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Abstract. We study Jacobi matrices on directed trees with one end at
inifinity. We show that the defect indices cannot be greater than 1 and give
criteria for essential self-adjointness. We construct certain polynomials as-
sociated with matrices which mimic orthogonal polynomials in the classical
case. Nonnegativity of Jacobi matrices is studied as well.

1. Introduction

The aim of the paper is to study a special class of symmetric unbounded
operators and their spectral properties. These are Jacobi operators defined on
directed trees. They are immediate generalizations of classical Jacobi matrices
which act on sequences {un}∞n=0 by the rule

(Ju)n = λnun+1 + βnun + λn−1un−1, n ≥ 0,

where {λn}∞n=0 and {βn}∞n=0 are sequences of positive and real numbers, re-
spectively, with the convention u−1 = λ−1 = 0. These matrices are closely
related with the set of polynomials defined recursively by

(1) xpn(x) = λnpn+1(x) + βnpn(x) + λn−1pn−1(x), n ≥ 0,

with p−1 = 0, p0 = 1.
In case the coefficients of the matrix are bounded, the matrix J represents

self-adjoint operator on `2(N0). If E(x) denotes the resolution of identity as-
sociated to J, then the polynomials pn(x) are orthonormal with respect to the
measure dµ(x) = d(E(x)e0, e0), where e0 is the sequence taking value 1 at
n = 0 and vanishing elsewhere and (u, v) denotes the standard inner product
in `2(N0). The measure µ has bounded support.

When the coefficients are unbounded the operator J is well defined on the
domain D(J) consisting of sequences with finitely many nonzero terms. In that
case, if this operator is essentially self-adjoint then again the polynomials pn are
orthonormal with respect to the measure dµ(x) = d(E(x)e0, e0), except that
this measure has unbounded support. Moreover there is a unique orthogonality
measure for polynomials pn. By a classical theorem, if the operator J is not
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essentially self-adjoint, there are many measures µ on the real line so that the
polynomials belong to L2(µ), i.e.

∞∫
−∞

x2n dµ(x) <∞, n ∈ N0,

and the polynomials pn are orthogonal with respect to the inner product

(f, g) =

∞∫
−∞

f(x)g(x) dµ(x).

Therefore essential self-adjointness is a crucial property that distinguishes
between the so called determinate and indeterminate cases. Intuitively the
unbounded matrix J is essentially self-adjoint when the coefficients have mod-
erate growth. But the converse is not true in general. For the classical theory
of Jacobi matrices, orthogonal polynomials and moment problems we address
the reader to [1], [2], [6], and to [5] for a modern treatment.

In a recent paper [3] homogeneous Jacobi matrices on directed homogeneous
trees were studied. Two types of homogeneous trees were considered. One of
them was the tree with infinitely many origin points called leaves (on height
0) and one end at infinity.

. . .

. . .

. . .

The tree Γ consists of vertices with heights from zero to infinity. Every
vertex x with height n ≥ 1 is connected with a unique vertex η(x), the parent,
with height n + 1, and d vertices x1, . . . , xd with height n − 1, the children,
like in the figure below:

x

η(x)

x1 x2 xd
. . .
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The Jacobi matrices were defined on `2(Γ), where Γ denotes the set of all
vertices of the tree. The formula is as follows

(Jv)(x) = λnv(η(x)) + βnv(x) + λn−1[v(x1) + v(x2) + . . .+ v(xd)],

where n denotes the height of the vertex x.
An interesting phenomenon occured. It turned out that the operator J

defined on functions {v(x)}x∈Γ, with finitely many nonzero terms, is always
essentially self-adjoint, regardless of the growth of the coefficients λn and βn.
For example the operator J with coefficients λn = (n + 1)2 and βn = 0 is
not essentially self-adjoint when considered as the classical Jacobi matrix on
`2(N0). But it is essentialy self-adjoint when it acts on `2(Γ).

Moreover its spectrum is discrete and consists of the zeros of all the poly-
nomials pn associated with classical Jacobi matrix with coefficients

√
d λn and

βn, i.e. satisfying

xpn(x) =
√
d λnpn+1(x) + βnpn(x) +

√
d λn−1pn−1(x), n ≥ 0.

Every eigenvalue is of infinite multiplicity.
Our aim is to study inhomogeneous Jacobi matrix on that tree. This means

we do not require that the coefficients of the matrix depend only on the height
of the vertex. With every vertex x we associate a positive number λx and a
real number βx. We are going to study operators of the form

Jv(x) = λxv(η(x)) + βxv(x) + λx1v(x1) + λx2v(x2) + . . .+ λxdv(xd).

One of the main differences between the classical case and the case of the
tree Γ is that the eigenvalue equation

(2) zv(x) = λxv(η(x)) + βxv(x) + λx1v(x1) + λx2v(x2) + . . .+ λxdv(xd)

cannot be solved recursively, unlike the equation

zv(n) = λnv(n+ 1) + βnv(n) + λn−1v(n− 1).

This not a coincidence as we are going to show that the equation (2) may not
admit nonzero solutions for real values of z (cf. Proposition 5). But we will
show the equation has a nonzero solution for every nonreal z (Corollary 5).

Actually, when we give up homogeneity of the matrix J, we can as well give
up homogoneity of the tree. This means the number of descendants of vertices
of Γ is not fixed, i.e. the quantities #η−1(x) may vary.

The operator J is symmetric on `2(Γ) with respect to the natural inner
product

(u, v) =
∑
x∈Γ

u(x)v(x).

We are interested in studying the essential self-adjointness of the matrix J. It
turns out that unlike in homogeneous case, the matrix J may not be essentially
self-adjoint. However the defect indices cannot be greater than 1 (Corollary
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5). We derive certain criteria assuring essential self-adjointness. For example
the analog of Carleman condition holds (see Theorem 21). Moreover we relate
essential self-adjointness of J with essential self-adjointness of the classical
Jacobi matrix J0 obtained from J by restriction to an infinite path of the tree
(see Theorem 13 and Remark following its proof).

Classical Jacobi matrices are associated with orthogonal polynomials through
the formula (1). In case of the tree Γ there is no natural way of defining poly-
nomials associated with Jacobi matrices on Γ, since (as was mentioned above)
the eigenvalue equation may be not solvable. In Section 3 we define certain
polynomials associated with J. We prove that they have real and simple zeros.
Also we show interlacing property for roots of two consecutive polynomials.
However, unlike in the classical case, there is no natural orthogonality relation
between these polynomials. The most important reason to study these objects
is the fact that the roots of these polynomials describe the eigenvalues of the
restriction of J to finite subtrees of Γ. However, unlike in the classical case, it
may occur that these eigenvalues are multiple.

In Section 5 we give a criterion for nonnegativity of the Jacobi matrix J on
Γ. In the classical case the Jacobi matrix J is positive definite if and only if
(−1)npn(0) > 0 for every n, where pn are the orthogonal polynomials associ-
ated with J. In case of tree Γ we do not have solutions of eigenvalue problem
at our disposal or orthogonal polynomials. Therefore we had to find another
way of getting the result. The nonnegativity of the matrix J proved to be a
major tool in construction of a Jacobi matrix on Γ for which the eigenvalue
equation (2) does not admit solutions for some real values.

2. Definitions and basic properties

We will consider a tree Γ with one end at infinity. Its vertices are located
on heights from zero to infinity. Every vertex x with height n ≥ 0 is directly
connected with a unique vertex η(x) with height n + 1, the parent. When
n ≥ 1 the vertex x is thus directly connected with a finite number of vertices
y on height n− 1, called its children. The set of children of x will be denoted
by η−1(x). The number of vertices in η−1(x) may vary with x. Let l(x) denote
the height of the vertex x.

x

η(x)

. . .︸ ︷︷ ︸
η−1(x)
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For a given vertex x let Γx denote the finite subtree containing the vertex x
together with all its descendants, i.e. vertices y such that ηk(y) = x for some
k. Thus l(y) = l(x)− k.

Define F(Γ) to be the set of all complex valued functions with finite support
on Γ. Let

δx(y) =

{
1 y = x,

0 y 6= x.

Consider the operator J acting on F(Γ) according to the rule

Jδx = λxδη(x) + βxδx +
∑

y∈η−1(x)

λyδy, l(x) > 1,(3)

Jδx = λxδη(x) + βxδx, l(x) = 0,(4)

where λx are positive constants while βx are real ones. Let S be the operator
acting by the rule

Sδx = λxδη(x).

Then the adjoint operator S∗ is given by

S∗δx =


∑

y∈η−1(x)

λyδy, l(x) > 0,

0, l(x) = 0.

The operators S and S∗ are straightforward generalizations of weighted shift
and backward weighted shift operators usually acting on `2(N0). Let M be a
multiplication operator defined by

Mδx = βxδx.

Then

(5) J = S + S∗ +M.

In particular J is a symmetric linear operator.
We will study formal eigenfunctions of the operator J, i.e. functions v de-

fined on Γ and satisfying
Jv = zv.

Evaluation at the vertex x gives that equivalently we have the recurrence
relation

(6) zv(x) =

λxv(η(x)) + βxv(x) +
∑

y∈η−1(x)

λyv(y) l(x) ≥ 1,

λxv(η(x)) + βxv(x) l(x) = 0.
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Since η−1(x) = ∅ for l(x) = 0 we may simplify the notation and (6) takes the
form

(7) zv(x) = λxv(η(x)) + βxv(x) +
∑

y∈η−1(x)

λyv(y)

Unlike in the classical case, this equation cannot be solved recursively, i.e.
setting v(x0) at a leaf x0 doesn’t allow recursive computation of all other values
v(x). Therefore the existence of nonzero solutions of (7) is not obvious. Our
aim is to show that such solutions exist for every nonreal z. In Proposition 23
we show that for real values of z the equation may not admit nonzero solutions.

For x ∈ Γ let Jx denote the truncation of the Jacobi matrix J to the subtree
Γx, i.e. the matrix with the parameters λxy , β

x
y so that

λxy =

{
λy for y ∈ Γx \ {x}
0 for y /∈ Γx \ {x}

βxy =

{
βy for y ∈ Γx
0 for y /∈ Γx

Lemma 1. Fix a vertex x ∈ Γ. Assume there exists a nonzero function v ∈
F(Γx∪{η(x)}) and z /∈ R such that Jv(y) = zv(y) for y ∈ Γx. Then v(η(x)) 6=
0.

Proof. Assume for a contradiction that v(η(x)) = 0. Let w denote the trunca-
tion of v to Γx. Thus Jxw = zw. Moreover w 6= 0. Therefore z must be a real
number, as Jx is a finite dimensional symmetric linear operator. �

Lemma 2. Fix a vertex x ∈ Γ. Assume there exists 0 6= v ∈ F(Γx) and z /∈ R
such that (Jv)(y) = zv(y) for y ∈ Γx \ {x}. Then

zv(x) 6= βxv(x) +
∑

y∈η−1(x)

λyv(y).

Proof. Assume for a contradiction that

zv(x) = βxv(x) +
∑

y∈η−1(x)

λyv(y).

Define the function u ∈ F(Γx ∪ {η(x)}) by setting u(y) = v(y) for y ∈ Γx and
u(η(x)) = 0. Then (Ju)(y) = zu(y) for y ∈ Γx. In view of Lemma 1 we get a
contradiction. �

Corollary 3. Assume there exists a function v 6= 0 on Γ and z /∈ R such that
(Jv)(x) = zv(x) for x ∈ Γ. Then v does not vanish on Γ.

Proof. Assume for a contradiction that v(x) = 0 for a vertex x. By Lemma
1 we get that the function v vanishes identically on Γx. From the recurrence
relation

zv(x) = λxv(η(x)) + βxv(x) +
∑

y∈η−1(x)

λyv(y),
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we get v(η(x)) = 0. Therefore v vanishes identically on Γη(x). Applying the
same procedure infinitely many times we achieve that v vanishes at every
vertex of Γ. �

Lemma 4. For any nonreal number z and any x0 ∈ Γ with l(x0) ≥ 1 there
exists a nonzero function v defined on Γx0 satisfying

(8) (Jv)(x) = zv(x), x ∈ Γx0 \ {x0}.
Moreover the function v cannot vanish and is unique up to a constant multiple.

Proof. We will use induction on the height l(x0). Assume l(x0) = 1. Set v(x0) =
1. Let x ∈ η−1(x0). Then l(x) = 0. We want to have

zv(x) = λxv(x0) + βxv(x).

Thus we may set

v(x) =
λxv(x0)

z − βx
.

In this way (8) is fulfilled.
Assume the conclusion is true for all vertices on height n. Let l(x0) = n+ 1.

Consider vertices x1, x2, . . . , xk ∈ η−1(x0). Then l(xj) = n for j = 1, 2, . . . , k.
By induction hypothesis, for every vertex xj there exists a nonzero function
vj defined on Γxj satisfying

(Jvj)(x) = zvj(x), x ∈ Γxj \ {xj}.
We have

Γx0 =
k⋃
j=1

Γxj ∪ {x0}.

We are going to define the function v on Γx0 in the following way: set

v(x) = cjvj(x), for x ∈ Γxj ,

with c1 = 1. In this way we get

(Jv)(x) = zv(x), x ∈ Γxj \ {xj}, j = 1, 2, . . . , k.

In order to conclude the proof we must show that

(Jv)(xj) = zv(xj), j = 1, 2, . . . , k.

Thus we want to have

zcjvj(xj) = λxjv(x0) + βxjcjvj(xj) +
∑

y∈η−1(xj)

λycjvj(y),

i.e.

(9) λxjv(x0) = cj

zvj(xj)− βxjvj(xj)− ∑
y∈η−1(xj)

λyvj(y)

 .
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The expression in the brackets on the right hand side is nonzero for every
j = 1, 2, . . . , k by Lemma 2. Therefore (9) is satisfied for an appropriate
choice of the value v(x0) and nonzero constants c2, c3, . . . , ck.

By Lemma 1 the function v cannot vanish at any vertex. Moreover if there
was another function ṽ satisfying the conclusion of Lemma 3, then v−cṽ would
also satisfy the conclusion and would vanish for an appropriate choice of the
constant c. Thus v = cṽ. �

Corollary 5. For any nonreal number z there exists a nonzero function v so
that

(Jv)(x) = zv(x), x ∈ Γ.

The function v cannot vanish and is unique up to a constant multiple.

Proof. Fix a leaf x0. By Lemma 4, for any subtree Γηk(x0) there exists a unique
function vk defined on Γηk(x0) so that

vk(x0) = 1, (Jvk)(x) = zvk(x), for x ∈ Γηk(x0) \ {ηk(x0)}.

By unicity we have

vk+1(x) = vk(x), for x ∈ Γηk(x0).

Define

v(x) = vk(x), for x ∈ Γηk(x0).

Since

Γ =
∞⋃
k=1

Γηk(x0),

the function v is defined at every vertex of Γ, and the conclusion follows. �

Remark. In Chapter 5 we are going to show that the conclusion of Corollary
2 may not be true for real numbers z, namely the eigenvalue equation Jv = 0
may not admit nonzero solutions. Observe that for classical Jacobi matrices
(when Γ = N0) the recurrence relation

(10) zv(n) = λnv(n+ 1) + βnv(n) + λn−1v(n− 1)

(λ−1 = 0) admits a unique, up to constant multiple, nonzero solution for any
z ∈ C. In case of a tree it may easily happen that the equation Jv = 0 admits
infinitely many linearly inedependent nonzero solutions. Indeed, assume λx ≡
1 and βx ≡ 0. Consider the tree Γ so that #η−1(x) ≥ 2 for all vertices x on
height 1. For any such vertex x choose x1, x2 ∈ η−1(x). Then the function
vx = δx1 − δx2 satisfies Jvx = 0.
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3. Polynomials and zeros

The classical Jacobi matrices are related to orthogonal polynomials. Namely
setting v0 = 1 in (10) gives that v(n) = pn(z), where pn is a polynomial of
order n, with real coefficients. The question arises if Jacobi matrices on trees
are connected to polynomials, as well. In general we cannot expect that the
solution of Jv = zv will satisfy that v(t) = Pt(z), where Pt is a polynomial for
every t ∈ Γ. But we may expect that Pt(z) is a polynomial for t in a subtree
Γx for some x ∈ Γ.

Proposition 6. Let x ∈ Γ. There exists a nonzero solution vx of Jvx = zvx,
so that for any t ∈ Γ′x the function vx(t) = Px,t(z) is a polynomial with real
coefficients and positive leading coefficient. Moreover if t ∈ Γ′y ⊂ Γ′x then the
polynomial Px,t is divisible by Py,t.

Proof. We will use induction on the height l(x). Let l(x) = 0. By Corollary 5
there is a nonzero solution v of Jv = zv. Then v(x) 6= 0. Let

vx = v(x)−1v.

Hence vx(x) = 1. By Jvx = zvx evaluated at x we get

vx(η(x)) =
z − βx
λx

.

Assume now the conclusion is valid for vertices on height n. Let l(x) = n+1.
By induction hypothesis, for any y ∈ η−1(x) there is a nonzero solution vy so
that Py,t(z) is a polynomial with real coefficients for t ∈ Γ′y. In particular the
polynomial vy(x) = Py,x(z) has real coefficients. Moreover by Lemma 1 the
polynomial Py,x(z) cannot vanish for z /∈ R. Fix y1 ∈ η−1(x) and let

(11) vx =
LCM{Py,x(z) : y ∈ η−1(x)}

Py1,x(z)
vy1 .

Since Jvy1 = zvy1 we get Jvx = zvx. Moreover vx does not vanish for z /∈ R.
Since vy1(x) = Py1,x(z) we obtain

(12) Px,x(z) = vx(x) = LCM{Pη(y),x(z) : η(y) ∈ η−1(x)}.
Since the value vx(x) determines the solution, the function vx does not depend
on the choice of y1 ∈ η−1(x). Thus the formula (11) and the above reasoning
is valid for any choice of y ∈ η−1(x). Hence

(13) vx =
LCM{Pỹ,x(z) : ỹ ∈ η−1(x)}

Py,x(z)
vy, y ∈ η−1(x).

By (13) and by induction hypothesis the value vx(t) is a polynomial in z for any
t ∈

⋃
y∈η−1(x)

Γy ∪{x} = Γx. By the recurrence relation also the value vx(η(x)) is
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a polynomial. Moreover by (13) the polynomial vx(t) is divisible by vy(t) for
any y ∈ η−1(x) and t ∈ Γ′y. This implies the last part of the conclusion. �

Remarks The formulas (12) and (13) imply that for y ∈ η−1(x) and t ∈ Γη(y)
we have

(14) Px,t(z) = Px,x(z)
Py,t(z)

Py,x(z)
.

Let y ∈ Γx. Then y and x are connected in Γx by a path y = y0, y1, . . . , yn = x.
By iterating (14) we get

Px,y(z) =
Pyn,yn(z)

Pyn−1,yn(z)
·
Pyn−1,yn−1(z)

Pyn−2,yn−1(z)
· . . . · Py1,y1(z)

Py0,y1(z)
Py0,y0(z).

Let y ∈ Γx̃ ⊂ Γx. Then x̃ = yk for some k, 0 ≤ k ≤ n. Hence

Px,y(z) =
Pyn,yn(z)

Pyn−1,yn(z)
·
Pyn−1,yn−1(z)

Pyn−2,yn−1(z)
· . . . ·

Pyk+1
(z)

Pyk,yk+1
(z)

Px̃,y(z).

These formulas and (12) imply that the polynomial Px,y(z) can be described
in terms of the polynomials of the form Pt,t′(z) for t ∈ Γx.

Corollary 7. Let z /∈ R. Let {xn}∞n=0 be an infinite path in Γ so that l(xn) = n.
Let v be a nonzero solution of (Jv)(x) = zv(x) so that v(x0) = 1. Then for
any vertex x ∈ Γxn we have

v(x) =
an,x(z)

bn(z)
,

where an,x(z) and bn(z) are polynomials with real coefficients. Moreover the
polynomial bn+1 is divisible by bn.

Proof. Consider the subtree Γxn . Let x ∈ Γxn . By Proposition 6 there is a
solution vn so that vn(x) and vn(x0) are polynomials with real coefficients.
Then

v(x) =
vn(x)

vn(x0)

satisfies v(x0) = 1. By the last part of Proposition 1 the polynomial vn+1(x0)
is divisible by vn(x0). �

Theorem 8. The polynomials Px,y(z), y ∈ Γη(x), have only real zeros. More-
over for any x ∈ Γ the zeros of Px,x and Px,η(x) are single, and the zeros of
Px,x interlace with the zeros of Px,η(x), i.e. if x1 < x2 < . . . < xn denote the
zeros of Px,η(x), then Px,x has n− 1 zeros y1 < y2 < . . . < yn−1 and

x1 < y1 < x2 < y2 < . . . < yn−1 < xn.
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Proof. We will use induction on l(x). Let l(x) = 0. Then Px,x = 1 and Px,η(x) =
(z − βx)/λx. Assume the conclusion is valid for l(x) = n− 1. Let l(x) = n. By
the recurrence relation we have

(15) λxPx,η(x)(z) = (z − βx)Px,x(z)−
k∑
j=1

λyjPx,yj(z),

where η−1(x) = {y1, y2, . . . , yk}. By (14), with t = yj, we get

(16) Px,yj(z) = Px,x(z)
Pyj ,yj(z)

Pyj ,x(z)
.

By induction hypothesis the zeros of Pyj ,yj(z) are real and single and interlace
with the zeros of Pyj ,x(z) for any j. This implies

degPyj ,x = degPyj ,yj + 1.

In view of (15) and (16) we get

degPx,η(x) = degPx,x + 1.

Let r be a root of Px,x(z). We are going to study the sign of Px,η(x)(r) making
use of (15). If Pyj ,x(r) 6= 0, then (16) implies Px,yj(r) = 0. But since Px,x(r) = 0
then Pyj0 ,x(r1) = 0 for some j0, by (12). Consider the quantity

Px,yj0 (r + ε) = Px,x(r + ε)
Pyj0 ,yj0 (r + ε)

Pyj0 ,x(r + ε)
,

where ε > 0 is infinitesimally small. We have

Pyj0 ,yj(r + ε)

Pyj0 ,x(r + ε)
> 0,

as the polynomials Pyj0 ,yj0 (z) and Pyj0 ,x(z) have the same number of roots to
the right of r + ε, by induction hypothesis and by the fact that the leading
coefficients are positive. Consider the limit

Px,yj0 (r) = lim
ε→0+

Px,x(r + ε)
Pyj0 ,yj0 (r + ε)

Pyj0 ,x(r + ε)

= Pyj0 ,yj0 (r) lim
ε→0+

Px,x(r + ε)

Pyj0 ,x(r + ε)
.(17)

The polynomials Py,x, for y ∈ η−1(x), have single roots by induction hypoth-
esis. Thus the limit in the right hand side of (17) is nonzero in view of (12).
Since Pyj0 ,yj0 (r) 6= 0 (by induction hypothesis) we get that Px,j0(r) 6= 0. Hence
the sign of the limit is determined by the sign of Px,x(r+ε). By plugging z = r
into (15) we get that Px,η(x)(r) and Px,x(r + ε) have opposite signs.
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Consider now two consecutive roots r1 < r2 of Px,x(z). The signs of Px,x(r1 +
ε) and Px,x(r2+ε) are opposite. Therefore the signs of Px,η(x)(r1) and Px,η(x)(r2)
are also opposite. Thus Px,η(x)(z) must vanish in the interval (r1, r2).

Assume now that r is the largest root of Px,x(z). Then Px,x(r + ε) > 0 for
small positive ε. By the above reasoning we have Px,η(x)(r) < 0, which means
that Px,η(x) must vanish somewhere to the right of r, as the leading coefficient is
positive. Similarly if r is the smallest root of Px,x(z) then the signs of Px,η(x)(r)
and Px,x(r + ε) are opposite. But since the degree of Px,η(x) is by one greater
than the degree of Px,x(z) and the leading coefficients are positive, we get that
Px,η(x) must vanish below r. �

Theorem 9. Let x ∈ Γ. Let r belong to the spectrum of Jx. Then r satisfies
at least one of the two conditions

(a) Px,η(x)(r) = 0.
(b) There exist y ∈ Γx and y1, y2 ∈ η−1(y) so that Py1,y(r) = Py2,y(r) = 0.

Proof. First we will show that the numbers described in the theorem belong to
the spectrum of Jx. Assume Px,η(x)(r) = 0. By Theorem 8 we have Px,x(r) 6= 0.
By Lemma 4 for any nonreal z there is a solution vx of the equation Jvx = zvx
so that vx(y) = Px,y(z) for y ∈ Γη(x). Let

u(y) = lim
ε→0

Px,y(r + iε), y ∈ Γx.

Then u satisfies Jxu = ru. Moreover u is nonzero as u(x) = Px,x(r) 6= 0.
Assume now that there exist y ∈ Γx and y1, y2 ∈ η−1(y) so that Py1,y(r) =

Py2,y(r) = 0. By the above reasoning there are two nonzero solutions u1, u2,
defined on Γy1 , Γy2 , respectively, of the equations Jy1u1 = ru1 and Jy2u2 = ru2

and u1(y1) 6= 0, u2(y2) 6= 0. Consider the function uy1,y2 defined on Γy as follows

uy1,y2(t) =


λy2u2(y2)u1(t) t ∈ Γy1 ,

−λy1u1(y1)u2(t) t ∈ Γy2 ,

0 t /∈ Γy1 ∪ Γy2 .

Then uy1,y2 6= 0 and Jxuy1,y2 = Juy1,y2 = ruy1,y2 .
Assume that for y ∈ Γx and y1, y2, . . . , yn ∈ η−1(y) we have

Py1,y(r) = Py2,y(r) = . . . = Pyn,y(r) = 0.

Then the eigenvectors
uy1,y2 , . . . , uy1,yn

are linearly independent, as the support of uy1,yi coincides with Γy1∪Γyi . Hence
the dimension of the space spanned by these eigenvectors is at least n− 1.

In the previous part of the proof we have constructed eigenvectors corre-
sponding to the set of numbers described in the theorem. We will calcu-
late the dimension of the space spanned by these eigenvectors. The proof
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will be complete if the dimension coincides with the dimension of the space
`2(Γx), i.e. with #Γx. We will use induction with respect to the height
l(x). Assume the conclusion is valid for l(x) = n. Let l(x) = n + 1. De-
note η−1(x) = {y1, y2, . . . , yk}. Let nj = degPyj ,x. Every eigenvector of Jyj
corresponding to the case (b) is an eigenvector of Jx as well. Therefore, by
induction hypothesis, the dimension of the linear span of all eigenvectors of
Jyi corresponding to the case (b) is equal

#Γyi − degPyi,x.

Such eigenvectors corresponding to Jyi and Jyj , for i 6= j have disjont supports,
hence the total dimension of the eigenvectors corresponding to the case (b) for
Jy1 , . . . , Jyk is equal

k∑
j=1

#Γyj −
k∑
j=1

degPyj ,x

Consider the product
Py1,x(z) . . . Pyk,x(z).

We know that every polynomial Pyj ,x has single roots. We have

Py1,x(z) . . . Pyk,x(z) = c
L∏
l=1

(z − rl)nl .

By the reasoning performed in the first part of the proof, the root rl gives rise
to nl − 1 linearly independent eigenvectors of Jx. Moreover the degree of the
polynomial Px,η(x) is equal to L+ 1 as

degPx,η(x) = degPx,x + 1,

and degPx,x = L (cf. (12)). The roots of Px,η(x) lead to L + 1 linearly in-
dependent eigenvectors of Jx, which are linearly independent from the ones
constructed in (b), as they do not vanish at x. Summarizing the number of
linearly independent eigenvectors of Jx is not less then

k∑
j=1

#Γyj −
k∑
j=1

degPyj ,x +
L∑
l=1

(nl − 1) + L+ 1 =
k∑
j=1

#Γyj + 1 = #Γx.

�

Remark. By analyzing the proof we may observe that if r satisfies the
assumption (a) only, then r is a single eigenvalue of Jx. The same occurs if r
satisfies (b), but not (a), for a single y ∈ Γx and just one pair of y1, y2 ∈ η−1(y).
Otherwise any number r satisfying either (a) or (b) is a multiple eigenvalue of
Jx.



14 RYSZARD SZWARC

4. Essential self-adjointness and defect indices

Let z /∈ C. The function v ∈ `2(Γ) belongs to the defect space Nz if v is
orthogonal to Im (zI − J) = (zI − J)(F(Γ)). In particular v is orthogonal
to (zI − J)δx for any x ∈ Γ. This implies Jv = zv. The dimension of the
defect space Nz is called the defect index. It is known that the defect index
is constant on the upper-half plane and on the lower-half plane. In our case
the defect index is constant on C \R as Jv = zv is equivalent to Jv = zv. We
refer to [4, 6] for the theory of symmetric operators in Hilbert space and its
self-adjoint extensions.

Proposition 10. The defect indices of the operator J cannot be greater than 1.

Proof. Fix a nonreal number z. Let v ∈ `2(Γ) satisfy v 6= 0 and Jv = zv. By
Corollary 3 the function v is unique up to a constant multiple. �

Proposition 10 implies

Corollary 11. Let J be a Jacobi matrix on Γ. Fix a nonreal number z and
let v denote the unique, up to a constant multiple, nonzero solution of the
equation Jv = zv. Then J is essentially self-adjoint if and only if v /∈ `2(Γ).

Theorem 12. There exist Jacobi matrices on Γ which are not essentially self-
adjoint.

Proof. We set βx ≡ 0. Fix a nonreal number z. Choose an infinite path xn in
Γ so that l(xn) = n. We will construct a matrix J by induction on n. Assume
we have constructed a matrix J on Γxn−1 \{xn−1} and a nonvanishing function
v on Γxn−1 so that

‖v |Γxn−1
‖2

2 ≤ 1− 2−(n−1)

and
(Jv)(x) = zv(x), x ∈ Γxn−1 \ {xn−1}.

We want to extend the definition of J and v so that the conclusion remains
valid when n− 1 is replaced by n.

Our first task is to define λxn−1 and v(xn) so that

zv(xn−1) = λxn−1v(xn) +
∑

y∈η−1(xn−1)

λyv(y),

i.e.

(18) λxn−1v(xn) = zv(xn−1)−
∑

y∈η−1(xn−1)

λyv(y).

The right hand side of (18) cannot vanish by Lemma 2. We will define λxn−1

and v(xn) so as to satisfy (18). By specifying λxn−1 large enough we may
assume that

|v(xn)|2 ≤ 2−n−1.
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For any y ∈ η−1(xn) and y 6= xn−1 consider the subtree Γy \ {y}. Set λx = 1
for any x ∈ Γy \ {y}. By Lemma 4 there is a nonzero solution vy defined on Γy
satisfying

(Jvy)(x) = zvy(x), x ∈ Γy \ {y}.
We may assume that ∑

y∈η−1(xn)\{xn−1}

‖vy |Γy ‖2
2 ≤ 2−n−1.

We want to define the numbers λy for y ∈ η−1(xn) and y 6= xn−1 so that

zvy(y) = (Jvy)(y) = λyvy(xn) +
∑

x∈η−1(y)

λxvy(x).

Hence we want to have

(19) λy =

zvy(y)−
∑

x∈η−1(y)

λxvy(x)

v(xn)
.

By Lemma 2 the numerator (19) cannot vanish. We may multiply vy by a
constant of absolute value 1 so that the expression on the right hand side of
(19) becomes positive. In this way the values λy for y ∈ η−1(xn) and y 6= xn−1

are defined. We extend the definition of v to Γxn by setting

v(x) = vy(x), x ∈ Γy, y 6= xn−1.

On the way we have also extended the definition of J so that

(Jv)(x) = zv(x), x ∈ Γxn \ {xn}.

Moreover by construction we have

‖v |Γxn ‖
2
2 = ‖v |Γxn−1

‖2
2 +

∑
y∈η−1(xn),y 6=xn−1

‖v |Γy ‖2
2 + |v(xn)|2

≤ 1− 2−(n−1) + 2−n−1 + 2−n−1 = 1− 2−n.

�

Remark 1. The Jacobi matrix J constructed in the proof satisfies βx ≡ 0
and λx = 1 for vertices x whose distance from the path {xn} is greater than 2.
Remark 2. Another way of proving Theorem 12 is as follows. Fix any

Jacobi matrix J0 so that the operator J0 is bounded on `2(Γ). For example we
may set βx ≡ 0 and λx = (#η−1(y))

−1/2
, whenever x ∈ η−1(y). Let S denote

the operator acting according to the rule

Sv(x) = λxv(η(x)).
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By Γ0 we denote the set of leaves, i.e. vertices of height 0. Then

‖Sv‖2
2 =

∑
x∈Γ

|Sv(x)|2 =
∑
x∈Γ

λ2
x|v(η(x))|2

=
∑

y∈Γ\Γ0

|v(y)|2
∑

x∈η−1(y)

λ2
x =

∑
y∈Γ\Γ0

|v(y)|2 ≤ ‖v‖2
2.

The operator S is thus bounded. The adjoint operator S∗ acts by the rule

S∗v(x) =
∑

y∈η−1(x)

λyv(y), x /∈ Γ0,

S∗v(x) = 0, x ∈ Γ0.

Then J0 = S + S∗ is the Jacobi matrix such that ‖J0‖2→2 ≤ 2. Fix an infinite
path {xn} and a sequence of positive numbers {λn}. Let J1 be the degenerate
Jacobi matrix defined by βx ≡ 0 and λxn = λn, λx = 0 for x /∈ {xn}. Choose
the coefficients λn so that the classical Jacobi matrix associated with the coef-
ficients λn and βn ≡ 0 is not essentially self-adjoint. For example set λn = 2n.
Let J = J0 +J1. The matrix J is nondegenerate. Moreover J is not essentially
self-adjoint as a bounded perturbation of non essentially self-adjoint operator
([6], cf. Prop. 8.6 [4]).

The next theorem provides a relation between Jacobi matrices on the tree
Γ and classical Jacobi matrices associated with the infinite paths of Γ.

Theorem 13. Assume a Jacobi matrix J on Γ is not essentially self-adjoint
and βx ≡ 0. Choose an infinite path {xn} with l(xn) = n. Then the classical
Jacobi matrix J0 with λn = λxn and βn ≡ 0 is not essentialy self-adjoint.

Before proving Theorem 13 we will need the following lemma.

Lemma 14. Let J be a Jacobi matrix on Γ with βx ≡ 0. Let Jv = iv and
v(x0) = 1 for a vertex x0 on height 0. Then the function ṽ(x) = i−l(x)v(x) is
positive.

Proof. By assumptions we have

iv(x) = λxv(η(x)) +
∑

y∈η−1(x)

λyv(y).

Thus

(20) ṽ(x) = λxṽ(η(x))−
∑

y∈η−1(x)

λyṽ(y).

We know that ṽ cannot vanish and is unique up to a constant multiple. The
function Re ṽ satisfies (20) and takes the value 1 at x0. Thus ṽ = Re ṽ, i.e.
ṽ is real valued. We will show that ṽ(x) is positive by induction. Observe
that if ṽ(x) is positive for any vertex on height zero then by (20) ṽ is positive.
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Assume the opposite, i.e. ṽ is negative at some vertices on height zero. Since
ṽ(x0) = 1 there are two vertices y1, y2 on height zero so that y′1 = y′2 and
ṽ(y1) > 0, ṽ(y2) < 0. By (20) evaluated at x = y1 and x = y2 we get that
ṽ(y′1) > 0 and ṽ(y′2) < 0, which gives a contradiction.

�

Proof of Theorem 13. By (20) evaluated at x = xn we obtain

ṽ(xn) = λxn ṽ(xn+1)−
∑

y∈η−1(xn)

λyṽ(y).

Hence

λxn ṽ(xn+1)− λxn−1 ṽ(xn−1) = ṽ(xn) +
∑

y∈η−1(xn)
y 6=xn−1

λyṽ(y) > 0.

The last inequality follows from Lemma 14. Therefore

ṽ(x2n) ≥
λx0λx2 . . . λx2n−2

λx1λx3 . . . λx2n−1

ṽ(x0),

ṽ(x2n+1) ≥
λx1λx3 . . . λx2n−1

λx2λx4 . . . λx2n
ṽ(x1).

By assumptions the seqeunce ṽ(xn) is square summable. Thus

(21)
∞∑
n=1

(
λx0λx2 . . . λx2n−2

λx1λx3 . . . λx2n−1

)2

+

(
λx1λx3 . . . λx2n−1

λx2λx4 . . . λx2n

)2

<∞.

The last inequality is equivalent to not essential self-adjointness of the classical
Jacobi matrix J0 with λn = λxn and βn ≡ 0. Indeed, let pn and qn denote the
polynomials of the first and the second kind associated with J0, i.e.

xpn(x) = λnpn+1(x) + λn−1pn−1(x), n ≥ 0,

xqn(x) = λnqn+1(x) + λn−1qn−1(x), n ≥ 1,

where p−1 = 0 p1 = 1 and q0 = 0, q1 = 1/λ0. Then (21) reduces to
∞∑
n=1

[p2
n(0) + q2

n(0)] <∞.

�

Remark. The assumption βx ≡ 0 in Thm. 13 is essential. Indeed, there
exists a Jacobi matrix J on Γ, which is not essentially self-adjoint, but the
classical Jacobi matrix J0 associated with the path {xn} is essentially self-
adjoint. Indeed, for every vertex xn, n ≥ 1, fix a vertex yn−1 6= xn−1 in η−1(xn).
Let P denote the orthogonal projection from `2(Γ) onto `2({xn, yn}∞n=0). We
will consider Jacobi matrices J so that βx = 0 for x /∈ {yn}∞n=0. Let J1 = PJP.
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First, we are going to study the essential self-adjointness of the operator J1.
To this end consider the equation (J1)v(x) = zv(x). This is equivalent to

zv(xn) = λxnv(xn+1) + λxn−1v(xn−1) + λyn−1v(yn−1),

zv(yn−1) = λyn−1v(xn) + βyn−1v(yn−1).

We have

(22) v(yn−1) =
λyn−1

z − βyn−1

v(xn).

Hence

zv(xn) = λxnv(xn+1) + λxn−1v(xn−1) +
λ2
yn−1

z − βyn−1

v(xn).

Set z = i, vn := vxn , µn := λyn−1 , λn := λxn and βn := βyn−1 . Then[
βnµ

2
n

1 + β2
n

+

(
1 +

µ2
n

1 + β2
n

)
i

]
vn = λnvn+1 + λn−1vn−1.

Set µ2
n = 1 + β2

n. Then we obtain

2ivn = λnvn+1 − βnvn + λn−1vn−1.

Assume the classical Jacobi matrix with coefficients λn and −βn is not essen-
tially self-adjoint. Then the sequence vn is square summable. Moreover (22)
implies

|v(yn−1)|2 =
µ2
n

1 + β2
n

|vn|2 = |vn|2.

Hence

‖v‖2 =
∞∑
n=0

|v(xn)|2 + |v(yn)|2 <∞,

i.e. the operator J1 is not essentialy self-adjoint. Let J2 be any bounded Jacobi
matrix on Γ. Then the Jacobi matrix J = J1 +J2 is not essentially self-adjoint.

The matrix J0 is associated with the coefficients λn = λxn and βn ≡ 0. Thus,
in order to conclude the reasoning, it suffices to prove the following.

Lemma 15. There exists a classical Jacobi matrix J

Jxn = λnxn+1 − βnxn + λn−1xn−1

which is not essentially self-adjoint, so that the Jacobi matrix

J ′xn = λnxn+1 + λn−1xn−1

is essentially self-adjoint.
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Proof. We will assume that βn 6= 0. Not essential self-adjointness of J is equiv-
alent to the fact that every solution of the recurrence relation

0 = λnxn+1 − βnxn + λn−1xn−1, n ≥ 1,

is square summable. Assume the sequence xn satisfies this recurrence relation.
Then

β2nx2n = λ2nx2n+1 + λ2n−1x2n−1,(23)
β2n+1x2n+1 = λ2n+1x2n+2 + λ2nx2n.

Thus

x2n+1 =
λ2n+1

β2n+1

x2n+2 +
λ2n

β2n+1

x2n,(24)

x2n−1 =
λ2n−1

β2n−1

x2n +
λ2n−2

β2n−1

x2n−2

Plugging in the last two equations into (23) results in(
β2n −

λ2
2n

β2n+1

−
λ2

2n−1

β2n−1

)
x2n =

λ2nλ2n+1

β2n+1

x2n+2 +
λ2n−2λ2n−1

β2n−1

x2n−2.

Let β2n−1 = aλ2n−1 and

β2n =
λ2

2n

β2n+1

+
λ2

2n−1

β2n−1

.

Then
0 = λ2nx2n+2 + λ2n−2x2n−2.

Choose an increasing sequence λ2n so that every solution u2n of the last equa-
tion is square summable. Assume also that λ2n = λ2n+1. Then by (24) we
get

|x2n+1| ≤ |a||x2n+2|+
λ2n

λ2n+1

|x2n| = |a||x2n+2|+ |x2n|.

Thus the sequence xn is square summable, i. e. the Jacobi matrix J is not
essentially self-adjoint.

On the other hand the Jacobi matrix J ′, under assumption λ2n = λ2n+1,
is essentially self-adjoint. Indeed, the sequence x2n−1 = 0 and x2n = (−1)n

satisfies J ′x = 0 and it is not square summable. �

Remark. Following the proof it is possible to construct the coefficients λn
and βn explicitly. Let λ2n+1 = λ2n = qn for q > 1. Then β2n+1 = aqn and
β2n = a−1[qn + qn−1].

The following lemma is straightforward but useful.
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Lemma 16. Consider a symmetric operator A on a Hilbert space H. Let H0 be
a finite dimensional subspace of D(A) ⊂ H and let PH0 denote the orthogonal
projection onto H0. Define the operator Ã : H⊥0 → H⊥0 by

Ã = (I − PH0)A(I − PH0).

The operator Ã is essentialy self-adjoint if and only if A is essentially self-
adjoint.

Theorem 17. Assume J is not essentially self-adjoint. Fix a leaf x0 and a
nonreal number z. Let a function uz(x) satisfy uz 6= 0, uz(x0) = 0 and

(Juz)(x) = zuz(x), x 6= x0.

Then uz is square summable on Γ.

Proof. LetH0 = Cδx0 . The operator J̃ acts on `2(Γ\{x0}) and is not essentially
self-adjoint by Lemma 16. Moreover if ũz denotes the truncation of uz to
Γ̃ = Γ \ {x0} we have

(J̃ ũz)(x) = zũz(x), x ∈ Γ̃.

By Corollary 3, applied to Γ̃, we know that ũz cannot vanish. Since J̃ is not
essentially self-adjoint there exists a function 0 6= ṽ ∈ `2(Γ̃) so that

(J̃ ṽ)(x) = zṽ(x), x ∈ Γ̃.

By Lemma 4, applied to Γ̃, we get that ũz(x) = cṽ(x) for x ∈ Γ̃. �

Fix a leaf x0, i.e. l(x0) = 0 and let xn = ηn(x0). By Corollary 3, for a
nonreal number z, there exist two nonzero solutions vz and uz on Γ such that

vz(x0) = 1, vz(x1) =
z − βx0
λx0

, uz(x0) = 0, uz(x1) =
1

λx0
(25)

(Jvz)(x) = zvz(x), (Juz)(x) = zuz(x), x ∈ Γ \ {x0}.(26)

Observe that we have

(Jvz)(x) = zvz(x), for x ∈ Γ.

The functions vz and uz satisfying (25) and (26) will be called the solution and
the associated solution of the equation

(Jf)(x) = zf(x), x ∈ Γ \ {x0}.
Summarizing we get

Proposition 18. Assume a Jacobi matrix J on Γ is not essentially self-
adjoint. Then for any nonreal number z every solution of the equation

zv(x) = λxv(η(x)) + βxv(x) +
∑

y∈η−1(x)

λyv(y), x 6= x0

is square summable.
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Fix a leaf x0 and remove from Γ the links from the infinite path {xn}∞n=0,
where xn = ηn(x0). In this way the tree Γ splits into infinite number of finite
subtrees of the form Γn := Γxn \ Γxn−1 . In other words Γn consists of xn and
all its descendants with exception of xn−1 and its descendants.

Lemma 19. Let x ∈ Γn, for some n ≥ 1. Then vz(xn)uz(x) = uz(xn)vz(x).

Proof. By Lemma 1 we know that vz and uz cannot vanish. Both functions
satisfy (Juz)(x) = zuz(x), (Jvz)(x) = zvz(x) for x ∈ Γn \ {xn}. By Lemma 4
we get vz(x) = cuz(x) for x ∈ Γn. Plugging in x = xn gives the conclusion. �

Proposition 20. For the solution vz and the associated solution uz we have∣∣∣∣ vz(xn) uz(xn)
vz(xn+1) uz(xn+1)

∣∣∣∣ =
1

λxn
.

Proof. By (26) we get for n ≥ 1

λxnvz(xn+1) = zvz(xn)− βxnvz(xn)− λxn−1vz(xn−1)−
∑

y∈η−1(xn)\{xn−1}

λyvz(y),

λxnuz(xn+1) = zuz(xn)− βxnuz(xn)− λxn−1uz(xn−1)−
∑

y∈η−1(xn)\{xn−1}

λyuz(y).

Observe that η−1(xn) \ {xn−1} ⊂ Γn. Hence Lemma 19 implies

vz(xn)uz(y) = uz(xn)vz(y).

Now on multiplying the equations by uz(xn) and vz(xn), respectively, and
subtracting sidewise gives

λxn

∣∣∣∣ vz(xn) uz(xn)
vz(xn+1) uz(xn+1)

∣∣∣∣ = λxn−1

∣∣∣∣vz(xn−1) uz(xn−1)
vz(xn) uz(xn)

∣∣∣∣
The conclusion follows as

λx0

∣∣∣∣vz(x0) uz(x0)
vz(x1) uz(x1)

∣∣∣∣ = 1.

�

The following theorem provides a natural analog of Carleman criterion for
essential self-adjointness.

Theorem 21. Let J be a Jacobi matrix associated with the coefficients λx and
βx. Let xn denote any infinite path so that l(xn) = n. Assume∑

n=1

1

λxn
=∞.

Then the operator J is essentially self-adjoint.
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Proof. The result follows by the standard argument from Proposition 20. If
J was not essentially self-adjoint then the functions v and u would be square
summable, thus the series

∑
λ−1
xn would be summable. �

Remark. The assumption does not depend on the choice of the infinite path,
as any two such paths will meet at a certain vertex.

5. Nonnegative Jacobi matrices on trees

We say that a matrix J is positive definite if

(Jv, v) ≥ 0, v ∈ F(Γ).

The next theorem gives characterization of positive definite Jacobi matrices
on Γ.

Theorem 22. (i) Assume there exists a positive function m(x) on Γ such
that

(27) βxm(x) ≥ λxm(η(x)) +
∑

y∈η−1(x)

λym(y), x ∈ Γ.

Then the matrix J is positive definite
(ii) If the matrix J is positive definite there exists a positive function m(x)

on Γ such that

(28) βxm(x) = λxm(η(x)) +
∑

y∈η−1(x)

λym(y), x ∈ Γ.

Proof. (i). For x ∈ Γ let

αx = λx
m(x)

m(η(x))
, γx = λx

m(η(x))

m(x)
.

Thus, on dividing by m(x), the formula (27) takes the form

(29) βx ≥ γx +
∑

y∈η−1(x)

αy, x ∈ Γ.
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We have (see (5))

(Jv, v) = ((S + S∗ +M)v, v)

=
∑
x∈Γ

βx|v(x)|2 + 2Re
∑
x∈Γ

λxv(x)v(η(x))

≥
∑
x∈Γ

βx|v(x)|2 − 2
∑
x∈Γ

λx|v(x)| |v(η(x))|

=
∑
x∈Γ

βx|v(x)|2 − 2
∑
x∈Γ

√
αxγx|v(x)| |v(η(x))|

≥
∑
x∈Γ

βx|v(x)|2 −
∑
x∈Γ

γx|v(x)|2 −
∑
x∈Γ

αx|v(η(x))|2

=
∑
x∈Γ

βx|v(x)|2 −
∑
x∈Γ

γx|v(x)|2 −
∑
x∈Γ

|v(x)|2
∑

y∈η−1(x)

αy

=
∑
x∈Γ

βx − γx − ∑
y∈η−1(x)

αy

 |v(x)|2 ≥ 0.

(ii) Consider the operator U acting by the rule

Uv(x) = (−1)l(x)v(x).

Clearly U is a unitary operator. Let

J̃ = −U∗JU.

Then J̃ is a nonpositive definite operator and

J̃v(x) = λxv(η(x))− βxv(x) +
∑

y∈η−1(x)

λyv(y).

Fix an infinite path xn so that l(xn) = n. Thus Γ =
∞⋃
n=0

Γxn . Let Pn denote

the orthogonal projection from `2(Γ) onto `2(Γxn) and J̃n = PnJ̃Pn. Then J̃n
is a bounded nonpositive linear operator. Therefore

−anI < J̃n ≤ 0 < 1
n
I,

for a positive constant an. Hence

0 < J̃n + anI <
(
an + 1

n

)
I.

We have

(30) 0 < ((J̃n + anI)δx, δx) = an − βx, x ∈ Γxn .
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Observe that

(31) (J̃n + anI)δx = λxδη(x) + (an − βx)δx +
∑

y∈η−1(x)

λyδy, x ∈ Γxn \ {xn}.

Let

fn := ( 1
n
I − J̃n)−1δx0 = [(an + 1

n
)I − (J̃n + anI)]−1δx0

=
∞∑
k=0

1

(an + 1
n
)k+1

(J̃n + anI)kδx0 .

By (30) and (31) the function

(J̃n + anI)kδx0

is nonnegative, and positive on all vertices of Γxn at distance from x0 less or
equal to k. Hence fn ≥ 0 and fn(x) > 0 for any x ∈ Γxn . Moreover

J̃nfn = J̃n( 1
n
I − J̃)−1

n δx0 = (J̃n − 1
n
I)( 1

n
I − J̃n)−1δx0 + 1

n
fn = 1

n
fn − δx0 .

This results in

λxfn(η(x))− βxfn(x) +
∑

y∈η−1(x)

λyfn(y) = 1
n
fn(x)− δx0(x), x ∈ Γxn \ {xn}.

Let

mn(x) =
fn(x)

fn(x0)
.

Then mn(x0) = 1 and

λxmn(η(x)) +
∑

y∈η−1(x)

λymn(y) = (βx + 1
n
)mn(x), x ∈ Γxn \ {x0, xn},(32)

λx0mn(x1) ≤ (βx0 + 1
n
).(33)

Observe that for any fixed t ∈ Γ the sequence mn(t) is bounded. Indeed,
assume the opposite. Let t be the vertex closest to x0, so that mn(t) is un-
bounded. Let s be the vertex adjacent to t, so that

d(x0, t) = d(x0, s) + 1.

Then applying (32) with x = s implies that the sequence mn(s) is unbounded,
which gives a contradiction.

Observe also that for any fixed t ∈ Γ the sequence mn(t) cannot accumulate
at zero. Indeed, assume the opposite. Let t be the vertex closest to x0 so that
mn(t) accumulates at zero. Again let s be the vertex adjacent to t, so that

d(x0, t) = d(x0, s) + 1.

Then applying (32) with x = t implies that the sequence mn(s) also accumu-
lates at zero, which gives a contradiction.
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Consider the sequence of functionsmn. Letm be any pointwise accumulation
point of this sequence. Then m(x) > 0 and by (32) and (33) we obtain

λxm(η(x)) +
∑

y∈η−1(x)

λym(y) = βxm(x), x ∈ Γ \ {x0},(34)

λx0m(x1) ≤ βx0 .(35)

In order to get the conclusion (i.e. to guarantee equality also in (35)) we
have to modify slightly the function m(x).

Observe that after removing all the edges from the path {xn} the tree Γ
splits into the sequence of disjoint trees Γn so that xn ∈ Γn. By (34) evaluated
at x = xn we have

λxnm(xn+1) + λxn−1m(xn−1) +
∑

y∈η−1(xn)
y 6=xn−1

λym(y) = βxnm(xn), n ≥ 1.

Let the coefficients cn be defined by c0 = 0 and

(36)
∑

y∈η−1(xn)
y 6=xn−1

λym(y) = cnm(xn), n ≥ 1.

Thus

λxnm(xn+1) + λxn−1m(xn−1) = (βxn − cn)m(xn), n ≥ 1.

This implies βxn ≥ cn. Consider the classical Jacobi matrix defined by

J0u(n) = λxnu(n+ 1) + (βxn − cn)u(n) + λxn−1u(n− 1).

By Theorem 22(i) the matrix J0 is positive definite. Let pn denote the or-
thogonal polynomials associated with J0. By the well known result we have
(−1)npn(0) > 0. Set m̃(xn) = (−1)npn(0). Then

(37) λxnm̃(xn+1) + λxn−1m̃(xn−1) = (βxn − cn)m̃(xn).

Set also

(38) m̃(y) =
m̃(xn)

m(xn)
m(y), y ∈ Γn.

In view of (36), (37) and (38) we get

λxnm̃(xn+1) +
∑

y∈η−1(xn)

λym̃(y) = βxnm̃(xn), n ≥ 0.

Finally, by (34) and (38) we have

λxm(η(x)) +
∑

y∈η−1(x)

λym(y) = βxm(x), x ∈ Γn \ {xn}, n ≥ 1.

�
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Proposition 23. There exist Jacobi matrices J on trees so that the equation
Jv = tv does not admit nonzero solutions for some real values of t.

Proof. We may admit that t = 0. Consider a tree Γ with #η−1(x) = 2 for
every vertex x, l(x) ≥ 1. Fix an infinite path xn, so that l(xn) = n. Then
η−1(xn) = {xn−1, yn−1} for n ≥ 1. We will define the coefficients λx and βx on
Γyk in such a way that the operator J restricted to `2(Γyk \ {yk}) is positive.
For example we may set λx = 1 and βx = 4 for any x ∈ Γyk \ {yk}. In this
way if the function v satisfies (Jv)(y) = 0 for y ∈ Γyk \ {yk}, then either v = 0
or v cannot vanish on Γyk . If v does not vanish on Γyk its restriction to Γyk
is unique up to a constant multiple. Let λyk = 1 and set βyk in such a way
that v(η(yk)) = v(xk+1) = 0. Set also λxk = 1 and βxk = 0 for any k. Thus
the matrix J is defined. Assume Ju = 0. If u vanishes on every subtree Γyn
then by the recurrence relation u vanishes at every vertex xn, with n ≥ 1, as
η(yn) = xn+1. Moreover by the recurrence relation evaluated at x1 we obtain
v(x0) = 0, i.e. v = 0. If u does not vanish on every subtree Γyn , let n be the
smallest index for which u does not vanish on Γyn .

xn yn

xn+1

xn+2

yn+1

Then v(xk) = 0 for any k ≤ n. We must have v(yn) 6= 0. By construction
we also get v(xn+1) = 0. By the recurrence relation evaluated at xn+1 we
conclude that v(xn+2) 6= 0. This implies that v does not vanish on Γyn+1 . But
by construction v(xn+2) = 0, which is a contradiction. �
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