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Abstract

We consider commutative hypergroups with translation operators which are compact onL2 resp.L1. It will be
shown that such hypergroups are necessarily discrete and that in the case of compact translations onL1 the support of
the Plancherel measure coincides with the set of all characters and the hypergroup must be symmetric. Furthermore
we will show that a certain type of Reiter’s condition is fulfilled.
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1. Introduction

In this paper we are going to study commutative hypergroupsX for which the translation operatorTx−I

is compact on the spaceL2(X,m) (resp.L1(X,m)) for eachx ∈ X, wherem is the Haar measure onX.
These hypergroups will be called compact type (resp. strong compact type). The most prominent examples
of such hypergroups are the polynomial hypergroups generated by the littleq-Legendre polynomials (see
[4]). We will present a full description of such hypergroups.
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The motivation for the investigations in this paper arose from our work on the so-called Reiter’s
condition of typeP1 for locally compact commutative hypergroups (see[2,3]). A precise definition of
Reiter’s condition will be given in Section 3. This condition is of particular interest in spectral analysis
of the Banach algebraL1(X,m). An important problem is to investigate whether the maximal ideals of
L1(X,m) have a bounded approximate identity.

Hypergroups onN0 generated by orthogonal polynomials are of special interest. In[3] we studied
polynomial hypergroups in some detail with respect to theP1-condition. We were able to show that there
is a bounded approximate identity in the maximal ideal which is generated by a character, if and only
if, the generalized Reiter condition is fulfilled at this character (see[3, Theorem 3.2].) In [3] it has been
shown that theP1-condition is satisfied at every character which is absolutely summable. Using this
result we observed that theP1-condition is fulfilled at every nontrivial character if the Jacobi operator is
compact on
2 resp.
1. This observation led us to the more general question whether we have the same
situation for hypergroups of compact type (resp. strong compact type). This question will be answered
completely in this paper.

The paper is organized as follows. In Section 2 we present the basic facts on hypergroups as far as they
are necessary to understand the paper. Section 3 contains the main results as well as some examples.

2. Preliminaries

Throughout this paper we will denote byXa locally compact commutative hypergroup. For the convo-
lution of two elementsx, y ∈ X we writex ∗ y which is defined as�x ∗ �y , where�x is the point measure
at the pointx. The involution of an elementx ∈ K will be denoted bỹx. LetCc(X) denote the space of
all continuous functions onX with compact support. For a givenx ∈ X and a functionf ∈ Cc(X) the
translationTxf of f is given by

Txf (y) = f (x ∗ y) = �x ∗ �y(f ).

The commutativity ofX ensures the existence of a Haar measurem onX, i.e., a regular positive Borel
measurem �= 0 such that

∫
X

f (y)dm(y) =
∫
X

Txf (y)dm(y), for all f ∈ Cc(K), x ∈ X.

The spacesLp(X,m), 1�p�∞, are defined as usual. It is well known that the translation operatorTx
can be extended to the spacesLp(X,m), 1�p�∞, and to the space of bounded continuous functions
Cb(X) onX and moreover, that this operator is bounded on each of this spaces.

Let M(X) be the set of all regular bounded Borel measures. For a measure� ∈ M(X) we have a
bounded operator

T� : B → B, T�f = � ∗ f =
∫
X

Txf d�(x),

whereB can be one of the spacesCb(X) orLp(X,m), 1�p�∞. In the case d� = f dm we will write
Tf .

Let C denote theC∗-algebra generated by the operatorsTf , f ∈ Cc(X), acting onL2(X,m).
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The convolution of two functionsf, g ∈ L1(X,m) is defined by

f ∗ g (x) =
∫
X

f (y) Tỹg(x)dm(y).

With this product and the *-operationf ∗(x) = f (x̃) the Banach spaceL1(X,m) becomes a Banach
*-algebra.

The set of all characters ofXwill be denoted byXb(X), i.e., the set

Xb(X) = {� ∈ Cb(X) : � �= 0 andTx�(y) = �(x)�(y) for all x, y ∈ X}.
Let X̂ be the set of all hermitian characters, i.e.,

X̂ = {� ∈ Xb(X) : �∗ = �}.
The Fourier transform of a functionf ∈ L1(X,m) will be denoted byFf (�) resp.f̂ (�) depending on
whether� is in Xb(X) or in X̂. There is a uniquely determined positive regular Borel measure� on X̂
with ∫

X

|f (x)|2 dm(x) =
∫
X̂

|f̂ (�)|2 d�(�)

for all f ∈ L2(X,m). The measure� is called the Plancherel measure and its support will be denoted by
S. It is well known that

S = {� ∈ K̂ : |f̂ (�)|�‖Tf ‖ for all f ∈ L1(X,m)}.
For more details on hypergroups we refer to monograph[1].

Let aj be a family of numbers indexed by elementsj from a setJ. By limj→∞aj = a we mean that
for anyε >0 we have|aj − a|<ε for all but finitely manyj.

3. The results

The first proposition is known (see for example[7, Theorem 3.4]). We state it here, with a different
proof, for the sake of completeness.

Proposition 1. Let X be a commutative hypergroup with Haar measure m. If the supportS of the
Plancherel measure� is compact then the hypergroup X is discrete.

Proof. By assumption we have�(S)<+ ∞. Let fi be a net of functions with compact supportKi ⊂ X

such that
⋂

iKi ={e} and‖fi‖2 =1. Thenf̂i → 1 pointwise and by the dominated convergence theorem
also inL2(S, �). Thus by the Plancherel formula the sequencefi is convergent inL2(X,m) and its limit
cannot be anything else butm({e})−1/2�e. We may assume thatm({e}) = 1.

We will show now that nox in X can be an accumulation point. Assume for a contradiction that there
is a netxi such thatxi �= x andxi → x in X. Since for everyf ∈ L2(X,m) the mapping

X � x → Txf ∈ L2(X,m)
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is continuous and�e ∈ L2(X,m) we have

m({xi})−1�xi = Tx̃i�e → Tx̃�e = m({x})−1�x,

where the convergence is with respect to the norm ofL2(X,m). On the other hand,

‖m({xi})−1�xi − m({x})−1�x‖2
2 = m({xi})−1 + m({x})−1>m({x})−1,

which gives a contradiction.�

We now introduce a special type of hypergroups which we are going to study in detail.

Definition 1. We say that a hypergroupX is of compact type if for everyx ∈ X the operatorTx − I is
compact on the spaceL2(X,m).

Now we will show that hypergroups of compact type are necessarily discrete and moreover, have a
special dual structure.

Theorem 1. Every commutative hypergroup of compact type is discrete. The support of the Plancherel
measure is given byS = {�i |i ∈ I } ∪ {1}, where�i → 1. In particular, every nontrivial character inS
is square summable.

Proof. Letf ∈ Cc(X). The operatorsTx −I are compact onL2(X,m) and so is the convolution operator

Tf − f̂ (1)I =
∫
X

f (x)[Tx̃ − I ] dm(x).

Since the limit of compact operators is compact the operatorTf − f̂ (1)I is compact for everyf ∈
L1(X,m).

Via the Gelfand transform,Tf − f̂ (1)I is mapped into the multiplication operatorM
f̂−f̂ (1) acting on

L2(S, �). Forε >0 consider the closed set

Sε = {� ∈ S : |f̂ (�) − f̂ (1)|�ε}.
The closed subspace

Vε = {g ∈ L2(S, �) : suppg ⊂ Sε}
of L2(S, �) is invariant for the operatorM

f̂−f̂ (1). Moreover, this operator restricted toVε is invertible.
By compactness of this operator the spaceVε must be finite dimensional. Therefore the setSε is finite
for anyε >0 and for anyf ∈ L1(X,m). This, by definition of the topology onS, implies thatS is of
the form as claimed in the statement of the theorem, i.e., the trivial character is the only accumulation
point inS andS is compact. �

Definition 2. We say that a hypergroupX is of strong compact type if for everyx in X the operatorTx − I

is compact on the spaceL1(X,m).

Strong compact type implies compact type as the following results state.
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Proposition 2. Let X be a commutative hypergroups of strong compact type. Then every nontrivial
bounded character is absolutely integrable.

Proof. According to the Theorem of Riesz on compact operators on Banach spaces, for eachx ∈ X the
spectrum of the operatorTx consists of 1 and countably many eigenvalues�x,1, �x,2, . . . different from
1. For an eigenvalue� let Nx,� denote the corresponding eigenspace. Since the operatorsTx commute
with each other the spaceNx,� is invariant for every translationTy.

LetM be the family of all finite dimensional invariant subspaces ofL1(X,m) for {Tx}x∈X. A subspace
V in M will be called minimal if it does not admit a proper subspace inM.

LetVbe a minimal subspace. Then for everyxand� if Nx,� ∩V �= {0} thenNx,� ∩V =V. Fix x ∈ X.

Hence there exists� such thatNx,� ∩ V �= {0} or Nx,� ∩ V = {0} for each�. In the first case we have
V ⊆ Nx,�. Otherwise,TxV ={0}.Thus for eachx ∈ X we have eitherTx�=0 for each� ∈ V orTx�=��,
for each� ∈ V . In both cases every function� ∈ V is a common eigenfunction for all the operatorsTx
and the eigenvalue depends only onx andV. ThereforeVmust be a one-dimensional space spanned by a
continuous and self-adjoint character�. Let a function 0�= � ∈ V. ThenTx�= �(x)�, where�(x) depends
only onx andV . We may assume that� is continuous by replacing it withTf �, wheref ∈ Cc(X), if
necessary. Of course there existsf such thatTf � �= 0. We have

�(x)�(y) = Tx�(y) = Ty�(x) = �(y)�(x).

Hence there exists a constantc such that�(x)= c�(x) for anyx ∈ X. In particular� is continuous. Thus
Tf V is a one-dimensional space spanned by the continuous function�(x). By taking any approximate
unit fn in L1(X,m) we can actually show that the spaceV is spanned by�. We then have

(Tx�)(y) = �(x)�(y). (1)

Observe that� is bounded by 1. Indeed, since the operatorsTx are contractions onL1(X,m) we have

|�(x)|‖�‖L1(X,m) = ‖Tx�‖L1(X,m)�‖�‖L1(X,m).

Hence|�(x)|�1. Moreover, we have that� ∈ L1(X,m) ∩ L∞(X,m), hence by the Schwarz inequality
� ∈ L2(X,m). Therefore� is a self-adjoint character because

�(x̃)‖�‖2 = 〈Tx̃�, �〉 = 〈�, Tx�〉 = �(x)‖�‖2.

We claim that every finite dimensional subspaceV invariant for{Tx}x∈X is a direct sum of the minimal
subspaces. Indeed,V contains a minimal subspaceW . This subspace is spanned by a character�. Hence
� ∈ L1(X,m)∩L∞(X,m). LetV ′ be the space of all functions inVwhich are orthogonal to� with respect
to the standard inner product. ThenV ′ is also invariant. Indeed, let� ∈ V ′ andx ∈ X. ThenTx� ∈ V and

〈Tx�, �〉 = 〈�, Tx̃�〉 = �(x)〈�, �〉 = 0.

ThusTx� ∈ V ′. Now we can repeat the same procedure forV ′.
Thus we have proved that every finite dimensional subspaceV invariant for{Tx}x∈X is spanned by

self-adjoint characters. In particular every subspaceNx,� is spanned by such characters. In particular we
haveNx,� ⊂ L1(X,m) ∩ L∞(X,m).
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Let Mx,� denote the eigenspace for the operatorTx on the spaceL∞(X,m) corresponding to the
eigenvalue� �= 1. We have

[(Tx)L1→L1]∗ = (Tx̃)L∞→L∞ .

The Fredholm alternative yields that

dim Nx,� = dim Mx∗,�,
dim Nx̃,� = dim Mx,�.

Moreover, sinceNx,� ⊂ L∞, we have

Nx,� ⊂ Mx,�,

Nx̃,� ⊂ Mx̃,�.

This implies

Nx,� = Mx,�,

Nx̃,� = Mx̃,�. (2)

The dual spaceXb(X) can be identified with the set of all bounded characters. Let� be a bounded
character different from 1. Then � is a common eigenfunction of the operatorsTx with eigenvalues
�(x). There existsx ∈ X such that�(x) �= 1. Then � ∈ Mx,� for � = �(x). By (2) we obtain that
� ∈ Nx,� ⊂ L1(X,m). Therefore� is absolutely integrable. �

Proposition 3. Every commutative hypergroup of strong compact type is of compact type.

Proof. Let x ∈ X. SinceTx − I is compact the spectrum ofTx consists of 1 and at most countably
many nonzero eigenvalues�1, �2, . . . , such that�n → 1. The corresponding eigenspacesNx,�i are finite
dimensional and by the proof of Proposition 2 are contained inL2(X,m).

In the proof of Proposition 2 we have shown that every character is inL2(X,m). It is easy to show
that the characters form an orthogonal basis ofL2(X,m). Therefore the spaceL2(X,m) is spanned by
the absolutely integrable characters.

Let � be a character. Then(Tx − I )� = (�i − 1)� for somei, because� ∈ L1(X,m). ThusTx − I has
the representation of the form

Tx − I =
∞∑
i=1

(�i − 1)Px,�i ,

wherePx,�i denotes the orthogonal projection ontoNx,�i . HenceTx − I is compact onL2(X,m). �

Theorem 2. Let X be a commutative hypergroup of strong compact type. ThenXb(X)=S. In particular
the hypergroup X is symmetric, i.e., every bounded character is self-adjoint.

Proof. Proposition 3and Theorem 1 imply thatX is discrete. LetC be theC∗-algebra generated by the
operatorsTx acting on the Hilbert space
2(X,m). Since
1(X,m) ∗ 
2(X,m) ⊂ 
2(X,m) we have
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1(X,m) ⊂ C. Moreover,
1(X,m) ∩ 
2(X,m) is dense inC. Let f ∈ 
1(X,m) ∩ 
2(X,m) and
� ∈ Xb(X), � �= 1. By Proposition 2 we have� ∈ 
1(X,m). Hence

‖�‖2|〈f, �〉| = ‖〈f, �〉�‖2 = ‖� ∗ f ‖2�‖�‖1‖f ‖2

= ‖�‖1‖Tf (�e)‖2�‖�‖1‖�e‖2‖Tf ‖L2→L2.

In particular the functional�(f ) = 〈f, �〉, for f ∈ 
1(X,m) gives rise to a continuous linear functional
on theC∗-algebraC. Since the structure space ofC can be identified withS we have� ∈ S. �

Now we study the so-called Reiter’s condition for hypergroups. The following results are an extension
of the work which has been done in[3]. First we repeat the precise definition of the Reiter condition.

Definition 3. Let � ∈ Xb(X) be fixed. We say that theP1-condition with boundM is satisfied in�
(P1(�,M) for short) if for each	>0 and every compact subsetC ⊆ X there existsg ∈ L1(X,m) with
the following properties:

(i) Fg(�) = 1,
(ii) ‖g‖1�M,

(iii) ‖Tỹg − �(y)g‖1< 	 for all y ∈ C.

We are now considering hypergroups of strong compact type with respect to theP1-condition.

Theorem 3. Let X be a commutative hypergroup of strong compact type. Then theP1(�,M) condition
is satisfied for each nontrivial character�.

Proof. By Proposition 2 and Theorem 1 the hypergroupX is discrete and its dual is compact with the
trivial character as the only accumulation point. By the proof of Proposition 2 every nontrivial character
belongs to
1(X,m). In the same manner as in[3, proof of Proposition 4.3]we obtain thatP1(�,M) is
satisfied. �

Now we turn to the polynomial hypergroups. Let us recall some basic facts. For a more thorough
treatment of this class of hypergroups we refer to[5,6].

Let {Rn}n∈N0
be a polynomial sequence defined by a recurrence relation of the type

R1(x)Rn(x) = anRn+1(x) + bnRn(x) + cnRn−1(x) (3)

for n ∈ N with starting polynomialsR0(x)= 1, R1(x)= 1/a0(x − b0) andan >0, bn�0 for all n ∈ N0
andcn�0 for all n ∈ N. Let the polynomials be normalized atx = 1, i.e.,

Rn(1) = 1

for all n ∈ N0. We also assume that the coefficients in the linearization formula

Rn(x)Rm(x) =
n+m∑

k=|n−m|
g(n,m; k)Rk(x),

are nonnegative for alln, m, k ∈ N0.A polynomial sequence with these properties generates a hypergroup
structure onN0.
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We can obtain a Banach algebra structure by considering the weighted space
1(N0, h) where

h(0) = 1, h(1) = 1

c1
, h(n) = a1a2.....an−1

c1c2.....cn
, (4)

with translation operators given by

Tn
(m) =
n+m∑

k=|n−m|
g(n,m; k)
(k). (5)

Proposition 4. Let {Rn}n∈N0
define a hypergroup onN0. Then the hypergroup is of compact type, if and

only if, an → 0, bn → 1 andcn → 0 in which case the hypergroup is also of strong compact type.

Proof. The translationsTn can be defined recursively as follows. We setT0=I . The operatorT1 is defined
on sequences{
(n)}∞n=0 by the formula

T1
(n) = an
(n + 1) + bn
(n) + cn
(n − 1), n�0. (6)

Using (5) it can be proved that

T1Tn = anTn+1 + bnTn + cnTn−1.

Plugging inx = 1 to the recurrence relation (3) we obtain

an + bn + cn = 1, for n>0, and a0 + b0 = 1. (7)

Now we get

(T1 − I )Tn = an(Tn+1 − I ) + (bn − 1)(Tn − I ) + cn(Tn−1 − I ).

This formula implies that the operatorTn − I can be factored byT1 − I . Therefore the operatorsTn − I

are compact on
2(N, h), if and only if,T1 − I is compact.
Formula (6) implies the following:

T1�n = cn+1�n+1 + bn�n + an−1�n−1, n�0. (8)

The system{�n}∞n=0 forms a basis for either space
2(N, h) or 
1(N, h). The matrix of the operatorT1

corresponding to this basis is tridiagonal. Therefore the operatorT1 − I is compact on
2(N0, h), if and
only if,

lim
n→∞

〈T1�n, �n+1〉
‖�n‖2‖�n+1‖2

= lim
n→∞

〈T1�n+1, �n〉
‖�n‖2‖�n+1‖2

= lim
n→∞

〈T1�n, �n〉
‖�n‖2

2

= 0.

By (4) and (8) the latter holds, if and only if,

cn+1an → 0 and bn → 1.

By (7) and the fact thatan andcn are positive, this is possible only ifan → 0, bn → 1 andcn → 0.
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Similarly, the operatorT1 − I is compact on
1(N, h), if and only if,

lim
n→∞

〈T1�n, �n+1〉
‖�n‖1‖�n+1‖∞

= lim
n→∞

〈T1�n+1, �n〉
‖�n+1‖1‖�n‖∞

= lim
n→∞

〈T1�n, �n〉
‖�n‖1‖�n‖∞

= 0.

By (4) and (8) this holds, if and only if,

an → 0, cn → 0 and bn → 1. (9)

Hence, alsoTn − I is compact for everyn ∈ N, provided (9) holds, as we have seen before it can be
factored byT1 − I . �

In view of Theorem 3 we get the following.

Corollary 1. Let {Rn}n∈N0
define a hypergroup onN0 of compact type. Then theP1(�,M) condition is

satisfied for every nontrivial character�.

Example 1. We consider the littleq-Legendre polynomials. They satisfy recurrence relation (3) with

an = qn
(1 + q)(1 − qn+1)

(1 − q2n+1)(1 + qn+1)
,

bn = (1 − qn)(1 − qn+1)

(1 + qn)(1 + qn+1)
,

cn = qn
(1 + q)(1 − qn)

(1 − q2n+1)(1 + qn)
.

By [4] they define the polynomial hypergroup. From the recurrence relation we can read easily that this
hypergroup is of strong compact type. Hence the modified Reiter’s condition is satisfied for each nontrivial
character.

Example 2. Let the orthogonal polynomialsRn satisfy (3) such thatbn is increasing,bn → 1,

cn+1an�(bn+2 − bn+1)
2,

for everyn�0, andan + bn + cn = 1. Then by remarks following[8, Theorem 1]the polynomialsRn

give rise to a hypergroup. Moreoveran → 0 andcn → 0. Hence the resulting hypergroup is of strong
compact type.
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