
14. Zadania z matematyki wyższej

1. Korzystając z podanych twierdzeń obliczyć następujące całki oznaczone:
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2. Znaleźć pole obszaru zawartego pomiędzy wykresem funkcji f  i osią OX  na podanym 

przedziale:
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3. Obliczyć sumy Riemanna dla następujących całek oznaczonych, biorąc jako punkty 

pośrednie: a. lewe końce, b. prawe końce, c. środki przedziałów utworzonych przez dany 
podział: 
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4. Uzasadnić prawdziwość następujących nierówności:
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5. Stosując obliczenia podane przykładowo na wykładzie uzasadnić równość: 
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6. Podobnie jak w zad. 5 uzasadnić równość  cxdx
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8. Niech f x mx c( )    dla a x b   i niech P  będzie dowolnym podziałem przedziału 
[ , ]a b  na przedziały równej długości. Pokazać, że suma Riemanna, w której punktami 

pośrednimi są środki otrzymanych przedziałów, czyli dla  t x xk k k 
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