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Abstract

For an indeterminate moment problem we denote the orthonormal polynomials by Pn. We study the
relation between the growth of the function P(z) = (

∑∞
n=0 |Pn(z)|2)1/2 and summability properties of the

sequence (Pn(z)). Under certain assumptions on the recurrence coefficients from the three term recurrence
relation zPn(z) = bnPn+1(z) + anPn(z) + bn−1Pn−1(z), we show that the function P is of order α with
0 < α < 1, if and only if the sequence (Pn(z)) is absolutely summable to any power greater than 2α.
Furthermore, the order α is equal to the exponent of convergence of the sequence (bn). Similar results
are obtained for logarithmic order and for more general types of slow growth. To prove these results we
introduce a concept of an order function and its dual.

We also relate the order of P with the order of certain entire functions defined in terms of the moments
or the leading coefficient of Pn.
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1. Introduction and results

Stieltjes discovered the indeterminate moment problem in the memoir [25] from 1894, and
one can follow his discoveries in the correspondence with Hermite, cf. [4]. Stieltjes only con-
sidered distribution functions on the half-line [0,∞) corresponding to what is now called the
Stieltjes moment problem. It took about 25 years before Hamburger, Nevanlinna and Marcel
Riesz laid the foundation of the Hamburger moment problem described by (1). Nevanlinna
proved the Nevanlinna parametrization of the full set of solutions to the Hamburger moment
problem. Using the four entire functions A,B,C,D, obtained from (3) by letting n → ∞, any
solution to the moment problem can be described via a universal parameter space, namely the
one-point compactification of the space of Pick functions. Nevanlinna also pointed out what
is now called the Nevanlinna extremal solutions corresponding to the degenerate Pick func-
tions, which are a real constant or infinity. Since the same solutions appear in spectral theory
for self-adjoint extensions of Jacobi matrices, Simon [24] proposed to call them von Neumann
solutions. The classical monographs describing the Nevanlinna parametrization are [1,23,26].
None of these treatises contain a fully calculated example with concrete functions A,B,C,D.
Although it was well known that the zeros of B,D interlace and similarly with A,C, nobody
seem to have noticed that these functions have the same growth properties before it was done
in [5]. In that paper it was proved that the four entire functions A,B,C,D as well as P,Q

from Theorem 1.1 have the same order and type called the order ρ and type τ of the in-
determinate moment problem. Already in 1923 Marcel Riesz had proved the deep result that
A,B,C,D are of minimal exponential type, i.e., that 0 � ρ � 1 and if ρ = 1, then τ = 0,
cf. [1, p. 56].

The first concrete examples, where A,B,C,D were calculated together with a number
of solutions, appeared in the beginning of the 1990’ies, see Ismail and Masson [16], Chi-
hara and Ismail [12], Berg and Valent [8]. One source of indeterminate moment problems is
q-series, cf. [14], and formulas of Ramanujan as pointed out by Askey [2]. The indetermi-
nate moment problems within the q-Askey scheme were identified by Christiansen in [13]. All
these moment problems have order zero, and in Ismail [15] it was conjectured that A,B,C,D

should have the same growth properties on a more refined scala than ordinary order. This was
proved in [6], by the introduction of a refined scale called logarithmic order and type, so we
can speak about logarithmic order ρ[1] and logarithmic type τ [1] of a moment problem of
order zero. In [21] it was proved that if (ρ, τ ) or (ρ[1], τ [1]) are prescribed, then there ex-
ist indeterminate moment problems with these (logarithmic) orders and types. In Ramis [22]
the notion of logarithmic order and type appears for entire solutions to q-difference equa-
tions.

The main achievement of the present paper is that we present some conditions on the co-
efficients (an), (bn) of the three term recurrence relation (2), such that when these hold, then
summability properties of the sequence (P 2

n (z)) and order properties of the moment problem are
equivalent. Furthermore, the order as well as the logarithmic order of the moment problem can
be calculated from the growth properties of the sequence (bn).

These conditions are of two different types. There is a regularity condition that (bn) is
either log-convex eventually or log-concave eventually, cf. (27) or (28), and a growth condi-
tion (29).

The last condition is also necessary in the symmetric case an = 0 because of Carleman’s
condition.

We shall now give a more detailed survey of the content.
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Consider a normalized Hamburger moment sequence (sn) given as

sn =
∞∫

−∞
xn dμ(x), n � 0, (1)

where μ is a probability measure with infinite support and moments of any order.
Denote the corresponding orthonormal polynomials by Pn(z) and those of the second kind

by Qn(z), following the notation and terminology of [1]. These polynomials satisfy a three term
recurrence relation of the form

zrn(z) = bnrn+1(z) + anrn(z) + bn−1rn−1(z), n � 0, (2)

where an ∈R, bn > 0 for n � 0 and b−1 = 1, and with the initial conditions P0(z) = 1, P−1(z) =
0 and Q0(z) = 0, Q−1(z) = −1.

The following polynomials will be used, cf. [1, p. 14]

An(z) = z

n−1∑
k=0

Qk(0)Qk(z),

Bn(z) = −1 + z

n−1∑
k=0

Qk(0)Pk(z),

Cn(z) = 1 + z

n−1∑
k=0

Pk(0)Qk(z),

Dn(z) = z

n−1∑
k=0

Pk(0)Pk(z). (3)

We need the coefficients of the orthonormal polynomials

Pn(x) =
n∑

k=0

bk,nx
k, (4)

and by (2) we have

bn,n = 1/(b0b1 · · ·bn−1) > 0. (5)

The indeterminate case is characterized by the equivalent conditions in the following result,
cf. [1, Section 1.3].

Theorem 1.1. For (sn) as in (1) the following conditions are equivalent:

(i)
∑∞

n=0(P
2
n (0) + Q2

n(0)) < ∞,

(ii) P(z) = (
∑∞

n=0 |Pn(z)|2)1/2 < ∞, z ∈ C.

If (i) and (ii) hold (the indeterminate case), then Q(z) = (
∑∞

n=0 |Qn(z)|2)1/2 < ∞ for z ∈ C,
and P , Q are continuous functions.
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Concerning order and type as well as logarithmic order and type of an (entire) function, we
refer to Section 2, but we warn the reader that the logarithmic order treated in this paper differs
from the logarithmic order of [6] by subtracting 1. We believe that there are good reasons for this
change of definition.

Our first main result extends Theorem 1.1. For 0 < α we consider the complex linear sequence
space

�α =
{

(xn)

∣∣∣ ∞∑
n=0

|xn|α < ∞
}

.

Theorem 1.2. For a moment problem and 0 < α � 1 the following conditions are equivalent:

(i) (P 2
n (0)), (Q2

n(0)) ∈ �α ,

(ii) (P 2
n (z)), (Q2

n(z)) ∈ �α for all z ∈C.

If the conditions are satisfied, the moment problem is indeterminate and the two series indicated
in (ii) converge uniformly on compact subsets of C. Furthermore, (1/bn) ∈ �α and

P(z) � C exp
(
K|z|α), (6)

where

C =
( ∞∑

n=0

(
P 2

n (0) + Q2
n(0)

))1/2

, K = 1

α

∞∑
n=0

(∣∣Pn(0)
∣∣2α + ∣∣Qn(0)

∣∣2α)
. (7)

In particular the moment problem has order ρ � α, and if the order is α, then the type τ � K .

Remark 1.3. The main point in Theorem 1.2 is that (i) or (ii) imply (6). The equivalence be-
tween (i) and (ii) is in principle known, since it can easily be deduced from formula [1.23a] in
Akhiezer [1]. The theorem is proved in Section 4 as Theorem 4.7.

For an indeterminate moment problem the recurrence coefficients (bn) satisfy
∑

1/bn < ∞
by Carleman’s Theorem. On the other hand the condition

∑
1/bn < ∞ is not sufficient for in-

determinacy, but if a condition of log-concavity is added, then indeterminacy holds by a result
of Berezanskiı̆ [3], see [1, p.26]. This result is extended in Section 4 to include log-convexity,
leading to the following main result, which is an almost converse of Theorem 1.2 in the sense
that (6) implies (i) and (ii) except for an ε, but under additional assumptions of the recurrence
coefficients.

Theorem 1.4. Assume that the coefficients of (2) satisfy

∞∑
n=1

1 + |an|
bn−1

< ∞, (8)

and that either (27) or (28) holds. Assume in addition that P satisfies

P(z) � C exp
(
K|z|α)

for some α such that 0 < α < 1 and suitable constants C,K > 0.
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Then

1/bn,P
2
n (0),Q2

n(0) = O
(
n−1/α

)
, (9)

so in particular (1/bn), (P
2
n (0)), (Q2

n(0)) ∈ �α+ε for any ε > 0.

Theorem 1.4 is proved as Theorem 4.8, where we have replaced condition (8) by the slightly
weaker condition (29). Under the same assumptions we prove in Theorem 4.11 that the order
of the moment problem is equal to the convergence exponent of the sequence (bn). In case of
order zero it is also possible to characterize the logarithmic order of the moment problem as the
convergence exponent of the sequence (logbn), cf. Theorem 5.12.

In Section 5 the results of Theorem 1.2 and of Theorem 1.4 are extended to more general types
of growth, based on a notion of an order function and its dual. See Theorem 5.8 and Theorem 5.9.

In Section 6 we focus on order functions of the form α(r) = (log log r)α , which lead to the
concept of double logarithmic order and type, giving a refined classification of entire functions
and moment problems of logarithmic order 0. The six functions A,B,C,D,P,Q have the same
double logarithmic order and type called the double logarithmic order ρ[2] and type τ [2] of the
moment problem.

We establish a number of formulas expressing the double logarithmic order and type of an
entire function in terms of the coefficients in the power series expansion and the zero counting
function. The proof of these results are given in Appendix A.

For an indeterminate moment problem the numbers

ck =
( ∞∑

n=k

b2
k,n

)1/2

were studied by the authors in [7], and ck tends to zero so quickly that

Φ(z) =
∞∑

k=0

ckz
k

determines an entire function of minimal exponential type. We study this function in Section 3
and prove that Φ has the same order and type as the moment problem, and if the common order
is zero, then Φ has the same logarithmic order and type as the moment problem. This is extended
to double logarithmic order and type in Section 6.

In Section 7 we revisit a paper [19] by Livšic, where it was proved that the function

F(z) =
∞∑

n=0

z2n

s2n

has order less than or equal to the order of the entire function

B(z) = −1 + z

∞∑
k=0

Qk(0)Pk(z).

We give another proof of this result and extend it to logarithmic and double logarithmic order,
using results about Φ . It seems to be unknown whether the order of F is always equal to the order
of the moment problem. We prove in Theorem 7.5 that this the case, if the recurrence coefficients
satisfy the conditions of Theorem 4.2. In addition we obtain that the order of the entire function
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H(z) =
∞∑

n=0

bn,nz
n,

where bn,n is the leading coefficient of Pn, cf. (4), is equal to the order of the moment problem.

2. Preliminaries

For a continuous function f :C→ C we define the maximum modulus Mf : [0,∞[ → [0,∞[
by

Mf (r) = max
|z|�r

∣∣f (z)
∣∣.

The order ρf of f is defined as the infimum of the numbers α > 0 for which there exists a
majorization of the form

logMf (r) �as rα,

where we use a notation inspired by [18], meaning that the above inequality holds for r suffi-
ciently large. We will only discuss these concepts for unbounded functions f , so that logMf (r)

is positive for r sufficiently large.
It is easy to see that

ρf = lim sup
r→∞

log logMf (r)

log r
.

If 0 < ρf < ∞ we define the type τf of f as

τf = inf
{
c > 0

∣∣ logMf (r) �as crρf
}
,

and we have

τf = lim sup
r→∞

logMf (r)

rρf
.

The logarithmic order as defined in [6,21] is a number in the interval [1,∞], and the functions
studied in Ramis [22] are of logarithmic order 2. A detailed study of meromorphic functions of
finite logarithmic order has been published in Chern [11].

We find it appropriate to renormalize this definition by subtracting 1, so the new logarithmic
order of this paper belongs to the interval [0,∞]. This will simplify certain formulas, which will
correspond to formulas for the double logarithmic order developed in Section 6.

For an unbounded continuous function f we define the logarithmic order ρ
[1]
f as

ρ
[1]
f = inf

{
α > 0

∣∣ logMf (r) �as (log r)α+1}= inf
{
α > 0

∣∣Mf (r) �as r(log r)α
}
,

where ρ
[1]
f = ∞, if there are no α > 0 satisfying the asymptotic inequality. Of course ρ

[1]
f < ∞

is only possible for functions of order 0.
Note that an entire function f satisfying logMf (r) �as (log r)α for some α < 1 is constant

by the Cauchy estimate

|f (n)(0)| � Mf (r)
.

n! rn
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It is easy to obtain that

ρ
[1]
f = lim sup

r→∞
log logMf (r)

log log r
− 1.

When ρ
[1]
f < ∞ we define the logarithmic type τ

[1]
f as

τ
[1]
f = inf

{
c > 0

∣∣ logMf (r) �as c(log r)
ρ

[1]
f +1}

= inf
{
c > 0

∣∣Mf (r) �as rc(log r)
ρ
[1]
f }

,

and it is readily found that

τ
[1]
f = lim sup

r→∞
logMf (r)

(log r)
ρ

[1]
f +1

.

An entire function f satisfying ρ
[1]
f = 0 and τ

[1]
f < ∞ is necessarily a polynomial of degree

� τ
[1]
f .
The shifted moment problem is associated with the cut off sequences (an+1) and (bn+1)

from (2). In terms of Jacobi matrices, the Jacobi matrix Js of the shifted problem is obtained
from the original Jacobi matrix J by deleting the first row and column. It is well known that
a moment problem and the shifted one are either both determinate or both indeterminate. If in-
determinacy holds, Pedersen [20] studied the relationship between the A,B,C,D-functions of
the two problems and deduced that the shifted moment problem has the same order and type
as the original problem. We mention that the P -function of the shifted problem equals b0Q(z).
This equation shows that the two problems have the same logarithmic order and type in case the
common order is zero.

By repetition, the N -times shifted problem is then indeterminate with the same growth prop-
erties as the original problem. This means that it is the large n behavior of the recurrence
coefficients which determine the order and type of an indeterminate moment problem. This is
in contrast to the behavior of the moments, where a modification of the zero’th moment can
change an indeterminate moment problem to a determinate one, see e.g. [7, Section 5].

In the indeterminate case we can define an entire function of two complex variables

K(z,w) =
∞∑

n=0

Pn(z)Pn(w) =
∞∑

j,k=0

aj,kz
jwk, (10)

called the reproducing kernel of the moment problem, and we collect the coefficients of the
power series as the symmetric matrix A= (aj,k) given by

aj,k =
∞∑

n=max(j,k)

bj,nbk,n. (11)

It was proved in [7] that the series (11) is absolutely convergent and that the matrix A is of trace
class with

tr(A) = ρ0,

where ρ0 is given by
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ρ0 = 1

2π

2π∫
0

K
(
eit , e−it

)
dt = 1

2π

2π∫
0

P 2(eit
)
dt < ∞. (12)

Define

ck = √
ak,k =

( ∞∑
n=k

b2
k,n

)1/2

. (13)

From (4) we have

bk,n = 1

2πi

∫
|z|=r

Pn(z)z
−(k+1) dz = r−k 1

2π

2π∫
0

Pn

(
reit
)
e−ikt dt. (14)

By (14) and by Parseval’s identity we have for r > 0

∞∑
k=0

r2k

∞∑
n=k

|bk,n|2 =
∞∑

n=0

n∑
k=0

r2k|bk,n|2 =
∞∑

n=0

1

2π

2π∫
0

∣∣Pn

(
reit
)∣∣2 dt, (15)

hence

∞∑
k=0

r2kc2
k = 1

2π

2π∫
0

P 2(reit
)
dt, (16)

an identity already exploited in [7].

3. The order and type of Φ

The heading refers to the function

Φ(z) =
∞∑

k=0

ckz
k, (17)

where ck is defined in (13). By [7, Prop. 4.2] we know that limk→∞ k k
√

ck = 0, which shows that
Φ is an entire function of minimal exponential type.

Theorem 3.1. The order and type of Φ are equal to the order ρ and type τ of the moment
problem.

Proof. By (4) and (11) we have

D(z) = z

∞∑
k=0

Pk(0)Pk(z) = z

∞∑
k=0

b0,k

k∑
j=0

bj,kz
j = z

∞∑
j=0

aj,0z
j . (18)

Therefore,

∣∣D(z)
∣∣� |z|

∞∑
|aj,0||z|j � c0|z|

∞∑
cj |z|j , (19)
j=0 j=0
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where we used |aj,k| � cj ck . This leads to the following inequality for the maximum moduli

MD(r) � c0rMΦ(r), (20)

from which we clearly get ρ = ρD � ρΦ .
Since ρP = ρ (the order of the moment problem), we get for any ε > 0

P
(
reiθ

)
� exp

(
rρ+ε

)
for r � R(ε).

Defining

Ψ (z) =
∞∑

k=0

c2
kz

2k, (21)

we get by (16)

MΨ (r) =
∞∑

k=0

c2
kr

2k � exp
(
2rρ+ε

)
� exp

(
rρ+2ε

)
for r � max

(
R(ε),21/ε

)
,

hence ρΨ � ρ + 2ε and finally ρΨ � ρ.
However, ρΨ = ρΦ because for an entire function f (z) =∑∞

n=0 anz
n it is known [18] that

ρf = lim sup
n→∞

logn

log( 1
n
√|an| )

. (22)

This shows the assertion of the theorem concerning order.
Concerning type, let us assume that the common order of the moment problem and Φ is ρ,

satisfying 0 < ρ < ∞ in order to define type. For a function f as above with order ρ, the type
τf can be determined as

τf = 1

eρ
lim sup
n→∞

(
n|an|ρ/n

)
, (23)

cf. [18].
From (20) we get τ = τD � τΦ , where τ is the type of the moment problem.
Since P has type τ , we know that |P(reiθ )| � e(τ+ε)rρ

for r sufficiently large depending on
ε > 0, hence by (16)

MΨ (r) =
∞∑

k=0

c2
kr

2k � exp
(
2(τ + ε)rρ

)
,

and we conclude that τΨ � 2τ . Fortunately τΨ = 2τΦ , as is easily seen from (23), so we get
τΦ � τ , and the assertion about type has been proved. �
Theorem 3.2. Suppose the order of the moment problem is zero. Then Φ has the same logarithmic
order ρ[1] and type τ [1] as the moment problem.

Proof. The logarithmic order ρ
[1]
f of an entire function f = ∑∞

0 anz
n of order zero can be

calculated as

ρ
[1]
f = lim sup

n→∞
logn

log log( 1
n
√ )

, (24)

|an|
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cf. [6]. From (20) we want to see that ρ[1] = ρ
[1]
D � ρ

[1]
Φ . This is clear if ρ

[1]
Φ = ∞, so assume it

to be finite. For any ε > 0 we have for r sufficiently large

MD(r) � c0rr
(log r)

ρ
[1]
Φ

+ε

� r(log r)
ρ
[1]
Φ

+2ε

,

which gives the assertion.
We next use that for given ε > 0 we have for r sufficiently large

P
(
reiθ

)
� r(log r)ρ

[1]+ε

,

which by (16) yields

MΨ (r) � r2(log r)ρ
[1]+ε �as r(log r)ρ

[1]+2ε

,

hence ρ
[1]
Ψ � ρ[1]. From (24) we see that ρ

[1]
Φ = ρ

[1]
Ψ , hence ρ[1] = ρ

[1]
Φ .

We next assume that the common value ρ[1] of the logarithmic order is a finite number > 0.
(Transcendental function of logarithmic order 0 have necessarily logarithmic type ∞.) We shall
show that τ [1] = τ

[1]
Φ and recall that the logarithmic type τ

[1]
f of a function f =∑∞

0 anz
n with

logarithmic order 0 < ρ[1] < ∞ is given by the formula, cf. [6],

τ
[1]
f = (ρ[1])ρ[1]

(ρ[1] + 1)ρ
[1]+1

lim sup
n→∞

n

(log 1
n
√|an| )

ρ[1] . (25)

Again it is clear that τ
[1]
Ψ = 2τ

[1]
Φ , and from (20) we get τ [1] � τ

[1]
Φ , while (16) leads to τ

[1]
Ψ �

2τ [1]. This finally gives τ [1] = τ
[1]
Φ . �

4. Berezanskiı̆’s method

We are going to use and extend a method due to Berezanskiı̆ [3] giving a sufficient condition
for indeterminacy. The method is explained in [1, p. 26]. Berezanskiı̆ treated the case below of
log-concavity.

Lemma 4.1. Let bn > 0, n � 0 satisfy

sup
n�0

bn = ∞ (26)

and either

log-convexity: b2
n � bn−1bn+1, n � n0, (27)

or

log-concavity: b2
n � bn−1bn+1, n � n0. (28)

Then (bn) is eventually strictly increasing to infinity.

Proof. Suppose first that (27) holds. For n � n0, bn+1/bn is increasing, say to λ � ∞. If λ � 1,
then bn is decreasing for n � n0 in contradiction to (26). Therefore 1 < λ � ∞ and for any
1 < λ0 < λ we have bn+1 � λ0bn for n sufficiently large.
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If (28) holds, then bn+1/bn is decreasing for n � n0, say to λ � 0. If λ < 1 then
∑

bn < ∞
in contradiction to (26). Therefore λ � 1 and finally bn+1 � bn for n � n0. If bn = bn−1 for
some n > n0, then (28) implies bn � bn+1, hence bn = bn+1, so (bn) is eventually constant in
contradiction to (26). �
Theorem 4.2 (Berezanskiı̆). Assume that the coefficients of (2) satisfy

∞∑
n=1

1 + |an|√
bnbn−1

< ∞, (29)

and that either (27) or (28) holds.2

For any non-trivial solution (rn) of (2) there exists a constant c, depending on the an, bn and
the initial conditions (r0, r−1) �= (0,0) but independent of z, such that

√
bn−1

∣∣rn(z)∣∣� cΠ
(|z|), Π(z) =

∞∏
k=0

(
1 + z

bk−1

)
, n � 0, (30)

and there exists a constant Kz > 0 for z ∈ C such that

max
{∣∣rn(z)∣∣, ∣∣rn+1(z)

∣∣}� Kz√
bn+1

, n � 0. (31)

In particular,

P 2
n (0),Q2

n(0) = O(1/bn−1) (32)

and

K

bn+1
�
∣∣rn(z)∣∣2 + ∣∣rn+1(z)

∣∣2 � L

bn−1
(33)

for suitable constants K,L depending on z.
The moment problem is indeterminate.

Proof. By Lemma 4.1 we have bn−1 < bn for n � n1 > n0.
By the recurrence relation we get

bn−1

bn

∣∣rn−1(z)
∣∣− |z| + |an|

bn

∣∣rn(z)∣∣� ∣∣rn+1(z)
∣∣

� bn−1

bn

∣∣rn−1(z)
∣∣+ |z| + |an|

bn

∣∣rn(z)∣∣. (34)

Let

un =√bn−1
∣∣rn(z)∣∣, vn = max(un,un−1), εn = |z| + |an|√

bnbn−1
.

Since (r0, r−1) �= (0,0) we have vn > 0 for n � 1, and by assumption εn < 1 for n sufficiently
large depending on z, say for n � nz � n1.

2 In [1] it is assumed that |an| � M ,
∑

1/bn < ∞ and that (28) holds. The assertion (31) is not discussed.



116 C. Berg, R. Szwarc / Advances in Mathematics 250 (2014) 105–143
From the second inequality in (34) we then get

un+1 � bn−1√
bnbn−2

un−1 + εnun � vn(1 + εn),

where the last inequality requires log-convexity, assumed for n � n0. For n � n1 we then get

vn+1 � (1 + εn)vn �
(

1 + |an|√
bnbn−1

)(
1 + |z|

bn−1

)
vn.

Therefore

vn1+n(z) �
∞∏

k=n1

(
1 + |ak|√

bkbk−1

) ∞∏
k=n1

(
1 + |z|

bk−1

)
vn1(z), n � 1,

and since

vn1(z)

n1−1∏
k=0

(
1 + |z|/bk−1

)−1

is bounded in the complex plane, we get (30) for n > n1, hence for all n by modifying the
constant. (Remember that b−1 := 1.)

From the first inequality in (34) we get for n � nz now using log-concavity

un+1 � bn−1√
bnbn−2

un−1 − εnun � un−1 − εnun. (35)

We claim that

vn+1 � (1 − εn)vn, n � nz.

This is clear if vn = un, and if vn = un−1, then un−1 � un so (35) gives vn+1 � un+1 �
(1 − εn)un−1. For n > nz we then get

vn � vnz

∞∏
k=nz

(1 − εk) > 0,

hence d := infn�1 vn > 0. Therefore either
√

bn|rn+1(z)| � d or
√

bn−1|rn(z)| � d , which shows
(31) (even with the denominator

√
bn ).

We still have to prove the inequalities (30) and (31) when the assumptions of log-convexity
and log-concavity are interchanged. To do so we change the definition of un to un = √

bn|rn(z)|,
and we get from the second inequality in (34)

un+1 �
√

bn−1bn+1

bn

(un−1 + εnun) � vn(1 + εn),

where the last inequality requires log-concavity, assumed for n � n0. Therefore vn+1 �
(1 + εn)vn, and (30) follows as above.

From the first inequality in (34) we similarly get

un+1 �
√

bn−1bn+1
(un−1 − εnun).
bn
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We now claim that in the log-convex case

vn+1 � (1 − εn)vn, n � nz,

where n � nz implies εn < 1. This is clear if vn = un, and if vn = un−1 we have un−1 � un,
hence un−1 − εnun � (1 − εn)un−1 � 0.

The proof is finished as in the first case.
From (30) we get for z = 0 with rn = Pn and rn = Qn that (32) holds, and this implies

indeterminacy by Theorem 1.1. Finally, (33) is obtained by combining (30) and (31). �
Remark 4.3. The lower bound (31) for non-real z can be obtained differently based on the
Christoffel–Darboux formula, cf. [1, p. 9],

(Im z)

n−1∑
k=0

∣∣Pk(z)
∣∣2 = bn−1 Im

[
Pn(z)Pn−1(z)

]
.

Hence

|Im z|
bn−1

�
∣∣Pn−1(z)

∣∣∣∣Pn(z)
∣∣, n � 1.

Similarly, we can get the same inequality with Qn in place of Pn. So far we do not need any extra
assumptions on the coefficients in the recurrence relation.

If we know that rn(z) is bounded above by cΠ(|z|)/√bn−1 for any solution of the recurrence
relation, we immediately get

∣∣Pn(z)
∣∣� | Im z|

cΠ(|z|)√bn

.

The same is true for Qn in place of Pn.

Corollary 4.4. Under the assumptions of Theorem 4.2 we have

1/bn,P
2
n (0),Q2

n(0) = o(1/n).

Proof. Since (bn) is eventually increasing by Lemma 4.1, we obtain from the convergence of∑
1/bn that (n/bn) tends to zero. Using (32) we see that also (nP 2

n (0)) and (nQ2
n(0)) tend to

zero. �
Remark 4.5. Note that (29) is a weaker condition than (8) because (bn) is eventually increasing.

By a theorem of Carleman,
∑

1/bn = ∞ is a sufficient condition for determinacy, and it is
well known that there are determinate moment problems for which

∑
1/bn < ∞. The converse

of Carleman’s Theorem holds under the additional conditions of Theorem 4.2.
We give next a family of examples of determinate symmetric moment problems for which∑
1/bn < ∞.
In the symmetric case an = 0 for all n, we have P2n+1(0) = Q2n(0) = 0, and it follows from

(2) that

P2n(0) = (−1)n
b0b2 · · ·b2n−2

b1b3 · · ·b2n−1
, Q2n+1(0) = (−1)n

b1b3 · · ·b2n−1

b0b2 · · ·b2n

,

so the moment problem is determinate by Theorem 1.1 if and only if
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∞∑
n=1

(
b0b2 . . . b2n−2

b1b3 . . . b2n−1

)2

+
(

b1b3 . . . b2n−1

b0b2 . . . b2n

)2

= ∞. (36)

If βn > 0 is arbitrary such that
∑

1/βn < ∞, then defining b2n = b2n+1 = βn for n � 0, we get
a symmetric moment problem which is determinate because of (36) since

b0b2 · · ·b2n−2

b1b3 · · ·b2n−1
= 1.

Clearly
∑

1/bn < ∞ and (bn) does not satisfy the conditions (27) or (28).

Proposition 4.6. Let 0 < α � 1, let (un) ∈ �α be a sequence of positive numbers and define

K :=
∞∑

n=1

uα
n.

Then
∞∏

n=1

(1 + run) � exp
(
α−1Krα

)
.

Proof. The conclusion follows immediately from the inequalities below

1 + run �
(
1 + rαuα

n

) 1
α � exp

(
α−1rαuα

n

)
. �

We shall now prove Theorem 1.2, and in order to make the reading easier we repeat the result:

Theorem 4.7. For a moment problem and 0 < α � 1 the following conditions are equivalent:

(i) (P 2
n (0)), (Q2

n(0)) ∈ �α ,

(ii) (P 2
n (z)), (Q2

n(z)) ∈ �α for all z ∈C.

If the conditions are satisfied, the moment problem is indeterminate and the two series indicated
in (ii) converge uniformly on compact subsets of C. Furthermore, (1/bn) ∈ �α and

P(z) � C exp
(
K|z|α), (37)

where

C =
( ∞∑

n=0

(
P 2

n (0) + Q2
n(0)

))1/2

, K = 1

α

∞∑
n=0

(∣∣Pn(0)
∣∣2α + ∣∣Qn(0)

∣∣2α)
. (38)

In particular the moment problem has order ρ � α, and if the order is α, then the type τ � K .

Proof. Condition (ii) is clearly stronger than condition (i).
Assume next that (i) holds, and in particular the indeterminate case occurs because �α ⊆ �1.
Following ideas of Simon [24], we can write (3) as(

An+1(z) Bn+1(z)

Cn+1(z) Dn+1(z)

)

=
[
I + z

(−Pn(0)Qn(0) Q2
n(0)

−P 2(0) P (0)Q (0)

)](
An(z) Bn(z)

C (z) D (z)

)
. (39)
n n n n n
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and evaluating the operator norm of the matrices gives∥∥∥∥
(

An(z) Bn(z)

Cn(z) Dn(z)

)∥∥∥∥�
n−1∏
k=0

[
1 + |z|(P 2

k (0) + Q2
k(0)

)]

�
n−1∏
k=0

[
1 + |z|P 2

k (0)
] n−1∏

k=0

[
1 + |z|Q2

k(0)
]
.

In particular we have√|An(z)|2 + |Cn(z)|2√|Bn(z)|2 + |Dn(z)|2
}

�
∞∏

k=0

[
1 + |z|P 2

k (0)
] ∞∏

k=0

[
1 + |z|Q2

k(0)
]
. (40)

By Proposition 4.6 we obtain√|An(z)|2 + |Cn(z)|2√|Bn(z)|2 + |Dn(z)|2
}

� exp
(
α−1K(α)|z|α), (41)

where

K(α) =
∞∑

k=0

(∣∣Pk(0)
∣∣2α + ∣∣Qk(0)

∣∣2α)
. (42)

We also have [1, p. 14]

Pn(z) = −Pn(0)Bn(z) + Qn(0)Dn(z), (43)

so by the Cauchy–Schwarz inequality∣∣Pn(z)
∣∣2 �

(
P 2

n (0) + Q2
n(0)

)(∣∣Bn(z)
∣∣2 + ∣∣Dn(z)

∣∣2). (44)

Combined with (41) we get∣∣Pn(z)
∣∣2α �

(
P 2

n (0) + Q2
n(0)

)α exp
(
2K(α)|z|α), (45)

which shows that
∑∞

n=0 |Pn(z)|2α converges uniformly on compact subsets of C.
Similarly we have

Qn(z) = −Pn(0)An(z) + Qn(0)Cn(z),

leading to the estimate∣∣Qn(z)
∣∣2α �

(
P 2

n (0) + Q2
n(0)

)α
exp
(
2K(α)|z|α),

and the assertion (Q2
n(z)) ∈ �α . By (44) and (41) we also get

P 2(z) =
∞∑

n=0

∣∣Pn(z)
∣∣2 �

∞∑
n=0

(
P 2

n (0) + Q2
n(0)

)(∣∣Bn(z)
∣∣2 + ∣∣Dn(z)

∣∣2)

�
( ∞∑

n=0

(
P 2

n (0) + Q2
n(0)

))
exp
(
2α−1K(α)|z|α), (46)

showing (37), from which we clearly get that ρ = ρP � α, and if ρ = α, then τ = τP � K .
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From the well-known formula

Pn−1(z)Qn(z) − Pn(z)Qn−1(z) = 1

bn−1
, (47)

cf. [1, p. 9], we get

2

bn−1
�
∣∣Pn−1(z)

∣∣2 + ∣∣Pn(z)
∣∣2 + ∣∣Qn−1(z)

∣∣2 + ∣∣Qn(z)
∣∣2, (48)

hence

2α

bα
n−1

�
∣∣Pn−1(z)

∣∣2α + ∣∣Pn(z)
∣∣2α + ∣∣Qn−1(z)

∣∣2α + ∣∣Qn(z)
∣∣2α

,

which shows that (1/bn) ∈ �α . �
We next give an almost converse theorem to Theorem 4.7, under the Berezanskiı̆ assumptions.

It is a slight sharpening of Theorem 1.4 because we have replaced (8) by (29).

Theorem 4.8. Assume that the coefficients of (2) satisfy

∞∑
n=1

1 + |an|√
bnbn−1

< ∞,

and that either (27) or (28) holds. Assume in addition that P satisfies

P(z) � C exp
(
K|z|α)

for some α such that 0 < α < 1 and suitable constants C,K > 0.
Then

1/bn,P
2
n (0),Q2

n(0) = O
(
n−1/α

)
, (49)

so in particular (1/bn), (P
2
n (0)), (Q2

n(0)) ∈ �α+ε for any ε > 0.

Proof. Using that bn−1 < bn for n � n1, we get b := min{bk} > 0. For n � n1 we find

1

b2n
n−1

� 1

b2n1b
2(n−n1)
n−1

� Ab2
n,n � Ac2

n, (50)

where we have used (5), (13) and

A =
(

b0 · · ·bn1−1

bn1

)2

.

Next, (16) leads to

∞∑
n=n1

(
r

bn−1

)2n

� A

∞∑
n=0

c2
nr

2n = A

2π

2π∫
0

P 2(reit
)
dt � AC2 exp

[
2Krα

]
.

Therefore, for any n � n1, r > 0

r �
(
AC2)1/2n exp

[
Krα/n

]
. (51)
bn−1
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For r = n1/α we obtain
1

bn−1
= O

(
n−1/α

)
, n → ∞.

Now in view of (32) we get (49). �
Definition 4.9. For a sequence (zn) of complex numbers for which |zn| → ∞, we introduce the
exponent of convergence

E(zn) = inf

{
α > 0

∣∣∣ ∞∑
n=n∗

1

|zn|α < ∞
}

,

where n∗ ∈N is such that |zn| > 0 for n � n∗.
The counting function of (zn) is defined as

n(r) = #
{
n
∣∣ |zn| � r

}
.

The following result is well known, cf. [9,18].

Lemma 4.10.

E(zn) = lim sup
r→∞

logn(r)

log r
.

Theorem 4.11. Assume that the coefficients of (2) satisfy
∞∑

n=1

1 + |an|√
bnbn−1

< ∞,

and that either (27) or (28) holds.
Then the order ρ of the moment problem is given by ρ = E(bn).

Proof. We first show that E(bn) � ρP . This is clear if ρP = 1 because by assumption E(bn) � 1.
If ρP < 1 then P satisfies

MP (r) �as exp
(
rα
)

for any α > ρP . By (49) we then have
∑

1/bα+ε
n < ∞ for α > ρP and ε > 0, hence E(bn) � ρP .

By (30) we get for rn = Pn

P (z) � c

( ∞∑
n=0

1

bn−1

)1/2

Π
(|z|), (52)

and the infinite product Π(z) is an entire function of order equal to E(bn) by Borel’s Theorem,
cf. [18], hence ρP � E(bn). �
Example 4.12. For α > 1 let bn = (n + 1)α , an = 0, n � 0. The three term recurrence relation
(2) with these coefficients determine the orthonormal polynomials of a symmetric indeterminate
moment problem satisfying (26) and (28). By Theorem 4.11 the order of the moment problem
is 1/α.

Similarly, bn = (n + 1) logα(n + 2), an = 0 lead for α > 1 to a symmetric indeterminate
moment problem of order 1 and type 0.
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Theorem 4.7 and Theorem 4.8 can be generalized in order to capture much slower types of
growth of the moment problem, as well as growth faster than any order. This is done in the
following section.

5. Order functions

Definition 5.1. By an order function3 we understand a continuous, positive and increasing func-
tion α : (r0,∞) →R with limr→∞ α(r) = ∞ and such that the function r/α(r) is also increasing
with limr→∞ r/α(r) = ∞. Here 0 � r0 < ∞.

If α is an order function , then so is r/α(r).

Definition 5.2. For an order function α as above, the function

β(r) = 1

α(r−1)
, 0 < r < r−1

0

will be called the dual function. Since limr→0 β(r) = 0, we define β(0) = 0. Note that β as well
as r/β(r) are increasing.

Observe that the dual function satisfies

β(Kr) � Kβ(r), K > 1, 0 < Kr < r−1
0 , (53)

β(r1 + r2) � β
(
2 max(r1, r2)

)
� 2β

(
max(r1, r2)

)
� 2β(r1) + 2β(r2), (54)

for 2 max(r1, r2) < 1/r0.

Example 5.3. Order functions.
1. The function α(r) = rα with 0 < α < 1 satisfies the assumptions of an order function with

r0 = 0, and β(r) = α(r).
2. The function α(r) = logα r with α > 0 satisfies the assumptions of an order function with

r0 = exp(α) and

β(r) = 1

(− log r)α
.

3. The function α(r) = logα log r with α > 0 is an order function with r0 > e being the unique
solution to (log r) log log r = α.

4. If α is an order function, the so are cα(r) and α(cr) for c > 0.
5. If α1 and α2 are order functions, then also α1(α2(r)) is an order function for r sufficiently

large.
6. The function α(r) = (logα r) logβ log r is an order function for any α,β > 0, because

r

α(r)
=
[

r1/(α+β)

(α + β) log r1/(α+β)

]α+β[ log r

log log r

]β

shows that r/α(r) is increasing for r > r0 := exp(max(e,α + β)).

3 There is no direct relation between this concept and Valiron’s concept of a proximate order studied in [18].
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Definition 5.4. Let α be an order function. A continuous unbounded function f : C → C is said
to have order bounded by α(r) if

Mf (r) �as eKα(r) log r = rKα(r),

for some constant K .

For f as above to have order bounded by α(r) = logα r for some α > 0, is the same as to have
finite logarithmic order in the sense of Section 2.

Given an order function α : (r0,∞) → R and its dual β , we are in the following going to
consider expressions β(un), where {un} is a sequence of non-negative numbers tending to zero.
This means that β(un) is only defined for n sufficiently large, so assertions like

∞∑
n

β(un) < ∞, β(un) = O(1/n)

make sense. The first assertion means that
∞∑

n=N

β(un) < ∞

for one N (and then for all N ) so large that β(un) is defined for n � N .
We begin by proving two lemmas.

Lemma 5.5. Let α : (r0,∞) → (0,∞) be an order function with dual function β and let {un}∞n=1
be a sequence of positive numbers such that un → 0 and un < 1/r0 for all n � n0.

For any number r > 0 let Ar = {n | un � r−1} and Nr = #Ar .

(a) Assume
∑∞

n β(un) < ∞. Then Nr = O(α(r)).
(b) Assume Nr = O(α(r)). Then for any ε > 0

∞∑
n

β1+ε(un) < ∞.

Proof. Let vn be the decreasing rearrangement of the sequence un. Then

Nr = #
{
n
∣∣ vn � r−1},

and since β(r) is increasing, we find for r > r0

Nr � n0 − 1 + #
{
n � n0

∣∣ β(vn) � β
(
r−1)}.

(a) We have
∑∞

n β(vn) < ∞, hence nβ(vn) → 0 and thus nβ(vn) � K for n � n0 and a suitable
constant K . Furthermore,

Nr � n0 − 1 + #

{
n � n0

∣∣∣ K

n
� β

(
r−1)}

= n0 − 1 + #
{
n � n0

∣∣ n � Kα(r)
}
,

showing that Nr = O(α(r)).
(b) Assume Nr = O(α(r)). Observing that N

v−1
n

� n we get n � Kα(v−1
n ), for n sufficiently

large and suitable K , i.e., β(vn) = O(1/n), which implies the conclusion. �
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Lemma 5.6. Assume the conditions of Lemma 5.5(a). For r > r0 we then have

log
∞∏

n=1

(1 + run) � Nr [log r + C] + α(r)
∑

n/∈Ar0

β(un),

where C = max{log(2un)}.

Proof. For n ∈ Ar we have run � 1, hence

log(1 + run) � log 2run = log r + log(2un) � log r + C.

Furthermore, for r > r0, n /∈ Ar we have un < r−1, and using that s/β(s) is increasing leads to

run = un

r−1
� β(un)

β(r−1)
= α(r)β(un).

Thus, for r > r0

log
∞∏

n=1

(1 + run) =
∑
n∈Ar

log(1 + run) +
∑
n/∈Ar

log(1 + run)

� Nr [log r + C] +
∑
n/∈Ar

α(r)β(un)

� Nr [log r + C] + α(r)
∑

n/∈Ar0

β(un). �

Combining Lemma 5.5(a) and Lemma 5.6 gives immediately the following.

Proposition 5.7. Let α : (r0,∞) → (0,∞) be an order function with dual function β , and let
{un}∞n=1 be a sequence of positive numbers such that un → 0 and un < 1/r0 for all n � n0.
Under the assumption

∑∞
n β(un) < ∞,

log
∞∏

n=1

(1 + run) = O
(
α(r) log r

)
,

and in particular the entire function

f (z) =
∞∏

n=1

(1 + zun)

has order bounded by α.

Theorem 4.7 and 4.8 can be considered as results about the order function α(r) = rα , 0 <

α < 1.
Theorem 5.8 and 5.9 below are similar results for arbitrary order functions. The price for the

generality is an extra log-factor, so the generalization is mainly of interest for orders of slower
growth than α(r) = rα . For the order α(r) = rα it is better to refer directly to the results of
Section 4.
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Theorem 5.8. For an order function α with dual function β the following conditions are equiva-
lent for a given indeterminate moment problem:

(i) β(P 2
n (0)), β(Q2

n(0)) ∈ �1,
(ii) β(|Pn(z)|2), β(|Qn(z)|2) ∈ �1 for all z ∈C.

If the conditions are satisfied, then the two series indicated in (ii) converge uniformly on compact
subsets of C.

Furthermore, β(1/bn) ∈ �1 and P has order bounded by α.

Proof. Condition (ii) is clearly stronger than condition (i).
Assume next that (i) holds. By (45) for α = 1,∣∣Pn(z)

∣∣2 �
(
P 2

n (0) + Q2
n(0)

)
exp
(
2K(1)|z|), (55)

so by (53) and (54) we get for n sufficiently large

β
(∣∣Pn(z)

∣∣2)� 2 exp
(
2K(1)|z|)(β(P 2

n (0)
)+ β

(
Q2

n(0)
))

. (56)

This shows that
∑

β(|Pn(z)|2) converges uniformly on compact subsets of C.
The assertion β(|Qn(z)|2) ∈ �1 is proved similarly.
By (40) and Proposition 5.7 we obtain√∣∣Bn(z)

∣∣2 + ∣∣Dn(z)
∣∣2 � exp

(
Lα
(|z|) log |z|), (57)

for some constant L and |z| sufficiently large. Using (44) and (42) (with α = 1) we then get for
large |z|

P 2(z) =
∞∑

n=0

∣∣Pn(z)
∣∣2 � K(1) exp

(
2Lα

(|z|) log |z|),
which shows that P has order bounded by α.

From the inequality (48) we immediately get that β(1/bn) ∈ �1. �
Theorem 5.9. Assume that the coefficients of (2) satisfy

∞∑
n=1

1 + |an|√
bnbn−1

< ∞,

and that either (27) or (28) holds. Assume in addition that the function P(z) has order bounded
by some given order function α.

(i) If there is 0 < α < 1 so that rα �as α(r), then

β(1/bn),β
(
P 2

n (0)
)
, β
(
Q2

n(0)
)= O

(
logn

n

)
.

(ii) If α(r2) = O(α(r)), then

β(1/bn),β
(
P 2

n (0)
)
, β
(
Q2

n(0)
)= O(1/n).
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In both cases

β(1/bn),β
(
P 2

n (0)
)
, β
(
Q2

n(0)
) ∈ �1+ε

for any ε > 0.

Proof. Inserting the estimate

MP (r) �as exp
(
Kα(r) log r

)
in (16), we get

∞∑
k=0

r2kc2
k �as exp

(
2Kα(r) log r

)
,

hence by (50)

∞∑
n=n1

(
r

bn−1

)2n

�as A exp
(
2Kα(r) log r

)
. (58)

Choose r1 > max(1, r0) so large that the inequality in (58) holds for r � r1. In particular we have

r

bn−1
� A1/2n exp

(
(K/n)α(r) log r

)
, n � n1, r � r1. (59)

Consider (i). For any n > Kα(r1) log r1 it is possible by continuity of α to choose r = rn > r1
such that

Kα(rn) log rn = n. (60)

For sufficiently large n we then have

1

bn−1
� A1/(2n)e

rn
<

3

rn
.

Since β is increasing, we get for sufficiently large n by (53) and (60)

β(1/bn−1) � β(3/rn) � 3β(1/rn) = 3

α(rn)
= 3K log rn

n
. (61)

But (60) and the assumption rα �as α(r) imply that Krα
n log r1 � n, for large n. Thus log rn =

O(logn), and by (61) we get

β(1/bn−1) = O

(
logn

n

)
.

In view of (32) we get that β(P 2
n (0)), β(Q2

n(0)) = O(logn/n).
We turn now to the case (ii), where α(r2) = O(α(r)). For any n > 2Kα(r1) we now choose

rn such that

Kα(rn) = n

2
. (62)

Then (59) yields

1 � A1/2n

√ <
2√
bn−1 rn rn
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for n sufficiently large. Thus

β(1/bn−1) � β(2/
√

rn ) � 2β(1/
√

rn ) = 2

α(
√

rn )
.

By assumption there exists d > 0 such that α(
√

rn) � dα(rn) for n large enough. Thus in view
of (62) we find

β(1/bn−1) � 2

dα(rn)
= 4K

dn
.

As above, the conclusion follows from (32). �
Remark 5.10. The following order functions satisfy the assumption (i) of Theorem 5.9:

α(r) = rα, 0 < α < 1, α(r) = r

logα r
, α > 0.

On the other hand the functions

α(r) = logα r, α(r) = logα log r, α(r) = (logα r
)

logβ log r, α,β > 0

satisfy (ii).
Although α(r) = r/ logα r is an order function for any α > 0, then an entire function f of

order bounded by α(r) is only of minimal exponential type under the assumption α > 1.

Example 5.11. Consider a moment problem of logarithmic order ρ[1] satisfying 0 < ρ[1] < ∞
and of finite logarithmic type τ [1]. Assume that an, bn satisfy the conditions of Theorem 5.9.
Then P has order bounded by the order α(r) = (log r)ρ

[1]
. Since the case (ii) occurs, and since

β(r) = log−ρ[1]
(1/r), we have

log−ρ[1]
(bn), log−ρ[1](

P −2
n (0)

)
, log−ρ[1](

Q−2
n (0)

)= O(1/n).

Therefore

1/bn,P
2
n (0),Q2

n(0) = O
(
e−Cn1/ρ[1] )

for a suitable constant C > 0. From (55) we also get

∣∣P 2
n (z)

∣∣= O
(
e−Cn1/ρ[1] )

,

uniformly on compact subsets of C. These results can be applied to discrete q-Hermite II poly-
nomials, where an = 0, bn = q−n−1/2(1 − qn+1)1/2, cf. [17], and to q−1-Hermite polynomials,
where an = 0, bn = (1/2)q−(n+1)/2(1 − qn+1)1/2, cf. [16]. In both cases 0 < q < 1 and (bn) is
log-concave, ρ[1] = 1.

In analogy with Theorem 4.11 the logarithmic order of an indeterminate moment problem
of order zero can be determined by the growth of (bn), provided the Berezanskiı̆ conditions
hold.
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Theorem 5.12. Assume that the coefficients of (2) satisfy

∞∑
n=1

1 + |an|√
bnbn−1

< ∞

and that either (27) or (28) holds. Assume further that the moment problem has order 0.
Then the logarithmic order ρ[1] of the moment problem is given as ρ[1] = E(logbn).

Proof. We first establish that ρ[1] � E(logbn), which is clear if ρ[1] = ∞. If ρ[1] < ∞ we know
that for every ε > 0

MP (r) �as r(log r)ρ
[1]+ε

.

In other words P has order bounded by α(r) = (log r)ρ
[1]+ε , so by Theorem 5.9(ii) we know that

β(1/bn) = 1

(logbn)ρ
[1]+ε

∈ �1+ε,

hence E(logbn) � (ρ[1] + ε)(1 + ε) for any ε > 0, thus E(logbn) � ρ[1].
From (52) we get ρ

[1]
P � ρ

[1]
Π . However, ρ

[1]
Π = E(logbn) by Proposition 5.4 in [6]. �

Example 5.13. For a > 1, α > 0 let bn = an1/α
, and let |an| � acn1/α

for some 0 < c < 1. The
three term recurrence relation (2) with these coefficients determine orthogonal polynomials of an
indeterminate moment problem satisfying (26) and (27) or (28) according to

b2
n

⎧⎨
⎩

=
<

>

⎫⎬
⎭bn−1bn+1 ⇔

{
α = 1,

α < 1,

α > 1.

We find E(bn) = 0 and E(logbn) = α, so by Theorem 4.11 and Theorem 5.12 the moment prob-
lem has order 0 and logarithmic order ρ[1] = α.

Example 5.14. For a > 1 and α > 0 consider the product

f (r) =
∞∏

n=1

(
1 + r

an1/α

)

appearing in Lemma 5.6 with un = a−n1/α
. Let

α(r) = (logα r
)
(log log r)2

be an order function of the type considered in Example 5.3 (6). We can use r0 =
exp(max(e,2 + α)) and un < 1/r0 for n > n0 with

n0 =
(

max(e,2 + α)

loga

)α

.

For Nr = #{n | an1/α � r} we have(
log r

)α

− 1 < Nr �
(

log r
)α

. (63)

loga loga
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Moreover,

β(un) = 1

α(u−1
n )

= 1

(loga)α

1

n [(1/α) logn + log loga]2

satisfies

C :=
∞∑

n>(1/ log a)α

β(un) < ∞.

The proof of Lemma 5.6 gives

logf (r) �
Nr∑
n=1

log

(
2

r

an1/α

)
+ Cα(r) =

Nr∑
n=1

log

(
r

an1/α

)
+ Nr log 2 + Cα(r).

On the other hand

logf (r) �
Nr∑
n=1

log

(
1 + r

an1/α

)
�

Nr∑
n=1

log

(
r

an1/α

)
.

We have

Nr∑
n=1

log

(
r

an1/α

)
= Nr log r − loga

Nr∑
n=1

n1/α

and

1

1 + 1/α
N

1+1/α
r �

Nr∑
n=1

n1/α � 1

1 + 1/α
(Nr + 1)1+1/α.

Therefore, in view of (63) we get

logf (r) = 1

(α + 1)(loga)α
(log r)1+α

[
1 + o(1)

]
,

showing that the logarithmic order is α (as we already know from Example 5.13), and the loga-
rithmic type is

1

(α + 1)(loga)α
.

Example 5.15. For a, b > 1 let bn = abn
and |an| � acbn

with bc < 1. In this case (bn) is loga-
rithmic convex, and the coefficients lead to an indeterminate moment problem with order as well
as logarithmic order equal to 0.

This motivates a study of functions bounded by the order function α(r) = (log log r)α , con-
sidered in the next section.

6. Double logarithmic order

For an unbounded continuous function f we define the double logarithmic order ρ
[2]
f as

ρ
[2] = inf

{
α > 0

∣∣Mf (r) �as r(log log r)α
}
,
f
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where ρ
[2]
f = ∞, if there are no α > 0 satisfying the asymptotic inequality. Of course ρ

[2]
f < ∞

is only possible if ρ
[1]
f = 0.

In case 0 < ρ[2] = ρ
[2]
f < ∞ we define the double logarithmic type as

τ
[2]
f = inf

{
c > 0

∣∣Mf (r) �as rc(log log r)ρ
[2] }

.

Theorem 6.1. For an indeterminate moment problem of logarithmic order zero the functions
A,B,C,D,P,Q have the same double logarithmic order ρ[2] and type τ [2] called the double
logarithmic order and type of the moment problem.

The proof of this result can be done exactly in the same way as the corresponding proof for
logarithmic order and type in [6], so we leave the details to the reader.

For an entire transcendental function f (z) =∑∞
n=0 anz

n of logarithmic order 0 the double
logarithmic order and type can be expressed in terms of the coefficients an by the following
formulas.

Theorem 6.2.

ρ
[2]
f = lim sup

n→∞
logn

log log log( 1
n
√|an| )

, (64)

and if 0 < ρ[2] = ρ
[2]
f < ∞

τ
[2]
f = lim sup

n→∞
n

(log log 1
n
√|an| )

ρ[2] . (65)

The proof is given in Appendix A.
The results of Section 3 about Φ can also be generalized:

Theorem 6.3. Suppose the logarithmic order of the moment problem is zero. Then Φ has the
same double logarithmic order ρ[2] and type τ [2] as the moment problem.

Proof. From the inequality MD(r) � c0rMΦ(r), cf. (20), we get ρ[2] = ρ
[2]
D � ρ

[2]
Φ . For any

ε > 0 we have

P
(
reiθ

)
� r(log log r)ρ

[2]+ε

for r sufficiently large, which by (16) leads to ρ
[2]
Ψ � ρ[2], where Ψ is given by (21). From

Theorem 6.2 we see that ρ
[2]
Φ = ρ

[2]
Ψ and hence ρ[2] = ρ

[2]
Φ . The proof concerning type follows

using similar ideas. �
Theorem 6.4. Assume that the coefficients of (2) satisfy

∞∑
n=1

1 + |an|√
bnbn−1

< ∞

and that either (27) or (28) holds.
Then the double logarithmic order ρ[2] of the moment problem is given as ρ[2] = E(log logbn).
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Proof. We first establish that ρ[2] � E(log logbn), which is clear if ρ[2] = ∞. If ρ[2] < ∞ we
know that for every ε > 0

MP (r) �as r(log log r)ρ
[2]+ε

.

In other words P has order bounded by α(r) = (log log r)ρ
[2]+ε , so by Theorem 5.9(ii) we know

that

β(1/bn) = 1

(log logbn)
ρ[2]+ε

∈ �1+ε,

hence E(log logbn) � (ρ[2] + ε)(1 + ε) for any ε > 0, thus E(log logbn) � ρ[2].
From (52) we get ρ

[2]
P � ρ

[2]
Π , hence ρ[2] = ρ

[2]
P = E(log logbn), if we prove that ρ

[2]
Π �

E(log logbn). This is a consequence of Theorem A.3, but follows directly in the following way:
It is clear if E(log logbn) = ∞. If ρ = E(log logbn) < ∞ we use Proposition 5.7 for the order
function α(r) = (log log r)ρ+ε and un = 1/bn, and since

∑
n

β(un) =
∑
n

1

(log logbn)ρ+ε
< ∞

we conclude that logMΠ(r) = O(α(r) log r), hence ρ
[2]
Π � ρ, because ε > 0 can be chosen

arbitrarily small. �
Example 6.5. Consider

f (z) =
∞∏

n=1

(
1 + z

exp(en1/α
)

)
,

where 0 < α < ∞. We prove that ρ
[2]
f = α, τ

[2]
f = 1. Note that bn = exp(en1/α

) is eventually

log-convex because exp(x1/α) is convex for x > (α − 1)α when α > 1 and convex for x > 0
when 0 < α � 1. This means that the indeterminate moment problem with recurrence coefficients
an = 0 and bn as above has double logarithmic order equal to E(log logbn) = α.

Define

α(r) = (log log r)2α,

which is an order function with r0 = exp(max(e,2α)).
For Nr = #{n | exp(en1/α

) � r} we have

(log log r)α − 1 < Nr � (log log r)α. (66)

Moreover, for un = 1/bn we have β(un) = 1/α(bn) = 1/n2. Observe that max{log(2un)} � 0.
Hence Lemma 5.6 gives

logf (r) � Nr log r + Cα(r),

where

C =
∞∑

n/∈A

β(un) �
∞∑

n=1

1

n2
.

r0
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Thus

logf (r) � (log log r)α log r + C(log log r)2α. (67)

To minorize logf (r) we need

N∑
n=1

en1/α � eN1/α +
N∫

1

ex1/α

dx = eN1/α + α

eN1/α∫
e

(log t)α−1dt

�
{

eN1/α
(1 + α) for 0 < α � 1,

eN1/α
(1 + αN1−1/α) for 1 < α.

This gives

logf (r) �
Nr∑
n=1

log

(
1 + r

exp(en1/α
)

)
� Nr log r −

Nr∑
n=1

en1/α

�
{

log r((log log r)α − 2 − α) for 0 < α � 1,

log r((log log r)α − 2 − α(log log r)α−1) for 1 < α.

These inequalities together with (67) leads to

lim
r→∞

logf (r)

(log log r)α log r
= 1,

showing the assertion about double logarithmic order and type of f .

7. Livšic’s function

For an indeterminate moment sequence (sn) Livšic [19] considered the function

F(z) =
∞∑

n=0

z2n

s2n

. (68)

It is entire of minimal exponential type because limn/ 2n
√

s2n = 0, which holds by Carleman’s
criterion giving that

∞∑
n=0

1/ 2n
√

s2n < ∞.

Moreover, 2n
√

s2n is increasing for n � 1.
Livšic proved that ρF � ρ, where ρ is the order of the moment problem. It is interesting to

know whether the equality sign holds. In fact, we do not know any example with ρF < ρ. We
will rather consider a modification of Livšic’s function given by

L(z) =
∞∑

n=0

zn

√
s2n

. (69)

It is easy to see that ρL = ρF and that τF = 2τL by the formulas (22) and (23).
We shall give a new proof of the inequality ρF � ρ using the function Φ from Section 2. We

shall also consider the entire function
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H(z) =
∞∑

n=0

bn,nz
n, (70)

where bn,n is the leading coefficient of Pn, cf. (4).

Proposition 7.1. For an indeterminate moment problem of order ρ we have

(i) 1 � s2nb
2
n,n � c2

ns2n.
(ii) ML(r) � MH (r) � MΦ(r), r � 0.

(iii) ρL � ρH � ρΦ = ρ.
(iv) ρ

[1]
L � ρ

[1]
H � ρ

[1]
Φ = ρ[1], provided ρ = 0.

(v) ρ
[2]
L � ρ

[2]
H � ρ

[2]
Φ = ρ[2], provided ρ[1] = 0.

Proof. By orthogonality we have

1 =
∫

P 2
n (x) dμ(x) = bn,n

∫
xnPn(x) dμ(x),

so by the Cauchy–Schwarz inequality

1

bn,n

�
(∫

x2n dμ(x)

)1/2(∫
P 2

n (x) dμ(x)

)1/2

= √
s2n,

which gives the first inequality of (i). The second follows from (13).
The maximum modulus Mf for an entire function f (z) = ∑

anz
n with an � 0 is given

by Mf (r) = f (r), r � 0, and therefore (ii) follows from (i). Finally (iii), (iv) and (v) follow
from (ii). �

The following result gives a sufficient condition for equality in Proposition 7.1.

Proposition 7.2. If

log 2n

√
c2
ns2n = o(logn)

and in particular if

c2
ns2n = O

(
Kn
)

for some K > 1, then ρ = ρL.
If ρ = 0 then ρ[1] = ρ

[1]
L , and if ρ[1] = 0 then ρ[2] = ρ

[2]
L .

Proof. Given ε > 0 we have for n sufficiently large

log 2n
√

s2n � ε logn + log
1

n
√

cn

. (71)

Dividing by logn leads to

lim inf
n→∞

log 2n
√

s2n

logn
� ε + lim inf

n→∞
log 1

n
√

cn

logn
,

so by (22)
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1

ρL

� ε + 1

ρ
,

but this gives ρ � ρL.
From (71) we get

log log 2n
√

s2n � log log
1

n
√

cn

+ log

(
1 + ε logn

log 1
n
√

cn

)
.

If ρ = 0 the last term tends to 0, and dividing by logn we get as above ρ[1] � ρ
[1]
L . Similarly, if

ρ[1] = 0 we find ρ[2] � ρ
[2]
L . �

In the next results we shall use the function

G(z) =
∞∑

n=0

zn

bn
n

, (72)

which is entire if bn → ∞.

Lemma 7.3. Suppose that the recurrence coefficients of (2) satisfy

(i) an = O(bn),
(ii) (bn) is eventually increasing,

(iii) bn → ∞.

Then there exist constants A,C � 1 such that
√

s2n � A(3C)nb0b1 · · ·bn−1, n � 0. (73)

Proof. Because of the assumption (i) there exists a constant C � 1 such that |an| � Cbn for all
n � 0. By (ii) there exists n0 � 1 such that bn−1 � bn for n � n0 and by (iii) there exists n1 � n0
such that bn1 � max(1, b0, . . . , bn0−1), hence

B := max(1, b0, . . . , bn1−1) � bn1 . (74)

The three term recurrence relation (2) for Pn applied successively leads to

x = a0P0 + b0P1,

x2 = x(a0P0 + b0P1) = a0(a0P0 + b0P1) + b0(b0P0 + a1P1 + b1P2),

and in general there exist an index set In with |In| � 3n, a mapping Jn from In to {0,1, . . . , n}
and real coefficients dn,k , k ∈ In such that

xn =
∑
k∈In

dn,kPJn(k). (75)

In the next step we get

xn+1 =
∑
k∈In

dn,k(bJn(k)−1PJn(k)−1 + aJn(k)PJn(k) + bJn(k)PJn(k)+1),

which shows how each element k ∈ In gives rise to two or three elements in In+1 depending on
Jn(k) = 0 or Jn(k) > 0.
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Each dn,k is a product of n terms from {a0, . . . , an−1, b0, . . . , bn−1}, hence

|dn,k| � Cn
(
max(b0, . . . , bn−1)

)n
.

For n � n1 we have in particular |dn,k| � (BC)n � Bn1Cn.
We claim that in general

|dn,k| � Bn1Cnbn1 · · ·bn−1, k ∈ In, n � 1, (76)

which is already established for n � n1, where the empty product bn1 · · ·bn−1 is to be understood
as 1. Assume now that (76) holds for some n � n1. If Jn(k) � n1 we have

|dn,k|bJn(k)−1 � |dn,k|bJn(k) � |dn,k|bn � Bn1Cnbn1 · · ·bn−1bn,

|dn,k||aJn(k)| � C|dn,k|bJn(k) � Bn1Cn+1bn1 · · ·bn−1bn,

while if Jn(k) � n1 − 1,

|dn,k|bJn(k)−1, |dn,k|bJn(k) � |dn,k|B � Bn1Cnbn1 · · ·bn−1bn

|dn,k||aJn(k)| � C|dn,k|bJn(k) � Bn1Cn+1bn1 · · ·bn−1bn,

where we have used that B � bn1 � bn. This finishes the induction proof of (76), which may be
written

|dn,k| � ACnb0b1 · · ·bn−1, k ∈ In, n � 1,

where A = Bn1/(b0b1 · · ·bn1−1).
Now (73) follows because

s2n =
∫

x2n dμ(x) =
∑
k∈In

∑
l∈In

dn,kdn,l

∫
PJn(k)PJn(l) dμ(x)

�
∑
k∈In

∑
l∈In

|dn,k||dn,l | =
(∑

k∈In

|dn,k|
)2

�
(
3nACnb0b1 · · ·bn−1

)2
. �

Proposition 7.4. Let (sn) denote an indeterminate moment sequence for which the recurrence
coefficients (2) satisfy the conditions of Lemma 7.3. Then

(i) ρG � ρL = ρH .

(ii) ρ
[1]
G � ρ

[1]
L = ρ

[1]
H , provided ρH = 0.

(iii) ρ
[2]
G � ρ

[2]
L = ρ

[2]
H , provided ρ

[1]
H = 0.

Proof. From (73), (5) and bn−1 � bn for n � n1, it follows for such n that

√
s2n � A(3C)n

bn,n

� Bn1(3C)nbn−n1
n ,

where B is given by (74), hence

√
s2n � α(3C)n

bn,n

� γ (3C)nbn−n1
n , n � 0,

for suitable constants α,γ > 0. Introducing
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G∗(z) =
∞∑

n=0

1

b
n−n1
n

zn,

this gives

ML(r) � (1/α)MH (r/3C) � (1/γ )MG∗(r/3C), r > 0,

showing that ρL � ρH � ρ∗
G and similar inequalities for the logarithmic and double logarithmic

orders. If this is combined with Proposition 7.1, we get the equality sign between the orders of L

and H . Furthermore, by (22)

ρG∗ = lim sup
logn

(1 − n1/n) logbn

= lim sup
logn

logbn

= ρG,

and similarly ρ
[1]
G = ρ

[1]
G∗ and ρ

[2]
G = ρ

[2]
G∗ . �

Theorem 7.5. Given an (indeterminate) moment problem where

∞∑
n=1

1 + |an|√
bnbn−1

< ∞,

and where either (27) or (28) holds.
The following holds

(i) ρ = ρF = ρG = ρH = ρL = E(bn).

If ρ = 0 then

(ii) ρ[1] = ρ
[1]
F = ρ

[1]
G = ρ

[1]
H = ρ

[1]
L = E(logbn).

If ρ[1] = 0 then

(iii) ρ[2] = ρ
[2]
F = ρ

[2]
G = ρ

[2]
H = ρ

[2]
L = E(log logbn).

Proof. By Lemma 4.1 we know that bn−1 � bn for n � n1, so the conditions of Proposition 7.4
are fulfilled. By (50) we have

1

b2n
n

� 1

b2n
n−1

� Ab2
n,n, n � n1

for a certain constant A, and by replacing A by a larger constant if necessary, we see that there ex-
ists a constant a such that 1/bn

n � abn,n for all n. This gives MG(r) � aMH (r), hence ρG � ρH .
By (22) we have

ρG = lim sup
n→∞

logn

logbn

,

so for any ε > 0 we get n � b
ρG+ε
n for n sufficiently large. This gives

∞∑ 1

b
(ρG+ε)(1+ε)

< ∞,
n=0 n
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hence E(bn) � ρG. Finally, by Theorem 4.11, Proposition 7.1 and Proposition 7.4 we get ρ =
E(bn) � ρG � ρH = ρL � ρ.

If the common order ρ = 0, we get as above ρ
[1]
G � ρ

[1]
H , and by (24) we know that

ρ
[1]
G = lim sup

n→∞
logn

log logbn

.

For given ε > 0 we get for n sufficiently large that

n � (logbn)
ρ

[1]
G +ε,

showing that E(logbn) � ρ
[1]
G . We finally use Theorem 5.12 combined with Proposition 7.1 and

Proposition 7.4 to get (ii), and proceed similarly concerning the double logarithmic order. �
Example 7.6. In [10] symmetric polynomials with the recurrence coefficients bn−1 =
2n

√
4n2 − 1, n � 1, are considered. The sequence is log-concave and the order of the moment

problem is 1/2 by Theorem 4.11.
The case of bn−1 = q−n for 0 < q < 1 is also considered, and Chen and Ismail find explicit

representations of Pn and the entire functions A,B,C,D. Clearly b2
n = bn−1bn+1 and we find

that the order is 0 and the logarithmic order is 1 in accordance with the estimates of the paper.
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Appendix A

Proof of Theorem 6.2. To establish (64), we first show that if

Mf (r) � r(log log r)α , α > 0, r � r0,

then

lim sup
n→∞

logn

log log log( 1
n
√|an| )

� α. (77)

This will yield � in (64).
By the Cauchy estimates

|an| � Mf (r)

rn
� r(log log r)α−n, r � r0.

In this inequality we will choose an r approximately minimizing

ϕ(r) = ((log log r)α − n
)

log r.

Note that ϕ′(r) = 0 if x = log log r satisfies

xα + αxα−1 − n = 0. (78)

Motivated by Lemma A.1 below we choose r such that log log r = n1/α − 1. This is certainly
larger than r0 if n is large enough. Inserting this value for r , we get

log |an| �
((

n1/α − 1
)α − n

)
exp
(
n1/α − 1

)= −n
(
1 − (1 − n−1/α

)α) exp
(
n1/α − 1

)
,
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hence

log log
1

n
√|an| � n1/α − 1 + log

(
1 − (1 − n−1/α

)α)= n1/α
(
1 + o(1)

)
,

showing (77).
We next show that the double logarithmic order of f satisfies

ρ
[2]
f � lim sup

n→∞
logn

log log log( 1
n
√|an| )

. (79)

This is clear if the right-hand side is infinity. Let μ be an arbitrary number larger than the
right-hand side, now assumed finite. Then there exists n0 such that

logn � μ log log log
1

n
√|an| , n � n0,

or

|an| � exp
(−n exp

(
n1/μ

))
, n � n0.

Fix r > e so large that log r > exp(n
1/μ

0 ) − 1. We next determine n1 > n0 so that

exp
(
(n1 − 1)1/μ

)− 1 < log r � exp
(
n

1/μ

1

)− 1.

For this r we find with C1 =∑n0−1
n=0 |an|

Mf (r) �
n0−1∑
n=0

|an|rn +
∞∑

n=n0

|an|rn

� C1r
n0 +

∞∑
n=n0

exp
(−n exp

(
n1/μ

)+ n log r
)

� C1r
n0 +

n1−1∑
n=n0

exp
(−n exp

(
n1/μ

)+ (log(1 + log r)
)μ log r

)

+
∞∑

n=n1

exp
(−n exp

(
n1/μ

)+ n exp
(
n1/μ

)− n
)
,

where we have used in the second sum that for n0 � n < n1: exp(n1/μ) − 1 < log r , hence
n < (log(1 + log r))μ, and in the last sum that for n � n1

log r � exp
(
n

1/μ

1

)− 1 � exp
(
n1/μ

)− 1.

We then get

Mf (r) � C1r
n0 + r(log(1+log r))μ

n1−1∑
n=n0

exp
(−n exp

(
n1/μ

))+ ∞∑
n=n1

exp(−n)

< C1r
n0 + r(log(1+log r))μ + 1,

where we have majorized the two sums by
∑∞

1 exp(−n) = 1/(e − 1) < 1. For any given ε > 0
we have
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(
log(1 + log r)

)μ �as (log log r)μ+ε,

hence

Mf (r) �as 2r(log log r)μ+ε �as r(log log r)μ+2ε

.

This establishes ρ
[2]
f � μ + 2ε, which shows � in (64).

We next prove (65). For simplicity of notation we put α = ρ
[2]
f and assume that 0 < α < ∞.

We show first that if

Mf (r) � rK(log log r)α , K > 0, r � r0,

then

lim sup
n→∞

n

(log log 1
n
√|an| )

α
� K, (80)

which establishes � in (65).
By the Cauchy estimates

|an| � Mf (r)

rn
� rK(log log r)α−n, r � r0,

hence

log |an| �
(
K(log log r)α − n

)
log r, r � r0.

In this inequality we will choose log log r = (n/K)1/α − 1 by inspiration from the proof in
the first part. This gives

log |an| � −n
(
1 − [1 − (n/K)−1/α

]α) exp
(
(n/K)1/α − 1

)
,

hence

log log
1

n
√|an| � (n/K)1/α − 1 + log

(
1 − [1 − (n/K)−1/α

]α)= (n/K)1/α
(
1 + o(1)

)
,

showing (80).
We next show that the double logarithmic type of f satisfies

τ
[2]
f � lim sup

n→∞
n

(log log 1
n
√|an| )

α
. (81)

This is clear if the right-hand side is infinity. Let μ be an arbitrary number larger than the
right-hand side, now assumed finite. Then there exists n0 such that

n � μ

(
log log

1
n
√|an|

)α

, n � n0,

or

|an| � exp
(−n exp

(
(n/μ)1/α

))
, n � n0.

Fix r > e so large that log r > exp((n0/μ)1/α) − 1. We next determine n1 > n0 so that

exp

((
n1 − 1

)1/α)
− 1 < log r � exp

(
(n1/μ)1/α

)− 1.

μ
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For this r we find with C1 =∑n0−1
n=0 |an|,

Mf (r) � C1r
n0 +

∞∑
n=n0

exp
(−n exp

(
(n/μ)1/α

)+ n log r
)

� C1r
n0 +

n1−1∑
n=n0

exp
(−n exp

(
(n/μ)1/α

)+ μ
(
log(1 + log r)

)α log r
)

+
∞∑

n=n1

exp(−n),

where we have used that n < μ(log(1 + log r))α when n0 � n � n1 − 1, and that log r �
exp((n/μ)1/α) − 1 when n � n1.

We then get

Mf (r) � C1r
n0 + rμ(log(1+log r))α

n1−1∑
n=n0

exp
(−n exp

(
(n/μ)1/α

))+ ∞∑
n=n1

exp(−n)

< C1r
n0 + rμ(log(1+log r))α + 1.

For any given ε > 0 we have

μ
(
log(1 + log r)

)α �as (μ + ε)(log log r)α,

hence

Mf (r)) �as 2r(μ+ε)(log log r)α �as r(μ+2ε)(log log r)α .

This establishes τ
[2]
f � μ + 2ε, which shows � in (65). �

Lemma A.1. Let n ∈ N, n � 4 and α > 0. Then the function in (78)

h(x) = xα + αxα−1 − n

has a zero in⎧⎪⎨
⎪⎩
[
n1/α − 1, n1/α

]
if α > 1,

n − 1 if α = 1,[
n1/α − 2, n1/α − 1

]
if 0 < α < 1.

Proof. We find h(n1/α) = αn1−1/α > 0 for all α > 0. Putting y = n1/α − 1 we find for some
ξ ∈ (0,1)

(y + 1)α − yα = α(y + ξ)α−1
{

> αyα−1 if α > 1,

< αyα−1 if 0 < α < 1.

This shows that h(n1/α − 1) < 0 (resp. > 0) for α > 1 (resp. 0 < α < 1).
Finally, for 0 < α < 1 we put y = n1/α − 2 and get for some 0 < η < 2,

(y + 2)α − yα = 2α(y + η)α−1 > αyα−1

if y � 2. This shows that h(n1/α − 2) < 0. Note that y = n1/α − 2 � 2 for n � 4. �
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Propositions 5.3 and 5.4 from [6] can be extended to double logarithmic order.
These results deal with transcendental entire functions f of ordinary order strictly less than 1.

They have infinitely many zeros, which we label {zn} and number according to increasing order
of magnitude. We repeat each zero according to its multiplicity. Supposing f (0) = 1 we get from
Hadamard’s factorization theorem

f (z) =
∞∏

n=1

(
1 − z

zn

)
. (82)

The growth of f is thus determined by the distribution of the zeros. We shall use the following
quantities to describe this distribution.

The usual zero counting function n(r) is

n(r) = #{n | |zn| � r},
and we define

N(r) =
r∫

0

n(t)

t
dt,

and

Q(r) = r

∞∫
r

n(t)

t2
dt.

These quantities are related to Mf (r) in the following way

N(r) � logMf (r) � N(r) + Q(r) (83)

for r > 0. (This is relation (3.5.4) in Boas [9]).
By a theorem of Borel it is known that ρf = E(zn), and if the order is 0, then ρ

[1]
f = E(log |zn|)

by Proposition 5.4 in [6]. Furthermore, by Proposition 5.3 in [6] we have

E
(
log |zn|

)= lim sup
n→∞

logn(r)

log log r
.

The following proposition expresses the double logarithmic convergence exponent
E(log log |zn|) in terms of the zero counting function of f .

Proposition A.2. We have

E
(
log log |zn|

)= lim sup
r→∞

logn(r)

log log log r
. (84)

Proof. We have

n
(
eer )= #

{
n
∣∣ |zn| � eer }= #

{
n
∣∣ log log |zn| � r

}
,

hence by Lemma 4.10

E
(
log log |zn|

)= lim sup
r→∞

logn(eer
)

log r
= lim sup

s→∞
logn(s)

log log log s
. �
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Theorem A.3. The double logarithmic order of the canonical product (82) is equal to the double
logarithmic convergence exponent of the zeros, i.e., ρ

[2]
f = E(log log |zn|).

Proof. We shall prove that L = ρ
[2]
f , where L is given by the right-hand side of (84). Let α > 0

be such that

Mf (r) � r(log log r)α , r � r0.

For r � r0 we then get by the left-hand side of (83)

n(r) log r �
r2∫

r

n(t)

t
dt � N

(
r2)� logMf

(
r2)� 2

(
log log r2)α log r,

hence for any ε > 0,

n(r) � 2(log 2 + log log r)α �as (log log r)α+ε,

which shows that L � α + ε, leading to L � ρ
[2]
f .

To prove the converse inequality we let ε > 0 be given. There exists r0 > 1 such that

n(r) � (log log r)L+ε, r � r0.

For r > r0 we then get

N(r) �
r0∫

0

n(t)

t
dt +

r∫
r0

(log log t)L+ε dt

t
<

r0∫
0

n(t)

t
dt + (log log r)L+ε log r.

We also get

Q(r) � r

∞∫
r

(log log t)L+ε

t1/2

dt

t3/2
.

We next use that

t1/2

(log log t)L+ε
=
[

t

(log log t)2(L+ε)

]1/2

is increasing for t sufficiently large, because (log log r)α is an order function for any α > 0. We
can therefore write

Q(r) � r
(log log r)L+ε

r1/2

∞∫
r

dt

t3/2
= 2(log log r)L+ε,

so by the right-hand side of (83) we find

lim sup
r→∞

logMf (r)

(log log r)L+ε log r
� 1,

and it follows that ρ
[2]
f � L. �
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