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Abstract

To a sequence (sn)n≥0 of real numbers we associate the sequence of
Hankel matrices Hn = (si+j), 0 ≤ i, j ≤ n. We prove that if the corre-
sponding sequence of Hankel determinants Dn = detHn satisfy Dn > 0
for n < n0 while Dn = 0 for n ≥ n0, then all Hankel matrices are positive
semi-definite, and in particular (sn) is the sequence of moments of a dis-
crete measure concentrated in n0 points on the real line. We stress that
the conditions Dn ≥ 0 for all n do not imply the positive semi-definiteness
of the Hankel matrices.
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1 Introduction and results

Given a sequence of real numbers (sn)n≥0, it was proved by Hamburger [3] that
it can be represented as

sn =

∫ ∞

−∞
xn dµ(x), n ≥ 0 (1)

with a positive measure µ on the real line, if and only if all the Hankel matrices
Hn = (si+j), 0 ≤ i, j ≤ n are positive semi-definite. The sequences (1) are called
Hamburger moment sequences or positive definite sequences on N0 = {0, 1, . . .}
considered as an additive semigroup under addition, cf. [2].
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Given a Hamburger moment sequence it is clear that all the Hankel determi-
nants Dn = |Hn| are non-negative. It is also easy to see (cf. Lemma 2.1 and its
proof) that only two possibilities can occur: Either Dn > 0 for n = 0, 1, . . . and
in this case any µ satisfying (1) has infinite support, or there exists n0 such that
Dn > 0 for n ≤ n0 − 1 and Dn = 0 for n ≥ n0. In this latter case µ from (1) is
uniquely determined and is a discrete measure concentrated in n0 points on the
real axis. (If n0 = 0 and Dn = 0 for all n, then µ = 0 is concentrated in the
empty set.)

The purpose of the present paper is to prove the following converse result:

Theorem 1.1. Let (sn) be a real sequence and assume that the sequence of Hankel
determinants Dn = |Hn| satisfy Dn > 0, n ≤ n0−1, Dn = 0, n ≥ n0. Then (sn) is
a Hamburger moment sequence (and then necessarily the moments of a uniquely
determined measure µ concentrated in n0 points).

Remark 1.2. It follows from a general theorem about real symmetric matrices,
that if Dn > 0 for n ≤ n0, then the Hankel matrix Hn0

is positive definite. For
a proof see e.g. [2, p.70]. On the other hand, one cannot conclude that Hn0

is positive semi-definite, if it is just known that Dn ≥ 0 for n ≤ n0. For the
sequence 1, 1, 1, 1, 0, 0, . . . we have D0 = D3 = 1, D1 = D2 = Dn = 0 for n ≥ 4,
but the Hankel matrix H2 has a negative eigenvalue. It therefore seems to be of
interest that Theorem 1.1 holds.1

Remark 1.3. It follows from the proof of Theorem 1.1 that the uniquely de-
termined measure µ is concentrated in the zeros of the polynomial pn0

given by
(6).

Example 1.4. Let a ≥ 1 and define s2n = s2n+1 = an, n = 0, 1, . . .. Then the
Hankel determinants are D0 = 1, D1 = a− 1, Dn = 0, n ≥ 2. Therefore (sn) is a
moment sequence of the measure

µ =

√
a− 1

2
√
a

δ−√
a +

√
a + 1

2
√
a

δ√a.

Similarly, for 0 ≤ a ≤ 1, s0 = 1, s2n−1 = s2n = an, n ≥ 1 is a moment sequence of
the measure

µ =
1 −√

a

2
δ−√

a +
1 +

√
a

2
δ√a.

2 Proofs

Consider a discrete measure

µ =
n

∑

j=1

mjδxj
, (2)

1The authors thank Alan Sokal for having mentioned the question.
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where mj > 0 and x1 < x2 < . . . < xn are n points on the real axis. Denote the
moments

sk =

∫

xk dµ(x) =

n
∑

j=1

mjx
k
j , k = 0, 1, . . . , (3)

and let Hk, Dk denote the corresponding Hankel matrices and determinants. The
following Lemma is well-known, but for the benefit of the reader we give a short
proof.

Lemma 2.1. The Hankel determinants Dk of the moment sequence (3) satisfy
Dk > 0 for k < n and Dk = 0 for k ≥ n.

Proof. Let

P (x) =
n

∑

j=0

ajx
j

be the monic polynomial (i.e., an = 1) of degree n with zeros x1, . . . , xn. If
a = (a0, . . . , an) then

∫

P 2(x) dµ(x) = aHna
t = 0,

and it follows that Dn = 0. If p ≥ 1 and 0p is the zero vector in R
p, then also

(a, 0p)Hn+p(a, 0p)
t = 0,

and it follows that Dn+p = 0 for all p ≥ 1.
On the other hand, if a Hamburger moment sequence (1) has Dk = 0 for some

k, then there exists b = (b0, . . . , bk) ∈ R
k+1 \ {0} such that bHk = 0. Defining

Q(x) =

k
∑

j=0

bjx
j ,

we find

0 = bHkb
t =

∫

Q2(x) dµ(x),

showing that µ is concentrated in the zeros of Q. Therefore µ is a discrete measure
having at most k mass-points. This remark shows that the Hankel determinants
of (3) satisfy Dk > 0 for k < n.

Lemma 2.2. Consider n + 1 non-negative integers 0 ≤ c1 < c2 < . . . < cn+1, let
p ≥ 1 be an integer and define the (n + 1) × (n + p)-matrix

Hn+1,n+p =











sc1 sc1+1 · · · sc1+n+p−1

sc2 sc2+1 · · · sc2+n+p−1
...

...
. . .

...
scn+1

scn+1+1 · · · scn+1+n+p−1











.
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For any (p− 1) × (n + p)-matrix Ap−1,n+p we have

D =

∣

∣

∣

∣

Hn+1,n+p

Ap−1,n+p

∣

∣

∣

∣

= 0.

Proof. By multilinearity of a determinant as function of the rows we have

D =

n
∑

j1,...,jn+1=1

mj1 · · ·mjn+1
xc1
j1
· · ·xcn+1

jn+1

∣

∣

∣

∣

J
Ap−1,n+p

∣

∣

∣

∣

,

where J is the (n + 1) × (n + p)-matrix with rows

(

1, xjl, x
2
jl
, . . . , xn+p−1

jl

)

, l = 1, 2, . . . , n + 1,

and since there are n points x1, . . . , xn, two of these rows will always be equal.
This shows that each determinant in the sum vanishes and therefore D = 0.

With n, p as above we now consider a determinant of a matrix (ai,j), 0 ≤ i, j ≤
n + p of size n + p + 1 of the following special form

Mn+p =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s0 · · · sn−1 sn · · · sn+p−1 sn+p
...

. . .
...

...
. . .

...
...

sn−1 · · · s2n−2 s2n−1 · · · s2n+p−2 s2n+p−1

sn · · · s2n−1 s2n · · · s2n+p−1 x0

sn+1 · · · s2n s2n+1 · · · x1 an+1,n+p
...

. . .
...

...
. . .

...
...

sn+p · · · s2n+p−1 xp · · · an+p,n+p−1 an+p,n+p

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

which has Hankel structure to begin with, i.e., ai,j = si+j for i + j ≤ 2n + p− 1.
For simplicity we have called an+j,n+p−j = xj , j = 0, 1, . . . , p.

Lemma 2.3.

Mn+p = (−1)p(p+1)/2Dn−1

p
∏

j=0

(xj − s2n+p).

In particular, the determinant is independent of ai,j with i + j ≥ 2n + p + 1.

Proof. We first observe that the determinant vanishes if we put x0 = s2n+p,
because then the first n + 1 rows in Mn+p have the structure of the matrix of
Lemma 2.2 with cj = j − 1, j = 1, . . . , n + 1.

Next we develop the determinant after the last column leading to

Mn+p =

n+p
∑

l=0

±γlAl,
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where γl are the elements in the last column and Al are the corresponding minors,
i.e., the determinants obtained by deleting row number l+1 and the last column.
Notice that Al = 0 for l = n + 1, . . . , n + p because of Lemma 2.2. Therefore the
numbers an+k,n+p with k = 1, . . . , p do not contribute to the determinant.

For l = 0, . . . , n the determinant Al has the form

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

sc1 · · · sc1+n · · · sc1+n+p−1

sc2 · · · sc2+n · · · sc2+n+p−1
...

. . .
...

. . .
...

scn · · · scn+n · · · scn+n+p−1

sn+1 · · · s2n+1 · · · x1
...

. . .
...

. . .
...

sn+p · · · xp · · · an+p,n+p−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

for integers cj satisfying 0 ≤ c1 < . . . < cn ≤ n.
Each of these determinants vanish for x1 = s2n+p again by Lemma 2.2, so

consequently Mn+p also vanishes for x1 = s2n+p. As above we see that the
determinant does not depend on an+k,n+p−1 for k = 2, . . . , p.

The argument can now be repeated and we see that Mn+p vanishes for xk =
s2n+p when k = 0, . . . , p.

This implies that

Mn+p = K

p
∏

j=0

(xj − s2n+p),

where K is the coefficient to x0x1 . . . xp, when the determinant is written as

Mn+p =
∑

σ

sign(σ)

n+p
∏

j=0

aj,σ(j),

and the sum is over all permutations σ of 0, 1, . . . , n + p.
The terms containing the product x0x1 . . . xp requires the permutations σ

involved to satisfy σ(n + l) = n + p − l, l = 0, . . . , p. This yields a permutation
of n, n + 1, . . . , n + p onto itself reversing the order hence of sign (−1)p(p+1)/2,
while σ yields an arbitrary permutation of 0, 1, . . . , n− 1. This shows that K =
(−1)p(p+1)/2Dn−1.

Proof of Theorem 1.1.

The proof of Theorem 1.1 is obvious if n0 = 0, and if n0 = 1 the proof is more
elementary than in the general case, so we think it is worth giving it separately.
Without loss of generality we assume s0 = D0 = 1, and call s1 = a. From D1 = 0
we then get that s2 = a2, and we have to prove that sn = an for n ≥ 3.
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Suppose now that it has been established that sk = ak for k ≤ n, where n ≥ 2.
By assumption we have

0 = Dn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 a · · · an−1 an

a a2 · · · an sn+1
...

...
. . .

...
...

an−1 an · · · s2n−2 s2n−1

an sn+1 · · · s2n−1 s2n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (4)

Developing the determinant after the last column, we notice that only the first
two terms will appear because the minors for the elements sn+j, j = 2, . . . , n have
two proportional rows (1, a, . . . , an−1) and (a, a2, . . . , an). Therefore

Dn = (−1)n+2an

∣

∣

∣

∣

∣

∣

∣

∣

∣

a a2 · · · an

a2 a3 · · · sn+1
...

...
. . .

...
an sn+1 · · · s2n−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ (−1)n+3sn+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 a · · · an−1

a2 a3 · · · sn+1
...

...
. . .

...
an sn+1 · · · s2n−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

hence

Dn = (−1)n(an+1 − sn+1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 a · · · an−1

a2 a3 · · · sn+1
...

...
. . .

...
an sn+1 · · · s2n−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The last n × n-determinant is developed after the last column and the same
procedure as before leads to

Dn = (−1)n+(n−1)
(

an+1 − sn+1

)2

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 a · · · an−2

a3 a4 · · · sn+1
...

...
. . .

...
an sn+1 · · · s2n−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Going on like this we finally get

Dn = (−1)n+(n−1)+···+2
(

an+1 − sn+1

)n−1

∣

∣

∣

∣

1 a
an sn+1

∣

∣

∣

∣

= (−1)n(n+1)/2
(

an+1 − sn+1

)n
,

and since Dn = 0 we obtain that sn+1 = an+1.

We now go to the general case, where n0 ≥ 2 is arbitrary.
We have already remarked that the Hankel matrix Hn0−1 is positive definite,

and we claim that Hn0
is positive semi-definite. In fact, if for ε > 0 we define

sk(ε) = sk, k 6= 2n0, s2n0
(ε) = s2n0

+ ε, (5)
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and denote the corresponding Hankel matrices and determinants Hk(ε), Dk(ε),
then

Hk(ε) = Hk, 0 ≤ k ≤ n0 − 1, Dn0
(ε) = Dn0

+ εDn0−1 = εDn0−1 > 0.

This shows that Hn0
(ε) is positive definite and letting ε tend to 0 we obtain that

Hn0
is positive semi-definite.

The positive semi-definiteness of the Hankel matrix Hn0
makes it possible to

define a semi-inner product on the vector space Πn0
of polynomials of degree ≤ n0

by defining 〈xj , xk〉 = sj+k, 0 ≤ j, k ≤ n0. The restriction of 〈·, ·〉 to Πn0−1 is an
ordinary inner product and the formulas

p0(x) = 1, pn(x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

s0 s1 · · · sn
...

...
. . .

...
sn−1 sn · · · s2n−1

1 x · · · xn

∣

∣

∣

∣

∣

∣

∣

∣

∣

, 1 ≤ n ≤ n0 (6)

define orthogonal polynomials, cf. [1, Ch. 1]. While pn(x)/
√
Dn−1Dn are or-

thonormal polynomials for n < n0, it is not possible to normalize pn0
since

Dn0
= 0. The theory of Gaussian quadratures remain valid for the polynomials

pn, n ≤ n0, cf. [1, Ch.1], so pn0
has n0 simple real zeros and there is a discrete

measure µ concentrated in these zeros such that

sk =

∫

xk dµ(x), 0 ≤ k ≤ 2n0 − 1. (7)

To finish the proof of Theorem 1.1 we introduce the moments

s̃k =

∫

xk dµ(x), k ≥ 0 (8)

of µ and shall prove that sk = s̃k for all k ≥ 0. We already know this for k < 2n0,
and we shall now prove that s2n0

= s̃2n0
. Since µ is concentrated in the zeros of

pn0
we get

∫

p2n0
(x) dµ(x) = 0. (9)

If (D̃k) denotes the sequence of Hankel determinants of the moment sequence
(s̃k), we get from Lemma 2.1 that D̃k = 0 for k ≥ n0.

Developing the determinants Dn0
and D̃n0

after the last column and using
that they are both equal to 0, we get

s2n0
Dn0−1 = s̃2n0

Dn0−1,

hence s2n0
= s̃2n0

.
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Assume now that sk = s̃k for k ≤ 2n0 + p−1 for some p ≥ 1, and let us prove
that s2n0+p = s̃2n0+p.

The Hankel determinant Dn0+p is then a special case of the determinant Mn0+p

of Lemma 2.3, and it follows that

Dn0+p = (−1)p(p+1)/2Dn0−1 (s2n0+p − s̃2n0+p)
p+1 .

Since Dn0+p = 0 by hypothesis, we conclude that s2n0+p = s̃2n0+p. �
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