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c©2005 Birkhäuser Verlag Basel (ISBN 3-7643-7124-2)

Polynomial bases for continuous function spaces

Josef Obermaier and Ryszard Szwarc

Abstract

Let S ⊂ R denote a compact set with infinite cardinality and C(S) the set of
real continuous functions on S. We investigate the problem of polynomial and
orthogonal polynomial bases of C(S). In case of S = {s0, s1, s2, . . .} ∪ {σ},
where (sk)∞k=0 is a monotone sequence with σ = limk→∞ sk, we give a suffi-
cient and necessary condition for the existence of a so-called Lagrange basis.
Furthermore, we show that little q-Jacobi polynomials which fulfill a certain
boundedness property constitute a basis in case of Sq = {1, q, q2, . . .} ∪ {0},
0 < q < 1.

1 Introduction

One important goal in approximation theory is the representation of functions with
respect to a set of simple functions. Here, we focus on the Banach space C(S) of
real continuous functions on a compact set S ⊂ R with infinite cardinality. Among
the continuous functions polynomials are the most simple to deal with. Hence,
further on we discuss the representation of f ∈ C(S) with respect to a sequence
of polynomials (Pk)∞k=0. Moreover, it is profitable to look for a sequence with

deg Pk = k for all k ∈ N0, (1)

which guarantees that every polynomial has a finite representation.
Of special interest are orthogonal polynomial sequences with respect to a

probability measure π on S, where a representation is based on the Fourier coef-
ficients

f̂(k) =
∫

S

f(x)Pk(x) dπ(x), k ∈ N0, (2)

of f ∈ C(S).
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Let us recall some important facts about orthogonal polynomials, see [3]. An
orthogonal polynomial sequence (Pk)∞k=0 with compact support S and property
(1) satisfies a three term recurrence relation

P1(x)Pk(x) = akPk+1(x) + bkPk(x) + ckPk−1(x), k ∈ N, (3)

starting with
P0(x) = a0 and P1(x) = (x− b)/a, (4)

where the coefficients are real numbers with ckak−1 > 0, k ∈ N, and (ckak−1)∞k=1,
(bk)∞k=1 are bounded sequences. The other way around, if we construct (Pk)∞k=0

by (3) with coefficients satisfying the conditions above, then we get an orthogonal
polynomial sequence with compact support S.
The sequence of kernels (Kn)∞n=0 is defined by

Kn(x, y) =
n∑

k=0

Pk(x)Pk(y)h(k) =
n∑

k=0

pk(x)pk(y), (5)

where

h(k) = (
∫

S

P 2
k (x) dπ(x))−1 =

1
a2
0

∏k−1
i=0 ai∏k
i=1 ci

, k ∈ N0, (6)

and (pk)∞k=0 is the orthonormal polynomial sequence with respect to π defined by

pk =
√

h(k)Pk. (7)

For z ∈ S it holds

(Kn(z, z))−1 = min
Q∈P(n),Q(z)=1

∫

S

(Q(x))2 dπ(x), (8)

where P(n) denotes the set of polynomials with degree less or equal n. One of the
most important tools is the Christoffel-Darboux formula

Kn(x, y) = anh(n)
Pn+1(x)Pn(y)− Pn(x)Pn+1(y)

P1(x)− P1(y)

= a
√

cn+1an
pn+1(x)pn(y)− pn(x)pn+1(y)

x− y
. (9)

The linearization coefficients g(i, j, k) are defined in terms of

PiPj =
∞∑

k=0

g(i, j, k)Pk =
i+j∑

k=|i−j|
g(i, j, k)Pk, i, j ∈ N0, (10)

where g(i, j, |i− j|), g(i, j, i + j) 6= 0. The nonnegativity of the linearization coeffi-
cients is sufficient for a special boundedness property, which we will introduce in
Section 4.
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2 Polynomial bases for C(S)

Let us first refer to the concept of a basis.

Definition 2.1 A sequence (Φk)∞k=0 in C(S) is called basis if for every f ∈ C(S)
there exists a unique sequence of (ϕk)∞k=0 of real numbers such that

f =
∞∑

k=0

ϕkΦk, (11)

where limn→∞
∑n

k=0 ϕkΦk is with respect to the sup-norm. A basis (Φk)∞k=0 of
polynomials is called polynomial basis. A polynomial basis with (1) is called Faber
basis.

There is a famous result of Faber [4] in 1914 that in case of S being an interval
[c, d] there doesn’t exist a polynomial basis (Pk)∞k=0 of C([c, d]) with property
(1). Concerning C([c, d]) great efforts have been made in constructing polynomial
bases and to minimize the degrees as far as possible. In 1977 Temlyakov [20] has
investigated a method of construction, where the growth of the degrees fulfills
deg Pk ≤ C k log log(k). Later on, in 1985 Bochkarev [2] has used the Fejér kernel
to construct a basis with linear bounds, that is deg Pk ≤ 4k. In 1987 Privalov [14]
published a somehow negative result, which implies the result of Faber. Namely,
if there is a polynomial basis (Pk)∞k=0 of C([c, d]), then there exists a δ > 0 such
that deg Pk ≥ (1 + δ) k for all k ≥ k0, where k0 is a proper integer. Also, in
1991 Privalov gave a positive result, see [15]. He proved that for any ε > 0 there
exists a polynomial basis of C([c, d]) with deg Pk ≤ (1+ ε) k. Such a basis is called
polynomial basis of optimal degree (with respect to ε).

If we are searching for Banach spaces C(S) equipped with a Faber basis,
then we have to choose S different from an interval. In this setting spaces C(S)
with a so-called Lagrange basis are discussed in [16]. In Section 3 we investigate a
basic class of compact sets S and give a sufficient and necessary condition for the
existence of a Lagrange basis.

Note, that the results mentioned above are not based upon the fact of or-
thogonality. In case of orthogonality the question ’Does (Pk)∞k=0 constitute an
orthogonal polynomial basis of C(S)’ is equivalent to the question if any function
f ∈ C(S) is represented by its Fourier series

∞∑

k=0

f̂(k)Pkh(k). (12)

In this particular branch of study there also are some positive results. In
1996 Kilgore, Prestin and Selig [7] constructed an orthogonal polynomial basis of
optimal degree with respect to the Chebyshev weight of first kind (α = β = − 1

2 )
using wavelet methods. Later on, in 1998 Girgensohn [6] gave optimal polynomial
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bases for all of the four Chebyshev weights (α = ± 1
2 , β = ± 1

2 ) and in 2001 Skopina
[17] succeeded for Legendre weights (α = β = 0). The general problem for Jacobi
weights (1− x)α(1 + x)βdx, α, β > −1, seems still to be open.
In order to check if an orthogonal polynomial sequence (Pk)∞n=0 constitutes a basis
of C(S) we have to show

sup
x∈S

∫

S

|Kn(x, y)| dπ(y) ≤ C for all n ∈ N0. (13)

We should mention that the sequence (Pk)∞n=0 is a basis of C(S) if and only if it
is a basis of L1(S, π), see [11]. For the discussion of an example based on little
q-Jacobi polynomials see Section 5.

3 Lagrange bases

In [16] we have introduced the concept of a Lagrange basis. Let S ⊂ R be a
compact set and (sk)∞k=0 a sequence of distinct points in S. Define as usual the
Lagrange basic functions Lk

n as

Lk
n(x) =

∏n
i=0,i6=k(x− si)∏n
i=0,i6=k(sk − si)

for all n ∈ N0, k = 0, 1, . . . , n. (14)

and
lk(x) = Lk

k(x) for all k ∈ N0. (15)

Definition 3.1 The sequence (lk)∞k=0 is called sequence of Lagrange polynomials
with respect to (sk)∞k=0. If (lk)∞k=0 is a basis of C(S), then we call (lk)∞k=0 a Lagrange
basis of C(S) with respect to (sk)∞k=0.

In case of a Lagrange basis it holds f =
∑∞

k=0 ϕk(f)lk with

ϕ0(f) = f(s0); ϕk(f) = f(sk)−
k−1∑

j=0

ϕj(f)lj(sk) for all k ∈ N. (16)

A sequence (vn)∞n=0 of linear operators from C(S) into C(S) is defined by

vn(f) =
n∑

k=0

ϕk(f)lk. (17)

By simple means we have

n∑

k=0

ϕk(f)lk(si) = f(si) for all i = 0, 1, . . . , n, (18)
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which implies
n∑

k=0

ϕk(f)lk =
n∑

k=0

f(sk)Lk
n. (19)

The sequence of Lagrange polynomials (lk)∞k=0 constitutes a basis of C(S) if and
only if

‖vn‖ = max
x∈S

n∑

k=0

|Lk
n(x)| ≤ C for all n ∈ N0, (20)

see [16].
Further let us assume that (sk)∞k=0 is strictly increasing or strictly decreasing and

S = {s0, s1, s2, . . .} ∪ {σ}, (21)

where
σ = lim

k→∞
sk. (22)

Using this assumption we derive

‖vn‖ =
n∑

k=0

|Lk
n(σ)|, (23)

see [16].

Let us now give the main result of this section.

Theorem 3.2 Assume (sk)∞k=0 is a strictly increasing or strictly decreasing se-
quence and S = {s0, s1, s2, . . .} ∪ {σ}.
Then (lk)∞k=0 is a basis of C(S) if and only if there exists 0 < q < 1 with

|σ − sk+1| ≤ q |σ − sk| for all k ∈ N0. (24)

Proof. Let (lk)∞k=0 be a basis of C(S). Then there exists C > 1 such that |lk(σ)| <
C for all k ∈ N0, which implies

|σ − sk−1| < C|sk − sk−1| for all k ∈ N. (25)

If (sk)∞k=0 is strictly increasing, then (σ − sk−1) < C(sk − σ + σ − sk−1), which is
equivalent to

(σ − sk) <
C − 1

C
(σ − sk−1) for all k ∈ N. (26)

In case of a strictly decreasing sequence we get the inequality the other way around.
Choose q = (C − 1)/C.
Let us now assume that (24) holds and (sk)∞k=0 is strictly decreasing. If k > i we
get

|σ − si|
|sk − si| =

si − σ

si − σ − (sk − σ)
<

si − σ

si − σ − qk−i(si − σ)
=

qi

qi − qk
, (27)
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and if k < i we get
|σ − si|
|sk − si| <

qi

qk − qi
. (28)

Furthermore, it holds
n∑

k=0

n∏

i=0,i6=k

qi

|qk − qi| =
n∑

k=0

n−k∏

j=1

1
1− qj

k∏

i=1

1
1− qi

qk(k+1)/2 (29)

≤



∞∏

j=1

1
1− qj




2 ∞∑

k=0

qk < ∞. (30)

Hence,
∑n

k=0 |Lk
n(σ)| ≤ C for all n ∈ N0, which implies that (lk)∞k=0 constitutes a

basis of C(S). The case (sk)∞k=0 is strictly increasing is quite similar. 2

The standard example due to the geometric sequence is

Sq = {1, q, q2, . . .} ∪ {0}, (31)

where 0 < q < 1. Now, by Theorem 3.2 it follows that the Lagrange polynomials
(lk)∞k=0 with respect to (sk)∞k=0, where sk = qk, constitute a Lagrange basis of
C(Sq).

For instance, if one is rearranging the sequence ( 1
2k )∞k=0 in the way that

sk =





1 if k = 0,
2−(k+1)/2 if k 6= 0 and log2(k + 1) ∈ N,
2−(k+1) else,

(32)

then the Lagrange polynomials (lk)∞k=0 with respect to (sk)∞k=0 don’t constitute a
Lagrange basis of C(S 1

2
). The proof is left to the reader.

If we set S
(i)
q = Sq\{qi} and (lk)∞k=0 denotes the sequence of Lagrange polynomials

with respect to the sequence (qk)∞k=0 then C(S(i)
q ) in companion with (lk)∞k=0

states an example where a representation (11) exists but is not unique. To show
this first notice that any f (i) ∈ C(S(i)

q ) could be easily extended to a function
f ∈ C(Sq), where f |

S
(i)
q

= f (i) and f(qi) is arbitrary. A representation of f in

C(Sq) also represents f (i) in C(S(i)
q ). Choose f1, f2 ∈ C(Sq) with f1(qi) 6= f2(qi)

and f1|S(i)
q

= f2|S(i)
q

to show that the representation is not unique. Of course, by

Theorem 3.2 there is a Lagrange basis of C(S(i)
q ) with respect to the sequence

(qk)∞k=0,k 6=i.
Let

Sr = {1, 1
2r

,
1
3r

, . . .} ∪ {0}, (33)

where 0 < r < ∞. With sk = 1
(k+1)r we get limk→∞ sk+1/sk = 1. By Theorem

3.2 the Lagrange polynomials with respect to (sk)∞k=0 do not constitute a basis of
C(Sr).
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4 A boundedness property for orthogonal poly-
nomial sequences

The following boundary property for orthogonal polynomial sequences is important
for many reasons, see for instance [12], and is used in Section 5.

Definition 4.1 We say that a polynomial sequence (Rk)∞k=0 fulfills property (B),
if there exists ξ ∈ S such that

|Rk(x)| ≤ Rk(ξ) = 1 for all x ∈ S, k ∈ N0. (34)

There is a condition on the linearization coefficients which yields that prop-
erty (B) holds with respect to a proper normalization of the system.

Lemma 4.2 Assume that the linearization coefficients g(i, j, k) belonging to the
sequence (Pk)∞k=0 are nonnegative for all i, j, k ∈ N0, then there exists a normal-
ization Rk = γkPk such that property (B) holds.

Proof. The assumption yields g(i, i, 2i) > 0 for all i ∈ N0. Hence, by (10) it follows
P0 > 0 and limx→−∞ P2i(x) = limx→∞ P2i(x) = ∞ for all i ∈ N. Regarding P1P2i

we get limx→∞ P1(x) = limx→∞ P2i+1(x) for all i ∈ N.
All zeros of the polynomials Pk are in the open interval (minS, maxS), see [3].
Hence there are two cases to handle. Namely, Pk(minS) > 0 for all k ∈ N0, or
Pk(max S) > 0 for all k ∈ N0. Depending on this put ξ = min S or ξ = max S and
define

Rk(x) =
Pk(x)
Pk(ξ)

for all k ∈ N0. (35)

Then the linearization coefficients gR of (Rk)∞k=0 are also nonnegative because

gR(i, j, k) =
Pk(ξ)

Pi(ξ)Pj(ξ)
g(i, j, k) for all i, j, k ∈ N0, (36)

and it holds
i+j∑

k=|i−j|
gR(i, j, k) = 1 for all i, j ∈ N0. (37)

Hence, a hypergroup structure is associated with the orthogonal polynomial se-
quence (Rk)∞k=0 which yields property (B), see [10]. 2

There are well-known criteria by Askey [1] or [18, 19] implying the non-
negativity of the linearization coefficients. In case of a discrete measure π and
nonnegative linearization coefficients we refer to Koornwinder [9] and [13].

In the next section we use the fact that in case of property (B) it holds

|Kn(x, y)| ≤ Kn(ξ, ξ) for all n ∈ N0, x, y ∈ S. (38)
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5 Little q-Jacobi polynomials

In all that follows we keep 0 < q < 1 fixed and Sq is defined by (31). For α > −1
we define a probability measure π(α) on Sq by

π(α)({qj}) = (qα+1)j(1− qα+1), π(α)({0}) = 0. (39)

The orthogonal polynomial sequence (R(α)
k )∞k=0 with respect to π(α) are spe-

cial little q-Jacobi polynomials, see [8]. They fulfill the following orthogonality
relation

∫

Sq

R
(α)
k R

(α)
l dπ(α) =

∞∑

j=0

R
(α)
k (qj)R(α)

l (qj)(qα+1)j(1− qα+1)

=
(qα+1)k(1− qα+1)

1− q2k+α+1

(
k∏

i=1

1− qi

1− qα+i

)2

δk,l. (40)

Starting with

R
(α)
0 = 1 and R

(α)
1 (x) = 1− 1− qα+2

1− qα+1
x (41)

they are defined by the three term recurrence relation (3) with coefficients

ak =
1− qα+2

1− qα+1
Ak, (42)

bk = 1− 1− qα+2

1− qα+1
(Ak + Ck), (43)

ck =
1− qα+2

1− qα+1
Ck, (44)

where

Ak = qk (1− qk+α+1)(1− qk+α+1)
(1− q2k+α+1)(1− q2k+α+2)

(45)

Ck = qk+α (1− qk)(1− qk)
(1− q2k+α)(1− q2k+α+1)

. (46)

In case of α ≥ 0 the orthogonal polynomial sequence (R(α)
k )∞k=0 has nonnegative

linearization coefficients, see [9] (α = 0) and [5] (α > 0).

Theorem 5.1 If 0 ≤ α, then the sequence (R(α)
k )∞k=0 of little q-Jacobi polynomials

constitutes a basis of C(Sq).
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Proof. The nonnegativity of the linearization coefficients implies property (B)
with ξ = 0. Let (p(α)

k )∞k=0 denote the corresponding orthonormal polynomial se-
quence. Using (40) we get

√
1− q2k+α+1

(qα+1)k(1− qα+1)

k∏

i=1

1− qα+i

1− qi
= p

(α)
k (0) ≥ max

x∈Sq

|p(α)
k (x)|. (47)

Note that Sq ⊂ [0, 1]. In order to prove

sup
x∈Sq

∫

[0,1]

|Kn(x, y)| dπ(α)(y) ≤ C for all n ∈ N0, (48)

we split the integration domain into two parts [0, ε] and [ε, 1]. For the first it holds
∫

[0,ε]

|Kn(x, y)| dπ(α)(y) ≤ Kn(0, 0)π(α)([0, ε]). (49)

By the Christoffel-Darboux formula (9) and property (B) we get

|Kn(x, y)| ≤ √
cn+1an

p
(α)
n+1(0)|p(α)

n (y)|+ p
(α)
n (0)|p(α)

n+1(y)|
|x− y| , x 6= y. (50)

Hence, setting λn = √
cn+1an and applying |x− y| ≥ (1− q) y, x 6= y, it follows

∫

[ε,1]

|Kn(x, y)| dπ(α)(y) ≤ λnp
(α)
n+1(0)

1− q

∫

[ε,1]

|p(α)
n (y)|

y
dπ(α)(y) (51)

+
λnp

(α)
n (0)

1− q

∫

[ε,1]

|p(α)
n+1(y)|

y
dπ(α)(y) (52)

+
n∑

k=0

(p(α)
k (x))2π(α)({x}). (53)

By (8) we obtain
n∑

k=0

(p(α)
k (x))2π(α)({x}) ≤ 1. (54)

It is simple to derive that

Kn(0, 0) = O(q−(α+1)n). (55)

Now, we fix ε = qn to get

π(α)([0, ε]) = O(q(α+1)n), (56)
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which yields a uniform bound for the integral on the left-hand side of (49) not
depending on x ∈ S. Next, note that

λn = O(qn), (57)

and by (47) we get
p(α)

n (0) = O(q−(α+1) n
2 ). (58)

In order to obtain a uniform bound for the integral on the left-hand side of (51)
it remains to prove

∫

[ε,1]

|p(α)
n (y)|

y
dπ(α)(y) = O(q(α−1) n

2 ). (59)

For that purpose let k ∈ N0 with α < 2k + 1.
By the Cauchy-Schwarz inequality we get

∫

[ε,1]

|p(α)
n (y)|

y
dπ(α)(y) ≤

(∫

[ε,1]

dπ(α)(y)
y2(k+1)

) 1
2

(∫

[0,1]

(p(α)
n (y)yk)2 dπ(α)(y)

) 1
2

.

(60)
By simple means it follows

∫

[ε,1]

dπ(α)(y)
y2(k+1)

= O(q(α−2k−1)n). (61)

The three term recurrence formula for p
(α)
n is

yp(α)
n = −Λnp

(α)
n+1 + (An + Cn)p(α)

n − Λn−1p
(α)
n−1, (62)

where Λn =
√

Cn+1An, see (45) and (46). So the coefficients behave like qn. The
minus sign comes from the fact that pn(0) > 0. By applying the recurrence relation
k times we get

ykp(α)
n =

n+k∑

n−k

d(k, n, i)p(α)
i , (63)

where each coefficient d(k, n, i) behaves like qkn. Therefore, by orthogonality

∫

[0,1]

(p(α)
n (y)yk)2 dπ(α)(y) =

n+k∑

n−k

(d(k, n, i))2 = O(q2kn). (64)

So we have shown (59) and the proof is complete. 2

The little q-Legendre case (α = 0) is also investigated in [16].
So in case of Sq we are able to give orthogonal Faber basis for C(Sq). For the set
Sr, see (33), the existence of an orthogonal Faber basis or even a Faber basis for
C(Sr) seems still to be open.
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