
2. Zadania z matematyki wyższej

1. Podać pierwsze cztery wyrazy każdego z podanych ciągów.
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2. Znaleźć liczbę N taką, że dla n > N mamy
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3. Znaleźć liczbę N taką, że dla n > N mamy
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4. Obliczyć granice; dopuszczalny jest też wynik +∞ lub −∞.
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5. Liczba bakterii w pewnej kulturze rośnie wykładniczo, w ten sposób, że liczba podwaja
się w ciągu 1 godziny. Na początku było 1000 bakterii. Znaleźć liczbę bakterii an po n
godzinach. Wykonać to samo polecenie, gdy liczba ta podwaja się w ciągu 10 godzin.

6. Złożyliśmy 1000 zł na lokatę bankową oprocentowaną w stałej skali r procent na rok.
Znaleźć wzór na kwotę an jaką uzyskamy likwidując lokatę po n latach (nie uwzględniamy
podatku Belki).

7. Kwotę P złotych złożyliśmy na rachunku oszczędnościowym o stałym rocznym oprocen-
towaniu wynoszącym r procent. Aby przyciągnąć klientów bank nalicza odsetki n razy w
roku w równych odstępach czasowych (np. co 3 miesiące, co miesiąc lub codziennie1).

(a) Pokazać, że po roku kwota na lokacie wyniesie
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Wskazówka: Po 1/n roku kwota wyniesie P (1 + 0, 01r/n).

(b) Można udowodnić, że
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Zatem, gdyby bank zdecydował się naliczać odsetki w sposób ciągły, to kwota po
roku wyniosłaby R = Pe0,01r. Dla P = 1000 zł oraz r = 5 obliczyć różnicę pomiędzy
kwotą uzyskaną na rachunku w przypadku ciągłego naliczania odsetek i w przypadku
naliczania kwartalnego. Użyć kalkulatora lub innego narzędzia.

1Czy ktoś zna taki bank ?


