
5. Zadania z matematyki wyższej

1. Zastosować kryterium porównawcze lub kryterium graniczne, aby stwierdzić zbieżność lub
rozbieżność podanych szeregów.
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Wskazówka: W ostatnim przykładzie skorzystać z nierówności lnn ¬ 2√n, która będzie
udowodniona na wykładzie.

2. Uzasadnić, że jeśli szereg
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3. Rakietę wystrzelono z ziemi. W czasie podróży rakieta zużywa jedną czwartą paliwa w
czasie pierwszych 100 km, jedną dziewiątą w czasie następnych 100 km, i ogólnie 1/(n+1)2

część swojego początkowego zapasu paliwa w czasie n-tych 100 km. Czy kiedykolwiek

paliwo się zużyje ? Wskazówka: Skorzystać z
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4. Korzystając z kryterium d’Alamberta lub Cauchy’ego zbadać zbieżność podanych szere-
gów.
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5. Zbadać zbieżność szeregów korzystając w razie potrzeby z kryterium Leibniza. Za każdym
razem sprawdzić, czy kryterium może być zastosowane.
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6. Obliczyć sumy podanych szeregów z dokładnością do 0,01.
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7. Uzasadnić podane wzory korzystając z kryterium d’Alamberta lub Cauchy’ego.

lim
n

n!

nn
= 0, lim

n

x2n

nn
= 0, lim

n

n!xn

nn
= 0 dla |x| < e.


