
8. Zadania z matematyki wyższej

1. Zastosować regułę podstawiania do obliczenia granic
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2. Znaleźć asymptoty pionowe wykresów podanych funkcji.
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3. (a) Załóżmy, że limx→a f(x) = L Zastosować regułę podstawiania, aby pokazać, że limx→a |f(x)| = |L|.
(b) Pokazać, że jeśli limx→a |f(x)| = 0, to limx→a f(x) = 0.
(c) Podać przykład funkcji f takiej, że limx→a |f(x)| = 1, ale limx→a f(x) nie istnieje.

4. Załóżmy, że limx→a f(x) = 0 oraz |g(x)| ¬ M dla pewnej stałej M i wszystkich x 6= a. Pokazać, że
limx→a f(x)g(x) = 0. Wskazówka: Zauważyć, że −M |f(x)| ¬ f(x)g(x) ¬M |f(x)|.

5. Skorzystać z poprzedniego zadania przy obliczaniu granic
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6. Znaleźć nachylenie stycznej do wykresu w podanym punkcie. Znaleźć równanie stycznej.
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7. Niech f(x) =
√
1− x2 i 0 < a < 1. Wykresem funkcji f jest górny półokrąg o promieniu 1.

(a) Pokazać, że nachylenie promienia łączącego (0, 0) z punktem (a,
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(b) Pokazać, że nachylenie stycznej do wykresu funkcji f w punkcie (a,
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Wskazówka: Styczna jest prostopadła do promienia.

(c) Dla 0 < x < 1 i x 6= a znaleźć nachylenie mx siecznej przechodzącej przez punkty (a,
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(d) Pokazać, że
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To oznacza, że definicja stycznej poprzez granicę siecznych przechodzących przez (x, f(x)) oraz
(a, f(a)), gdy x dąży do a daje w wyniku tę samą prostą, jak przy definicji stycznej do okręgu
wprowadzonej przez Euklidesa.

8. Po wykresie paraboli y = 1 − x2 przechadza się mucha, zaczynając spacer w punkcie (−1, 0) i idąc
w prawo. W punkcie (5/4, 0) leżącym poza parabolą czeka pająk. W którym punkcie wykresu mucha
zauważy pająka (i vice versa) ? Załóżmy, że pająk zasnął i mucha przeszła obok niego i poszła dalej. W
którym punkcie paraboli mucha może czuć się bezpiecznie, tzn. pająk nie może jej zauważyć ?

9. Załóżmy, że Galileusz zrzucił kulki w dół z początkową prędkością 5 m/s. Znaleźć prędkość kulek po 2
sekundach spadku.

10. Kamień został zrzucony z balkonu położonego 40 m nad ziemią. Po jednej sekundzie prędkość kamienia
wynosiła -20 m/s. Znaleźć początkową prędkość kamienia. Czy wynik będzie taki sam, jeżeli balkon był
położony wyżej ?


