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Abstract

We consider commutative hypergroups with translation operators
which are compact on L? resp. L'. It will be shown that such hy-
pergroups are necessarily discrete and that in the case of compact
translations on L! the support of the Plancherel measure coincides
with the set of all characters and the hypergroup must be symmetric.
Furthermore we will show that a certain type of Reiter’s condition is
fulfilled.

1 Introduction

In this paper we are going to study commutative hypergroups X for which
the translation operator T, — I is compact on the space L*(X,m) (resp.
LY(X,m)) for each z € X, where m is the Haar measure on X. These hy-
pergroups will be called of compact type (resp. of strong compact type).
The most prominent examples of such hypergroups are the polynomial hy-
pergroups generated by the little g-Legendre polynomials (see[4].) We will
present a full description of such hypergroups.

The motivation for the investigations in this paper arose from our work
on the so-called Reiter’s condition of type P; for locally compact commuta-
tive hypergroups (see [2] and [3].) A precise definition of Reiter’s condition
will be given in section 3. This condition is of particular interest in spectral
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analysis of the Banach algebra L'(X,m). An important problem is to inves-
tigate whether the maximal ideals of L*(X,m) have a bounded approximate
identity.

Hypergroups on Ny generated by orthogonal polynomials are of special
interest. In [3] we studied polynomial hypergroups in some detail with re-
spect to the P;-condition. We were able to show that there is a bounded
approximate identity in the maximal ideal which is generated by a character
if and only if the generalized Reiter condition is fulfilled at this character
(see [3, Theorem 3.2].) In [3] it has been shown that the P;-condition is
satisfied at every character which is absolutely summable. Using this result
we observed that the P;-condition is fulfilled at every nontrivial character if
the Jacobi operator is compact on £2 resp. . This observation led us to the
more general question whether we have the same situation for hypergroups
of compact type (resp. strong compact type). This question will be answered
completely in this paper.

The paper is organized as follows. In section 2 we present the basic facts
on hypergroups as far as they are necessary to understand the paper. Section
3 contains the main results as well as some examples.

2 Preliminaries

Throughout this paper we will denote by X a locally compact commutative
hypergroup. For the convolution of two elements z,y € X we write z %y
which is defined as d, * d,,, where J, is the point measure at the point x. The
involution of an element x € K will be denoted by z. Let C.(X) denote the
space of all continuous functions on X with compact support. For a given
x € X and a function f € C.(X) the translation T, f of f is given by

T.f(y) = f(x*y) = 6z % 6,(f)

The commutativity of X ensures the existence of a Haar measure m on X,
i.e., a regular positive Borel measure m # 0 such that

/X £(y) dm(y) = /X Tof(y) dim(y), for all f € CL(K), z € X.

The spaces LP(X,m), 1 < p < oo, are defined as usual. It is well known that
the translation operator T, can be extended to the spaces LP(X,m), 1 <



p < oo, and to the space of bounded continuous functions Cj,(X) on X and
moreover that this operator is bounded on each of this spaces.

Let M (X) be the set of all regular bounded Borel measures. For a measure
€ M(X) we have a bounded operator

T,: B — B, Tuf:u*f:/XTxfdu(:c)

where B can be one of the spaces Cy(X) or LP(X,m), 1 < p < co. In the
case dp = f dm we will write T%.

Let C denote the C*-algebra generated by the operators Ty, f € C.(X),
acting on L*(X,m).

The convolution of two functions f,g € L'(X,m) is defined by

frals /f dmfy).

With this product and the s—operation f*(x) = f(z) the Banach space
L'(X,m) becomes a Banach x—algebra.
The set of all characters of X will be denoted by &,(X), i.e., the set

Xp(X) ={~v € Cy(X) : v#0and Ty(y) = v(x)y(y) for all z,y € X}

Let X be the set of all hermitian characters, i.e.,

X ={ye(X):y =}
The Fourier transform of a function f € L'(X, m) will be denoted by F f(v)

resp. f ( ) depending on whether ~ is in X;(X) or in X. There is a uniquely
determined positive regular Borel measure 7 on X with

J1s@P dm(@) = [\ dnta)

for all f € L?(X,m). The measure 7 is called the Plancherel measure and
its support will be denoted by S. It is well known that

S={yeK: [f(yI<|Ty| forall feL'(X,m)}.
For more details on hypergroups we refer to the monograph [1].
Let a; be a family of numbers indexed by elements j from a set J. By

lim; ., a; = a we mean that for any ¢ > 0 we have |a; — a| < ¢ for all but
finitely many j.



3 The results

The first proposition is known (see for example [7, Thm. 3.4]). We state it
here, with a different proof, for the sake of completeness.

Proposition 1. Let X be a commutative hypergroup with Haar measure m.
If the support S of the Plancherel measure m is compact then the hypergroup
X is discrete.

Proof. By assumption we have 7(S) < +oo. Let f; be a net of functions
with compact support K; C X such that [, K; = {e} and || f;||2 = 1. Then
ﬁ — 1 pointwise and by the dominated convergence theorem also in L*(S, 7).
Thus by the Plancherel formula the sequence f; is convergent in L?*(X,m)
and its limit cannot be anything else but m({e})~'/26,. We may assume that

m({e}) = 1.
We will show now that no x in X can be an accumulation point. Assume
for a contradiction that there is a net x; such that x; # = and z; — x in X.

Since for every f € L*(X,m) the mapping
X >z —T.f € L*(X,m)
is continuous and §, € L*(X, m) we have
m({x;}) "6, = T50. — T5de = m({z})10,,

where the convergence is with respect to the norm of L?(X, m). On the other
hand

Im({z:}) "0z = m({a}) 70l = m({z:}) ™" + m({z}) ™ > m({z}) ™,
which gives a contradiction. &

We now introduce a special type of hypergroups which we are going to
study in detail.

Definition 1. We say that a hypergroup X is of compact type if for every
x € X the operator Ty, — I is compact on the space L*(X,m).

Now we will show that hypergroups of compact type are necessarily dis-
crete and moreover have a special dual structure.



Theorem 1. Every commutative hypergroup of compact type is discrete. The
support of the Plancherel measure is given by S = {v;|i € I} U {1}, where
v; — 1. In particular, every nontrivial character in S is square summable.

Proof. Let f € C.(X). The operators T, — I are compact on L*(X,m)
and so is the convolution operator

T — F)I = /X F@)(Ts — 1) dm(z).

~

Since the limit of compact operators is compact the operator Ty — f(1)I is
compact for every f € L'(X,m).
By Gelfand transform 7y — f(1)/ is mapped into multiplication operator

M -7 acting on L?(S, ). For e > 0 consider the closed set

~ o~

S.={yesS:|f(y) - f)]=e}.

The closed subspace
V.={g € L*S,n) : suppg C S.}

of L?(8,) is invariant for the operator M 771y Moreover this operator
restricted to V. is invertible. By compactness of this operator the space V.
must be finite dimensional. Therefore the set S. is finite for any ¢ > 0 and
for any f € L*(X,m). This, by definition of the topology on S, implies that
S is of the form as claimed in the statement of the theorem, i.e. the trivial
character is the only accumulation point in § and S is compact. &

Definition 2. We say that a hypergroup X is of strong compact type if for
every x in X the operator T, — I is compact on the space L'(X,m).

Strong compact type implies compact type as the following results state.

Proposition 2. Let X be a commutative hypergroups of strong compact type.
Then every nontrivial bounded character is absolutely integrable.

Proof. According to the Theorem of Riesz on compact operators on Ba-
nach spaces, for each x € X the spectrum of the operator T, consists of 1
and countably many eigenvalues A, 1, Ay 2, ... different from 1. For an eigen-
value A let IV, y denote the corresponding eigenspace. Since the operators T},
commute with each other the space IV, , is invariant for every translation 7.
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Let M be the family of all finite dimensional invariant subspaces of
LY(X,m) for {T,},cx. A subspace V in M will be called minimal if it does
not admit a proper subspace in M.

Let V' be a minimal subspace. Then for every « and A if N, NV # {0}
then N, NV = V. Fix z € X. Hence there exists A such that N, NV # {0}
or N; NV = {0} for each A. In the first case we have V' C N, . Otherwise
T,V = {0}. Thus for each z € X we have either T,y = 0 for each v € V or
T,y = \v, for each v € V. In both cases every function v € V' is a common
eigenfunction for all the operators T, and the eigenvalue depends only on x
and V. Therefore V' must be a one-dimensional space spanned by a continuous
and self-adjoint character v. Let a function 0 # a € V. Then T, a0 = v(7),
where v(x) depends only on x and V. We may assume that « is continuous
by replacing it with Tya, where f € C.(X), if necessary. Of course there
exists f such that Tya # 0. We have

1(@)aly) = Tealy) = Tya(r) = v(y)a(z).
Hence there exists a constant ¢ such that a(z) = ey(x) for any z € X. In
particular «y is continuous. Thus 7}V is a one-dimensional space spanned by

the continuous function v(z). By taking any approximate unit f,, in L'(X, m)
we can actually show that the space V' is spanned by v. We then have

(Tey)(y) = v(2)7(y)- (1)

Observe that v is bounded by 1. Indeed, since the operators T, are
contractions on L'(X,m) we have

|’V(~’U)| HVHLl(x,m) = HTx’VHLl(X,m) < |W||L1(X,m)-

Hence |y(x)| < 1. Moreover, we have that v € L*(X, m)NL>*(X,m), hence by
the Schwarz inequality v € L?(X, m). Therefore v is a self-adjoint character
because L

V@) l2 = (Tey,7) = (1, Tev) = 1(@) 1 l2-

We claim that every finite dimensional subspace V' invariant for {7} }.cx
is a direct sum of the minimal subspaces. Indeed, V' contains a minimal
subspace W. This subspace is spanned by a character . Hence v € L' (X, m)N
L>(X,m). Let V' be the space of all functions in V' which are orthogonal

to v with respect to the standard inner product. Then V' is also invariant.
Indeed, let n € V/ and x € X. Then T,,n € V and

(Tun, ) = (0, Tey) = v(x)(n,v) = 0.
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Thus T,n € V'. Now we can repeat the same procedure for V.

Thus we have proved that every finite dimensional subspace V' invari-
ant for {7, },cx is spanned by self-adjoint characters. In particular ev-
ery subspace N, is spanned by such characters. In particular we have
Ny C LYX,m)N L®(X,m).

Let M,  denote the eigenspace for the operator T}, on the space L>(X,m)
corresponding to the eigenvalue \ # 1. We have

()] = (T5) e
The Fredholm alternative yields that

dimey)\ = dimMz*,,\,
dimNgg,)\ = dime,)\.

Moreover since N, x C L, we have

N:c,/\ C Mx,)\v
Nzyx C Mz
This implies
Nx,)\ = Ma:,)\a (2>
Nzyx = Mz

The dual space A,(X) can be identified with the set of all bounded char-
acters. Let v be a bounded character different from 1. Then v is a common
eigenfunction of the operators T, with eigenvalues v(x). There exists x € X
such that y(z) # 1. Then v € M), for A = y(x). By (2) we obtain that
v € N, C L*(X,m). Therefore 7 is absolutely integrable. %

Proposition 3. Every commutative hypergroup of strong compact type is of
compact type.

Proof. Let x € X. Since T, — I is compact the spectrum of T, consists
of 1 and at most countably many nonzero eigenvalues Ay, \o, ..., such that
An — 1. The corresponding eigenspaces [V, ), are finite dimensional and by
the proof of Proposition 2 are contained in L?(X,m).

In the proof of Proposition 2 we have shown that every character is in
L*(X,m). Tt is easy to show that the characters form an orthogonal basis
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of L?(X,m). Therefore the space L?(X,m) is spanned by the absolutely
integrable characters.

Let v be a character. Then (T, — I)y = (A\; — 1) for some i, because
v € LY(X,m). Thus T, — I has the representation of the form

o0

T,—1=) (\i—1)P,

=1

where P, ), denotes the orthogonal projection onto N, ,,. Hence T, — I is
compact on L*(X,m). %

Theorem 2. Let X be a commutative hypergroup of strong compact type.
Then Xy(X) = S. In particular the hypergroup X is symmetric, i.e. every
bounded character is self-adjoint.

Proof. Proposition 3 and Theorem 1 imply that X is discrete. Let C be
the C*-algebra generated by the operators T, acting on the Hilbert space
(*(X,m). Since (*(X, m)**(X,m) C £*(X, m) we have (*(X, m) C C. More-
over (1(X,m) N (*(X,m) is dense in C. Let f € (1(X,m) N (*(X,m) and
v € X,(X), v # 1. By Proposition 2 we have v € *(X, m). Hence

VlE T =Kl = v+ Fllz < Dyl £l
= Al T Ge)llz < Mvllalidelll Tl 22— 22

In particular the functional o(f) = (f,v), for f € £*(X,m) gives rise to a
continuous linear functional on the C*-algebra C. Since the structure space
of C can be identified with S we have v € S. &

Now we study the so-called Reiter’s condition for hypergroups. The fol-
lowing results are an extension of the work which has been done in [3]. First
we repeat the precise definition of the Reiter condition.

Definition 3. Let v € X,(X) be fized. We say that the P;-condition with
bound M is satisfied in v (Pi(7y, M) for short) if for each € > 0 and every
compact subset C' C X there exists g € LY(X, m) with the following proper-
ties:

(i) Fglv) =1,
(i) |lglh < M,



(iii) [ T59 —v(y)glls <€ for ally € C.

We are now considering hypergroups of strong compact type with respect
to the P;-condition.

Theorem 3. Let X be a commutative hypergroup of strong compact type.
Then the Py(y, M) condition is satisfied for each non-trivial character .

Proof. By Proposition 2 and Theorem 1 the hypergroup X is discrete and
its dual is compact with the trivial character as the only accumulation point.
By the proof of Prop. 2 every non-trivial character belongs to ¢!(X,m). In
the same manner as in the proof of Proposition 4.3 in [3] we obtain that

Py (v, M) is satisfied. %

Now we turn to the polynomial hypergroups. Let us recall some basic
facts. For a more thorough treatment of this class of hypergroups we refer
to [5, 6].

Let { R, }nen, be a polynomial sequence defined by a recurrence relation
of the type

Ri(z) Ry(x) = apRpy1 () + by Rp(x) + ¢ Ry—1 () (3)

for n € N with starting polynomials Ry(z) = 1, Ri(x) = é(a: — by) and
a, >0, b, >0 for all n € Ny and ¢, > 0 for all n € N. Let the polynomials
be normalized at x =1, i.e.,

R.(1)=1
for all n € Ny. We also assume that the coefficients in the linearization

formula
n+m

Ry(@)Rp(x) = > g(n,m;k) Re(x),
k=|n—m)|
are non-negative for all n,m,k € Ny. A polynomial sequence with these
properties generates a hypergroup structure on Nj.
We can obtain a Banach algebra structure by considering the weighted
space ¢*(Ny, h), where

BO)=1, h(l) =, hn)= 220t (4)

Cl7 Clcg-.---cn

with translation operators given by

n+m

T.8(m)= Y gln,m;k)B(k) . (5)

k=|n—m)|



Proposition 4. Let {R,}ncn, define a hypergroup on No. Then the hyper-
group is of compact type if and only if a,, — 0, b, — 1 and ¢, — 0 in which
case the hypergroup is also of strong compact type.

Proof. The translations T;, can be defined recursively as follows. We set
To = I. The operator T} is defined on sequences {3(n)}:2, by the formula

(T8)(n) = anB(n + 1)+ buB(n) + cuBn—1), n>0.  (6)
Using (5) it can be proved that
T Ty = anTost + bp T + cnTooi.
Plugging in # = 1 to the recurrence relation (3) we obtain
ap +b, +c,=1, forn>0, and ag+by=1. (7)
Now we get
(Ty — )Ty = an(Tpys — I) + (b — 1)(Tpy — I) + co(Tpy — ).

This formula implies that the operator T,, — I can be factored by 177 — I.
Therefore the operators T, — I are compact on ¢*(N, h) if and only if Ty — I
is compact.

The formula (6) implies the following.

T15n = Cn+15n+1 + bn(gn + an—lén—la n > 0. (8>

The system {8, }°2, forms a basis for either space ¢*(N, h) or ¢*(N, h). The
matrix of the operator T} corresponding to this basis is tridiagonal. Therefore
the operator Ty — I is compact on ¢*(Ny, h) if and only if

lim <T15n76n+1> — lim <T15n+176n> = lim <T15n75n>

- = 0.
n=o0 ||0nllal|ns1ll n=oo (|0nlal|nsallz mmoe [16n]l3

By (4) and (8) the latter holds if and only if

Cnt1Gn — 0 and b, — 1.

By (7) and the fact that a,, and ¢, are positive, this is possible only if a,, — 0,
b, — 1 and ¢,, — 0.
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Similarly the operator Ty — I is compact on ¢}(N, h) if and only if
<T15n7 6n+1> <T1(5n+17 (5n> <T15n7 5n>

lim = lim =lim ————— =0
n—0o0 ||5n||1H5n+1||oo n—oo ”5n+1”1”5n”oo n—oo H‘SnHluénHoo
By (4) and (8) this holds if and only if
a, —0, ¢, —0 and b, — 1. (9)

Hence, also T, — I is compact for every n € N, provided (9) holds, as we have
seen before it can be factored by 77 — I. &

In view of Theorem 3 we get the following.

Corollary 1. Let { R, } nen, define a hypergroup on Ny of compact type. Then
the Py(vy, M) condition is satisfied for every nontrivial character 7.

Example 1. We consider the little g-Legendre polynomials. They satisfy
recurrence relation (3) with

. (1+q)(1—q¢")

(Tl
A G D€ Sk
T )t
o — gLt —g")

(I =g )1 +qm)

By [4] they define the polynomial hypergroup. From the recurrence relation
we can read easily that this hypergroup is of strong compact type. Hence
the modified Reiter’s condition is satisfied for each nontrivial character.
Example 2. Let the orthogonal polynomials R, satisfy(3) such that b,
is increasing, b, — 1,
Cnt10n < (bn+2 - bn+1)2a

for every n > 0, and a,, + b, + ¢, = 1. Then by remarks following [8, Theo-
rem 1] the polynomials R, give rise to a hypergroup. Moreover a,, — 0 and
¢, — 0. Hence the resulting hypergroup is of strong compact type.
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