Methods and Applications of Analysis © 1995 International Press
2 (4) 1995, pp. 399-407 ISSN 1073-2772

NONNEGATIVE LINEARIZATION OF THE ASSOCIATED
g-ULTRASPHERICAL POLYNOMIALS

Ryszard Szwarc

ABSTRACT. Nonnegative product linearization of the associated continuous g-
ultraspherical polynomials is shown for all values —1 < ¢ < 1. This is obtained by
applying new criteria for nonnegative product linearization of orthogonal polyno-
mials.

1. Introduction

Let {pn}52, be a system of orthogonal polynomials. The product of two of these
polynomials can be expressed as a linear combination of these polynomials, i.e., there
are coefficients a(n, m, k) such that

n+m

pu(@pm(e) = Y aln,m, k)pi(x). (1)

k=|n—m|

If all the coefficients a(n, m, k) are nonnegative, we say that the polynomials p,, have
nonnegative product linearization.

The problem of which orthogonal polynomials admit nonnegative product lineariza-
tion has attracted attention for a long time. This is because the property has impor-
tant consequences, the main one being the convolution structure associated with the
polynomials p,, determined by the coefficients a(n, m, k) (see [9, 10, 22]). Also, the
nonnegativity of the product linearization yields, together with other conditions, cer-
tain pointwise estimates of p,(x) (see [22]). In these applications, the knowledge of
explicit values of the linearization coefficients is usually not necessary. What counts
is their nonnegativity.

The explicit formulas for the linearization coefficients are available only for a small
class of orthogonal polynomials. This class includes the ultraspherical polynomials
and their g-analogues (see [5, 8, 12, 13, 17]). For the Jacobi polynomials p*(z),
Hylleras [14] set up a recurrence relation involving only three linearization coefficients
a(n,m,k—1), a(n,m, k), and a(n, m,k — 1), and solved this explicitly for « = 3 (the
ultraspherical case) and for « = 8+ 1. Relying on Hylleras’ formula, Gasper [10] has
determined the range of values of a and § for which nonnegative product linearization
holds. Later on, Rahman [17] expressed the linearization coefficients of the Jacobi
polynomials as multiples of g Fg hypergeometric series from which their nonnegativity
was obvious for « > 8 > —1 and a + 8+ 1 > 0, a substantial part of the set
which Gasper [9, 10] found in 1970. He managed to extend this to g-analogues of the
Jacobi polynomials and proved nonnegativity of the product linearization for o > (3,
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a+3+1>0,and 0 < g < 1. Gasper [11] used Rahman’s 1¢pg-series representation
[17] of the linearization coefficients of g-Jacobi polynomials and determined the range
of a and ( for which the linearization coefficients are nonnegative.

Another approach is to study general orthogonal polynomials in order to find condi-
tions for nonnegative product linearization and then test them on specific orthogonal
polynomials. The first result of this kind belongs to Askey [1], and it can be applied to
a wide class of Jacobi polynomials and their g-analogues. However, it does not cover
the whole range of parameters o and (3, and some important special cases like the
Legendre polynomials are left open. In 1992, in two papers [20, 21], new conditions
were found which when applied to the Jacobi polynomials come close to Gasper’s re-
sult since they give nonnegative product linearization for a > 8 > -1, a+6+1 > 0.
These conditions are given in terms of the coefficients in the three-term recurrence re-
lation that the orthogonal polynomials satisfy. Roughly, some monotonicity properties
of these coefficients are required. Unfortunately, these conditions do not admit coeffi-
cients oscillating about certain values. However, there is one important instance where
such oscillating behavior occurs: the g-ultraspherical polynomials with ¢ negative.

The aim of this paper is to give new criteria for the nonnegative product lin-
earization of orthogonal polynomials in order to handle oscillating coefficients in the
three-term recurrence relation. These results are collected in Section 3. The criteria
then are applied to the associated g-ultraspherical polynomials to show that they have
nonnegative product linearization for all values of ¢, including ¢ negative (the case of
positive ¢ has been partially solved by Bustoz and Ismail [6, Thm. 2.3] by applying
the aforementioned criterion of Askey). This is done in Section 2.

2. Associated g¢-ultraspherical polynomials

Let p be a probability measure p with infinite support on the real line and symmetric
about the origin, i.e., u(A) = u(—A) for any Borel subset of A reals. Let {p, ()},
be a system of polynomials, orthonormal with respect to pu. We assume that the
polynomials p,,(x) have positive leading coefficients. Then they satisfy the recurrence
relation

l’pn(,f) = /\npn-i-l(w) + /\n—lpn—l(x)a n >0, (2)

with the convention p_; = A_; = 0. The coefficients )\, are strictly positive as the
ratios of the leading coefficients of p,(z) and p,11(x).

The associated polynomials p,(z;k) of order k are defined for any nonnegative
integer k by the recurrence formula

pn (23 k) = MpprPng1 (T3 k) + Anyr—1Pn—1(25 k), n >0, (3)

with p_i(x;k) = 0. If A, is a rational function of n or of ¢", then we can admit k
real, as long as n + k is not a singular point of the function z — A,. The associated
polynomials p,,(z;1) of order 1 also are called the numerator polynomials, and they
turn up naturally when considering a continued fraction approximation of the Stieltjes
transform of the measure u (see [7, Chapter II1.4] ).

The associated polynomials again are orthonormal with respect to a probability
measure on R. Although this new measure is determined by the original measure p,
the relation is rather intricate, and one cannot expect that the new measure can be
found explicitly in terms of u.



ASSOCIATED ¢-ULTRASPHERICAL POLYNOMIALS 401

For a sequence of positive numbers {0, }52, let

gn(T) = Uilpn(w)-
We call ¢, (x) the renormalized polynomials. The renormalized polynomials ¢, (z) are
no longer orthonormal, and they satisfy a new recurrence relation

an(x) = Tndn+1 (x) + anqn_l(x)

On+1 Op—1
)\nu Qp = )\n—la nzoa
On On

(4)

where Yn =

with the condition o_; = 0. Thus, the coefficients «,, 7, are positive (except for
ag = 0), and they are related to A, by

)‘i = Qp+17n- (5)

Conversely, if two sequences of positive numbers {a, }2; and {v,}22, satisfy (5),
then the polynomials ¢,,, defined recursively by (4), are the renormalized polynomials.
Indeed, the numbers o, can be given as
2 Yoyl Yn—1
op=—.
al a2 ... an

In this way, Theorem 1 of [21] can be restated as

Theorem 1. Let the polynomials p,(x) satisfy (2). Assume there are sequences of
numbers o, and v, positive except for ag = 0, such that for n >0
(1) )\721 = On+17n;
(il) an < apgto,
(111) o, + Tn < Q12 + Tn+2,
(iv) an < .
Then the polynomials py(x) have nonnegative product linearization.

If it happens that A, itself is increasing, then we can apply Askey’s theorem [1] in
order to get nonnegative product linearization. In that case, Theorem 1 also can be
applied with a1 =7, = An.

We now turn to considering the g-ultraspherical polynomials. Part of the result will
be obtained by using Askey’s criterion, as it was done in [6]. However, this criterion
does not work when ¢ is negative. Moreover, it does not apply to all cases when ¢ is
positive. In these cases, we will have to use other methods based on Theorem 1.

The g-ultraspherical polynomials were introduced and studied by Rogers [18]. They
have two parameters ¢ and . We will assume that both parameters are real and
of absolute value less than 1. In the standard normalization, the g-ultraspherical
polynomials are denoted by C,,(x; 8 | ), and they satisfy the recurrence relation
1— n+1 1— 2 n—1
ﬁcnﬂ(x;ﬁ la) + %

for n > 0, with C_1(x;8 | ¢) = 0. The orthogonality measure is known explicitly
(see [4, Thm. 2.2 and Sect. 4] or [13, Sect. 7.4]). When |3],|¢| < 1, it is absolutely
continuous with respect to Lebesgue measure on the interval [—1,1]. Later, we will
make use of the fact that the support of this measure is contained in [—1, 1] in one of
the cases we will be considering.

The linearization coefficients of the g-ultraspherical polynomials were already com-
puted explicitly by Rogers [18] (see also [5, 12, 17]). They are given as products of

22Cy(z;08 | q) = Cr-1(x: 81 q) (6)
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factors which can be readily checked to be positive when |3],|q| < 1. However, no ex-
plicit formula is available for the linearization coefficients of the polynomials associated
with g-ultraspherical polynomials.

In order to handle the associated g-ultraspherical polynomials following [6], we
add one more real parameter « from the interval [—1,1] and define the polynomials
C%(x; 8 | q) by the recurrence relation

o 1 - aqn-i-l o
200 (23 8| @) = 3 —F5—- Bog” Crsi(z: 8| q)
1— 62aqn71 o '

Observe that C?Lk (z;8 | q), where k > 0, are just the associated g-ultraspherical
polynomials. These polynomials were first introduced in [6], where the orthogonality
relation is given explicitly.

The polynomials C%(z; 8 | ¢) are not orthonormal. By (4) and (5), the orthonormal
g-ultraspherical polynomials 5:; (x; 8 | q) satisty (2) with

2 _\2(,) = (1 -ag"*)(1 - B*aq™)
/\n - /\n( ) - 4(1 _ ﬁaq")(l _ ﬁaqn-i-l).

(8)
Then one can compute that

_ alg—B)g"(1 —q)(1 - B)(1 + afg™H!)
4(1 = Bag™)(1 — Bag™t1)(1 — ﬂaq”*Q)'

The next theorem is known for 0 < ¢ < 1 and a(¢— ) > 0 [6, Thm. 2.3]. The main
novelty here is contained in part (i) when the coefficients in the recurrence formula
are oscillating. Also, we show that for a nonnegative, no restrictions on the other two
parameters are required.

)\721+1(0<) - )‘i(a)

9)

Theorem 2. Let |],]q] < 1, and |o| < 1. Assume one of the following conditions is
satisfied

(i) ¢ <0,
(i) >0,
(iii) a <0, ¢ >0, and 8> ¢>

Then the polynomials C%(x; B | q) have nonnegative product linearization.

Proof. We will break the proof into two cases.
(a) —1 < ¢ < 0. This is the most interesting case, since the coefficients A, («) are
oscillating about % Indeed, it can be shown that

q"a(f —q)(1 = f)

1
2 J—
(@) = 1 T —ade) 1 — B

+

1
T4

Such behavior has never been studied before for general orthogonal polynomials in
connection with nonnegative product linearization.
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We will apply Theorem 3. For this purpose, we will need the following formulas
that can be readily checked,

)‘12n+2(a) _ )\371(04) _ a(q — 6)qm(1 — q2)(1 — ﬁ)(l — a262q2m+3) ,
41— aBgm)(1 — aBgm (1 — afg™+?)(1 — afq™*?)
(N 3(@) + A% 0 (@)} — A2 (@) + A% ()}
_alg=B)a™ (1 —¢*)(1+q)(1 - B)(1 +aBg™"?)
4(1 — afBg™)(1 — afg™t2)(1 — afg™t4)
Now, if a(qg— ) <0, set m = 2n — 1 and apply Theorem 3(i). Otherwise, set m = 2n
and apply Theorem 3(ii).

(b) 0< g < 1. Assume a(qg— ) > 0. By (9), the sequence )\, («) is nondecreasing.
In this case, by Askey’s theorem [1] or by Theorem 1 with a1 = v, = A (@), we get
the conclusion.

Now let a(q — B) < 0. First consider the case @ > 0 and ¢ < . Then by (9), the
sequence A, (a) is decreasing and it tends to % In view of Proposition 1, it suffices
to show that the polynomials C%(x; 8 | q) take positive values at = 1. It can be
computed that

) — TB-D =D ) —af )
41 = afg)(1 — aBq )1 = Bg™)(1 = Bg"+1)
Thus by Lemma 1 and Proposition 1, we are reduced to showing that the polynomials
Cn(z; 8 | q), i.e., the g-ultraspherical polynomials, take positive values at x = 1. The
latter follows from the fact that the orthogonality measure for these polynomials is
supported in the interval [—1,1] (see [4, Theorem 2.2]).

In order to complete the proof, assume a < 0 and ¢*> < 3 < ¢. By (9), the sequence
An(a) is decreasing and it tends to 3. By [6, Thm. 2.2] the orthogonality measure
is supported in the interval [—1, 1]. This implies the corresponding polynomials take
positive values at x = 1. Now we can apply Proposition 1. O

Remark 1. The ¢? in (iii) cannot be replaced by any value 3y < ¢*. This is because,
by [6, Thm. 2.1], the orthogonality measure has a mass at the right end of its support.
This contradicts nonnegative linearization (see [19, Thm. 6 (iii)]).

Remark 2. Part (ii) of Theorem 2 gives an affirmative answer to a conjecture of
Askey (see [6, p. 728]), who suspected that nonnegative linearization holds for 0 <
g<l,0<a<l,and 0< @< 1.
Since, by (8), we have
1
)\n (Oé) — 5,
the support of the orthogonality measure consists of the interval [—1, 1] and at most
countably many mass points off this interval. Assume this countable set is nonempty.
Since the support is symmetric about the origin, the right end of it is a mass point. By
virtue of the aforementioned [19, Thm. 6 (iii)], the corresponding polynomials cannot
have nonnegative linearization. Hence, the proof of Theorem 2 gives the following.

Corollary 1. The polynomials C%(z; 3 | q) have nonnegative product linearization if
and only if the orthogonality measure is supported in the interval [—1,1].

By (9), the coefficients A, (a) tend to 3 fast enough to satisfy Nevai’s theorem [16,
Thm. 40, p.143]. This combined with Theorem 2 and Corollary 1 implies
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Corollary 2 ([6] Thm. 2.2). Let q, oo, and (3 satisfy the assumptions of Theorem 2.
Then the orthogonality measure of the polynomials C&(x; 3 | q) has no mass points
and its support coincides with the interval [—1,1].

For nonnegative integer k, set a = ¢*. Then the polynomials C%(x; 3 | q) are the
associated g-ultraspherical polynomials of order k. Thus we obtain

Corollary 3. The associated q-ultraspherical polynomials of any order have nonneg-
ative product linearization for |q|, |3] < 1.

3. Auxiliary general results.

In this section, we collect results of a general nature that have been used in Section 2
for the associated g-ultraspherical polynomials.

Lemma 1. Let p,(z) and g,(x) satisfy
Zpn () = Apn+1(2) + An-1Pp-1(2), (10)
2 () = Nyn+1(2) + A 1qn-1 (@), (11)

where A, X, are sequences of positive numbers such that A, < \,. Assume p,(1) >0
forn > 0. Then g,(1) >0, for n > 0.

Proof. Let p and u' denote the orthogonality measures associated with p,(x) and
gn(z), respectively. These measures are symmetric about the origin. Since p, (1) > 0,
the support of u is located to the left of 1. By symmetry, it is contained in the interval
[—1,1]. We will show that the support of ' also is contained in [—1, 1].

Observe that by (10), the nth moment of y, i.e., the integral fx"du(x) is a poly-
nomial of Ay, A1,... with nonnegative coefficients. Thus,

/O:o a"dy (z) < /O:o z"dp(z),

but . )
/ 2" du(x) :/ 2" dp(z) < 1.
Therefore, - -
/00 ™y (z) < 1.
This implies supp p C [—1,1]. As ELOZonsequence, we obtain ¢, (1) > 0. O

Proposition 1. Assume the p, satisfy (2) with A, > % formn > 0. If p,(1) > 0 for
n > 0, the polynomials p, have nonnegative product linearization.

Proof. On substituting = 1 into (2) and dividing by p, (1), we get

nt1(1 n—1(1
B hua B =1
Hence,
X = apia(l - an) (12)
where
= /\nflpnfl(l)

pn(l) .
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By assumption, «;, > 0. Thus (12) implies «,, < 1, and we get
1
anJrl(l - an) > Z Z an(l - an);

so that ap41 > ay,. Therefore, o, has a limit, say «. By (12), the sequence A, also is
convergent, say to A > %, and

a(l —a) =X\ >

This yields a = %

Put 7, =1 — a,, then, by (12),
N = i 1Yn.
We claim that «,, and ~,, satisfy the assumptions of Theorem 1. Indeed, the sequences
oy, and ay + v, = 1 are nondecreasing. Also, since «;, %, we obtain
1
2
This completes the proof of the proposition. O

'-Ynzl_anz > Qp.

Theorem 3. Assume the p,(z) satisfy (2) and either (1) or (ii) is satisfied, where

(i) the sequences N3,_1, A3,_1 + A3, are nondecreasing and N\3,_; < \3,,,
(ii) the sequences A3, A3, + A3,41 are nondecreasing and X3, < A3, ;.

Then the polynomials p,(x) admit nonnegative product linearization.
Proof. In the case (i), set

Q2n+1 = VYon+1 = 1,
Qon = Agn—l? Yon = )‘gnu
for n > 0. We assume that ag = A\_1 = 0. Then
Q2n41 + V2nt1 = 2,
Q2n + Yon = )\gn,1 + /\gm

for n > 0. Thus, the assumptions of Theorem 1 are satisfied.
In the case (ii), set

O[():O, ’}/1:1,

A2 = Von = 17

9 9 n > 0.
Q2n+1 = Adps Vontl = Adpy1s
Then
(&%) + Yo = 15
oon + Yon = 27
n > 0.

2 2
Q2p+1 + Yon+1 = )‘271 + )‘2n+17

Again, the assumptions of Theorem 1 are satisfied. O
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Remark 3. It is worth observing that in case (ii) we can slightly weaken the assump-
tion due to the fact that ap + v = 1 < 2. Namely, we can change the values of v
and oy by setting

1
’7022, a1 = 5)\(2)

The assumptions of Theorem 1 remain valid. Therefore, it suffices to assume that the
new sequence \, satisfies (ii), where

- 1 -
M= 5/\3, AN =X\2 n>1.

n

Corollary 4. Let p,(x) satisfy (2) with
1

Ai = Z (—1)"69n,

where e = £1 and 0, is a conver nonincreasing sequence of positive numbers. Then
the polynomials py(x) have nonnegative product linearization.

Proof. Let ¢ = 1. Then the assumptions of Theorem 3(i) are satisfied. Indeed, the
sequence A3, _, = % — 62,1 is nondecreasing. Moreover,

1 1
A3, = Y O2n > 1 O2n—1=A3p_1-
Finally, the sequence
1
Mot + A3, = 5~ 021 + O2n
is nondecreasing, as #,, is a convex sequence.
Similarly, we apply Theorem 3(ii) for e = —1. O
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