,0>0,7>0. Let {p,(y;t)} be
defined by (1.9). Then the orthogonality measure p; of polynomials {p,(y;t)}
18 determined uniquely by moments.

Proof. For |q| < 1, the coefficients of the recurrence are bounded, so the only
case that requires proof is ¢ = 1. Furthermore, the conclusion holds for 7 = 0,
as in this case p; is a negative binomial law, see [8]. It therefore remains to
consider the case ¢ =1, 7 > 0.

In this case, we use the fact that with zp = —n~' we have p,(zo;t) =
(—=1)", see Lemma 2.3. Let g, (y;t) be the associated polynomials which satisfy
recurrence (1.9) for n > 1 with the initial terms ¢ = 0, ¢ = 1/ag. Then

1

Zoqn(20) = angnt1(z0) + (an + cn + 20)qn(20) + cngn—1(z0).

Therefore with f,,(t) := (—1)""1¢,(z0;t) we have

cn(t) (Fo— for) = c1(t)ea(t) ... cn(t)
Gp aias ...ay

(fr — fo)
_a)ea(t) . ..ealt) 1T

fn+1 - fn =

apag ...Aanpn_—1 (07%

Thus with a suitable convention for n = 1 we can write the solution as

fua(p) = Yo 2l moll) L (3.1)

apGz . . . Qj— a
i—o G0@2 k—1 k

Let

- . - apag ...Aapn—1 -
Pn(it) = \/cl(t)CQ(t)...cn(t) pa(31) (3.2)

and

~ . - apd ...Qap—-1 o
n(w31) = \/cl(t)CQ(t) cooen(t) an(731)

be the corresponding orthonormal polynomials.



By [1, page 84], the moment problem is determined uniquely, if
> B (o) 2+ [Gn(0)[? = oo (3.3)

We have
apaz ...0an—1

c1(t)ea(t)...cn(t)’

|ﬁn(x0)|2 -

and from (3.1) we get

2
apas . . . Gp_1 "L e (t)ea(t) .. oen(t) 1
C1 (t)Cg(t) N Cn(t) <Z apas ...aK—1 ak> ’

k=0

|an($0)|2 -

To verify (3.3) we use the fact that

an ~ 00, en1(t) _ 1+a(t)+0(1/n2), an__ _ 1—@+0(1/n2), (3.4)
an n Cnt1(t) n

where

and a, ~ b, means that a, /b, — 1.
If t < 6/n then a(t) <1 and

n n 1
kl;[l (1 - a](:)> 2 exp (—a(t) k> ~nm > pt

k=1

so the first series in (3.3) diverges. On the other hand, if ¢ > 6/n so that
a(t) > 1, then

n—1

2
- 1 2
|qn($o)\2 ~ n—a® (Z ka(t)) ~ p—o(®) (na(t)—l) — pe®=2 5 -1

k2
k=1

so the second series in (3.3) diverges. O

4 Support of the orthogonality measure

Recall that u; denotes the orthogonality measure of polynomials {p, (y;t)}. The
following result will be used to define the orthogonality measure of auxiliary
polynomials in Section 5.

Proposition 4.1. Suppose 0 < ¢<1,n>0,0>0,7>0. Ifz € supp(us),
then

Aj(x,s) >0 for alln > 0. (4.1)
0

J

n

10



We prove Proposition 4.1 from rudimentary information about the support
of .

Lemma 4.2. Let z;(t) be given by (2.11). Then the support of p, is a subset
of the interval [xo(t),00). In addition, if t > % + 17];2q then

Supp(,u‘t) c {xO(t)a xl(t)a sy T, (t)} U [y»m OO)

with y. = max{zg, (t),zr,+1(t)} and

max{k:t>%+27‘k}, q=1;
k. = ) ) (4.2)
1-— 1—q)no
max{k:q2k>( Q)2+( Al —H7T}, 0<g<1.
(¢l —q) +7)
Remark 4.1. We note that y, = x,,~(t) with
. rnax{j:t>%—&—27’3’—1}7 q=1;
m* = ,
max{j: ¢¥ 1?1 —q)+7)> (1 —q)?+ (1 —qmd +n°r}, ¢<1.

We will use the following criterion to show that there are at most k, + 1
atoms below y,.

Theorem A. Suppose p,(z) are orthogonal polynomials with unique orthog-
onality measure p. If the sequence {(—1)"p,(a) : n > 0} changes sign k-times,
then there is a finite set D with at most k& points such that

supp(pt) C D U [a, 00).
In particular, p has at most k atoms in (—oo, a).

Proof. This follows from the interlacing property of zeros of orthogonal polyno-
mials. The details are omitted. U

Proof of Lemma 4.2. We first observe that supp(ius) C [-n~t, 00). This follows
from the fact that by Proposition 3.1 measure s is determined uniquely, so we
can combine Lemma 2.3 applied to k = 0 with Theorem A applied to a = g =
—_—

We now verify that if ¢ > % + 177;2‘1 then there are k, + 1 atoms at
{zo(t),z1(t),...,zx, (£)}. Recall that z;(t) is an atom of y, if the orthonor-
mal polynomials (3.2) are square-summable at = xz;(t), see [1, page 84]. We
will consider separately the cases ¢ =1 and 0 < ¢ < 1.

Suppose ¢ = 1. Then by Proposition 2.6 we have

E |§’I‘L($]; t)|2 S Cj E n2] apag ...Ap_—1 ~ Cjnzjfa(t).
C1
n n

(t)ea(t) .. .cn(t)

(See (3.5).) Therefore from (3.4), the series converges if t > % + 2j7.

11



Suppose now that 0 < ¢ < 1. Then by Proposition 2.6 we have

_ 9 —oni apag ...0ap_-1
Pn(xist)]” <e; » g™ ’
anl n (5 )] Jzn: c(B)eat) ... en(t)

Since
an (1—q)*+ (1 —q)nb +n°1

e ® -+
the series converges if u;g};;&i;ﬂ;@iﬁ;’% < 1. This proves that z;(t), 0 < j < k,
is an atom under the condition (4.2).
To estimate that there are at most k. + 1 atoms below y, we use Lemma 2.4
to verify that there are at most k atoms of p; below x(t). Namely, Lemma 2.4
states that there exists a polynomial r(x) of degree k such that

pol@n(t);t) = {r(n), q=1

r(g7™), 0<g<l1.

Since r(z) = 0 has at most k real solutions, the sequence {p,(zx(t);t) : n > 0}
has at most k changes of sign. Proposition 3.1 implies that we can use Theorem
A to end the proof. O

Proof of Proposition 4.1. If ¢ = 0 then A, (z,s) = n~! does not depend on z
for n > 1. Since Ag(x,s) = 1/n+ 60 +n1 + z, (4.1) follows from supp(us) C
[_n_la OO)

In the remaining part of the proof, we assume 0 < ¢ < 1. We use the trivial
observation that A;(x, s) increases as a function of x and decreases as a function
of s.

Suppose 0 < s < 8/n+ (1 — q)/n?. From x € supp(us) C [-n~

1 1- 1—qg")?
An(.’IJ,S) > An <_a9+ Zq) = ( a )
nn n Ul

1 00) we get

+0[n]y(1 — ¢") + [n]2nT > 0.

Thus (4.1) holds.
Suppose s > /1 + (1 — q)/n? so that k, = k.(s) > 0 is well defined. We
notice that

zo(s) < x1(s) < -+ <@y, (s) < ys and z;(s) <y, for all j > k. (4.3)

Omitting the easier case of ¢ = 1, write z,(s) = h(q"™), where

1 A=2)(szn—0) (1- 2T
M=) = nz + 2(1—q) 2(1—¢q)?

A calculation shows that

(1—q) (1 —q+n0)+n’r -

B (2) = —
B =

0

12



on the interval 0 < z < 1. Since h tends to —oo at the endpoints, therefore it
has a unique maximum z, € (0, 1) given by

ZP(1—q)s+7)=(1—q) (1 —q+nb) +n°r.

In particular, ¢*+! < 2z, < ¢¥*, so h(2) increases on (0, ¢**!) and decreases on
(¢, 1). Thus A(¢"*") > h(g™*?) > ..., and h(¢°) < h(q') < -~ < h(¢"™).

Inequality (4.3) ends the proof as follows. If x = z(s) for some k < k, then
Aj(x,s) > Aj(z;(s),s) =0 for 0 < j <k, so (4.1) holds for 0 <n < k. On the
other hand, Ag(x,s) =0, so (4.1) holds trivially for all n > k.

Suppose now that > y,. Then (4.3) implies A;(x,s) > A;j(ys,s) >
Aj(zj(s),s) =0forall j=0,1,2.... Thus (4.1) follows.

O

4.1 Additional properties of orthogonality measure

Here we list without proof additional information about u;. Suppose 0 < ¢ <1,
n>0,0>0,7>0.

(i) If ¢ = 1, then there is at most countable set D such that supp(u:) C
D U [«, 00), where
O—nt)? 1
ant U
Moreover, « is an accumulation point of the support but u({a}) = 0.
(This can be verified using [15].)

We conjecture that D = {zo(t), z1(t), ..., 2k, (t), Ys }-

(ii) If 0 < ¢ < 1, then p; has only absolutely continuous and discrete parts.
The absolutely continuous part of s has continuous density strictly posi-
tive on the interval (o — 2/, o — 2v/3), where

(1—q)t+7)((1—q)* +n0(1 — q) + n°7)

o 0+tn 2nt
(1—q)* '

1—g¢ +(1*q)2’ﬁz

(This can be seen from [10], see also [14].)

(iii) If ¢ = 0, then pu; has only absolutely continuous and discrete parts. The
absolutely continuous part of ug has continuous density strictly positive
on the interval (o — 2/, a — 2v/3), where

a=0+nt+2nr, B=(t+71)(1+n0+n°7).

Ifo<t< % + n%’ then there is no discrete part. If ¢ > % + n%, then the

discrete part of ju; is concentrated at zo = —n~!. (This can be verified
from the Stieltjes inversion formula, using the explicit formulas for the
Cauchy transform for constant coefficient recursions.)
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5 Auxiliary polynomials

For the proof of Theorem 1.1 we construct measure v as a measure of orthogo-
nality of auxiliary monic polynomials Q,, (y; z,t, s) in variable y. We begin with
a non-monic version of these polynomials, defined by the three step recurrence

Y Qn(ya z, ta 5) = An(xv S)Qn+1(y; z, ta 5) + Bn($> ta S)Qn(y; z, ta 5)
+ Cn(t,8)Qn_1(y;z,t,5), (5.1)
where A,, is defined by (2.4) and
Bu(x,t,s) = bu(t)+q"z— (1+q)¢" 'nslnl, (5.2)
Cn(t,s) = ep(t)— q"flns[n]q .

with Q_1 =0, Qo = 1. The Jacobi matrix of this recurrence arises as a solution
of the g-commutation equation [5, (1)] with the appropriately modified initial
condition; for more details see [4]. Polynomials {Q,} are well defined for all
x,s,t as long as « & {xo(s), z1(s),... }.

5.1 Connection Coefficients

For x & {xo(s),2z1(s),...}, the connection coefficients B, r(z,t,s) are defined
implicitly by
n
Pait) = Buk(a,t,5)Qr(y; 2, t, 5). (5.4)
k=0

Our next goal is to find the connection coefficients 3, x(z,t, s) explicitly and to
show that they do not depend on t.

Define two linear operators K, L : R® — R* acting on infinite matrices
ﬁ = [6n,k]n,k20 by the rule

[Kﬁ]n,k = anﬂnJrl,k: + bn(t)ﬁn,k + cn(t)ﬁnfl,kry

[LO]nk = Ax—1(2,5)Bn k-1 + Br(x,t,5)Bnx + Crr1(t, 5) B kr1-

Let
H,0=K(— Lg. (5.5)

The infinite triangular matrix [5, x(z,t, $)]n>k>0 1S a unique solution of the
discrete boundary value problem

n—1
Bnn(z,t,s) = H Ajif’ S), n > 0. (5.7)
=0

The boundary condition (5.7) arises from (5.4) by comparing the coefficients
at y". Equation (5.6) follows directly from the recurrences; here we give an

14



argument based on the fact that the orthogonality measure for polynomials
{@Qn} exists for an infinite set of z. For such x, we have

S on () Qu(y; 2,1, 8) v 1 s (dy)
(@1, 8) = AL

Since

k
C;(t, s)
2 _ I[ i\t
||Qk||2 = Aj_l(x,s),

(5.6) follows from

/[ypn (y7 t)]Qk(?ﬁ x, t7 S)Vw,t,s(dy) = Pn (yv t) [ka(y, x, tv 5)]Vw,t,s (dy)

by (1.9) and (5.1). Of course, once (5.6) holds for a large enough set of z, it
holds for all z.

Lemma 5.1. If x & {xo(s),z1(s),...} then the coefficients By r(x,t,s) in (5.4)
are determined uniquely, and do not depend on variable t. In fact, By k(z,t,8) =
Brk(@,s) is defined by (2.2) with pp, = pn(; s).

Proof. Let 3, 1 (z, s) be defined by (2.1) with initial values 5, o(x, s) = pn(z; s).
Combining Lemma 2.1 with Proposition 2.2 we see that the initial condition
(5.7) holds. Therefore, to conclude the proof we only need to verify the following.

Claim 5.2. The matriz {fnx(z,s) : 0 < k < n} as defined by (2.1) with
D = pn(x; 8) satisfies equation (5.6).

A straightforward computational proof goes as follows. Equation (5.6) is

A Br1,k(2,8) + bn(8) B (2, 8) + cn(t) Br—1,k(x,5) = Ap—1(x, 5)Bn k—1(x, 5)
+ Bi(z,t,5)Bnk(x, ) + Cryi1(t, 8)Bnkt+1(x,s). (5.8)

In view of (2.1), and using the explicit form (1.4), (1.5) we verify that the coeffi-
cients at variable ¢ of this equation cancel out. Therefore, in (5.8) without loss of
generality we may take t = 0. We now write 5, x(x, s) as Z?:o Vn,k,jPn—; (Z; 8)
where according to (2.2), we have

. = 1!
B s .

(We will also use the conventions that v, % ,; = 0 unless 0 < k < n and 0 <
j < k.) Then (5.8) is equivalent to a number of identities that arise from
comparing the coefficients at p,—;(x;s). Here we use (1.9) to rewrite the terms
Ai(z,s)pn—j(z;s) and By(z,0,s)pn—;(x;s) as the linear combinations of the

Tn,k,j = 4
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polynomials {p,(z;s)}. We get

an Yt 1k, 541+ 0n(0)n k5 + €n(0)Yn—1kj—1 = Gh1Vn k-1,
—snd" k= U1+ ¢ anj 1 Ynr—1i01 + 0 o (5)Vnk15
+ ¢ e () mr—15-1 + bk(0) vk — (14 Qg snlklgynk
+ @ an—j—1(8)Vn ke j+1 + @"bn—j (8)Vn ks
+ chn+1fj(3)7n,k,jf1 + k1 (0)Vn k41,5 — an’“[k + g k+1,5- (5.10)

Using the identities

nk—1jg _ qj—k+1 [k*j]q Tnk—14-1 _ [j]q
Vnk,j n—k+1], Y k,j [n—k+1],’
Tnk+15 _ qk—j [n —klg Intlkg+l _  j—k+1 [n+ 14k — jlg

Vnk,j [k+1-7l Vnk,j [n—k+1]g[j + 1]

Vn-1kj-1 _ ey 0= klglilq kil _ ki1 [k — g

Tnk.j [n]qlk+1 -3l Vnk.,j [ +1]y’
In,k,j—1 _ k= [j]q Tn,k—1,j+1 _ 2j—2k+3 [k’ - j]q[k —-Jj- 1]q
Tnk,j [k +1—jlg Ynk,j I n—k+1g[7 +1lg

equation (5.10) reduces to the following two identities between g-numbers. The
first identity comes from comparing the coefficients at s,

j[k*”q[k*j]q j[”*j]q[k*j]q p—1ln+1—jlqlilg

0=, " mekrn, Y okt
—(1+Q)qk1[k]q+qk[n—j]q+q2’“jW—qijW
(5.11)

The second identity arises from comparing the coefficients free of s,

ik [n+1]q[k =g [n — Klqlilq
CESEAES) gk + 1 — 3,

ikt1_ [k —Jlq 2j—kt2 [k = dlglk =5 —1lq

+ b, (0) = b (0) + ¢, (0)g" 7

anq

= ag_19q CESEN + an—j-19 [t 1— klg[j + 1,
k=g w—1_ Ulg i1k — J]
by (0 —— T e (0) P g, e
+ by—j(0)g [n+1—k]q+c+1 i(0)q [n+1_k]q+a Sl
. J . In—k
+ by (0)g" + cny1-;(0)g*" J[k,_‘_[l]q_j]JerH(O)qk JM~ (5.12)
q q

Identities (5.11) and (5.12) are in the form suitable for computer-assisted veri-
fication. We used Mathematica to confirm their validity. O
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5.2 Monic polynomials

Let Q,,(y; z,t, s) denote the monic version of polynomials Q,,; these polynomials
satisfy the recurrence

y@n(ya CL',t, 5) = @nJrl(y;xatv S) + Bn(.’ﬂ,t, S)@n(y;xatv 8)

+An_1($7S)On(t,S)Qn_l(y;I,t7S)7 n Z 07 (513)

with the usual initial conditions @_; = 0, @, = 1. Here A,, B,,, C,, are defined
by (2.4), (5.2), and (5.3), respectively. Let p,, (y;t) :7@n(y; 0,t,0) be the monic
version of polynomials p,,. The monic polynomials {Q,,} are well defined for all

x, s, leading to the following version of Lemma 5.1.

Corollary 5.3. Suppose 0 < ¢ <1, n7>0,0 >0, 7 >0. For all s,t > 0,
z,y € R we have

n

pn(y; t) = Zﬁn,k(‘r7 S)Qk(@h z,t, S)’ n = 0. (514)

k=0

Proof. Suppose x & {x¢(s),z1(s),...}. Then polynomials @, (y; z,t, s) are well
defined and from Lemma 5.1 we know that (5.4) holds with 5, x(z,t,8) =
Bn.k(z,0,s) which do not depend on t.

It is well known that the monic polynomials @Q,, can be written as

— Qn(y;z,t, )

Qn(y;z,t,8) = —— . (5.15)
H]‘:Ol Aj ($, 5)
Therefore for such x & {z(s), z1(s),. ..}, we get (5.14) with
— n ) 07 k:l Aj )
Bi(x,s) = Buk(@,0, ) 110 45 (@ S). (5.16)

n—1
H]:O aj
We now extend this relation to all z. From (2.1) and (5.16) we see that (5.14)

is a relation between the polynomials in variable x and holds on an infinite set
of x. Therefore, it extends to all z € R. O

5.3 Uniqueness

Tt turns out that polynomials {@,, } can be interpreted as polynomials {p,} with
modified parameters.

Lemma 5.4. Suppose x & {xo(s),x1(s),...}. With

0—sn—(1-q)x T+ (1—¢)s
9’: 1+7}x 5 7'/: 7]_+nm 5 (517)

we have

0,7) (. ; _ (9/’7_/) y—x . t—s 1
Qn " (ysw,t,s) = py, <1+m¢’1+nm : (5.18)
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Proof. Write (5.1) as

y—x _ An(z,s) B, (x,t,s) —x
1 +n$Qn(y) -7 I Q7L+1(y) + 1+nz Qn(y)
1+ 5z Qn-1(y)-
Consider polynomials 7, (y") such that r_; =0, rg = 1, and
Ap(z,8) B (z,t,8) — x Ch(t,s)
/ no_ ) ’ » Uy ’ s /
yra(y) = Tinr ra(y') + B m(y') + T+nr n-1(y')-
Since r_1 = Q_1 and ¢y = Qq, setting y’' = 1y+_ni: we have

() = @n(y), n> 1.
Using (5.17) we get

ylrn(y/) = (7771 + al[n]q + 7—/77[”]2) rn—&-l(y/)
+ (t' + 6"+ ([nlg + [0 — 1g)7'n) [nlgrn(y)
+n ' +7'[n - 1]g) [n]qrnfl(y/)

This means that polynomials 7, (y’) satisfy the same recurrence as polynomials
pn(y';t') with parameters 8’ and 7/. Thus (5.18) follows. O

Polynomials {Q,,} are just a reparametrized version of polynomials p,,, see
Proposition 2.2, so their orthogonality measure v, ¢ ; is also determined by mo-
ments. Since the orthogonality measure of polynomials @,, may differ only for
x € {zo(s),z1(s),...} in which case it has finite support, we get the following.

Corollary 5.5. For all x such that (4.1) holds, the orthogonality measure vy 4 s
of polynomials Q(-;x,t,s) is unique.

5.4 Proof of Theorem 1.1

Proof of Theorem 1.1. Replacing x by —z in (1.2), changes 7,6 to —n, —6. So
without loss of generality we may assume 7 > 0. Furthermore, the case n = 0
is known from [7], so we only consider n > 0.

Let v, 4 s(dy) be the orthogonality measure of polynomials Q,, (y; z,, s), see
(5.13). By Proposition 4.1, measure v, s(dy) is well defined for all 0 < s < ¢,

x € supp(is).
Corollary 5.3 implies that

3. (r.s) = { Pult t)@k(yix,g, §)Vat,5(dy)
’ Q13

Since p,,(7;5) = B,,0(x,s), using the above with & = 0 we see that projection
formula (1.8) holds for all 2 € supp(ps).

Projection formula (1.8) determines the moments of v,. By Corollary 5.5,
this determines v, uniquely. O
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