
Niech |x| ¬M oraz M ­ 1.

0 ¬ ln(nx2 + 1) ¬ ln(nM2 + 1) ¬ ln(2nM2).

Mamy ln(1 + x) ¬ x dla x > 0. Zatem ln x ¬ x dla x ­ 1. Stąd

lnx = 4 ln x1/4 ¬ 4x1/4, x ­ 1.

Podstawiając x = 2nM2 otrzymujemy

ln(2nM2) ¬ 4(2M2)1/4n1/4.
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jest zbieżny jednostajnie na każdym przedziale [−M,M ]. Zatem f(x) jest
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Znowu z kryterium Weierstrassa szereg pochodnych jest jednostajnie zbieżny
dla δ ¬ |x| ¬M. Zatem z twierdzenia na wykładzie f(x) jest rózniczkowalna
w sposób ciągły poza punktem x = 0 oraz
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Pozostaje sprawdzić różniczkowalność w x = 0. Obliczymy, że

lim
x→0

f ′(x) = 2π. (1)



Wtedy z ciągłości funkcji f(x) w zerze i z reguły de l’Hôpitala
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f ′(x) = 2π.

Udowodnimy (1). Z parzystości funkcji założymy, że x > 0 i obliczymy tylko
granicę prawostronną. Z twierdzenia Lagrange’a mamy
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dla pewnych n < an, bn < n+ 1. Zatem
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Sumując wszystkie strony od 1 do N otrzymamy
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Przechodzimy do granicy z N →∞. Wtedy
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Następnie przechodzimy do granicy, gdy x → 0+ i z twierdzenia o trzech
funkcjach otrzymujemy
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