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This work was inspired by the paper by S. Kwapień and J. My-
cielski (Studia Mathematica 148 (2001), 75–86).

Let {en}∞n=0 ⊂ H, ‖en‖ = 1. For given x we get numbers
{(x, en)}∞n=0. We want to reconstruct x in terms of these num-
bers. The sequence {en}∞n=0 should be linearly dense. Define

x0 = (x, e0)e0,

xn = xn−1 + (x− xn−1, en)en.

The formula is called the Kaczmarz algorithm. We are interested
when xn → x for any x ∈ H. Sequences {en}∞n=0 for which this
holds will be called effective.
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When {en}∞n=0 is orthonormal the algorithm returns the par-
tial sums

xn =
n∑

i=0

(x, ei)ei.

Kaczmarz (1937) proved that if dimH < +∞ and {en}∞n=0 is
periodic and spans H, then {en}∞n=0 is effective.

Let Pn be the orthogonal projection onto e⊥n . Then

xn = xn−1 + (I − Pn)(x− xn−1)

x− xn = Pn(x− xn−1)

x− xn = PnPn−1 . . . P1P0x.

The sequence is effective iff PnPn−1 . . . P1P0 tends to zero strongly.
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Let dimH < ∞ and {en}∞n=0 be N -periodic. For A = PN−1 . . . P1P0

it suffices to show that An tends to zero. We claim that ‖A‖ < 1.
If not there is a vector x such that ‖Ax‖ = ‖x‖ = 1. Then
‖P0x‖ ≥ ‖Ax‖ = ‖x‖, hence P0x = x. Similarly P1x = x, . . . ,

PN−1x = x, which implies that x ⊥ e0, e1, . . . , eN−1. Thus x = 0.
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Assume (temporarily) linear independence of vectors {en}∞n=0.

We have xn ∈ span {e0, . . . , en}.

xn =
n∑

i=0

(x, gi)ei, (1)

where gi ∈ H. It can be verified by induction that

gn = en −
n−1∑
i=0

(en, ei)gi. (2)

We can define gn by (2) and then check that (1) holds. In
this way we remove the linear independence assumption. The
formula (2) can be written as

en =
n∑

i=0

mnigi, mni = (en, ei).
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By (2) there are numbers cnj such that

gn =
n∑

j=0

cnjej, cnn = 1. (3)

The coefficients {cnj}n>j are crucial. We obtain these numbers
by taking the inverse to the matrix I + M where

M =


0 0 0 0 0 . . .

m10 0 0 0 0 . . .

m20 m21 0 0 0 . . .

m30 m31 m32 0 0 . . .
...

...
...

... . . . . . .


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U =


0 0 0 0 0 . . .

c10 0 0 0 0 . . .

c20 c21 0 0 0 . . .

c30 c31 c32 0 0 . . .
...

...
...

... . . . . . .


(I + U)(I + M) = (I + M)(I + U) = I.

UM = MU = −U −M.

Proposition 1. Let U and M be strictly lower triangular ma-
trices such that MU = UM = −U −M. Then

‖U‖ ≤ 1 iff M + M ∗ + I ≥ 0.

In that case there is a Hilbert space H and vectors {en}∞n=0 such
that M + M ∗ + I is the Gram matrix of these vectors.
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Proof. Let

Mn =



0
m10 0

... . . . 0
mn0 · · · mn,n−1 0

0 · · · 0 . . .
...

...
...

...


Un =



0
c10 0
... . . . 0

cn0 · · · cn,n−1 0

0 · · · 0 . . .
...

...
...

...


Then (I + Mn)(I + Un) = (I + Un)(I + Mn) = I.

Assume M + M ∗ + I ≥ 0. Hence Mn + M ∗
n + I ≥ 0 and

0 ≤ (U ∗
n + I)(Mn + M ∗

n + I)(Un + I) = I − U ∗
nUn

Hence ‖Un‖ ≤ 1 and ‖U‖ ≤ 1.
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The converse implication follows from

(M ∗
n + I)(I − U ∗

nUn)(Mn + I) = Mn + M ∗
n + I.

♦

By construction of the algorithm we have

x− xn ⊥ en

because x − xn = Pn(x − xn−1). From xn =
∑n

i=0(x, gi)ei we
obtain

x− xn−1 = x− xn + (x, gn)en.

‖x− xn−1‖2 = ‖x− xn‖2 + |(x, gn)|2, n ≥ 1,

‖x‖2 = ‖x− x0‖2 + |(x, g0)|2.
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Hence

‖x‖2 − lim
n
‖x− xn‖2 =

∞∑
n=0

|(x, gn)|2.

Therefore effectiveness is equivalent to

‖x‖2 =
∞∑

n=0

|(x, gn)|2

for any x ∈ H. Our main result is

Theorem 1. The sequence {en}∞n=0 is effective if and only if
it is linearly dense and U is a partial isometry, i.e. U ∗U is a
projection.

These two results can be interpreted as follows. We have
as many effective sequences among sequences of unit vectors as
partial isometries among strictly lower triangular contractions.
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Kwapień and Mycielski showed that if we choose the sequence
of unit vectors at random then almost surely we end up with an
effective sequence. More precisely fix a Borel measure µ on the
unit sphere of H, such that the support of µ is linearly dense.
Then draw consecutive vectors independently with respect to
that measure.
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Proof of Theorem 1. Assume effectiveness. Hence

(x, y) =
∞∑

n=0

(x, gn)(gn, y).

In particular

mij = (ei, ej) =
∞∑

n=0

(ei, gn)(gn, ej).

Lemma 1.

(gn, ej) = ((UM ∗ + M ∗ + I)δj, δn)`2(N)

♦
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Let A = UM ∗ + M ∗ + I. We have

mij =
∞∑

n=0

(Aδj, δn)`2(δn, Aδi)`2 = (Aδj, Aδi)`2.

Assume for simplicity that A is bounded on `2. Therefore we
have

M + M ∗ + I = A∗A.

Taking into account relation between U and M gives

A∗A = MU ∗UM ∗ −MM ∗ + M + M ∗ + I.

Hence
MM ∗ = MU ∗UM ∗

or
(M ∗δj, M

∗δi)`2 = (UM ∗δj, UM ∗δi)`2. (4)
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The last formula makes sense when M is unbounded, because
M ∗ leaves the space F(N) = span {δ0, δ1, . . .} invariant. This
formula can be proved directly by replacing A with An = UnM

∗
n+

Mn + I and taking the limit. (4) states that U is an isometry on

H0 = M ∗(F(N)).

The proof will be completed if we show that U vanishes on H⊥
0 .

We have
U ∗, M ∗ : F(N) → F(N)

hence
M ∗(U ∗ + I) = −M ∗ − U ∗ + M ∗ = −U ∗.

Therefore U ∗(F(N)) ⊂ M ∗(F(N)) ⊂ H0 and consequently

H⊥
0 ⊂ ker U.
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Conversely, let U be a partial isometry. Hence U is isometric
on H0 = U ∗(F(N)). The formula

U ∗(M ∗ + I) = −M ∗

yields that
U ∗(F(N)) ⊃ M ∗(F(N)).

Hence U is an isometry on M ∗(F(N)). This implies the formula

(M ∗δj, M
∗δi)`2 = (UM ∗δj, UM ∗δi)`2.

Now we can track backwards the proof of the first part to obtain
the conclusion. ♦
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Particular case
Assume M ∗(F(N)) = `2(N). Recall that M ∗(F(N)) is a car-

rier space of U. This case is equivalent to U ∗U = I and occurs
when the rows of the matrix M span a dense subspace of `2(N).
For example this is the case when mn,n−1 6= 0 for any n.

0
m10 0
∗ m21 0
∗ ∗ m32 0
...

... . . . . . .


We say that the sequence {en}∞n=0 is strongly effective if {en}∞n=k

is effective for each k. This is highly nonorthogonal case.
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Theorem 2. Assume {en}∞n=0 is linearly dense. Then {en}∞n=0
is strongly effective if and only if U ∗U = I.

Proof. Let U ∗U = I and let M (k) and U (k) denote truncated
matrices when we remove the first k rows and the first k columns.

These matrices correspond to the sequence {en}∞n=k. Also
since U is lower triangular we get

(U (k))∗U (k) = I,

hence U (k) is a partial isometry. It suffices to show that {en}∞n=k

is linearly dense. It can be shown that U ∗U = I implies

ej = −
∞∑

i=j+1

cijei
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which means that removing finitely many vectors doesn’t spoil
linear density of the system. In view of Theorem 1 the sequence
{en}∞n=kis effective.

Conversely let {en}∞n=0 be strongly effective. Let Qk denote
the orthogonal projection onto the orthogonal complement of
{δ0, δ1 . . . , δk−1}. Let U(k) = UPk. Then U(k) = 0k ⊕ U (k). Hence
U(k) are partial isometries as well as U. But this is possible only
if U ∗U and Pk commute (Exercise). On the other hand if
U ∗U commutes with Pk for any k then U ∗U must be diagonal.
Assume that U ∗U 6= I. Then Uδj = 0 for some j. This implies
that ej is orthogonal to all the vectors ei, i 6= j. Hence {en}∞n=0
cannot be strongly effective. ♦
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Theorem 3. Assume {en}∞n=0 is strongly effective. Then
∞∑
i=0

|(ei, ej)|2 = +∞

for any j.

Lemma 2. U ∗U = I implies U ∗M = −M − I.

Proof. (incorrect) Assume M is bounded. Then

M = (U ∗U)M = U ∗(UM) = U ∗(−U −M) = −I − U ∗M.

♦

From Lemma 2 we have

U ∗(M + M ∗ + I)

= −M − I −M ∗ − U ∗ + U ∗ = −(M + M ∗ + I).
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Let G = M + M ∗ + I. We have U ∗G = −G. Assume that

∞∑
i=0

|(ei, ej)|2 < +∞

for some j. Then x := Gδj ∈ `2. Consequently U ∗x = −x and

(U ∗)nx = (−1)nx.

But ‖U ∗‖ ≤ 1 and U ∗ is strictly upper triangular. Hence (U ∗)n

tends to zero strongly which implies x = 0. This is a contradic-
tion, because xj = (ej, ej) = 1. ♦
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Stationary case
Assume

(ei+1, ej+1) = (ei, ej)

Then the matrix M is constant on diagonals.

M =


0
a1 0
a2 a1 0
a3 a2 a1 0
...

...
...

... . . .


By the Herglotz theorem there is a measure µ on the unit circle
such that

(ei+n, ei) = an =

∫
T
zndµ(z).
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Kwapień and Mycielski showed that a stationary linearly dense
sequence {en}∞n=0 is effective if and only if either µ is the Lebesgue
measure (orthogonal case) or it is singular with respect to the
Lebesgue measure. Also U is constant on diagonals, i.e. it is a
Toeplitz operator.

U =


0
u1 0
u2 u1 0
u3 u2 u1 0
...

...
...

... . . .


U is unitarily equivalent to multiplication operator on H2(T)
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with the function

u(z) =
∞∑

n=1

unz
n.

Moreover
‖U‖ = ‖u(z)‖H∞(T) ≤ 1.

Now multiplication with u(z) is a partial isometry if and only
if the boundary values of |(u(z)| are equal 0 or 1. By F. Riesz
and M. Riesz Theorem u(z) ≡ 0 or |u(z)| ≡ 1. The first case
corresponds to orthogonal systems, because M = 0. The second
case was the key point in the paper by Kwapień and Mycielski
in proving that µ is singular.
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Open problem
Fix h ∈ L2(T) such that ĥ(n) 6= 0 for any n. Then the trans-

lates of ht, where ht(z) = h(tz) span a dense subspace. Fix
a sequence of numbers tn ∈ T. Kwapień and Mycielski showed
that if tn = tn, where t is not a root of identity, then the se-
quence htn is effective, because this sequence is stationary and
its spectral measure is discrete. Also they showed that if tn are
independent random variables with uniform distribution on T
then almost surely the sequence htn is effective.

The problem is: for given h determine the sequences of unit
numbers tn leading to effectiveness of the sequence htn.
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Open problem by Mycielski
Let {en}n=0 be linearly dense. By using the proof of Kacz-

marz theorem it can be shown that there exists a function
σ : N → N such that the sequence {eσ(n)}∞n=0 is effective. The
consecutive values of such function may look as follows

0, 1, . . . , 0, 1, 0, 1, 2, . . . , 0, 1, 2, 0, 1, 2, 3, . . . , 0, 1, 2, 3, . . .

The number of repetition of the block 0, 1, 2, . . . , k is set in such
a way that the norm of the operator PkPk−1 . . . , P0 restricted to
the space spanned by e0, e1, . . . , ek is less than 1/k.

The question is if there exists a function σ which is ”good” for
any linearly dense sequence {en}∞n=0, i.e. the sequence {eσ(n)}∞n=0
is always effective.
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