INHOMOGENEOUS JACOBI MATRICES ON TREES
RYSZARD SZWARC

ABSTRACT. We study Jacobi matrices on directed trees with one end at
inifinity. We show that the defect indices cannot be greater than 1 and give
criteria for essential self-adjointness. We construct certain polynomials as-
sociated with matrices which mimic orthogonal polynomials in the classical
case. Nonnegativity of Jacobi matrices is studied as well.

1. INTRODUCTION

The aim of the paper is to study a special class of symmetric unbounded
operators and their spectral properties. These are Jacobi operators defined on
directed trees. They are immediate generalizations of classical Jacobi matrices
which act on sequences {u,}>°, by the rule

(Ju>n = Anun+1 + 5nun =+ )\nflunfla n > 07

where {\,}7°, and {5,}2, are sequences of positive and real numbers, re-
spectively, with the convention u_; = A_; = 0. These matrices are closely
related with the set of polynomials defined recursively by

(1) xpn(x) = )‘npn-i-l(x) + /Bnpn(x) + An—lpn—l(x>7 n Z 07

with pP-1 = O, Po = 1.

In case the coefficients of the matrix are bounded, the matrix J represents
self-adjoint operator on ¢?(Np). If E(z) denotes the resolution of identity as-
sociated to J, then the polynomials p,(z) are orthonormal with respect to the
measure du(z) = d(E(x)eg,eo), where eg is the sequence taking value 1 at
n = 0 and vanishing elsewhere and (u,v) denotes the standard inner product
in ¢?(Ny). The measure z has bounded support.

When the coefficients are unbounded the operator J is well defined on the
domain D(J) consisting of sequences with finitely many nonzero terms. In that
case, if this operator is essentially self-adjoint then again the polynomials p,, are
orthonormal with respect to the measure du(z) = d(FE(z)eq, eg), except that
this measure has unbounded support. Moreover there is a unique orthogonality
measure for polynomials p,. By a classical theorem, if the operator J is not
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essentially self-adjoint, there are many measures ;1 on the real line so that the
polynomials belong to L?(u), i.e.

[e.9]

/ 2" dp(r) < oo, n € Ny,

—00

and the polynomials p,, are orthogonal with respect to the inner product
(19) = [ gl duta),

Therefore essential self-adjointness is a crucial property that distinguishes
between the so called determinate and indeterminate cases. Intuitively the
unbounded matrix J is essentially self-adjoint when the coefficients have mod-
erate growth. But the converse is not true in general. For the classical theory
of Jacobi matrices, orthogonal polynomials and moment problems we address
the reader to [1], [2], [6], and to [5] for a modern treatment.

In a recent paper [3] homogeneous Jacobi matrices on directed homogeneous
trees were studied. Two types of homogeneous trees were considered. One of
them was the tree with infinitely many origin points called leaves (on height
0) and one end at infinity.

The tree I' consists of vertices with heights from zero to infinity. Every
vertex = with height n > 1 is connected with a unique vertex n(zx), the parent,
with height n + 1, and d vertices x1,..., x4 with height n — 1, the children,
like in the figure below:

n(x)
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The Jacobi matrices were defined on ¢%(T"), where T' denotes the set of all
vertices of the tree. The formula is as follows

(Jo)(z) = Mo(n(x)) + Buv(x) + Api[v(xy) + v(z2) + ... + v(xg)],

where n denotes the height of the vertex x.

An interesting phenomenon occured. It turned out that the operator J
defined on functions {v(z)},er, with finitely many nonzero terms, is always
essentially self-adjoint, regardless of the growth of the coefficients \,, and (,,.
For example the operator J with coefficients A, = (n + 1)? and 3, = 0 is
not essentially self-adjoint when considered as the classical Jacobi matrix on
(*(Np). But it is essentialy self-adjoint when it acts on £2(T).

Moreover its spectrum is discrete and consists of the zeros of all the poly-
nomials p,, associated with classical Jacobi matrix with coefficients Vd )\, and
Bn, i.e. satisfying

Every eigenvalue is of infinite multiplicity.

Our aim is to study inhomogeneous Jacobi matrix on that tree. This means
we do not require that the coefficients of the matrix depend only on the height
of the vertex. With every vertex x we associate a positive number A\, and a
real number 3,. We are going to study operators of the form

Ju(z) = Ao(n(x)) + Bov(z) + Ay v(xr) + Apyv(z2) + . o0 4 Ay v(xa).

One of the main differences between the classical case and the case of the
tree I' is that the eigenvalue equation

(2)  zv(z) = Av(n(x)) + Bov(z) + Apyv(xr) + Apyv(22) + - oo 4+ A v(Ta)
cannot be solved recursively, unlike the equation
zv(n) = Apo(n+ 1) 4+ Byo(n) + Ap_qv(n —1).

This not a coincidence as we are going to show that the equation (2) may not
admit nonzero solutions for real values of z (cf. Proposition 5). But we will
show the equation has a nonzero solution for every nonreal z (Corollary 5).

Actually, when we give up homogeneity of the matrix .J, we can as well give
up homogoneity of the tree. This means the number of descendants of vertices
of T is not fixed, i.e. the quantities #n~(z) may vary.

The operator J is symmetric on ¢*(T") with respect to the natural inner
product

(u,v) = Zu(a:)v(x)
zel
We are interested in studying the essential self-adjointness of the matrix J. It
turns out that unlike in homogeneous case, the matrix J may not be essentially
self-adjoint. However the defect indices cannot be greater than 1 (Corollary
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5). We derive certain criteria assuring essential self-adjointness. For example
the analog of Carleman condition holds (see Theorem 21). Moreover we relate
essential self-adjointness of J with essential self-adjointness of the classical
Jacobi matrix Jy obtained from J by restriction to an infinite path of the tree
(see Theorem 13 and Remark following its proof).

Classical Jacobi matrices are associated with orthogonal polynomials through
the formula (1). In case of the tree I' there is no natural way of defining poly-
nomials associated with Jacobi matrices on I, since (as was mentioned above)
the eigenvalue equation may be not solvable. In Section 3 we define certain
polynomials associated with .J. We prove that they have real and simple zeros.
Also we show interlacing property for roots of two consecutive polynomials.
However, unlike in the classical case, there is no natural orthogonality relation
between these polynomials. The most important reason to study these objects
is the fact that the roots of these polynomials describe the eigenvalues of the
restriction of J to finite subtrees of I'. However, unlike in the classical case, it
may occur that these eigenvalues are multiple.

In Section 5 we give a criterion for nonnegativity of the Jacobi matrix J on
I'. In the classical case the Jacobi matrix J is positive definite if and only if
(—1)"p,(0) > 0 for every n, where p, are the orthogonal polynomials associ-
ated with J. In case of tree I' we do not have solutions of eigenvalue problem
at our disposal or orthogonal polynomials. Therefore we had to find another
way of getting the result. The nonnegativity of the matrix J proved to be a
major tool in construction of a Jacobi matrix on I' for which the eigenvalue
equation (2) does not admit solutions for some real values.

2. DEFINITIONS AND BASIC PROPERTIES

We will consider a tree I' with one end at infinity. Its vertices are located
on heights from zero to infinity. Every vertex x with height n > 0 is directly
connected with a unique vertex n(z) with height n + 1, the parent. When
n > 1 the vertex x is thus directly connected with a finite number of vertices
y on height n — 1, called its children. The set of children of x will be denoted
by n~!(x). The number of vertices in n~!(z) may vary with z. Let [(z) denote
the height of the vertex x.
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For a given vertex z let I', denote the finite subtree containing the vertex z
together with all its descendants, i.e. vertices y such that n*(y) = z for some
k. Thus l(y) = l(x) — k.

Define F(I") to be the set of all complex valued functions with finite support

on I'. Let
1 y==
0. (y) = ’
(v) {0 y L
Consider the operator J acting on F(I') according to the rule
(3) J6s = Nalpay + Babu + Y A6y, I(z) > 1,
yen~'(z)

where \, are positive constants while (5, are real ones. Let .S be the operator
acting by the rule

S0z = AgOy()-
Then the adjoint operator S* is given by
> NGy, U(z) >0,
S*0, = < ven~t(x)
0, [(xz)=0.
The operators S and S* are straightforward generalizations of weighted shift

and backward weighted shift operators usually acting on £*(Ny). Let M be a
multiplication operator defined by

Mo, = B,0,.
Then
(5) J=5+5"+ M.

In particular J is a symmetric linear operator.
We will study formal eigenfunctions of the operator J, i.e. functions v de-
fined on I' and satisfying

Ju = zv.

Evaluation at the vertex z gives that equivalently we have the recurrence
relation

Ao (n(x)) + Bev(@) + Y Aoly) Uz) > 1,
(6) zv(x) = yen~t(z)
A0(n(z)) + Bev(x) I[(z) = 0.
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Since n~(z) = 0 for I(x) = 0 we may simplify the notation and (6) takes the
form

(7) 2o(z) = Av(n(@) + Bov(x) + > Aoly
yen~1(x)
Unlike in the classical case, this equation cannot be solved recursively, i.e.
setting v(xo) at a leaf xy doesn’t allow recursive computation of all other values
v(x). Therefore the existence of nonzero solutions of (7) is not obvious. Our
aim is to show that such solutions exist for every nonreal z. In Proposition 23
we show that for real values of z the equation may not admit nonzero solutions.
For = € T let J, denote the truncation of the Jacobi matrix J to the subtree
'y, i.e. the matrix with the parameters A}, 8, so that

N = Ay, foryel,\{z} g = By foryel,
Yol0  fory ¢\ {z} Y10 foryé¢T,

Lemma 1. Fix a vertex x € I'. Assume there exists a nonzero function v €
F(T.U{n(z)}) and z ¢ R such that Ju(y) = zv(y) fory € T'y. Thenv(n(x)) #
0.

Proof. Assume for a contradiction that v(n(z)) = 0. Let w denote the trunca-
tion of v to I',. Thus J,w = zw. Moreover w # 0. Therefore z must be a real
number, as .J, is a finite dimensional symmetric linear operator. O

Lemma 2. Fiz a vertex v € I'. Assume there ezists 0 #v € F(I'y) and z ¢ R
such that (Jv)(y) = zv(y) fory € I', \ {z}. Then

() # Bv(z) + > Aoly

yen~1(x)
Proof. Assume for a contradiction that
zv(x) = Z Ayu(y
yen—H(x)

Define the function v € F(I', U {n(z)}) by setting u(y) = v(y) for y € I';, and
u(n(xz)) = 0. Then (Ju)(y) = zu(y) for y € I';. In view of Lemma 1 we get a
contradiction. O

Corollary 3. Assume there exists a function v # 0 on T and z ¢ R such that
(Jv)(z) = zv(x) for x € T. Then v does not vanish on T.

Proof. Assume for a contradiction that v(z) = 0 for a vertex x. By Lemma
1 we get that the function v vanishes identically on I',. From the recurrence

relation
2o(@) = Ao(n(@) + Bao(@) + S Ay

yen~1(z)
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we get v(n(x)) = 0. Therefore v vanishes identically on I',). Applying the
same procedure infinitely many times we achieve that v vanishes at every
vertex of T OJ

Lemma 4. For any nonreal number z and any xo € T with l[(xg) > 1 there
exists a nonzero function v defined on I'y, satisfying

(8) (Jo)(z) = zv(x), =z €Ty \ {0}

Moreover the function v cannot vanish and is unique up to a constant multiple.

Proof. We will use induction on the height [(xg). Assume (zg) = 1. Set v(zg) =
1. Let @ € 7 (o). Then [(z) = 0. We want to have
2v(z) = A\v(z0) + Brv(z).

Thus we may set
Az0(x0)

v(x) =

In this way (8) is fulfilled.

Assume the conclusion is true for all vertices on height n. Let I(x¢) = n+ 1.
Consider vertices 1, xg, ..., zr € 17 (20). Then I(x;) =n for j = 1,2,... k.
By induction hypothesis, for every vertex z; there exists a nonzero function
v; defined on I satisfying

(Juj)(z) = 2v5(z), x €Ly \{z;}.
We have

k
= U ij U {Qio}
j=1

We are going to define the function v on I',, in the following way: set
v(z) = cjui(z), forxely,,
with ¢; = 1. In this way we get
(Ju)(w) = z2v(z), wely \{z;}, j=12,...,k

In order to conclude the proof we must show that

(Ju)(z;) = 2v(xj), j=1,2,... k.
Thus we want to have

2¢0;(x5) = Ao, 0(20) + B, civi(75) Z AyCi0; (Y
yent(z;)

1.e.

(9) Ao, 0(w0) = ¢; | 20;(2;) — Bo,v5(x;) Z Ayv;(y

yen=1(z;)
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The expression in the brackets on the right hand side is nonzero for every
j = 1,2,...,k by Lemma 2. Therefore (9) is satisfied for an appropriate
choice of the value v(xy) and nonzero constants ¢, cs, . . ., k.

By Lemma 1 the function v cannot vanish at any vertex. Moreover if there
was another function v satisfying the conclusion of Lemma 3, then v —cv would
also satisfy the conclusion and would vanish for an appropriate choice of the
constant c¢. Thus v = cv. (Il

Corollary 5. For any nonreal number z there exists a nonzero function v so
that

(Jv)(z) = zv(z), zel.
The function v cannot vanish and is unique up to a constant multiple.

Proof. Fix a leaf zy. By Lemma 4, for any subtree I';x(,,) there exists a unique

function v defined on I'yx (4, so that

k(o) = 1, (Joe)(x) = zop(x), for # € Tpriag) \ {0 (20)}-
By unicity we have
Vpg1(z) = vp(x), for o € T priyy).

Define

v(z) = vp(w), for x € Ty

Since
I = U T (a0
k=1

the function v is defined at every vertex of I', and the conclusion follows. [

Remark. In Chapter 5 we are going to show that the conclusion of Corollary
2 may not be true for real numbers z, namely the eigenvalue equation Jv =0
may not admit nonzero solutions. Observe that for classical Jacobi matrices
(when I" = Ny) the recurrence relation

(10) zv(n) = Ao(n+ 1) 4+ Byo(n) + A\_qv(n — 1)

(A_1 = 0) admits a unique, up to constant multiple, nonzero solution for any
z € C. In case of a tree it may easily happen that the equation Jv = 0 admits
infinitely many linearly inedependent nonzero solutions. Indeed, assume \, =
1 and 3, = 0. Consider the tree I' so that #n~!(x) > 2 for all vertices z on
height 1. For any such vertex x choose 1,z € n~(z). Then the function
Uy = 0y, — Oy, satisfies Jv, = 0.
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3. POLYNOMIALS AND ZEROS

The classical Jacobi matrices are related to orthogonal polynomials. Namely
setting vo = 1 in (10) gives that v(n) = p,(z), where p,, is a polynomial of
order n, with real coefficients. The question arises if Jacobi matrices on trees
are connected to polynomials, as well. In general we cannot expect that the
solution of Jv = zv will satisfy that v(t) = P;(z), where P, is a polynomial for
every t € I'. But we may expect that P;(z) is a polynomial for ¢ in a subtree
I', for some z € I.

Proposition 6. Let x € I'. There exists a nonzero solution v, of Jv, = zv,,
so that for any t € I, the function v,(t) = Py+(2) is a polynomial with real
coefficients and positive leading coefficient. Moreover if t € I') C I, then the
polynomial P, 1s divisible by P, ;.

Proof. We will use induction on the height /(x). Let {(x) = 0. By Corollary 5
there is a nonzero solution v of Jv = zv. Then v(z) # 0. Let

vy = v(x) v,
Hence v, (z) = 1. By Ju, = zv, evaluated at = we get

(o) =2,

Assume now the conclusion is valid for vertices on height n. Let I(z) = n+1.
By induction hypothesis, for any y € n~*(z) there is a nonzero solution v, so
that P, ;(z) is a polynomial with real coefficients for ¢ € I',. In particular the
polynomial v,(z) = P, .(z) has real coefficients. Moreover by Lemma 1 the
polynomial P, ,(z) cannot vanish for z ¢ R. Fix y; € n~'(z) and let

_ LOM{P.(2) : y e '(@)} |
Py1,z(z> -

Since Jv,, = zv,, we get Ju, = zv,. Moreover v, does not vanish for z ¢ R.
Since vy, (x) = P, (z) we obtain

(12) P, .(2) = v,(x) = LCM{ Py (2) : n(y) € 7' (2)}.
Since the value v, (z) determines the solution, the function v, does not depend
on the choice of y; € n~!(z). Thus the formula (11) and the above reasoning
is valid for any choice of y € (). Hence

LCM{P;.(z) : yen(2)} _
(13) Uy = Y P ) Uy, y€nH(z).

y7x

(11) Vs

By (13) and by induction hypothesis the value v, (t) is a polynomial in z for any
te U I'yU{z} =TI,. By the recurrence relation also the value v,(n(x)) is

yen—1(x)
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a polynomial. Moreover by (13) the polynomial v,(¢) is divisible by v,(t) for
any y €~ (z) and t € [",. This implies the last part of the conclusion. 0

Remarks The formulas (12) and (13) imply that for y € n~'(z) and t € I',,(y)
we have

Py,t<Z
P,.(z)

Let y € I';. Then y and x are connected in I';, by a path y = yo, y1, ..., Yn = .
By iterating (14) we get

~—

(14) P,i(2) = P, .(2)

~—

Py (2)  Pyusiyui(2) Py (2)
P, (z) = =2t b AT BT P (2).
V=B ) Py () B() )
Let y € I'; C I'y. Then = y;, for some k, 0 < k < n. Hence
P _ Pynayn (Z) Pyn—l,ynq (Z) Pyk+1 (Z) P
Yn—1,Yn Yn—2,Yn—1 Yk Y41

These formulas and (12) imply that the polynomial P, ,(z) can be described
in terms of the polynomials of the form P, (z) for t € I',.

Corollary 7. Let z ¢ R. Let {x,}>, be an infinite path in I so that l(x,) = n.
Let v be a nonzero solution of (Jv)(z) = zv(x) so that v(xg) = 1. Then for
any vertex x € I'y, we have

v(x) = na(?)

bn(2)

where a, . (2) and b,(z) are polynomials with real coefficients. Moreover the
polynomial by, is divisible by b,,.

Proof. Consider the subtree I',, . Let € I, . By Proposition 6 there is a
solution v, so that v,(z) and v,(zq) are polynomials with real coefficients.
Then

. V()
v(x) = on (0)

satisfies v(zg) = 1. By the last part of Proposition 1 the polynomial v, 1(z0)
is divisible by v, (xo). O

Theorem 8. The polynomials P, ,(z), y € I';(x), have only real zeros. More-
over for any x € I' the zeros of P, and P, ,u) are single, and the zeros of
P, . interlace with the zeros of Py, t.e. if x1 < xy < ... < x, denote the
zeros of Py p(a), then Py, hasn —1 zeros yy < yp < ... < Ynp—1 and

T <Y1 < Tor <Y< ...<Yp-1< Ty
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Proof. We will use induction on I(z). Let I(z) = 0. Then P, , = 1 and P, ;) =
(z — Bz)/Az. Assume the conclusion is valid for I(z) = n — 1. Let I(z) = n. By
the recurrence relation we have

k
(15) Ao o) (2) = (2= Bo) Poa(2) = D Ay, Py, (2),
j=1
where 7' (z) = {y1, Y2, ..., yx}. By (14), with ¢ = y;, we get
P, ,.(2)
1 Poy (2) = Ppa(z) 24270
( 6) Y (Z) ) (Z) Pyj@(Z)

By induction hypothesis the zeros of P, , (z) are real and single and interlace
with the zeros of P, ,(2) for any j. This implies

deg Py, , = deg P, ,, + 1.
In view of (15) and (16) we get
deg me(x) = deg Pxﬂ; + 1.

Let 7 be a root of P, ;(z). We are going to study the sign of P, ,,)(r) making
use of (15). If P, .(r) # 0, then (16) implies P, , (r) = 0. But since P, »(r) = 0
then P, .(r1) = 0 for some jy, by (12). Consider the quantity

yjo » T

Pyjovy]'(] <T + 6)

Pryi (r+e)=Poa(r+e) P (r i)
yjo »L

Y

where € > 0 is infinitesimally small. We have
Py (r+e)
P, .(r+e¢)

yjo 5

Y

as the polynomials P, , (z) and P, .(z) have the same number of roots to
the right of r + ¢, by induction hypothesis and by the fact that the leading
coefficients are positive. Consider the limit

Py .y (r+¢)
P, .. = lim P,, “Yotol 2
o (T> aif(l)l+ ’ (T + €> Pyjoﬂ;t (T’ + 8)
. P..(r+e)
17 = P, . lim ————.
( ) Ydo-Yio <T) aif(l)1+ Pyjom:(?" + 5)

The polynomials P, ,, for y € n~'(z), have single roots by induction hypoth-
esis. Thus the limit in the right hand side of (17) is nonzero in view of (12).
Since Py, 4, (1) # 0 (by induction hypothesis) we get that P, j,(r) # 0. Hence
the sign of the limit is determined by the sign of P, .(r+¢). By plugging z = r
into (15) we get that P, ,)(r) and P,.(r + ¢) have opposite signs.
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Consider now two consecutive roots 11 < ry of P, ,(2). The signs of P, ,(r1+
¢) and P, ;(ro+¢) are opposite. Therefore the signs of P, ;) (r1) and P, ;(z)(72)
are also opposite. Thus P, ;,)(2) must vanish in the interval (r1,72).

Assume now that r is the largest root of P, ,(z). Then P, ,(r +¢) > 0 for
small positive €. By the above reasoning we have P, ,,)(r) < 0, which means
that P, ;) must vanish somewhere to the right of r, as the leading coefficient is
positive. Similarly if 7 is the smallest root of P, ;(2) then the signs of Py ;) (7)
and P, ,(r 4 ¢) are opposite. But since the degree of P, ;) is by one greater
than the degree of P, ,(z) and the leading coefficients are positive, we get that
Py (x) must vanish below 7. O

Theorem 9. Let x € I'. Let r belong to the spectrum of J,.. Then r satisfies
at least one of the two conditions

(a) me(x)(r) = 0.
(b) There existy € Ty and y1,y2 € 1~ (y) so that Py, ,(r) = P, ,(r) = 0.

Proof. First we will show that the numbers described in the theorem belong to
the spectrum of J,. Assume P, ) (r) = 0. By Theorem 8 we have P, ,(r) # 0.
By Lemma 4 for any nonreal z there is a solution v, of the equation Jv, = zv,
so that v, (y) = Pry(2) for y € I'ym. Let

u(y) = lim Py (r +ie),  y € Ly

Then u satisfies J,u = ru. Moreover u is nonzero as u(z) = P, .(r) # 0.
Assume now that there exist y € T, and y1,y2 € 77 (y) so that B, ,(r) =
P,, ,(r) = 0. By the above reasoning there are two nonzero solutions uy, us,
defined on I'y,, T'y,, respectively, of the equations J,, u; = ru; and Jy,us = ruy
and uy(y1) # 0, uz(y2) # 0. Consider the function w,, ,, defined on I’y as follows

Apta(y2)ur(t) t €Ty,
Uy o (t) = _)‘y1 Uy (yl)UQ(t) te Fyzv
0 t¢, ULy,
Then wuy, 4, # 0 and Jyty, 4, = JUy, yo = TUy, 4,-
Assume that for y € T, and y1,¥s,...,9y, € 7 *(y) we have

Pyy(r) =Py y(r)=...= P, ,(r)=0.
Then the eigenvectors

uy1,y2> e 7uy17yn
are linearly independent, as the support of w,, ,, coincides with I'y, UT",,. Hence
the dimension of the space spanned by these eigenvectors is at least n — 1.
In the previous part of the proof we have constructed eigenvectors corre-
sponding to the set of numbers described in the theorem. We will calcu-
late the dimension of the space spanned by these eigenvectors. The proof
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will be complete if the dimension coincides with the dimension of the space
(*(T,), i.e. with #I',. We will use induction with respect to the height
[(xz). Assume the conclusion is valid for I(z) = n. Let I(z) = n + 1. De-
note ' (x) = {vy1,¥2,. .., Yk} Let n; = degP,, ,. Every eigenvector of J,
corresponding to the case (b) is an eigenvector of J, as well. Therefore, by
induction hypothesis, the dimension of the linear span of all eigenvectors of
Jy; corresponding to the case (b) is equal

#I'y, —deg Py, .

Such eigenvectors corresponding to J,, and J,, for i # j have disjont supports,
hence the total dimension of the eigenvectors corresponding to the case (b) for
Jyrs -5 Jy, 1s equal

k k
Z #l',, — Z degP,. »
j=1 J=1

Consider the product
P, 2(2)... Py ().
We know that every polynomial P, , has single roots. We have

L
Py 2(2)... Py .(2) = CH(Z — )™,
1=1
By the reasoning performed in the first part of the proof, the root r; gives rise
to n; — 1 linearly independent eigenvectors of J,. Moreover the degree of the
polynomial P, ) is equal to L +1 as

deg Px,n(m) = deg Pac;c +1,

and deg P, = L (cf. (12)). The roots of P, ;@ lead to L + 1 linearly in-
dependent eigenvectors of J,, which are linearly independent from the ones
constructed in (b), as they do not vanish at x. Summarizing the number of
linearly independent eigenvectors of J, is not less then

k

k L k
D O#T, =) degPy .+ (m—1)+L+1=> #I\, +1=#T,.
j=1 =1 Jj=1

j=1
O

Remark. By analyzing the proof we may observe that if r satisfies the
assumption (a) only, then r is a single eigenvalue of .J,. The same occurs if r
satisfies (b), but not (a), for a single y € ', and just one pair of y1, y2 € 7 (y).
Otherwise any number 7 satisfying either (a) or (b) is a multiple eigenvalue of
Iy
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4. ESSENTIAL SELF-ADJOINTNESS AND DEFECT INDICES

Let z ¢ C. The function v € ¢*(T") belongs to the defect space N, if v is
orthogonal to Im (21 — J) = (21 — J)(F(I")). In particular v is orthogonal
to (zI — J)d, for any x € T'. This implies Jv = Zv. The dimension of the
defect space N, is called the defect index. It is known that the defect index
is constant on the upper-half plane and on the lower-half plane. In our case
the defect index is constant on C\ R as Jv = Zv is equivalent to Ju = 20. We
refer to [4, 6] for the theory of symmetric operators in Hilbert space and its
self-adjoint extensions.

Proposition 10. The defect indices of the operator J cannot be greater than 1.

Proof. Fix a nonreal number z. Let v € ¢3(T") satisfy v # 0 and Jv = zv. By
Corollary 3 the function v is unique up to a constant multiple. O

Proposition 10 implies

Corollary 11. Let J be a Jacobi matriz on I'. Fiz a nonreal number z and
let v denote the unique, up to a constant multiple, nonzero solution of the
equation Jv = zv. Then J is essentially self-adjoint if and only if v & (*(T).

Theorem 12. There exist Jacobi matrices on I' which are not essentially self-
adjoint.

Proof. We set 3, = 0. Fix a nonreal number z. Choose an infinite path z,, in
" so that {(z,) = n. We will construct a matrix J by induction on n. Assume
we have constructed a matrix J on I';, | \ {z,—1} and a nonvanishing function

vonl', . sothat

o lr, I3 <1—2700
and
(Ju)(z) = zv(x), @€y, \{zn-1}

We want to extend the definition of J and v so that the conclusion remains
valid when n — 1 is replaced by n.
Our first task is to define A\, , and v(z,) so that

20(Tn1) = Ag,_y V(T0) + Z Ay (y),

yen~Hzn-1)

i.e.

(18) Ao V(1) = 20(z01) — > Ao(y).
yen~Han—1)

The right hand side of (18) cannot vanish by Lemma 2. We will define \,,
and v(z,) so as to satisfy (18). By specifying A, _, large enough we may
assume that

lv(z,)? <271
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For any y € n~*(z,,) and y # 2,1 consider the subtree T', \ {y}. Set A\, = 1
for any x € 'y \ {y}. By Lemma 4 there is a nonzero solution v, defined on T',
satisfying

(Joy)(z) = zvy(z), €Dy \{y}
We may assume that

> oy Ir, [I3 <2777
yen~H(@n)\{zn-1}
We want to define the numbers \, for y € n~'(x,,) and y # 2,1 so that
20y(y) = (Juy)(y) = Ayvy(zn) + Z Az Uy (7).
zen~1(y)

Hence we want to have

zen~1(y)
(19) /\y =

By Lemma 2 the numerator (19) cannot vanish. We may multiply v, by a
constant of absolute value 1 so that the expression on the right hand side of
(19) becomes positive. In this way the values A, for y € 7 (z,) and y # z,,_1
are defined. We extend the definition of v to I';, by setting

v(z) =vy(x), xely, y#r,1.
On the way we have also extended the definition of J so that

(Ju)(z) = zv(z), xe€ly, \{z.}.

Moreover by construction we have

v e, 113 =lvlr.,_, I3+ > o [p, 13 + [o(zn)]?
yen™(@n),y#Tn—1

S 1 — 2—(n—1) + 2—71—1 + 2—n—1 —1— 2—71‘
O

Remark 1. The Jacobi matrix J constructed in the proof satisfies 5, = 0
and A\, = 1 for vertices x whose distance from the path {z,} is greater than 2.

Remark 2. Another way of proving Theorem 12 is as follows. Fix any
Jacobi matrix Jy so that the operator Jy is bounded on ¢*(T"). For example we
may set 8, = 0 and A, = (#n~1(y))"?, whenever z € n~}(y). Let S denote
the operator acting according to the rule

Sv(x) = Azo(n(x)).
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By I'y we denote the set of leaves, i.e. vertices of height 0. Then

1Svll3 =Y ISv(x)]* =) Allo(n(2))I?

zel zel
> July Z =" )< vl
yelM\lo zen~1(y) yelM\lo

The operator S is thus bounded. The adJomt operator S* acts by the rule

Z Ayo(y x ¢ Iy,

yen~1(z)

S*():O, JIGFO‘

Then Jy = S + S* is the Jacobi matrix such that ||Jy||2—2 < 2. Fix an infinite
path {x,} and a sequence of positive numbers {\,}. Let J; be the degenerate
Jacobi matrix defined by 8, = 0 and \,, = \,, A, = 0 for x ¢ {z,}. Choose
the coefficients A,, so that the classical Jacobi matrix associated with the coef-
ficients A\, and (3, = 0 is not essentially self-adjoint. For example set A, = 2".
Let J = Jy+ J;. The matrix J is nondegenerate. Moreover J is not essentially
self-adjoint as a bounded perturbation of non essentially self-adjoint operator
([6], cf. Prop. 8.6 [4]).

The next theorem provides a relation between Jacobi matrices on the tree
I' and classical Jacobi matrices associated with the infinite paths of I'.

Theorem 13. Assume a Jacobi matriz J on I is not essentially self-adjoint
and B, = 0. Choose an infinite path {x,} with I(z,) = n. Then the classical
Jacobi matriz Jy with A\, = A;, and B, = 0 is not essentialy self-adjoint.

Before proving Theorem 13 we will need the following lemma.

Lemma 14. Let J be a Jacobi matriz on I with 5, = 0. Let Jv = v and
v(xg) = 1 for a vertex Ty on height 0. Then the function ¥(x) = i "@uv(x) is
positive.

Proof. By assumptions we have

i(x) = Ao(n(@) + Y Au(y).

yen=1(z)

Thus

(20) B(r) = Ab(n(@) — D Ad(y).
yen~1(z)

We know that © cannot vanish and is unique up to a constant multiple. The
function Re® satisfies (20) and takes the value 1 at zy. Thus © = Re?, i.e.
v is real valued. We will show that ©(x) is positive by induction. Observe
that if ¥(z) is positive for any vertex on height zero then by (20) @ is positive.
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Assume the opposite, i.e. v is negative at some vertices on height zero. Since
0(xg) = 1 there are two vertices y;,y2 on height zero so that ¢} = ¥} and
0(y1) > 0, 9(y2) < 0. By (20) evaluated at z = y; and z = y, we get that
0(y}) > 0 and 9(y4) < 0, which gives a contradiction.

O

Proof of Theorem 13. By (20) evaluated at = x,, we obtain
() = Mg, 0(2pa1) Z Ay 0(y
yen~(zn)
Hence

Aa, 0(Tns1) = Aay D(Tny) = 0(wa) + Y Ai(y) > 0.

yen—1(zn)
YFATp 1

The last inequality follows from Lemma 14. Therefore

D U D VR
1}'(‘r2n) Z 0 2 2n ZU(xO)7

Aay Az« - - Azgyy

Aay Az« - - Az g

U(w2n11) > 0(@1)-

Ay Azy - - Ay

By assumptions the seqeunce o(zx,,) is square summable. Thus

S WD VD 2 Ao Ape o A 2
21 o T2 T2n—2 T17'T3 Toan—1 )
(21 ;(/\zl)\x3...)\ ) +()\x2)\x4...)\ ) =

T2n—1 T2n

The last inequality is equivalent to not essential self-adjointness of the classical
Jacobi matrix Jy with A\, = A, and 3, = 0. Indeed, let p, and ¢, denote the
polynomials of the first and the second kind associated with Jy, i.e.

zpn(z) = Npna1(x) + No1pn_1(z), n >0,
Z'Qn(x) = Alnt1 (33) + )‘ananl(x)a n =1,
where p_1 =0 p; =1 and ¢go =0, ¢g = 1/Ag. Then (21) reduces to

> I97(0) + 4;(0)] < oo,

O

Remark. The assumption f, = 0 in Thm. 13 is essential. Indeed, there
exists a Jacobi matrix J on ', which is not essentially self-adjoint, but the
classical Jacobi matrix Jy associated with the path {z,} is essentially self-
adjoint. Indeed, for every vertex x,, n > 1, fix a vertex y,_1 # x,_1 in 5~ (z,).
Let P denote the orthogonal projection from ¢*(T') onto (*({z,, yn }°2,). We
will consider Jacobi matrices J so that 5, = 0 for « ¢ {y,,}°°,. Let J, = PJP.
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First, we are going to study the essential self-adjointness of the operator J;.
To this end consider the equation (J;)v(x) = zv(z). This is equivalent to

20(@n) = A, (Tnt1) + Ag, 0(Tn-1) + Ay 0(Yn-1),
20(Yn-1) = Ay, 0(@n) + By, 0(Yn-1).

We have
22) D) = —2L ()
" 2 ﬁynfl "
Hence
2
20(2,) = Mg, V(@ng1) + Ay V(Tno1) + —L2 0 ().
<z = 6%4
Set 2 =1, Uy 1= Vg, ln i= Ny, M\ 1= A, and 3, := 5, ,. Then
B2 po\
{m +(1+ rﬁ% i Vn = ApUng1 + An—1Un1.

Set p2 =1+ B2. Then we obtain
2iv, = /\nvn—H - ann + An—lvn—l‘

Assume the classical Jacobi matrix with coefficients \,, and —f,, is not essen-
tially self-adjoint. Then the sequence v, is square summable. Moreover (22)
implies

2
2: Mn

[0(yn-1)

Hence
[olI> =) [v(@a)[* + [o(ya)|* < o0,
n=0

i.e. the operator J; is not essentialy self-adjoint. Let J; be any bounded Jacobi
matrix on I'. Then the Jacobi matrix J = J; + J5 is not essentially self-adjoint.

The matrix Jy is associated with the coefficients A\,, = A, and 3, = 0. Thus,
in order to conclude the reasoning, it suffices to prove the following.

Lemma 15. There exists a classical Jacobi matrix J
JTp = MTpi1 — By + Ap_1Zpn 1
which is not essentially self-adjoint, so that the Jacobi matriz
J Ty = MTng1 + Ap_1Tn_1

15 essentially self-adjoint.
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Proof. We will assume that 3, # 0. Not essential self-adjointness of J is equiv-
alent to the fact that every solution of the recurrence relation

0= )‘nanrl - 5nxn + )\nflxnfla n 2 17

is square summable. Assume the sequence x,, satisfies this recurrence relation.
Then

(23) BonTon = AanTont1 + Aop—1%on_1,
Bont1%ont1 = Aopt1Tant2 + Aonon.
Thus
)\2n+1 )\211
(24) Topt1 = S Topy2 + Lo,
5271—&-1 /62n+1
)\2n71 >\2n72
Top—1 = Top + 5—Tap—2
52n—1 B2n—1

Plugging in the last two equations into (23) results in

)\% )‘% 1 )‘2n>\2n+1 A2n—2)\2n—1
ﬁZ - - i o = ———Topto + ——5——Top_o.
( " 5271—&-1 /8271—1 " BQn—i—l i BQn—l "
Let ﬂQn—l = CL)\Qn_l and
ﬁQ _ A%n T )\%nfl
n — .
6271-1—1 62n—1

Then
0 = AonTonta + Aop—2Ton_o.

Choose an increasing sequence \g, so that every solution us,, of the last equa-
tion is square summable. Assume also that Ay, = Ag,41. Then by (24) we
get

)\2n
)‘Qn—‘rl

Thus the sequence z,, is square summable, i. e. the Jacobi matrix J is not
essentially self-adjoint.

On the other hand the Jacobi matrix J', under assumption Ay, = Ao, 41,
is essentially self-adjoint. Indeed, the sequence x5, 1 = 0 and x, = (—1)"
satisfies J'z = 0 and it is not square summable. O

|Tons1] < |al|zony2] + [Zon| = |a||T2ni2| + |T2n].

Remark. Following the proof it is possible to construct the coefficients A,
and f, explicitly. Let A\o,11 = A9, = ¢" for ¢ > 1. Then 5,11 = aq™ and
5271 - a_l[qn + qn—l]‘

The following lemma is straightforward but useful.
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Lemma 16. Consider a symmetric operator A on a Hilbert space H. Let Hy be
a finite dimensional subspace of D(A) C H and let Py, denote the orthogonal
projection onto Ho. Define the operator A : Hi — Hg by

A= (I— Py,)A(l — Py,).
The operator A is essentialy self-adjoint if and only if A is essentially self-
adjoint.

Theorem 17. Assume J is not essentially self-adjoint. Fiz a leaf xo and a
nonreal number z. Let a function u,(x) satisfy u, # 0, u,(zo) =0 and

(Ju,)(z) = zu,(x), x # xo.
Then u, is square summable on I'.

Proof. Let Ho = Cd,,. The operator .J acts on £2(I'\ {z,}) and is not essentially
self-adjoint by Lemma 16. Moreover if u, denotes the truncation of wu, to
['=T\ {x0} we have
(Ju,)(z) = zi.(x), xeT.
By Corollary 3, applied to I, we know that @, cannot vanish. Since J is not
essentially self-adjoint there exists a function 0 # v € ¢?(T") so that
(Jo)(z) = z0(z), xeT.
By Lemma 4, applied to I, we get that @, (z) = ¢o(z) for z € T O

Fix a leaf zg, i.e. (zg) = 0 and let z, = n"(x). By Corollary 3, for a
nonreal number z, there exist two nonzero solutions v, and u, on I' such that

(25)  elm) =1, vlen) = Boo oy (w9) = 0, a(y) = ——

0 >\1’0
(26) (Ju.)(x) = zv,(2), (Ju,)(z) = zus(x), =z €l \{zo}.

Observe that we have

(Jv,)(x) = zv,(x), forxzel.

The functions v, and wu, satisfying (25) and (26) will be called the solution and
the assoctated solution of the equation

(J)(x) = zf(z), = el \{xo}.
Summarizing we get

Proposition 18. Assume a Jacobi matriz J on ' is not essentially self-
adjoint. Then for any nonreal number z every solution of the equation

() = Av(n(x) + Bev(@) + D> Aoly),  z# 0
yen~1(x)

1s square summable.
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Fix a leaf 2y and remove from I' the links from the infinite path {z,}>%,,
where x,, = n"(x¢). In this way the tree I' splits into infinite number of finite
subtrees of the form I',, :=T';, \ I';,_,. In other words I',, consists of z,, and
all its descendants with exception of x,,_; and its descendants.

Lemma 19. Let x € Iy, for some n > 1. Then v,(z,)u.(x) = u,(x,)v.(z).

Proof. By Lemma 1 we know that v, and u, cannot vanish. Both functions
satisfy (Ju,)(x) = zu,(z), (Jv,)(z) = zv.(x) for z € T, \ {z,,}. By Lemma 4
we get v,(z) = cu,(z) for z € T',,. Plugging in = x,, gives the conclusion. [

Proposition 20. For the solution v, and the associated solution u, we have

Uz(xn) U’Z<xn> _ L
Uz(xn—l—l) uz('rn—&—l) n )\IBn ’
Proof. By (26) we get for n > 1
)\xnvz<xn+l) = sz(xn) - anvz(xn) - )\xn_lvz<$n71) - Z )\yvz<y>7
yen—(wn)\{rn-1}
AipUz(Tny1) = 2uz(xn) — Ba,uz(xn) — A, Us(Tpo1) — Z Aytz(Y).

yen~!(zn)\{zn-1}
Observe that n~(z,,) \ {z,_1} C T,. Hence Lemma 19 implies
Uz (2n)uz (y) = us(20)v2(y).

Now on multiplying the equations by u.(x,) and v,(z,), respectively, and
subtracting sidewise gives

U (Tp_1) u(xp_q)
v, () u,(z,)

v, () u,(z,)
Uy (anrl) Uy (xn+1>

Tn Tn—1

The conclusion follows as

O

The following theorem provides a natural analog of Carleman criterion for
essential self-adjointness.

Theorem 21. Let J be a Jacobi matrixz associated with the coefficients A\, and
B Let x,, denote any infinite path so that l(x,) = n. Assume

1

= OQ.

n=1""%n

Then the operator J is essentially self-adjoint.
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Proof. The result follows by the standard argument from Proposition 20. If
J was not essentially self-adjoint then the functions v and u would be square
summable, thus the series - A;! would be summable. UJ

Remark. The assumption does not depend on the choice of the infinite path,
as any two such paths will meet at a certain vertex.

5. NONNEGATIVE JACOBI MATRICES ON TREES

We say that a matrix J is positive definite if
(Ju,v) >0, veF(T).

The next theorem gives characterization of positive definite Jacobi matrices
on I

Theorem 22. (i) Assume there exists a positive function m(z) on I' such
that
(27) Bem(z) > Aom(n(z)) + Z A,y zel.
yen—(z)

Then the matriz J is positive definite
(ii) If the matriz J is positive definite there exists a positive function m(x)
on I' such that

(28) Bom(z) = Z Aym(y zel.
yen~(z)

Proof. (i). For z € T let

m(n(z))

=\
Yz T m(z)

Thus, on dividing by m(x), the formula (27) takes the form

(29) Be > va + Z a, zel.

yen~1(z)
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We have (see (5))

(Ju,v) = ((S+S*+ M)v,v)

= Bulo(x)

) + 2Re Z Av(z)v(n(x))

23

zel’ zel
> Belo(@)P =2 Afo(@)] [v(n(e))]
zel zel
=Y Bulo(@)P =2 vy |v(@)| [v(n(@))]
zel zel’
> Balo@)P =D alv(@))? =Y aglo(n(x))?
zell zell zel’
=Y Belo@)P = Y wlo@) =) @ Y e
zel zel zel yen—1(z)
- Z By — Yo — Z ay | [v(z)]> > 0.
zel yen—1(z)

(i) Consider the operator U acting by the rule
Uv(z) = (=1)"@y(x).
Clearly U is a unitary operator. Let
J=-U"JU.

Then J is a nonpositive definite operator and

Ju(z) = Mo(n(z)) — Z Ayv(

yen—t(z)

Fix an infinite path x, so that l(z,) = n. Thus I = [OJ [, . Let P, denote
the orthogonal projection from ¢?(T') onto ¢*(T,,) andn;f = P,JP,. Then J,
is a bounded nonpositive linear operator. Therefore
—a,] < J, <0< 11
for a positive constant a,,. Hence
0<Jotand < (a,+21)1

We have
(30) 0 < ((Jo + anl)dy,0,) = an — Ba, rel,.
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Observe that
(31) (jn +anl)d, = /\x(sn(x) + (an — B2)0z + Z AyOy, T € Ty, \ {zn}.

yen~1(z)
Let
foi= (A1 = J2) 0y = [(an + )T = (Ju + 0 )] 705
> 1 ~ k
prd (an + E)k‘Jrl

By (30) and (31) the function
(o + and)*6y,

is nonnegative, and positive on all vertices of ', at distance from =z, less or
equal to k. Hence f,, > 0 and f,(x) > 0 for any x € ', . Moreover

Tokn = Ju(21 = )76 = (Jo = 20T = J) 6, + L 0 = L £ — 64
This results in

Ao fn(n(2)) = Boful Z My fa(y) = £ ful@) = Gag(2), @ € Ty, \ {2},

yen~1(x)

Let ()

(T

my,(x) = i)
Then mn(:co) =1 and
(32)  Aemg(n Z Ay (y) = (Bz + )mn(x), z € 'y, \ {zo, 20},
yen~1(z)

(33) AzoMin (1) < (Bay + ).

Observe that for any fixed t € I' the sequence my,(t) is bounded. Indeed,
assume the opposite. Let ¢ be the vertex closest to z, so that my,(t) is un-
bounded. Let s be the vertex adjacent to ¢, so that

d(xo,t) = d(zo,s) + 1.

Then applying (32) with x = s implies that the sequence m,,(s) is unbounded,
which gives a contradiction.

Observe also that for any fixed ¢ € I' the sequence m,,(t) cannot accumulate
at zero. Indeed, assume the opposite. Let t be the vertex closest to xg so that
my,(t) accumulates at zero. Again let s be the vertex adjacent to t, so that

d(xo,t) = d(zo,s) + 1.

Then applying (32) with « = ¢ implies that the sequence m,,(s) also accumu-
lates at zero, which gives a contradiction.
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Consider the sequence of functions m,,. Let m be any pointwise accumulation
point of this sequence. Then m(z) > 0 and by (32) and (33) we obtain

(34 Aemn(@)+ Y Aymly) = Bem(z),  weT\{},
yen~!(z)
(35) Argm (1) < By
In order to get the conclusion (i.e. to guarantee equality also in (35)) we
have to modify slightly the function m(z).
Observe that after removing all the edges from the path {z,} the tree I'

splits into the sequence of disjoint trees I',, so that x,, € I',,. By (34) evaluated
at ¢ = x,, we have

)\znm(xn-l—l) + /\$n 1 xn 1 Z /\ m /Bwn ( n)a n 2 1.

yen~1(zn)
YF#Ty 1

Let the coefficients ¢,, be defined by co = 0 and

(36) > amy) =cum(z,),  n>1

yen~l(zn)
YFETy 1

Thus
Az, M(Tpg1) + gy U(Tno1) = (B, — cn)m(xn), n > 1.
This implies 3., > c¢,. Consider the classical Jacobi matrix defined by
Jou(n) = Ay, u(n+ 1) + (Ba, — cn)u(n) + Ay, u(n —1).

By Theorem 22(i) the matrix .Jy is positive definite. Let p,, denote the or-
thogonal polynomials associated with Jy. By the well known result we have
(=1)"p,(0) > 0. Set m(z,) = (—1)"p,(0). Then

(37) Aay U Tpg1) + Agyy s U(Tn1) = (Be, — Cn)(T0).
Set also
(39) () = (), yer,,

m(z,)
In view of (36), (37) and (38) we get
Az, (L1 1) Z Ayu(y) = Bo,m(24), n > 0.

yen~(zn)

Finally, by (34) and (38) we have
> Am(y) =Bem(x), zeT,\{z},n>1

yen—1(x)
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Proposition 23. There exist Jacobt matrices J on trees so that the equation
Jv = tv does not admit nonzero solutions for some real values of t.

Proof. We may admit that ¢ = 0. Consider a tree I' with #n~'(z) = 2 for
every vertex x, [(x) > 1. Fix an infinite path z,, so that I(z,) = n. Then
n Y zn) = {Tn_1,Yn_1} for n > 1. We will define the coefficients A\, and 3, on
'y, in such a way that the operator .J restricted to ¢*(T',, \ {yx}) is positive.
For example we may set A\, = 1 and 8, = 4 for any z € I'), \ {yx}. In this
way if the function v satisfies (Jv)(y) = 0 for y € 'y, \ {yx}, then either v =0
or v cannot vanish on I'y,. If v does not vanish on I'y, its restriction to I'y,
is unique up to a constant multiple. Let \,, = 1 and set 3, in such a way
that v(n(yx)) = v(zgr1) = 0. Set also A,, = 1 and S,, = 0 for any k. Thus
the matrix J is defined. Assume Ju = 0. If u vanishes on every subtree I,
then by the recurrence relation u vanishes at every vertex x,, with n > 1, as
17(Yn) = Tni1. Moreover by the recurrence relation evaluated at x; we obtain
v(zg) = 0, i.e. v = 0. If v does not vanish on every subtree Iy, let n be the
smallest index for which v does not vanish on I, .

Tn Yn
LTn+1 pYn+tl
$n+2

Then v(zg) = 0 for any k£ < n. We must have v(y,) # 0. By construction
we also get v(z,41) = 0. By the recurrence relation evaluated at x,.; we
conclude that v(z,42) # 0. This implies that v does not vanish on I' But
by construction v(z,+2) = 0, which is a contradiction. O

Yn+41-
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