
7. Zadania z matematyki wyższej

1. Znaleźć granice o ile istnieją. W razie potrzeby zastosować przekształcenia algebraiczne.
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a > 0.

2. Kompania produkująca części do komputerów stwierdziła, że przeciętny nowy pracownik może złożyć
N(t) części w ciągu dnia po t dniach praktyki, gdzie
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Obliczyć N(11), lim
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3. Antybiotyk został podany dożylnie pacjentowi. Stężenie lekarstwa we krwi po upływie t godzin wynosi
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Znaleźć lim
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4. Naszkicować wykresy podanych funkcji i obliczyć granice o ile istnieją.
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5. Korzystając z wzorów trygonometrycznych i granicy lim
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6. Naszkicować wykresy funkcji i znaleźć punkty nieciągłości.
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7. Zbadać w jakich przedziałach są ciągłe podane funkcje.
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8. W podanych niżej przykładach funkcja f nie jest określona w punkcie c. Naszkicować wykres funkcji f
i sprawdzić, czy w punkcie c można dać funkcji f wartość f(c) tak, aby f była ciągła w punkcie c.
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9. Pokazać, że równanie x3 + x− 3 = 0 ma pierwiastek w przedziale (0, 2). Wyznaczyć go z dokładnością
do 0.1.

10. Pokazać, że równanie sin x− x+ 1 = 0 ma pierwiastek w przedziale (2
3
π, 3
4
π).

11. Sprzedawca w firmie komputerowej otrzymuje pensję podstawową w wysokości $1000 miesięcznie. Po-
nadto otrzymuje prowizję w wysokości 5% od przychodów ze sprzedaży powyżej $10 000 w ciągu miesią-
ca. Jeśli sprzedaż miesięczna wyniesie $20 000 lub więcej, otrzymuje on dodatkowo premię $500. Niech
E(s) oznacza jego zarobki w ciągu miesiąca jako funkcję przychodów ze sprzedaży s.

(a) Naszkicować wykres E(s) dla 0 ¬ s ¬ 30000.
(b) Znaleźć lim

s→10000
E(s) i E(10000).

(c) Znaleźć lim
s→20000

E(s) i E(20000).

(d) Czy E(s) jest ciągła w s = 10000 ? A w s = 20000 ?

12. Obliczyć podane wielkości dla y = f(x) = 3x2.

(a) ∆x, ∆y i ∆y/∆x dla x1 = 1 i x2 = 4.

(b) Średnie tempo zmiany y, gdy x zmienia się od 2 do 5.

(c)
f(5 + ∆x)− f(5)

∆x
(uprościć)

Do czego dąży ten iloraz, gdy ∆x dąży do 0 ?

13. Obiekt porusza się wzdłuż osi y tak, że jego położenie w chwili x jest y = f(x) = x2 + x (y jest w
metrach, x w sekundach). Znaleźć

(a) Średnią prędkość, gdy x zmienia się od 1 do 3 sekund.

(b) Średnią prędkość, gdy x zmienia się od 1 do 1 + ∆x sekund.

(c) Prędkość w chwili x = 1.

(d) Nachylenie siecznej łączącej (1, f(1)) i (3, f(3)).

(e) Nachylenie siecznej łączącej (1, f(1)) i (1 + ∆x, f(1 + ∆x)).

(f) Nachylenie stycznej w punkcie (1, f(1)).

(g) Równanie stycznej w punkcie (1, f(1)).

14. Dla funkcji y = x2 znaleźć

(a) nachylenie stycznej w punktach x = −2, 0 i 2
(b) równania stycznych w x = −2, 0 i 2

15. Powtórzyć poprzednie zadanie dla y = 2x3 − 3x2 − 5.


