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Abstract

Let S C R denote a compact set with infinite cardinality and C/(.S) the set of
real continuous functions on S. We investigate the problem of polynomial and
orthogonal polynomial bases of C(S). In case of S = {so, s1,s2,...} U{c},
where (s;)532 is a monotone sequence with o = limg_,oc Sk, we give a suffi-
cient and necessary condition for the existence of a so-called Lagrange basis.
Furthermore, we show that little g-Jacobi polynomials which fulfill a certain
boundedness property constitute a basis in case of Sy = {1,¢,4>,...} U {0},
0<g<1

1 Introduction

One important goal in approximation theory is the representation of functions with
respect to a set of simple functions. Here, we focus on the Banach space C(S) of
real continuous functions on a compact set S C R with infinite cardinality. Among
the continuous functions polynomials are the most simple to deal with. Hence,
further on we discuss the representation of f € C(S) with respect to a sequence
of polynomials (Py)2 . Moreover, it is profitable to look for a sequence with

deg P, = k for all k € Ny, (1)

which guarantees that every polynomial has a finite representation.

Of special interest are orthogonal polynomial sequences with respect to a
probability measure 7 on S, where a representation is based on the Fourier coef-
ficients

f(k) = /S (@) Py(x) dn(z), k€ N, @)
of f e C(9).
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Let us recall some important facts about orthogonal polynomials, see [3]. An
orthogonal polynomial sequence (Py)72, with compact support S and property
(1) satisfies a three term recurrence relation

P, (x)Pk(x) = akPk+1($) + kak(l‘) + CkPkfl(.%‘), keN, (3)
starting with
Py(xz) = ag and Py (z) = (x — b)/a, (4)

where the coefficients are real numbers with cgag—1 > 0, k € N, and (cxar—1)7 1,
(br)32, are bounded sequences. The other way around, if we construct (Py)22,
by (3) with coefficients satisfying the conditions above, then we get an orthogonal
polynomial sequence with compact support S.
The sequence of kernels (K,,)5, is defined by

Ko(w,y) = > Pe(@)Pu(y)h(k) = > pr(@)pe(y), (5)
k=0 k=0

where -
1 : a;
(k) = (| PRa)dn(@) ' = 5T ke N, )
S ag Hi:l C;

and (pr)72, is the orthonormal polynomial sequence with respect to 7 defined by

Pk =/ h(k)Py. (7)

For z € S it holds

(Kn(z,2))"" min /S (Q()? dn(x), (8)

B QEP(n),R(2)=1

where P,y denotes the set of polynomials with degree less or equal n. One of the
most important tools is the Christoffel-Darboux formula

PnJrl(aj)Pn(y) - Pn('r)PnJrl(y)
Pi(z) — Pi(y)

o /erTian Prt1(2)pn(y) — Pu(T)pri1(y) . )

r—=y

K, (x,y) = aph(n)

The linearization coefficients g(4, j, k) are defined in terms of

oo i+J
Psz:Zg(Z7]vk)Pk: Z g(iujvk)ka ’L',jGN(), (10)
k=0 k=li—j|

where ¢(4, 7, |t — j|), 9(4, 4,7 + j) # 0. The nonnegativity of the linearization coeffi-
cients is sufficient for a special boundedness property, which we will introduce in
Section 4.
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2 Polynomial bases for C(95)

Let us first refer to the concept of a basis.

Definition 2.1 A sequence ()72, in C(S) is called basts if for every f € C(S)
there exists a unique sequence of (¢r)i, of real numbers such that

F="ou®s, (11)
k=0

where lim, oo > 1_o pu®r is with respect to the sup-norm. A basis (®r)32, of
polynomials is called polynomial basis. A polynomial basis with (1) is called Faber
basis.

There is a famous result of Faber [4] in 1914 that in case of S being an interval
[c,d] there doesn’t exist a polynomial basis (Pj)5,, of C([c,d]) with property
(1). Concerning C([c,d]) great efforts have been made in constructing polynomial
bases and to minimize the degrees as far as possible. In 1977 Temlyakov [20] has
investigated a method of construction, where the growth of the degrees fulfills
deg P, < Ckloglog(k). Later on, in 1985 Bochkarev [2] has used the Fejér kernel
to construct a basis with linear bounds, that is deg P, < 4k. In 1987 Privalov [14]
published a somehow negative result, which implies the result of Faber. Namely,
if there is a polynomial basis (P;)72, of C([c,d]), then there exists a ¢ > 0 such
that deg P, > (1 + d) k for all k& > ko, where kg is a proper integer. Also, in
1991 Privalov gave a positive result, see [15]. He proved that for any € > 0 there
exists a polynomial basis of C([c, d]) with deg P, < (14¢€) k. Such a basis is called
polynomial basis of optimal degree (with respect to €).

If we are searching for Banach spaces C(S) equipped with a Faber basis,
then we have to choose S different from an interval. In this setting spaces C(.5)
with a so-called Lagrange basis are discussed in [16]. In Section 3 we investigate a
basic class of compact sets S and give a sufficient and necessary condition for the
existence of a Lagrange basis.

Note, that the results mentioned above are not based upon the fact of or-
thogonality. In case of orthogonality the question 'Does (Py)%2, constitute an
orthogonal polynomial basis of C'(S)’ is equivalent to the question if any function
f € C(S) is represented by its Fourier series

> F(k)Pih(k). (12)

k=0

In this particular branch of study there also are some positive results. In
1996 Kilgore, Prestin and Selig [7] constructed an orthogonal polynomial basis of
optimal degree with respect to the Chebyshev weight of first kind (o = 8 = —%)
using wavelet methods. Later on, in 1998 Girgensohn [6] gave optimal polynomial
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bases for all of the four Chebyshev weights (a = :I:%, 6= :t%) and in 2001 Skopina
[17] succeeded for Legendre weights (o« = 8 = 0). The general problem for Jacobi
weights (1 — 2)%(1 + 2)Pdz, a, 8 > —1, seems still to be open.

In order to check if an orthogonal polynomial sequence (Pj;)22 , constitutes a basis
of C(S) we have to show

sup/ | Ky (z,y)|dr(y) < C  for all n € Ny. (13)
zeSJS

We should mention that the sequence (P;)52, is a basis of C(S) if and only if it
is a basis of L(S, ), see [11]. For the discussion of an example based on little
g-Jacobi polynomials see Section 5.

3 Lagrange bases

In [16] we have introduced the concept of a Lagrange basis. Let S C R be a
compact set and (s;)72, a sequence of distinct points in S. Define as usual the
Lagrange basic functions L as

H?:o,z;ék(f = 5;)

H:L:O,i;ék(sk = 5;)

LE(2) = forall neNg, k=0,1,...,n. (14)

and

Ip(z) = L¥(z) forall ke N. (15)
Definition 3.1 The sequence (1;,)72, is called sequence of Lagrange polynomials
with respect to (s;)7 - If (1K) 52 s a basis of C(S), then we call (Ix)52, a Lagrange
basis of C(S) with respect to (si)72-

In case of a Lagrange basis it holds f = >3, ¢ (f)lx with

k—1
o(f) = Fs0)s er(f) = flsk) =Y _@s(Hli(s) forallkeN.  (16)
§=0
A sequence (v,)22, of linear operators from C(S) into C(S) is defined by

vn(f) = ou(f)lk- (17)
k=0

By simple means we have

n

> ou(Hlk(si) = f(si) foralli=0,1,...,m, (18)

k=0
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which implies
Z@k(f)lk = Zf(%)Lg (19)
k=0 =0

k
The sequence of Lagrange polynomials (I;)7, constitutes a basis of C'(S) if and
only if

k
= <
[lvx | Iarjlggcz |L;(x)] < C  for all n € Ny, (20)
k=0

see [16].
Further let us assume that (s;)32, is strictly increasing or strictly decreasing and
S ={s0,51,52,...y U{o}, (21)

where

o= klim Sk (22)

Using this assumption we derive

n

loall = I (o), (23)

k=0
see [16].
Let us now give the main result of this section.

Theorem 3.2 Assume (s;)32, is a strictly increasing or strictly decreasing se-
quence and S = {so, $1, 52,...} U{o}.
Then (1)72 is a basis of C(S) if and only if there exists 0 < ¢ < 1 with

lo — sp+1] < qlo—sk| for all k € Ny. (24)

Proof. Let (I;)72, be a basis of C(5). Then there exists C' > 1 such that |l;(c)| <
C for all k € Ny, which implies

lo — sg—1| < C|sk — sk—1| for all k € N. (25)

If (si)32 is strictly increasing, then (0 — sp—1) < C(sy — 0 + 0 — Si—1), which is
equivalent to

(0 —sk) < ! (0 —sg—1) forall ke N. (26)
In case of a strictly decreasing sequence we get the inequality the other way around.
Choose ¢ = (C —1)/C.
Let us now assume that (24) holds and (sg)52, is strictly decreasing. If k > i we
get

lo —si] E— S$; — O q

= —, (27)

= < :
|sk —si|l si—o—(sk—0) si—o—qg" 7 (si—0) ¢ —q
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and if £ < 7 we get

o — sil q
., 28
sk —sil  ¢F = ¢ (28)
Furthermore, it holds
n n qi n n—k 1 k 1
4 = k(k+1)/2
Z H i —qi| ZHl_anl_qiq (29)
k=0i=0,i#k k=0 j=1 i=1
2
oo 1 o0
< H T qu < o0. (30)
I k=0

Hence, >_p_, |LE(0)| < C for all n € Ny, which implies that ()%, constitutes a
basis of C'(S). The case (si)72 is strictly increasing is quite similar. O

The standard example due to the geometric sequence is

Sq:{lﬂQ7q27"'}U{0}v (31)

where 0 < ¢ < 1. Now, by Theorem 3.2 it follows that the Lagrange polynomials
(Ik)$2, with respect to (sy)2%,, where s = ¢, constitute a Lagrange basis of

C(Sq)-
For instance, if one is rearranging the sequence (57 )72 in the way that
1 if k=0,
sp=14 27tD/2 if k£ 0 and log,(k +1) € N, (32)
2-(k+1)  elge,

then the Lagrange polynomials (I;)72, with respect to (sx)32, don’t constitute a
Lagrange basis of C'(S1). The proof is left to the reader.

If we set S,gi) = S, \{q¢'} and (I),)$2, denotes the sequence of Lagrange polynomials
with respect to the sequence (¢*)2°, then C’(Stgz)) in companion with (I;)22,
states an example where a representation (11) exists but is not unique. To show
this first notice that any () € C(Séz)) could be easily extended to a function
f € C(Sy), where fl|go) = f@ and f(q') is arbitrary. A representation of f in
C(S,) also represents f() in C’(Séi)). Choose f1, fo € C(S,) with fi(q") # f2(¢%)
and f1] g = f2l 5 to show that the representation is not unique. Of course, by
Theorem 3.2 there is a Lagrange basis of C(S(gi)) with respect to the sequence

(qk)?:o,k;éi-

Let 11
S"={1,—,—,...}u{o 33
{ ? 27~’ 377 } { }7 ( )
where 0 < r < co. With s = ﬁ we get limg_,o Sk+1/5k = 1. By Theorem

3.2 the Lagrange polynomials with respect to (s;)72, do not constitute a basis of

c(s7).
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4 A boundedness property for orthogonal poly-
nomial sequences

The following boundary property for orthogonal polynomial sequences is important
for many reasons, see for instance [12], and is used in Section 5.

Definition 4.1 We say that a polynomial sequence (Ry)3, fulfills property (B),
if there exists € € S such that

|Ri(x)] < Rp(§) =1 forallz e S, ke Ny. (34)

There is a condition on the linearization coefficients which yields that prop-
erty (B) holds with respect to a proper normalization of the system.

Lemma 4.2 Assume that the linearization coefficients g(i,j,k) belonging to the
sequence (Py)?2, are nonnegative for all i,j,k € Ny, then there exists a normal-
ization Ry = v Py such that property (B) holds.

Proof. The assumption yields g(i, ¢, 2i) > 0 for all ¢ € Ny. Hence, by (10) it follows
Py > 0 and limg—, oo Poi(x) = limy o0 Pai(2) = oo for all ¢ € N. Regarding Py Pa;
we get lim, oo P1(2) = limg— 0 Pait1(z) for all i € N.

All zeros of the polynomials Py are in the open interval (min S, max.JS), see [3].
Hence there are two cases to handle. Namely, Py(minS) > 0 for all £ € Ny, or
Pi(max S) > 0 for all k£ € Ny. Depending on this put £ = min .S or £ = max S and
define

Py ()
Ri(x) = for all k € Ny. 35
b(@) Pi(§) ’ (35)
Then the linearization coefficients gr of (Ry)32, are also nonnegative because
o Py() . .
9R Z7J7k = 57ap a9 Za]7k for all 17]71{;6N0, 36
N TRT AR )
and it holds
ity
> gr(ijk)=1 foralli,jeNo. (37)
k=|i—j|

Hence, a hypergroup structure is associated with the orthogonal polynomial se-
quence (Ry)p2, which yields property (B), see [10]. O

There are well-known criteria by Askey [1] or [18, 19] implying the non-
negativity of the linearization coefficients. In case of a discrete measure 7 and
nonnegative linearization coefficients we refer to Koornwinder [9] and [13].

In the next section we use the fact that in case of property (B) it holds

| K (x,y)| < Kn(€,€) forallneNy, x,y € S. (38)
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5 Little g-Jacobi polynomials

In all that follows we keep 0 < ¢ < 1 fixed and S is defined by (31). For a > —1
we define a probability measure 7(®) on Sq by

T {}) = (@Y (1= ¢, ({0} =0. (39)

The orthogonal polynomial sequence (R,(ca))g‘;o with respect to 7(®) are spe-
cial little g-Jacobi polynomials, see [8]. They fulfill the following orthogonality
relation

/ ROR dx = 3RO @RV (@) (@Y (1 - ¢ )

Sq =0

k i 2
(k1 =gt 1—¢
= 1 — g2ktatl H 1= ot Okg.  (40)

=1

Starting with

1— qa+2

(a) (a)
they are defined by the three term recurrence relation (3) with coefficients
1— qa+2
a = WAM (42)
1— qa+2
by = 1771_%+1 (Ar, + Cr), (43)
1— qa+2
Ck = chv (44)
where
k+a+1 1— k+a+1
(1 2k+a+1)(1 )
1—g¢")(1—q"

(1 — g2k+a)(1 — g2htatl)’

In case of a > 0 the orthogonal polynomial sequence (R](Ca))zozo has nonnegative

linearization coefficients, see [9] (a = 0) and [5] (a > 0).

Theorem 5.1 If0 < «a, then the sequence (R( )52, of little g-Jacobi polynomials
constitutes a basis of C(Sy).
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Proof. The nonnegativity of the linearization coefficients implies property (B)

with £ = 0. Let (pgca))z‘;o denote the corresponding orthonormal polynomial se-
quence. Using (40) we get

1 — g2k+atl Pl got (@) (@)
— = > .
\/(qa+1)k(1 —gotT) };[1 I—q py (0) = gé%?j Ipy ()] (47)

Note that S, C [0, 1]. In order to prove

sup / | K, (x,y)] drl®(y) < C for all n € Ny, (48)
z€Sq J[0,1]

we split the integration domain into two parts [0, €] and [¢, 1]. For the first it holds
/ [ K (2, )| dn O (y) < K (0,0)7(([0, €]). (49)
[0,€]

By the Christoffel-Darboux formula (9) and property (B) we get

@ (0@ (@) (@)
Prt1(0)[pn ()] + P (0)[pr 41 ()]
KTL ) S mn n
[Kn(2,y)| < Ventia iz =y

. THY. (50)

Hence, setting A\, = /¢n+16,, and applying |z —y| > (1 — q) y, « # y, it follows

(@ ()
«a Anpn (0) mn «
/[ 1o plar @) < gl /[ . Wl grory) (51
€1 €1

1—g¢q Y
Apt (0) / ) ()]
+ n dr(® 52
T—q Jo (y)  (52)
+ Y (M (@) a @ (). (53)
k=0
By (8) we obtain
S0y (@)*n @ ({a)) < 1. (54)
k=0
It is simple to derive that
K,(0,0) = O(g~(>+1m), (55)

Now, we fix € = ¢" to get

71—(a)([()a ED = O(q(a—&-l)n)’ (56)
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which yields a uniform bound for the integral on the left-hand side of (49) not
depending on x € S. Next, note that

An = O(qn)7 (57)
and by (47) we get
P (0) = O(g~+VE). (58)

In order to obtain a uniform bound for the integral on the left-hand side of (51)
it remains to prove

(@)

/ |pn (y)| dﬂ_(a)(y) _ O(q(afl)%)' (59)
[e,1] Y

For that purpose let k € Ny with a < 2k + 1.
By the Cauchy-Schwarz inequality we get

P W @ / dr()(y) \* / (@ (1 F12 @ () |
— 2 dr\® < - \YJ P « y dn(e .
/[6,1] Y (y) [e,1] y2(k+1) [0’1]( n ( )y ) (y)

(60)
By simple means it follows
dr @) (y)
_ (a—2k—1)n
/[6 | S =0 ). (61)
The three term recurrence formula for pﬁf‘) is
ypl®) = —Anp)y + (An + Co)p® — Aaply, (62)

where A, = \/Chr114,, see (45) and (46). So the coefficients behave like ¢™. The
minus sign comes from the fact that p,, (0) > 0. By applying the recurrence relation

k times we get
n+k

yEpl) =37 d(k,n,i)p® (63)
n—=k

where each coefficient d(k,n, i) behaves like ¢*". Therefore, by orthogonality

n+k

/[0 @) = 3 (a0 = O™ (64)

n—k

So we have shown (59) and the proof is complete. O

The little g-Legendre case (v = 0) is also investigated in [16].
So in case of S; we are able to give orthogonal Faber basis for C(S;). For the set
ST, see (33), the existence of an orthogonal Faber basis or even a Faber basis for
C(S™) seems still to be open.



Polynomial bases 11

References

[1]

2]

R. Askey, Linearization of the product of orthogonal polynomials, in: Problems
in Analysis, Princeton University Press, Princeton, 1970, 223 — 228.

S. V. Bochkarev, Construction of a dyadic basis in the space of continuous
functions on the basis of Fejér kernels, Tr. Mat. Inst. Akad. Nauk SSSR 172,
(1985) 29 — 59.

T. S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach,
New York, 1978.

G. Faber, Uber die interpolatorische Darstellung stetiger Funktionen, Jahres-
ber. Deutsch. Math. Verein. 23 (1914), 192 - 210.

P. G. A. Floris, A noncommutative discrete hypergroup associated with q-disk
polynomdals, J. Comp. Appl. Math. 68 (1996), 69 — 78.

R. Girgensohn, Polynomial Schauder bases for C[—1, 1] with Chebiseff orthog-
onality, preprint (1998).

T. Kilgore, J. Prestin and K. Selig, Orthogonal algebraic polynomial Schauder
bases of optimal degree, J. Fourier Anal. Appl. 2 (1996), 597 — 610.

R. Koekoek and R. F. Swartouw, The Askey-scheme of hypergeometric orthog-
onal polynomials and its g-analogue, Technical Report 98-17, Delft University
of Technology, 1998.

T. H. Koornwinder, Discrete hypergroups associated with compact quantum
Gelfand pairs, in: Applications of hypergroups and related measure algebras,
Contemp. Math. 183, Amer. Math. Soc., 1995, 213 — 235.

R. Lasser, Orthogonal polynomials and hypergroups, Rend. Mat. 3 (1983), 185
—209.

R. Lasser and J. Obermaier, On the convergence of weighted Fourier erpan-
sions, Acta. Sci. Math. 61 (1995), 345 — 355.

R. Lasser, D. H. Mache and J. Obermaier, On approzimation methods by using
orthogonal polynomial expansions, in: Advanced Problems in Constructive
Approximation, Birkhauser, Basel, 2003, 95 — 107.

W. Miotkowski and R. Szwarc, Nonnegative linearization for polynomials or-
thogonal with respect to discrete measures, Constr. Approx. 17 (2001), 413-429.

Al A. Privalov, Growth of the degrees of polynomial basis and approximation
of trigonometric projectors, Mat. Zametki 42, (1987) 207 — 214.



12 Josef Obermaier and Ryszard Szwarc

[15] Al. A. Privalov, Growth of degrees of polynomial basis, Mat. Zametki 48,
(1990) 69 — 78.

[16] J. Obermaier, A continuous function space with a Faber basis, J. Approx.
Theory 125 (2003), 303 — 312.

[17] M. Skopina, Orthogonal polynomial Schauder bases in C[—1,1] with optimal
growth of degrees, Mat. Sbornik, 192:3 (2001), 115 — 136.

[18] R. Szwarc, Orthogonal polynomials and discrete boundary value problem I,
STAM J. Math. Anal. 23 (1992), 959 — 964.

[19] R. Szwarc, Orthogonal polynomials and discrete boundary value problem II,
STAM J. Math. Anal. 23 (1992), 965 — 969.

[20] V. N. Temlyakov, On the order of growth of the degrees of a polynomial basis
in the space of continuous functions, Mat. Zametki 22, (1977) 711 — 727.

Josef Obermaier

Institute of Biomathematics and Biometry

GSF-National Research Center for Environment and Health
Ingolstadter Landstrasse 1

D-85764 Neuherberg, Germany

Email address: josef.obermaier@gsf.de

Ryszard Szwarc*

Institute of Mathematics

Wroctaw University

pl. Grunwaldzki 2/4

50-384 Wroctaw, Poland

Email address: szwarc@math.uni.wroc.pl

*Partially supported by KBN (Poland) under grant 2 PO3A 028 25.



