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This work was inspired by the paper by S. Kwapien and J. My-
cielski (Studia Mathematica 148 (2001), 75-86).

Let {e,}22y C H, |len]] = 1. For given x we get numbers
{(z,e,)}5° ;.- We want to reconstruct x in terms of these num-
bers. The sequence {e,}>°, should be linearly dense. Define

z9 = (w,e0)eo,
Tp = Tp-1+ (37 — Tn—-1, en)en-
The formula is called the Kaczmarz algorithm. We are interested

when z, — z for any x € H. Sequences {e, }°°, for which this
holds will be called effective.



When {e, }°°, is orthonormal the algorithm returns the par-

tial sums
n

Ty = Z(x,ei)ei.

i=0
Kaczmarz (1937) proved that if dimH < +oo and {e,}2, is
periodic and spans H, then {e,}>, is effective.

Let P, be the orthogonal projection onto e;. Then

Tp = Tp-1+ ([ - Pn)(x - xn—l)
r—x, = P,(r—1x,_1)
r—T, = PnPn_l...PlPOx.

The sequence is effective iff P, P, 1 ... P; Py tends to zero strongly.



Let dim H < oo and {e, }7°, be N-periodic. For A = Py_y... PPy
it suffices to show that A" tends to zero. We claim that || Al| < 1.

If not there is a vector = such that ||Az| = ||z|]| = 1. Then
| Pozx|| > ||Az|| = ||z||, hence Pyz = x. Similarly Pz = x, ...,
Py_1x = x, which implies that x 1 ey, eq,...,exy_1. Thus z = 0.



Assume (temporarily) linear independence of vectors {e, }2°.
We have z,, € span{eg,...,e,}.
n

Tpn = Z(x,gi)ei, (1)

i=0
where g; € 'H. It can be verified by induction that

n—1
Gn = €n — Z(en, €i)gi- (2)
i=0
We can define g, by (2) and then check that (1) holds. In

this way we remove the linear independence assumption. The
formula (2) can be written as

n
en = E MpiGi, Mni = (€, €;).
1=0
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By (2) there are numbers c,; such that
n
gn = chjej7 Cnn = 1. (3)
=0

The coefficients {c,;},>; are crucial. We obtain these numbers
by taking the inverse to the matrix I + M where

0 0 0 0
mio 0 0 0
M= |myp my 0 0
m3o m31 M3z 0

oo oo



O 0 0 0 0

C10 0 0 0 O
U=|¢co ca1 0 0 O
0 0

€30 €31 €32
I+U)([I+M)=I+M)I+U)=1

UM = MU = -U — M.

Proposition 1. Let U and M be strictly lower triangular ma-
trices such that MU = UM = —U — M. Then

Ul <1 iff M+M +1>0.

In that case there is a Hilbert space H and vectors {e,}5° such
that M + M* + I is the Gram matriz of these vectors.
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Proof. Let

(v V(! \

0 C10 0
' 0 : 0
Mn - Mpo -+ Mpp—1 0 Un - Cho *°° Cpn-1 0

\ o ) N /

Then (I + M,)(I +U,) = +U,)I+ M,) =1.
Assume M + M* + 1 > 0. Hence M,, + M+ I > 0 and

o < U+ nHM, + M+ HU, +1) = I —-UU,

Hence ||U,|| <1 and ||U|| < 1.




The converse implication follows from

(M + I)(I = UU,) (M, + I) = M, + M + I

By construction of the algorithm we have
rz—x,Lle,

because © — x, = P,(x — x,_1). From z,, = > " (¢, g;)e; we

obtain
T—Tp1 =20 — Ty + (T, 9n)en.

Iz —2pall* = llo—al® + (@ ), n21,

Iz = llz — @ol* + (=, go) I
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Hence
[ee]
l]|* — lim [|a — wall? =) (2, g0) "
n=0

Therefore effectiveness is equivalent to

00
Izl = I(z, gn)I?
n=0

for any x € ‘H. Our main result is
Theorem 1. The sequence {e,}>°, is effective if and only if
it is linearly dense and U s a partial isometry, i.e. U*U 1is a
projection.

These two results can be interpreted as follows. We have

as many effective sequences among sequences of unit vectors as
partial isometries among strictly lower triangular contractions.

9



Kwapien and Mycielski showed that if we choose the sequence
of unit vectors at random then almost surely we end up with an
effective sequence. More precisely fix a Borel measure p on the
unit sphere of H, such that the support of p is linearly dense.
Then draw consecutive vectors independently with respect to
that measure.
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Proof of Theorem 1. Assume effectiveness. Hence

oo

(51], y) = Z<x7 gn)<gn7 y)
n=0
In particular
mi; = (61', €j) = Z(eiagn)(gm ej)'
n=0

Lemma 1.

(gm 6]') - ((UM* + M" + I)5j75n)€2(N)
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Let A=UM*4+ M* 4+ I. We have

oo

mij =Y (A0}, 0,)e(6,, ASi)e = (AJj, Ay)pe.

n=0

Assume for simplicity that A is bounded on ¢2. Therefore we
have
M+M +1=A"A.

Taking into account relation between U and M gives
A" A= MU UM* — MM*+ M + M*+ 1.

Hence
MM*= MUUM*
or

(M*(Sj,M*(Si)p == (UM*(S],UM*(SZ)p (4)
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The last formula makes sense when M is unbounded, because
M* leaves the space F(N) = span{do,d1,...} invariant. This
formula can be proved directly by replacing A with A,, = U,, M+
M, + I and taking the limit. (4) states that U is an isometry on

Hy = M*(f(N))

The proof will be completed if we show that U vanishes on Hj .
We have
U, M*: F(N) - F(N)

hence
MU+ 1) = —M* —U* + M* = —U*.
Therefore U*(F(N)) C M*(F(N)) C Hyp and consequently
Hy C ker U.
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Conversely, let U be a partial isometry. Hence U is isometric
on Hy = U*(F(N)). The formula

U(M* + 1) = —M*

yields that
U*(F(N)) D M*(F(N)).

Hence U is an isometry on M*(F(N)). This implies the formula
(M5, M*6) e = (UM*8;,UM*6;) .

Now we can track backwards the proof of the first part to obtain
the conclusion. &
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Particular case
Assume M*(F(N)) = (2(N). Recall that M*(F(N)) is a car-
rier space of U. This case is equivalent to U*U = I and occurs
when the rows of the matrix M span a dense subspace of /?(N).
For example this is the case when m,, ,—1 # 0 for any n.

0
mio 0
S moq 0
* * mso 0

We say that the sequence {e, }°°, is strongly effective if {e, }°°,
is effective for each k. This is highly nonorthogonal case.
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Theorem 2. Assume {e,}22, is linearly dense. Then {e,} >,
is strongly effective if and only if U*U = 1.

Proof. Let U*U = I and let M®*) and U® denote truncated
matrices when we remove the first £ rows and the first k£ columns.

These matrices correspond to the sequence {e,}>°,. Also
since U is lower triangular we get

(U(k))*U(k) =1,

hence U™ is a partial isometry. It suffices to show that {e, }°>°,
is linearly dense. It can be shown that U*U = I implies

e.¢]

€j=— E %61

i=j+1
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which means that removing finitely many vectors doesn’t spoil
linear density of the system. In view of Theorem 1 the sequence
{en}22,is effective.

Conversely let {e,}>°, be strongly effective. Let Q) denote
the orthogonal projection onto the orthogonal complement of
{00,61...,05-1}. Let Uy = UP;,. Then Uy, = 0 @ U®). Hence
Ur) are partial isometries as well as U. But this is possible only
if U*U and P; commute (Exercise). On the other hand if
U*U commutes with Pj for any k then U*U must be diagonal.
Assume that U*U # I. Then Ud; = 0 for some j. This implies
that e; is orthogonal to all the vectors e;, i # j. Hence {e,}°2
cannot be strongly effective. &
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Theorem 3. Assume {e,}>2, is strongly effective. Then
D len ) = oo
i=0

for any j.
Lemma 2. U*U = I implies UM = —M — 1.
Proof. (incorrect) Assume M is bounded. Then
M = (UUYM = U*(UM) = U"(—U — M) = —I — U*M.
¢

From Lemma 2 we have

U(M + M* +1)
— M-I —-M-U+U" = —(M+ M +1).
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Let G =M + M*+ I. We have U*G = —G. Assume that
> [(es )l < 400
i=0

for some j. Then z := G§; € (2. Consequently U*z = —z and

But ||U*|| < 1 and U* is strictly upper triangular. Hence (U*)"
tends to zero strongly which implies x = 0. This is a contradic-
tion, because z; = (ej,e;) = 1. O
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Stationary case
Assume

(6i+17 €j+1) = (ei, €j)

Then the matrix M is constant on diagonals.

0
aq 0

M= 1|a a; O
as a2 aq 0

By the Herglotz theorem there is a measure p on the unit circle
such that

(€itn,€i) = ap = [Tz”du(z).
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Kwapien and Mycielski showed that a stationary linearly dense
sequence {e, }>°  is effective if and only if either u is the Lebesgue
measure (orthogonal case) or it is singular with respect to the
Lebesgue measure. Also U is constant on diagonals, i.e. it is a
Toeplitz operator.

0
(75} 0
U = U U1 0

us U U 0
U is unitarily equivalent to multiplication operator on H?(T)
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with the function o
n=1

Moreover
|U| = [Ju(2)|| o (ry < 1.

Now multiplication with u(z) is a partial isometry if and only
if the boundary values of |(u(z)| are equal 0 or 1. By F. Riesz
and M. Riesz Theorem u(z) = 0 or |u(z)| = 1. The first case
corresponds to orthogonal systems, because M = 0. The second
case was the key point in the paper by Kwapien and Mycielski
in proving that p is singular.
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Open problem

Fix h € L*(T) such that ﬁ(n) # 0 for any n. Then the trans-
lates of h;, where hy(z) = h(tz) span a dense subspace. Fix
a sequence of numbers ¢, € T. Kwapien and Mycielski showed
that if ¢,, = t", where t is not a root of identity, then the se-
quence h; 1is effective, because this sequence is stationary and
its spectral measure is discrete. Also they showed that if ¢, are
independent random variables with uniform distribution on T
then almost surely the sequence hy; is effective.

The problem is: for given h determine the sequences of unit
numbers ¢,, leading to effectiveness of the sequence hy, .
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Open problem by Mycielski
Let {e,}n—0 be linearly dense. By using the proof of Kacz-
marz theorem it can be shown that there exists a function
o : N — N such that the sequence {e,(,}2 is effective. The
consecutive values of such function may look as follows

0,1,...,0,1,0,1,2,...,0,1,2,0,1,2,3,...,0,1,2,3,. ..

The number of repetition of the block 0,1,2,...,k is set in such
a way that the norm of the operator P, P;_1 ..., P restricted to
the space spanned by eg, eq, ..., e is less than 1/k.

The question is if there exists a function o which is ”good” for
any linearly dense sequence {e, };, i.e. the sequence {e, () }neg
is always effective.
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