7. Zadania z matematyki wyzszej

1. ZnaleZ¢ granice o ile istnieja. W razie potrzeby zastosowaé przeksztalcenia algebraiczne.
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2. Kompania produkujaca czesci do komputeréw stwierdzita, ze przecigtny nowy pracownik moze ztozy¢
N(t) czesci w ciagu dnia po t dniach praktyki, gdzie

100t

N(t) = P

Obliczyé¢ N(11), }Eﬂ N(t) i tlilglo N(t).
3. Antybiotyk zostal podany dozylnie pacjentowi. Stezenie lekarstwa we krwi po uptywie ¢ godzin wynosi
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Znalez¢ lim C(t).

4. Naszkicowa¢ wykresy podanych funkcji i obliczy¢ granice o ile istnieja.
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5. Korzystajac z wzoréw trygonometrycznych i granicy hr% —— =1 obliczy¢ granice
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6. Naszkicowa¢ wykresy funkcji i znalez¢é punkty nieciagtosci.
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. Zbada¢ w jakich przedziatach sa ciagte podane funkcje.
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F(x) =228 -32*+5 g(z)=vax -5 K(x)= k(z) =8z — 222 — a3
W podanych nizej przyktadach funkcja f nie jest okreslona w punkcie c¢. Naszkicowaé¢ wykres funkcji f
i sprawdzi¢, czy w punkcie ¢ mozna daé¢ funkcji f wartosé f(c) tak, aby f byla ciaglta w punkcie c.
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Pokaza¢, ze réwnanie 3 + x — 3 = 0 ma pierwiastek w przedziale (0,2). Wyznaczy¢ go z doktadnoscia
do 0.1.

Pokazaé, ze réwnanie sinx — x + 1 = 0 ma pierwiastek w przedziale ( , iw)

Sprzedawca w firmie komputerowej otrzymuje pensje podstawows w wysoko$ci $1000 miesiecznie. Po-
nadto otrzymuje prowizje w wysokosci 5% od przychodéw ze sprzedazy powyzej $10 000 w ciagu miesia-
ca. Jedli sprzedaz miesieczna wyniesie $20 000 lub wiecej, otrzymuje on dodatkowo premie $500. Niech

E(s) oznacza jego zarobki w ciagu miesiaca jako funkcje przychodéw ze sprzedazy s.
a) Naszkicowaé wykres E(s) dla 0 < s < 30000.
b) Znalezé¢ lim FE(s) i E(10000).
5s—10000
(¢c) Znalez¢ s—1>121()%oo E(s) i E(20000).
(d) Czy E(s) jest ciagta w s = 10000 ? A w s = 20000 ?
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Obliczy¢ podane wielkosci dla y = f(x) = 322

(a) Az, Ay i Ay/Ax dlaxzy =111z =4.
(b) Srednie tempo zmiany y, gdy = zmienia sie od 2 do 5.

A
Do czego dazy ten iloraz, gdy Az dazy do 0 7

(uproscic)

Obiekt porusza si¢ wzdtuz osi y tak, ze jego polozenie w chwili z jest y = f(z) = 2® + z (y jest w
metrach, z w sekundach). Znalez¢é
(a) Srednig predkoéé¢, gdy = zmienia sie od 1 do 3 sekund.
(b) Srednig predkosé, gdy z zmienia sie od 1 do 14 Az sekund.
(c¢) Predkos$¢ w chwili z = 1.
(d) Nachylenie siecznej taczacej (1, f(1)) i (3, f(3)).
) (14 Az, f(1+ Ax)).
)
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e) Nachylenie siecznej taczacej (1, f(1)) i

f) Nachylenie stycznej w punkcie (1, f(1)).
).
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g) Réwnanie stycznej w punkcie (1, f(1)

14. Dla funkcji y = 2% znalezé

(a) nachylenie stycznej w punktach z = —2, 01 2

(b) réwnania stycznych w o = —2, 01 2

15. Powtérzyé poprzednie zadanie dla y = 22° — 322 — 5.



