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Abstract

We consider commutative hypergroups with translation operators
which are compact on L2 resp. L1. It will be shown that such hy-
pergroups are necessarily discrete and that in the case of compact
translations on L1 the support of the Plancherel measure coincides
with the set of all characters and the hypergroup must be symmetric.
Furthermore we will show that a certain type of Reiter’s condition is
fulfilled.

1 Introduction

In this paper we are going to study commutative hypergroups X for which
the translation operator Tx − I is compact on the space L2(X, m) (resp.
L1(X, m)) for each x ∈ X, where m is the Haar measure on X. These hy-
pergroups will be called of compact type (resp. of strong compact type).
The most prominent examples of such hypergroups are the polynomial hy-
pergroups generated by the little q-Legendre polynomials (see[4].) We will
present a full description of such hypergroups.

The motivation for the investigations in this paper arose from our work
on the so-called Reiter’s condition of type P1 for locally compact commuta-
tive hypergroups (see [2] and [3].) A precise definition of Reiter’s condition
will be given in section 3. This condition is of particular interest in spectral
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analysis of the Banach algebra L1(X, m). An important problem is to inves-
tigate whether the maximal ideals of L1(X, m) have a bounded approximate
identity.

Hypergroups on N0 generated by orthogonal polynomials are of special
interest. In [3] we studied polynomial hypergroups in some detail with re-
spect to the P1-condition. We were able to show that there is a bounded
approximate identity in the maximal ideal which is generated by a character
if and only if the generalized Reiter condition is fulfilled at this character
(see [3, Theorem 3.2].) In [3] it has been shown that the P1-condition is
satisfied at every character which is absolutely summable. Using this result
we observed that the P1-condition is fulfilled at every nontrivial character if
the Jacobi operator is compact on `2 resp. `1. This observation led us to the
more general question whether we have the same situation for hypergroups
of compact type (resp. strong compact type). This question will be answered
completely in this paper.

The paper is organized as follows. In section 2 we present the basic facts
on hypergroups as far as they are necessary to understand the paper. Section
3 contains the main results as well as some examples.

2 Preliminaries

Throughout this paper we will denote by X a locally compact commutative
hypergroup. For the convolution of two elements x, y ∈ X we write x ∗ y
which is defined as δx ∗ δy, where δx is the point measure at the point x. The
involution of an element x ∈ K will be denoted by x̃. Let Cc(X) denote the
space of all continuous functions on X with compact support. For a given
x ∈ X and a function f ∈ Cc(X) the translation Txf of f is given by

Txf(y) = f(x ∗ y) = δx ∗ δy(f).

The commutativity of X ensures the existence of a Haar measure m on X,
i.e., a regular positive Borel measure m 6= 0 such that∫

X

f(y) dm(y) =

∫
X

Txf(y) dm(y) , for all f ∈ Cc(K), x ∈ X.

The spaces Lp(X, m), 1 ≤ p ≤ ∞, are defined as usual. It is well known that
the translation operator Tx can be extended to the spaces Lp(X,m), 1 ≤
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p ≤ ∞, and to the space of bounded continuous functions Cb(X) on X and
moreover that this operator is bounded on each of this spaces.

Let M(X) be the set of all regular bounded Borel measures. For a measure
µ ∈ M(X) we have a bounded operator

Tµ : B → B, Tµf = µ ∗ f =

∫
X

Txf dµ(x),

where B can be one of the spaces Cb(X) or Lp(X, m), 1 ≤ p ≤ ∞. In the
case dµ = f dm we will write Tf .

Let C denote the C∗-algebra generated by the operators Tf , f ∈ Cc(X),
acting on L2(X, m).

The convolution of two functions f, g ∈ L1(X, m) is defined by

f ∗ g (x) =

∫
X

f(y) Teyg(x) dm(y).

With this product and the ∗–operation f ∗(x) = f(x̃) the Banach space
L1(X, m) becomes a Banach ∗–algebra.

The set of all characters of X will be denoted by Xb(X), i.e., the set

Xb(X) = { γ ∈ Cb(X) : γ 6= 0 and Txγ(y) = γ(x)γ(y) for all x, y ∈ X} .

Let X̂ be the set of all hermitian characters, i.e.,

X̂ = {γ ∈ Xb(X) : γ∗ = γ}.

The Fourier transform of a function f ∈ L1(X, m) will be denoted by Ff(γ)

resp. f̂(γ) depending on whether γ is in Xb(X) or in X̂. There is a uniquely

determined positive regular Borel measure π on X̂ with∫
X

|f(x)|2 dm(x) =

∫
bX |f̂(γ)|2 dπ(γ)

for all f ∈ L2(X, m). The measure π is called the Plancherel measure and
its support will be denoted by S. It is well known that

S = {γ ∈ K̂ : |f̂(γ)| ≤ ‖Tf‖ for all f ∈ L1(X, m)}.

For more details on hypergroups we refer to the monograph [1].

Let aj be a family of numbers indexed by elements j from a set J. By
limj→∞ aj = a we mean that for any ε > 0 we have |aj − a| < ε for all but
finitely many j.
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3 The results

The first proposition is known (see for example [7, Thm. 3.4]). We state it
here, with a different proof, for the sake of completeness.

Proposition 1. Let X be a commutative hypergroup with Haar measure m.
If the support S of the Plancherel measure π is compact then the hypergroup
X is discrete.

Proof. By assumption we have π(S) < +∞. Let fi be a net of functions
with compact support Ki ⊂ X such that

⋂
i Ki = {e} and ‖fi‖2 = 1. Then

f̂i → 1 pointwise and by the dominated convergence theorem also in L2(S, π).
Thus by the Plancherel formula the sequence fi is convergent in L2(X,m)
and its limit cannot be anything else but m({e})−1/2δe. We may assume that
m({e}) = 1.

We will show now that no x in X can be an accumulation point. Assume
for a contradiction that there is a net xi such that xi 6= x and xi → x in X.
Since for every f ∈ L2(X, m) the mapping

X 3 x → Txf ∈ L2(X, m)

is continuous and δe ∈ L2(X, m) we have

m({xi})−1δxi
= T exi

δe → Texδe = m({x})−1δx,

where the convergence is with respect to the norm of L2(X, m). On the other
hand

‖m({xi})−1δxi
−m({x})−1δx‖2

2 = m({xi})−1 + m({x})−1 > m({x})−1,

which gives a contradiction. ♦

We now introduce a special type of hypergroups which we are going to
study in detail.

Definition 1. We say that a hypergroup X is of compact type if for every
x ∈ X the operator Tx − I is compact on the space L2(X,m).

Now we will show that hypergroups of compact type are necessarily dis-
crete and moreover have a special dual structure.
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Theorem 1. Every commutative hypergroup of compact type is discrete. The
support of the Plancherel measure is given by S = {γi | i ∈ I} ∪ {1}, where
γi → 1. In particular, every nontrivial character in S is square summable.

Proof. Let f ∈ Cc(X). The operators Tx − I are compact on L2(X, m)
and so is the convolution operator

Tf − f̂(1)I =

∫
X

f(x)[Tex − I] dm(x).

Since the limit of compact operators is compact the operator Tf − f̂(1)I is
compact for every f ∈ L1(X, m).

By Gelfand transform Tf − f̂(1)I is mapped into multiplication operator
M bf− bf(1) acting on L2(S, π). For ε > 0 consider the closed set

Sε = {γ ∈ S : |f̂(γ)− f̂(1)| ≥ ε}.

The closed subspace

Vε = {g ∈ L2(S, π) : supp g ⊂ Sε}

of L2(S, π) is invariant for the operator M bf− bf(1). Moreover this operator
restricted to Vε is invertible. By compactness of this operator the space Vε

must be finite dimensional. Therefore the set Sε is finite for any ε > 0 and
for any f ∈ L1(X, m). This, by definition of the topology on S, implies that
S is of the form as claimed in the statement of the theorem, i.e. the trivial
character is the only accumulation point in S and S is compact. ♦

Definition 2. We say that a hypergroup X is of strong compact type if for
every x in X the operator Tx − I is compact on the space L1(X, m).

Strong compact type implies compact type as the following results state.

Proposition 2. Let X be a commutative hypergroups of strong compact type.
Then every nontrivial bounded character is absolutely integrable.

Proof. According to the Theorem of Riesz on compact operators on Ba-
nach spaces, for each x ∈ X the spectrum of the operator Tx consists of 1
and countably many eigenvalues λx,1, λx,2, . . . different from 1. For an eigen-
value λ let Nx,λ denote the corresponding eigenspace. Since the operators Tx

commute with each other the space Nx,λ is invariant for every translation Ty.
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Let M be the family of all finite dimensional invariant subspaces of
L1(X, m) for {Tx}x∈X . A subspace V in M will be called minimal if it does
not admit a proper subspace in M.

Let V be a minimal subspace. Then for every x and λ if Nx,λ ∩ V 6= {0}
then Nx,λ∩V = V. Fix x ∈ X. Hence there exists λ such that Nx,λ∩V 6= {0}
or Nx,λ ∩ V = {0} for each λ. In the first case we have V ⊆ Nx,λ. Otherwise
TxV = {0}. Thus for each x ∈ X we have either Txγ = 0 for each γ ∈ V or
Txγ = λγ, for each γ ∈ V. In both cases every function γ ∈ V is a common
eigenfunction for all the operators Tx and the eigenvalue depends only on x
and V. Therefore V must be a one-dimensional space spanned by a continuous
and self-adjoint character γ. Let a function 0 6= α ∈ V. Then Txα = γ(x)α,
where γ(x) depends only on x and V. We may assume that α is continuous
by replacing it with Tfα, where f ∈ Cc(X), if necessary. Of course there
exists f such that Tfα 6= 0. We have

γ(x)α(y) = Txα(y) = Tyα(x) = γ(y)α(x).

Hence there exists a constant c such that α(x) = cγ(x) for any x ∈ X. In
particular γ is continuous. Thus TfV is a one-dimensional space spanned by
the continuous function γ(x). By taking any approximate unit fn in L1(X, m)
we can actually show that the space V is spanned by γ. We then have

(Txγ)(y) = γ(x)γ(y). (1)

Observe that γ is bounded by 1. Indeed, since the operators Tx are
contractions on L1(X,m) we have

|γ(x)| ‖γ‖L1(X,m) = ‖Txγ‖L1(X,m) ≤ ‖γ‖L1(X,m).

Hence |γ(x)| ≤ 1. Moreover, we have that γ ∈ L1(X, m)∩L∞(X, m), hence by
the Schwarz inequality γ ∈ L2(X, m). Therefore γ is a self-adjoint character
because

γ(x̃)‖γ‖2 = 〈Texγ, γ〉 = 〈γ, Txγ〉 = γ(x)‖γ‖2.

We claim that every finite dimensional subspace V invariant for {Tx}x∈X

is a direct sum of the minimal subspaces. Indeed, V contains a minimal
subspace W. This subspace is spanned by a character γ. Hence γ ∈ L1(X, m)∩
L∞(X,m). Let V ′ be the space of all functions in V which are orthogonal
to γ with respect to the standard inner product. Then V ′ is also invariant.
Indeed, let η ∈ V ′ and x ∈ X. Then Txη ∈ V and

〈Txη, γ〉 = 〈η, Texγ〉 = γ(x)〈η, γ〉 = 0.
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Thus Txη ∈ V ′. Now we can repeat the same procedure for V ′.
Thus we have proved that every finite dimensional subspace V invari-

ant for {Tx}x∈X is spanned by self-adjoint characters. In particular ev-
ery subspace Nx,λ is spanned by such characters. In particular we have
Nx,λ ⊂ L1(X,m) ∩ L∞(X, m).

Let Mx,λ denote the eigenspace for the operator Tx on the space L∞(X,m)
corresponding to the eigenvalue λ 6= 1. We have

[(Tx)L1→L1 ]∗ = (Tex)L∞→L∞ .

The Fredholm alternative yields that

dim Nx,λ = dim Mx∗,λ,

dim Nex,λ = dim Mx,λ.

Moreover since Nx,λ ⊂ L∞, we have

Nx,λ ⊂ Mx,λ,

Nex,λ ⊂ Mex,λ.

This implies

Nx,λ = Mx,λ, (2)

Nex,λ = Mex,λ.

The dual space Xb(X) can be identified with the set of all bounded char-
acters. Let γ be a bounded character different from 1. Then γ is a common
eigenfunction of the operators Tx with eigenvalues γ(x). There exists x ∈ X
such that γ(x) 6= 1. Then γ ∈ M(x,λ), for λ = γ(x). By (2) we obtain that
γ ∈ Nx,λ ⊂ L1(X, m). Therefore γ is absolutely integrable. ♦

Proposition 3. Every commutative hypergroup of strong compact type is of
compact type.

Proof. Let x ∈ X. Since Tx − I is compact the spectrum of Tx consists
of 1 and at most countably many nonzero eigenvalues λ1, λ2, . . . , such that
λn → 1. The corresponding eigenspaces Nx,λi

are finite dimensional and by
the proof of Proposition 2 are contained in L2(X,m).

In the proof of Proposition 2 we have shown that every character is in
L2(X, m). It is easy to show that the characters form an orthogonal basis
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of L2(X, m). Therefore the space L2(X, m) is spanned by the absolutely
integrable characters.

Let γ be a character. Then (Tx − I)γ = (λi − 1)γ for some i, because
γ ∈ L1(X, m). Thus Tx − I has the representation of the form

Tx − I =
∞∑
i=1

(λi − 1)Px,λi
,

where Px,λi
denotes the orthogonal projection onto Nx,λi

. Hence Tx − I is
compact on L2(X,m). ♦

Theorem 2. Let X be a commutative hypergroup of strong compact type.
Then Xb(X) = S. In particular the hypergroup X is symmetric, i.e. every
bounded character is self-adjoint.

Proof. Proposition 3 and Theorem 1 imply that X is discrete. Let C be
the C∗-algebra generated by the operators Tx acting on the Hilbert space
`2(X, m). Since `1(X, m)∗`2(X, m) ⊂ `2(X, m) we have `1(X, m) ⊂ C. More-
over `1(X, m) ∩ `2(X, m) is dense in C. Let f ∈ `1(X, m) ∩ `2(X, m) and
γ ∈ Xb(X), γ 6= 1. By Proposition 2 we have γ ∈ `1(X, m). Hence

‖γ‖2|〈f, γ〉| = ‖〈f, γ〉γ‖2 = ‖γ ∗ f‖2 ≤ ‖γ‖1‖f‖2

= ‖γ‖1‖Tf (δe)‖2 ≤ ‖γ‖1‖δe‖2‖Tf‖L2→L2 .

In particular the functional ϕ(f) = 〈f, γ〉, for f ∈ `1(X,m) gives rise to a
continuous linear functional on the C∗-algebra C. Since the structure space
of C can be identified with S we have γ ∈ S. ♦

Now we study the so-called Reiter’s condition for hypergroups. The fol-
lowing results are an extension of the work which has been done in [3]. First
we repeat the precise definition of the Reiter condition.

Definition 3. Let γ ∈ Xb(X) be fixed. We say that the P1-condition with
bound M is satisfied in γ (P1(γ, M) for short) if for each ε > 0 and every
compact subset C ⊆ X there exists g ∈ L1(X, m) with the following proper-
ties:

(i) Fg(γ) = 1,

(ii) ‖g‖1 ≤ M ,
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(iii) ‖Teyg − γ(y)g‖1 < ε for all y ∈ C.

We are now considering hypergroups of strong compact type with respect
to the P1-condition.

Theorem 3. Let X be a commutative hypergroup of strong compact type.
Then the P1(γ, M) condition is satisfied for each non-trivial character γ.

Proof. By Proposition 2 and Theorem 1 the hypergroup X is discrete and
its dual is compact with the trivial character as the only accumulation point.
By the proof of Prop. 2 every non-trivial character belongs to `1(X, m). In
the same manner as in the proof of Proposition 4.3 in [3] we obtain that
P1(γ, M) is satisfied. ♦

Now we turn to the polynomial hypergroups. Let us recall some basic
facts. For a more thorough treatment of this class of hypergroups we refer
to [5, 6].

Let {Rn}n∈N0 be a polynomial sequence defined by a recurrence relation
of the type

R1(x) Rn(x) = anRn+1(x) + bnRn(x) + cnRn−1(x) (3)

for n ∈ N with starting polynomials R0(x) = 1, R1(x) = 1
a0

(x − b0) and
an > 0, bn ≥ 0 for all n ∈ N0 and cn ≥ 0 for all n ∈ N. Let the polynomials
be normalized at x = 1, i.e.,

Rn(1) = 1

for all n ∈ N0. We also assume that the coefficients in the linearization
formula

Rn(x)Rm(x) =
n+m∑

k=|n−m|

g(n,m; k) Rk(x),

are non-negative for all n, m, k ∈ N0. A polynomial sequence with these
properties generates a hypergroup structure on N0.

We can obtain a Banach algebra structure by considering the weighted
space `1(N0, h), where

h(0) = 1, h(1) =
1

c1

, h(n) =
a1a2 · · · · · an−1

c1c2 · · · · · cn

, (4)

with translation operators given by

Tnβ(m) =
n+m∑

k=|n−m|

g(n, m; k) β(k) . (5)
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Proposition 4. Let {Rn}n∈N0 define a hypergroup on N0. Then the hyper-
group is of compact type if and only if an → 0, bn → 1 and cn → 0 in which
case the hypergroup is also of strong compact type.

Proof. The translations Tn can be defined recursively as follows. We set
T0 = I. The operator T1 is defined on sequences {β(n)}∞n=0 by the formula

(T1β)(n) = anβ(n + 1) + bnβ(n) + cnβ(n− 1), n ≥ 0. (6)

Using (5) it can be proved that

T1Tn = anTn+1 + bnTn + cnTn−1.

Plugging in x = 1 to the recurrence relation (3) we obtain

an + bn + cn = 1, for n > 0, and a0 + b0 = 1. (7)

Now we get

(T1 − I)Tn = an(Tn+1 − I) + (bn − 1)(Tn − I) + cn(Tn−1 − I).

This formula implies that the operator Tn − I can be factored by T1 − I.
Therefore the operators Tn − I are compact on `2(N, h) if and only if T1 − I
is compact.

The formula (6) implies the following.

T1δn = cn+1δn+1 + bnδn + an−1δn−1, n ≥ 0. (8)

The system {δn}∞n=0 forms a basis for either space `2(N, h) or `1(N, h). The
matrix of the operator T1 corresponding to this basis is tridiagonal. Therefore
the operator T1 − I is compact on `2(N0, h) if and only if

lim
n→∞

〈T1δn, δn+1〉
‖δn‖2‖δn+1‖2

= lim
n→∞

〈T1δn+1, δn〉
‖δn‖2‖δn+1‖2

= lim
n→∞

〈T1δn, δn〉
‖δn‖2

2

= 0.

By (4) and (8) the latter holds if and only if

cn+1an → 0 and bn → 1.

By (7) and the fact that an and cn are positive, this is possible only if an → 0,
bn → 1 and cn → 0.
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Similarly the operator T1 − I is compact on `1(N, h) if and only if

lim
n→∞

〈T1δn, δn+1〉
‖δn‖1‖δn+1‖∞

= lim
n→∞

〈T1δn+1, δn〉
‖δn+1‖1‖δn‖∞

= lim
n→∞

〈T1δn, δn〉
‖δn‖1‖δn‖∞

= 0.

By (4) and (8) this holds if and only if

an → 0, cn → 0 and bn → 1. (9)

Hence, also Tn−I is compact for every n ∈ N, provided (9) holds, as we have
seen before it can be factored by T1 − I. ♦

In view of Theorem 3 we get the following.

Corollary 1. Let {Rn}n∈N0 define a hypergroup on N0 of compact type. Then
the P1(γ, M) condition is satisfied for every nontrivial character γ.

Example 1. We consider the little q-Legendre polynomials. They satisfy
recurrence relation (3) with

an = qn (1 + q)(1− qn+1)

(1− q2n+1)(1 + qn+1)
,

bn =
(1− qn)(1− qn+1)

(1 + qn)(1 + qn+1)
,

cn = qn (1 + q)(1− qn)

(1− q2n+1)(1 + qn)
.

By [4] they define the polynomial hypergroup. From the recurrence relation
we can read easily that this hypergroup is of strong compact type. Hence
the modified Reiter’s condition is satisfied for each nontrivial character.

Example 2. Let the orthogonal polynomials Rn satisfy(3) such that bn

is increasing, bn → 1,
cn+1an ≤ (bn+2 − bn+1)

2,

for every n ≥ 0, and an + bn + cn = 1. Then by remarks following [8, Theo-
rem 1] the polynomials Rn give rise to a hypergroup. Moreover an → 0 and
cn → 0. Hence the resulting hypergroup is of strong compact type.
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