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Abstract

We consider commutative hypergroups with translation operators which are compagresp.L?L. It will be
shown that such hypergroups are necessarily discrete and that in the case of compact translatitessupport of
the Plancherel measure coincides with the set of all characters and the hypergroup must be symmetric. Furthermore
we will show that a certain type of Reiter’s condition is fulfilled.
© 2004 Published by Elsevier B.V.
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1. Introduction

Inthis paper we are going to study commutative hypergraifpswhich the translation operat@y — /
is compact on the spade’(X, m) (resp.L(X, m)) for eachx € X, wheremis the Haar measure of
These hypergroups will be called compacttype (resp. strong compact type). The most prominent examples
of such hypergroups are the polynomial hypergroups generated by thg-litigendre polynomials (see
[4]). We will present a full description of such hypergroups.
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The motivation for the investigations in this paper arose from our work on the so-called Reiter’s
condition of type2; for locally compact commutative hypergroups ($28]). A precise definition of
Reiter’s condition will be given in Section 3. This condition is of particular interest in spectral analysis
of the Banach algebra®(X, m). An important problem is to investigate whether the maximal ideals of
L1(X, m) have a bounded approximate identity.

Hypergroups om\g generated by orthogonal polynomials are of special interegB]lwe studied
polynomial hypergroups in some detail with respect tofhecondition. We were able to show that there
is a bounded approximate identity in the maximal ideal which is generated by a character, if and only
if, the generalized Reiter condition is fulfilled at this character {(8e&@heorem 3.2) In [3] it has been
shown that thez1-condition is satisfied at every character which is absolutely summable. Using this
result we observed that tl¥e,-condition is fulfilled at every nontrivial character if the Jacobi operator is
compact ort? resp.¢L. This observation led us to the more general question whether we have the same
situation for hypergroups of compact type (resp. strong compact type). This question will be answered
completely in this paper.

The paper is organized as follows. In Section 2 we present the basic facts on hypergroups as far as they
are necessary to understand the paper. Section 3 contains the main results as well as some examples.

2. Preliminaries

Throughout this paper we will denote Bya locally compact commutative hypergroup. For the convo-
lution of two elements;, y € X we writex x y which is defined a8, * J,, whereds, is the point measure
at the pointx. The involution of an element € K will be denoted byt. Let C¢(X) denote the space of
all continuous functions oX with compact support. For a givene X and a functionf € C¢(X) the
translation? f of f is given by

T f(y) = fx ®y) =0y % 0y(f).

The commutativity ofX ensures the existence of a Haar measoi@n X, i.e., a regular positive Borel
measuren # 0 such that

/ ) dm(y)=/ T, f(y)dm(y), forall f e Cc(K), x € X.
X X

The space&.? (X, m), 1< p<oo, are defined as usual. It is well known that the translation opetgtor
can be extended to the spadey X, m), 1< p<oo, and to the space of bounded continuous functions
Cp(X) on X and moreover, that this operator is bounded on each of this spaces.

Let M(X) be the set of all regular bounded Borel measures. For a measarad/ (X) we have a
bounded operator

T,:B— B, Tuf=u*f=/ T, f du(x),
X

whereB can be one of the spac€g(X) or L (X, m), 1< p<oo.Inthe case d= f dm we will write
Ty

Let # denote theC*-algebra generated by the operatdys f € Cc(X), acting onL?(X, m).
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The convolution of two functionsf, g € L1(X, m) is defined by
Frge= [ FO) Trgdn)

With this product and the *-operatiofi*(x) = f(¥) the Banach spacg(X, m) becomes a Banach
*-algebra.
The set of all characters ofwill be denoted byz',(X), i.e., the set

Xp(X) ={y € Cp(X) : y # 0andTy(y) = y(x)y(y) forallx, y € X}.
Let X be the set of all hermitian characters, i.e.,
X={yeapX):y" =9y}

The Fourier transform of a functiofi € LY(X, m) will be denoted byZ f(y) resp. f(y) depending on
whethery is in 2p(X) or in X. There is a uniquely determined positive regular Borel measune X
with

f |f(x>|2dm<x>=[|f(«/>|2dn<y>
X X

forall f € L?(X, m). The measure is called the Plancherel measure and its support will be denoted by
& . Itis well known that

s ={ye K :|fI<IITslforall f € LY(X, m)}.

For more details on hypergroups we refer to monogfaph
Leta; be a family of numbers indexed by elemepfsom a set/. By lim;_, .ca; = a we mean that
for anye > 0 we havela; — al < ¢ for all but finitely many;.

3. The results

The first proposition is known (see for example Theorem 3.4} We state it here, with a different
proof, for the sake of completeness.

Proposition 1. Let X be a commutative hypergroup with Haar measure m. If the supparf the
Plancherel measure is compact then the hypergroup X is discrete

Proof. By assumption we have(¥) < 4 oo. Let f; be a net of functions with compact supp#&it C X
suchthaf); K; ={e} and| fillo=1. Thenf, — 1 pointwise and by the dominated convergence theorem
also |nL2(y 7). Thus by the Plancherel formula the sequeyics convergent ir.?(X, m) and its limit
cannot be anything else buit({¢})~1/25,. We may assume thai({e}) = 1.

We will show now that nocin X can be an accumulation point. Assume for a contradiction that there
is a nety; such thaty; # x andx; — x in X. Since for everyf e L2(X, m) the mapping

X>x—> T.feL*X,m)
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is continuous and, € L2(X, m) we have
m({xi )" oy = T5;00 — Tede = m({x)) "o,

where the convergence is with respect to the normh%fX, m). On the other hand,
Im (i) 105 — mUx)ToclE = m(xh ™+ mxh > m(fx)

which gives a contradiction. O

We now introduce a special type of hypergroups which we are going to study in detail.

Definition 1. We say that a hypergrougis of compact type if for every € X the operatofl,, — I is
compact on the spade?(X, m).

Now we will show that hypergroups of compact type are necessarily discrete and moreover, have a
special dual structure.

Theorem 1. Every commutative hypergroup of compact type is discrete. The support of the Plancherel
measure is given by’ = {y;|i € I} U {1}, wherey; — 1.In particular, every nontrivial character itv’
is square summable.

Proof. Let f € Cc(X). The operator, — I are compact o ?(X, m) and so is the convolution operator
T, — I = / FOIT; — Tdm(x).
X

Since the limit of compact operators is compact the oper&for f(1)I is compact for everyf e
LY(X, m).
Via the Gelfand transfornf; — f(1)I is mapped into the multiplication operathf ;

f=f@
L2(#, ). Fore > 0 consider the closed set

Se=lpe 7 1f¢) - FQ)|=ze).

The closed subspace

acting on

Ve={g € L3, 1) : suppg C ¥}

of Lz(y, 7) is invariant for the operatdrflf_f(l). Moreover, this operator restricted ¥ is invertible.

By compactness of this operator the spaganust be finite dimensional. Therefore the sgtis finite

for anye > 0 and for anyf € L1(X, m). This, by definition of the topology ofr, implies that¥ is of

the form as claimed in the statement of the theorem, i.e., the trivial character is the only accumulation
point in. ¥ and.% is compact. O

Definition 2. We say that a hypergrougis of strong compact type if for everjin X the operatof, — I
is compact on the spadée'(X, m).

Strong compact type implies compact type as the following results state.
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Proposition 2. Let X be a commutative hypergroups of strong compact. tfpen every nontrivial
bounded character is absolutely integrable

Proof. According to the Theorem of Riesz on compact operators on Banach spaces, foreacthe
spectrum of the operatdt, consists of 1 and countably many eigenvalags, /. 2, ... different from
1. For an eigenvalug let N, , denote the corresponding eigenspace. Since the opefgtammmute
with each other the spacé, ; is invariant for every translatiofi, .

Let M be the family of all finite dimensional invariant subspaces bfX, m) for {T\},cx-Asubspace
Vin M will be called minimal if it does not admit a proper subspaca/in

LetV be a minimal subspace. Then for evergndAif Ny ; NV # {0} thenN,, NV =V.Fixx € X.
Hence there existé such thatv, ; NV # {0} or N, ; NV = {0} for each/. In the first case we have
V C N, . OtherwiseT,V ={0}. Thus for eachx € X we have eithe¥,y=0foreachy € V or T,y =21y,
for eachy € V. In both cases every functigne V is a common eigenfunction for all the operata@ks
and the eigenvalue depends onlyxcendV. Thereforev must be a one-dimensional space spanned by a
continuous and self-adjoint characteket a function 04 « € V. ThenT,a=7(x)a«, wherey(x) depends
only onx andV. We may assume thatis continuous by replacing it witlfs«, where f € Cc(X), if
necessary. Of course there exisssich thatl' ro # 0. We have

y()a(y) = Tra(y) = Tya(x) = y(y)a(x).

Hence there exists a constarguch that«(x) = c¢y(x) for anyx € X. In particulary is continuous. Thus
T,V is a one-dimensional space spanned by the continuous functignBy taking any approximate
unit £, in L1(X, m) we can actually show that the spates spanned by. We then have

(Tep) (y) = y(x)p(y). 1)

Observe tha is bounded by 1. Indeed, since the operafgrare contractions ohl(X, m) we have
[PCOLI N L2 x,my = 1T L cx,my <IVN 22, m) -

Hence|y(x)| <1. Moreover, we have thate L1(X, m) N L®(X, m), hence by the Schwarz inequality
v € L%(X, m). Thereforey is a self-adjoint character because

Y@ lyll2 = (Tzy, ) = (s Tey) = 700 17ll2-

We claim that every finite dimensional subsp&aavariant for{7,} . x is a direct sum of the minimal
subspaces. Indeed,contains a minimal subspa®g. This subspace is spanned by a charactelence
v e LY(X, m)NL>®(X, m). LetV' be the space of all functions¥fwhich are orthogonal towith respect
to the standard inner product. Th&nhis also invariant. Indeed, lgte V' andx € X. ThenT,n € V and

(Tyn, y) = (n, Tzy) = y(x){n, y) = 0.

ThusT,n € V'. Now we can repeat the same procedurelfar

Thus we have proved that every finite dimensional subspaceariant for{7,},.y is spanned by
self-adjoint characters. In particular every subspsice is spanned by such characters. In particular we
haveN, ; ¢ LY(X,m) N L®(X, m).
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Let M, ; denote the eigenspace for the operalipron the spacd *°(X, m) corresponding to the
eigenvaluel # 1. We have

[(Tx)LlﬁLl]* = (T})LOO—>L°°-
The Fredholm alternative yields that

dim N, ; = dim M, ,,
dim Ni,/l = dim My ;.

Moreover, sinceV, ; C L, we have

Nx,}v C Mx,),»
Nz, C Mx ;.

This implies

Nx,/l = My ]

N; ;= M; ;. @)

The dual spac&’r(X) can be identified with the set of all bounded characters.ylls a bounded
character different from.1Theny is a common eigenfunction of the operatdts with eigenvalues
p(x). There existstx € X such thaty(x) # 1. Theny € M, , for A = y(x). By (2) we obtain that
y € Ny.; C LY(X, m). Thereforey is absolutely integrable. O

Proposition 3. Every commutative hypergroup of strong compact type is of compact type.

Proof. Letx € X. SinceT, — I is compact the spectrum @f. consists of 1 and at most countably
many nonzero eigenvalues, Ao, ..., such that,, — 1. The corresponding eigenspadés,, are finite
dimensional and by the proof of Proposition 2 are containdcfitX , m).

In the proof of Proposition 2 we have shown that every character i€, m). It is easy to show
that the characters form an orthogonal basig &fX, m). Therefore the spack?(X, m) is spanned by
the absolutely integrable characters.

Let y be a character. ThefT, — I)y = (4; — 1)y for somei, because € L1(X, m). ThusT, — I has
the representation of the form

0, ]
Te—I1=) (i—DPy.
i=1
whereP, ;, denotes the orthogonal projection omNg ;,. HenceT, — I is compact or.2(X,m). O

Theorem 2. Let X be a commutative hypergroup of strong compact type. Zhek) =.&. In particular
the hypergroup X is symmetrice., every bounded character is self-adjoint.

Proof. Proposition 3and Theorem 1 imply th4tis discrete. Let be theC*-algebra generated by the
operatorsT, acting on the Hilbert spac& (X, m). Sincet (X, m) % £2(X, m) C £%(X, m) we have
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XX, m) C €. Moreover,¢X(X, m) N £2(X,m) is dense in%. Let f € (XX, m) N £2(X, m) and
y € Zp(X), y # 1. By Proposition 2 we have € ¢1(X, m). Hence

P2 D =1 nvliz = lly = flla< vl fll2
=PIl Ty @ ll2< 712l dell2Tr 1 L2 p2-

In particular the functionap(f) = (f, y), for f € ¢X(X, m) gives rise to a continuous linear functional
on theC*-algebrag. Since the structure space®fcan be identified with” we havey € . O

Now we study the so-called Reiter’s condition for hypergroups. The following results are an extension
of the work which has been done[8]. First we repeat the precise definition of the Reiter condition.

Definition 3. Let y € 2p(X) be fixed. We say that the?;-condition with boundM is satisfied iny
(21(y, M) for short) if for each: > 0 and every compact subsgtc X there existg € L1(X, m) with
the following properties:

() 7g() =1,
(i) lglli<sM,
(i) 758 —y(»glli<eforall y e C.

We are now considering hypergroups of strong compact type with respect4q tbendition.

Theorem 3. Let X be a commutative hypergroup of strong compact type. Thenritye M) condition
is satisfied for each nontrivial character

Proof. By Proposition 2 and Theorem 1 the hypergroGfs discrete and its dual is compact with the
trivial character as the only accumulation point. By the proof of Proposition 2 every nontrivial character
belongs to¢1 (X, m). In the same manner as [B, proof of Proposition 4.3jve obtain that?1(y, M) is
satisfied. O

Now we turn to the polynomial hypergroups. Let us recall some basic facts. For a more thorough
treatment of this class of hypergroups we refej5i6].
Let {R,},en, DE @ polynomial sequence defined by a recurrence relation of the type

R1(x) Ry(x) = apRy41(x) + by Ry (x) + ¢y Ry—1(x) (3

for n € N with starting polynomial®Rg(x) =1, R1(x) = 1/ao(x — bg) anda,, > 0, b, >0foralln € Ng
andc, >0 for alln € N. Let the polynomials be normalizedat 1, i.e.,

R,(1)=1
for all n € Ng. We also assume that the coefficients in the linearization formula
n—+m
Ru()Ru(x) =Y g(n,m; k)Re(x),
k=|n—m)|

are nonnegative forall, m, k € No.A polynomial sequence with these properties generates a hypergroup
structure orNg.
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We can obtain a Banach algebra structure by considering the weightedédpageh) where
1
h©Q =1 hD=—, h)=——"—, (4)
c1

with translation operators given by

n+m

T.pom) =Y g, m;k)Bk). (5)

k=|n—m|

Proposition 4. Let{R,},cn, define a hypergroup oNo. Then the hypergroup is of compact type, if and
onlyif,a, — 0, b, — 1andc, — 0in which case the hypergroup is also of strong compact type.

Proof. The translationg), can be defined recursively as follows. WeEgt 1. The operatofy is defined
on sequenceg(n)};° , by the formula

T1p(n) = anp(n + 1) + byp(n) + cnf(n — 1), n=0. (6)
Using (5) it can be proved that

T, =ayThy1+ b, Ty + ey T—1.
Plugging inx = 1 to the recurrence relation (3) we obtain

a, +b,+c,=1 forn>0, and ag+ bg= 1. (7
Now we get

(I — DTy =an(Thy1 — D) + by = DT, = 1) + cn(Th—1— D).

This formula implies that the operat@y — I can be factored by; — I. Therefore the operato, — 1
are compact old?(N, &), if and only if, Ty — I is compact.
Formula (6) implies the following:

T16p = cpy16p4+1 + bpdy +ap—16,-1, n=0. (8)

The systemo,}°2 , forms a basis for either spaéé(N, i) or £1(N, h). The matrix of the operatdF;
corresponding to this basis is tridiagonal. Therefore the opefater! is compact ort?(Ng, &), if and
only if,

(T10n, Opn41) lim (T10n+1, 0n) i (T10n, On)
n=>00 [|0pll2010n+allz - n=00 0ull2ldnsallz >0 |15,113

By (4) and (8) the latter holds, if and only if,
chr1a, — 0 and b, — 1.

By (7) and the fact thai, andc, are positive, this is possible onlydf, — 0, b, — 1 andc, — O.
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Similarly, the operatofy — I is compact ot1(N, &), if and only if,

<T15n75n+l> — lim <T15n+175n> — lim (Tlén,5n> .
n=00 |0 l1l10n+1lloc =00 [[on41ll1lldnlloc 7m0 (16l 1110n [l

By (4) and (8) this holds, if and only if,
a, — 0, ¢, —0 and b, — 1 (9)

Hence, alsdl;, — I is compact for every: € N, provided (9) holds, as we have seen before it can be
factored byr; — 1. O

In view of Theorem 3 we get the following.

Corollary 1. Let{R,},cn, define a hypergroup oNo of compact type. Then the; (y, M) condition is
satisfied for every nontrivial character

Example 1. We consider the little-Legendre polynomials. They satisfy recurrence relation (3) with

., A+ —g"th

an =49 (1_ q2n+1)(1+qn+1)’
(A= gMHA—q"
" A+ g A+ gty
R A+q9)(A—-qg"

T A= At gy

By [4] they define the polynomial hypergroup. From the recurrence relation we can read easily that this
hypergroup is of strong compact type. Hence the modified Reiter’s condition is satisfied for each nontrivial
character.

Example 2. Let the orthogonal polynomial,, satisfy (3) such thak, is increasingb,, — 1,
Cp4-10n < (bn+2 - bn—i—l)z»

for everyn >0, anda, + b, + ¢, = 1. Then by remarks following8, Theorem 1lthe polynomialsR,
give rise to a hypergroup. Moreovey — 0 andc, — 0. Hence the resulting hypergroup is of strong
compact type.
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