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Abstract

For an indeterminate moment problem we denote the orthonormal polynomials by P,. We study the
relation between the growth of the function P(z) = (ZZO:() | Py (z)lz) 1/2 and summability properties of the
sequence ( Py (z)). Under certain assumptions on the recurrence coefficients from the three term recurrence
relation z Py (z) = by Pyy1(2) + an Py (2) + by, —1 P,—1(2), we show that the function P is of order o with
0 <« < 1, if and only if the sequence (P,(z)) is absolutely summable to any power greater than 2c.
Furthermore, the order « is equal to the exponent of convergence of the sequence (by). Similar results
are obtained for logarithmic order and for more general types of slow growth. To prove these results we
introduce a concept of an order function and its dual.

We also relate the order of P with the order of certain entire functions defined in terms of the moments
or the leading coefficient of P;,.
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1. Introduction and results

Stieltjes discovered the indeterminate moment problem in the memoir [25] from 1894, and
one can follow his discoveries in the correspondence with Hermite, cf. [4]. Stieltjes only con-
sidered distribution functions on the half-line [0, c0) corresponding to what is now called the
Stieltjes moment problem. It took about 25 years before Hamburger, Nevanlinna and Marcel
Riesz laid the foundation of the Hamburger moment problem described by (1). Nevanlinna
proved the Nevanlinna parametrization of the full set of solutions to the Hamburger moment
problem. Using the four entire functions A, B, C, D, obtained from (3) by letting n — oo, any
solution to the moment problem can be described via a universal parameter space, namely the
one-point compactification of the space of Pick functions. Nevanlinna also pointed out what
is now called the Nevanlinna extremal solutions corresponding to the degenerate Pick func-
tions, which are a real constant or infinity. Since the same solutions appear in spectral theory
for self-adjoint extensions of Jacobi matrices, Simon [24] proposed to call them von Neumann
solutions. The classical monographs describing the Nevanlinna parametrization are [1,23,26].
None of these treatises contain a fully calculated example with concrete functions A, B, C, D.
Although it was well known that the zeros of B, D interlace and similarly with A, C, nobody
seem to have noticed that these functions have the same growth properties before it was done
in [5]. In that paper it was proved that the four entire functions A, B, C, D as well as P, Q
from Theorem 1.1 have the same order and type called the order p and type T of the in-
determinate moment problem. Already in 1923 Marcel Riesz had proved the deep result that
A, B,C, D are of minimal exponential type, i.e., that 0 < p < 1 and if p =1, then T =0,
cf. [1, p. 56].

The first concrete examples, where A, B, C, D were calculated together with a number
of solutions, appeared in the beginning of the 1990’ies, see Ismail and Masson [16], Chi-
hara and Ismail [12], Berg and Valent [8]. One source of indeterminate moment problems is
g-series, cf. [14], and formulas of Ramanujan as pointed out by Askey [2]. The indetermi-
nate moment problems within the g-Askey scheme were identified by Christiansen in [13]. All
these moment problems have order zero, and in Ismail [15] it was conjectured that A, B, C, D
should have the same growth properties on a more refined scala than ordinary order. This was
proved in [6], by the introduction of a refined scale called logarithmic order and type, so we
can speak about logarithmic order p!!! and logarithmic type t!!! of a moment problem of
order zero. In [21] it was proved that if (p,t) or (,0[1], r[”) are prescribed, then there ex-
ist indeterminate moment problems with these (logarithmic) orders and types. In Ramis [22]
the notion of logarithmic order and type appears for entire solutions to g-difference equa-
tions.

The main achievement of the present paper is that we present some conditions on the co-
efficients (a,), (b,) of the three term recurrence relation (2), such that when these hold, then
summability properties of the sequence (Pn2 (z)) and order properties of the moment problem are
equivalent. Furthermore, the order as well as the logarithmic order of the moment problem can
be calculated from the growth properties of the sequence (b,).

These conditions are of two different types. There is a regularity condition that (b,) is
either log-convex eventually or log-concave eventually, cf. (27) or (28), and a growth condi-
tion (29).

The last condition is also necessary in the symmetric case a, = 0 because of Carleman’s
condition.

We shall now give a more detailed survey of the content.
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Consider a normalized Hamburger moment sequence (s, ) given as

o0
Sp = f x"du(x), n>=0, (1)
—00
where u is a probability measure with infinite support and moments of any order.
Denote the corresponding orthonormal polynomials by P,(z) and those of the second kind

by 0,(z), following the notation and terminology of [1]. These polynomials satisfy a three term
recurrence relation of the form

2 (2) = bptpy1(2) +anrn (2) + bp_11p—1(z), n =0, 2)

where a, € R, b, > 0forn > 0and b_; = 1, and with the initial conditions Py(z) =1, P_1(z) =

0and Qo(z) =0, Q—1(z) =—L.
The following polynomials will be used, cf. [1, p. 14]

n—1

An@) =2 0k(0)0x(2),

k=0
n—1
By(z)=—1+2)_ Qx(0)Pc(2),
k=0

n—1
Ca(@=1+2)_ Pr(0)Qi(2),
k=0
n—1

Dy(2) =z P(0) Pi(2). 3)

k=0

We need the coefficients of the orthonormal polynomials

Py(x) = by uxt, )

k=0

and by (2) we have

bn,n: 1/(b0b1"'bn_1) > 0. (5)

The indeterminate case is characterized by the equivalent conditions in the following result,
cf. [1, Section 1.3].

Theorem 1.1. For (sy,) as in (1) the following conditions are equivalent:

(i) 3°2°4(P2(0) + 02(0)) < 00,
(i) P(@) =2 Pu(@))!/? <00, z€C.

If (1) and (ii) hold (the indeterminate case), then Q(z) = (Z:ozo |On (z)|2)1/2 < o0 for z € C,
and P, Q are continuous functions.
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Concerning order and type as well as logarithmic order and type of an (entire) function, we
refer to Section 2, but we warn the reader that the logarithmic order treated in this paper differs
from the logarithmic order of [6] by subtracting 1. We believe that there are good reasons for this
change of definition.

Our first main result extends Theorem 1.1. For 0 < o we consider the complex linear sequence
space

= {(xn)

o0
Z|xn|“<oo}.

n=0

Theorem 1.2. For a moment problem and 0 < « < 1 the following conditions are equivalent:

(i) (P2(0)), (Q%(0)) € ¢,
(i) (P2(2)), (Q%(z)) € £* forall z € C.

If the conditions are satisfied, the moment problem is indeterminate and the two series indicated
in (ii) converge uniformly on compact subsets of C. Furthermore, (1/by,) € £% and

P(z) < Cexp(K|z]%), ©
where
oo 12 | o
€= (Z(PHZ(O)_’_Qﬁ(O))) ’ k= EZ(|P,,(O)|2&+ |Qn(0)|2a). (7
n=0 n=0

In particular the moment problem has order p < «, and if the order is o, then the type T < K.

Remark 1.3. The main point in Theorem 1.2 is that (i) or (ii) imply (6). The equivalence be-
tween (i) and (ii) is in principle known, since it can easily be deduced from formula [1.23a] in
Akhiezer [1]. The theorem is proved in Section 4 as Theorem 4.7.

For an indeterminate moment problem the recurrence coefficients (b,) satisfy Y 1/b, < oo
by Carleman’s Theorem. On the other hand the condition ) 1/b, < oo is not sufficient for in-
determinacy, but if a condition of log-concavity is added, then indeterminacy holds by a result
of Berezanskii [3], see [1, p.26]. This result is extended in Section 4 to include log-convexity,
leading to the following main result, which is an almost converse of Theorem 1.2 in the sense
that (6) implies (i) and (ii) except for an e, but under additional assumptions of the recurrence
coefficients.

Theorem 1.4. Assume that the coefficients of (2) satisfy

e¢]

1
Z + |an| < o0, (8)
bn—l

n=1
and that either (27) or (28) holds. Assume in addition that P satisfies
P(z) < Cexp(K|z|*)

for some o such that 0 < o < 1 and suitable constants C, K > 0.
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Then
1/by, P7(0), 05 (0) = O (n~ /%), 9)
so in particular (1/by), (P2(0)), (Q2(0)) € €** for any & > 0.

Theorem 1.4 is proved as Theorem 4.8, where we have replaced condition (8) by the slightly
weaker condition (29). Under the same assumptions we prove in Theorem 4.11 that the order
of the moment problem is equal to the convergence exponent of the sequence (by). In case of
order zero it is also possible to characterize the logarithmic order of the moment problem as the
convergence exponent of the sequence (logb,,), cf. Theorem 5.12.

In Section 5 the results of Theorem 1.2 and of Theorem 1.4 are extended to more general types
of growth, based on a notion of an order function and its dual. See Theorem 5.8 and Theorem 5.9.

In Section 6 we focus on order functions of the form «(r) = (loglogr)®, which lead to the
concept of double logarithmic order and type, giving a refined classification of entire functions
and moment problems of logarithmic order 0. The six functions A, B, C, D, P, Q have the same
double logarithmic order and type called the double logarithmic order p!?! and type t[?! of the
moment problem.

We establish a number of formulas expressing the double logarithmic order and type of an
entire function in terms of the coefficients in the power series expansion and the zero counting
function. The proof of these results are given in Appendix A.

For an indeterminate moment problem the numbers

. 172
k= (szn)
n=k

were studied by the authors in [7], and ¢, tends to zero so quickly that

o0
@) =) a
k=0

determines an entire function of minimal exponential type. We study this function in Section 3
and prove that @ has the same order and type as the moment problem, and if the common order
is zero, then @ has the same logarithmic order and type as the moment problem. This is extended
to double logarithmic order and type in Section 6.

In Section 7 we revisit a paper [19] by LivSic, where it was proved that the function

F(z) =Z

— S2n

o0
Z2n
n=0

has order less than or equal to the order of the entire function

oo
B(z)=—1+2z)_ 0x(0) Pk (2).
k=0
We give another proof of this result and extend it to logarithmic and double logarithmic order,
using results about @. It seems to be unknown whether the order of F is always equal to the order
of the moment problem. We prove in Theorem 7.5 that this the case, if the recurrence coefficients
satisfy the conditions of Theorem 4.2. In addition we obtain that the order of the entire function
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o
H(z) = an,nzn’
n=0
where b, , is the leading coefficient of P,, cf. (4), is equal to the order of the moment problem.
2. Preliminaries

For a continuous function f : C — C we define the maximum modulus M s : [0, co[ — [0, oo[
by

My (r) = max| f(2)|.
lzI<r
The order ps of f is defined as the infimum of the numbers o > 0 for which there exists a
majorization of the form

log M ¢ (r) <as re,

where we use a notation inspired by [18], meaning that the above inequality holds for r suffi-
ciently large. We will only discuss these concepts for unbounded functions f, so that log M ¢ (r)
is positive for r sufficiently large.

It is easy to see that
loglog M ¢ (r)

=limsu
il r—>oop logr

If 0 < py < oo we define the type 77 of f as
1y =inf{c > 0| log My (r) <ascr”’ },

and we have

log My (r)

Ty = lim sup o

r—00
The logarithmic order as defined in [6,21] is a number in the interval [1, co], and the functions
studied in Ramis [22] are of logarithmic order 2. A detailed study of meromorphic functions of
finite logarithmic order has been published in Chern [11].
We find it appropriate to renormalize this definition by subtracting 1, so the new logarithmic
order of this paper belongs to the interval [0, co]. This will simplify certain formulas, which will
correspond to formulas for the double logarithmic order developed in Section 6.

For an unbounded continuous function f we define the logarithmic order pgj] as

P =inflor > 0 log My (r) <as (logr)*!} = infler > 0 My (r) <o 117"},

where ,05}] = 00, if there are no o > 0 satisfying the asymptotic inequality. Of course p;l] < 00
is only possible for functions of order 0.

Note that an entire function f satisfying log M ¢ (r) <us (logr)* for some a < 1 is constant
by the Cauchy estimate

IO _ M)

n! rh
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It is easy to obtain that

,o[-]] = lim sup
/ F—00 loglogr

loglog M ¢ (r) 1

When p[f” < 0o we define the logarithmic type tj[cl] as

. .
r}l] =inf{c > 0 |log My (r) <s c(logr)’s " }
[

ol
= inf{c >0 | M (r) <as pellogr)™s },
and it is readily found that

logM
r}]] = limsup log My (r).

(1] :
r—00 (lOgr)’Of +1

An entire function f satisfying ,ogcl] =0 and r}[c” < 00 is necessarily a polynomial of degree

1
<‘L’E¢-].

The shifted moment problem is associated with the cut off sequences (a,+1) and (b,41)
from (2). In terms of Jacobi matrices, the Jacobi matrix J; of the shifted problem is obtained
from the original Jacobi matrix J by deleting the first row and column. It is well known that
a moment problem and the shifted one are either both determinate or both indeterminate. If in-
determinacy holds, Pedersen [20] studied the relationship between the A, B, C, D-functions of
the two problems and deduced that the shifted moment problem has the same order and type
as the original problem. We mention that the P-function of the shifted problem equals by Q(z).
This equation shows that the two problems have the same logarithmic order and type in case the
common order is zero.

By repetition, the N-times shifted problem is then indeterminate with the same growth prop-
erties as the original problem. This means that it is the large n behavior of the recurrence
coefficients which determine the order and type of an indeterminate moment problem. This is
in contrast to the behavior of the moments, where a modification of the zero’th moment can
change an indeterminate moment problem to a determinate one, see e.g. [7, Section 5].

In the indeterminate case we can define an entire function of two complex variables

K@zw)=Y_ P@Pw)= Y ajrz/wt, (10)

n=0 j.k=0

called the reproducing kernel of the moment problem, and we collect the coefficients of the
power series as the symmetric matrix A = (a; 1) given by

9]

ajk= Y. bjabin. (11)

n=max(j,k)

It was proved in [7] that the series (11) is absolutely convergent and that the matrix A is of trace
class with

tr(A) = po,

where pg is given by
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2 2

1 . . 1 ;
o= / K e ) di = f P2(e") di < . (12)
0 0
Define
o 1/2
e ()
n=k
From (4) we have
. ! 2
by — / () ®+D gy — p—k L / Py (re)e ' dt. (14)
’ 2mwi 2
lzl=r 0

By (14) and by Parseval’s identity we have for r > 0

Zr2k2|bk,n|2:er”wk,nﬁ:Zgﬂpn(re”ﬂ dr, (15)
k=0 n=k n=0 k=0 n=0 0
hence
00 1 2
Zrzkc,% = —/Pz(rei’)dt, (16)
2w
k=0 0

an identity already exploited in [7].
3. The order and type of ¢

The heading refers to the function
(0.¢]
D(z) =ZCkzk, 17
k=0

where cy is defined in (13). By [7, Prop. 4.2] we know that limy_;, o k &/cx = 0, which shows that
@ is an entire function of minimal exponential type.

Theorem 3.1. The order and type of @ are equal to the order p and type T of the moment
problem.

Proof. By (4) and (11) we have

00 [} k 00
D)=z POP)=2) box Y bjzl =2 ajoz’. (18)
k=0 k=0 j=0 =0
Therefore,

o0 o
ID@| <1 lajollel <colzl Y ejlzl, (19)
i=0 j=0
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where we used |aj k| < cjck. This leads to the following inequality for the maximum moduli
Mp(r) < corMe(r), (20)

from which we clearly get p = pp < P -
Since pp = p (the order of the moment problem), we get for any ¢ > 0

P(reie) < exp(r’”'g) forr > R(e).

Defining
W(z) = Zcz 2k 1)
we get by (16)

My (r) = Zcz 2k Lexp(2rPe) <exp(rPt*)  for r > max(R(e),2'%),

hence py < p + 2¢ and finally py < p.
However, py = pe because for an entire function f(z) = Z;O:O a, 7" it is known [18] that

logn
o =limsup

M (22)
n—oo log( y_)

This shows the assertion of the theorem concerning order.

Concerning type, let us assume that the common order of the moment problem and @ is p,
satisfying 0 < p < oo in order to define type. For a function f as above with order p, the type
Ty can be determined as

T = 1 limsup(n|a,|”/"), (23)
ep n—oo
cf. [18].
From (20) we get T = tp < 7, Where 7 is the type of the moment problem.
Since P has type 7, we know that | P(re'?)| < e@+9"” for r sufficiently large depending on
& > 0, hence by (16)

My (r) = Zcz 2 Lexp(2(z +o)rf),

and we conclude that ty < 27. Fortunately ty = 274, as is easily seen from (23), so we get
7o < T, and the assertion about type has been proved. O

Theorem 3.2. Suppose the order of the moment problem is zero. Then ® has the same logarithmic
order p'" and type t'V1 as the moment problem.

Proof. The logarithmic order ,05(1] of an entire function f = Y ¢ a,z" of order zero can be
calculated as
lo
,of =lim supi 24)
n—00 loglog(r)
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cf. [6]. From (20) we want to see that pll] = ,o[Dl] < pg]. This is clear if ,o([pl] = 00, SO assume it
to be finite. For any ¢ > 0 we have for r sufficiently large

[
1 ,D +E 1 P +2¢
Mp(r) < corr(Og’) < rllogr) ,

which gives the assertion.
We next use that for given & > 0 we have for r sufficiently large

P(re®) < ploen”
which by (16) yields

[1] 1
ptH+e ptH+2e
My (r) < p2ogr) <as rdogr)

hence p[l] < ptM. From (24) we see that pg] = ,oq, hence pt'l = pg].

We next assume that the common value p!!! of the logarithmic order is a finite number > 0.
(Transcendental function of logarithmic order O have necessarily logarithmic type co.) We shall
show that /' = 1) and recall that the logarithmic type rJ[,” of a function f =) (" a,z" with

logarithmic order 0 < ,0[1] < 00 is given by the formula, cf. [6],

[1]
(e n
}1] (oIl 4 1)pt+1 hrfisoo (log -—=)r!" (25)
P g Tl
Again it is clear that 'L’E] = 21 , and from (20) we get LIRS rd, , while (16) leads to r[ ! <

2711, This finally gives r!!l = rg].

O
4. Berezanskii’s method

We are going to use and extend a method due to Berezanskii [3] giving a sufficient condition
for indeterminacy. The method is explained in [1, p. 26]. Berezanskii treated the case below of

log-concavity.

Lemma 4.1. Let b, > 0, n > 0 satisfy

sup b, = 00 (26)
n>0
and either
log-convexity: b,% <bp—1bp+1, n=no, 27
or
log-concavity: b;f; 2> by_1by+1, n>=no. (28)

Then (by,) is eventually strictly increasing to infinity.

Proof. Suppose first that (27) holds. For n > ng, b,,+1/b, is increasing, say to A < oo. If A < 1
then b, is decreasing for n > ng in contradiction to (26). Therefore 1 < A < oo and for any
1 < Xo < A we have b, 1 > Aob,, for n sufficiently large.
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If (28) holds, then by, 41/b, is decreasing for n > ng, say to A > 0. If A < 1 then ) b, < 00
in contradiction to (26). Therefore A > 1 and finally b,4+1 > b, for n > ng. If b,, = b,_; for
some n > ng, then (28) implies b, > b,+1, hence b, = b,+1, so (b,) is eventually constant in
contradiction to (26). O

Theorem 4.2 (Berezanskii). Assume that the coefficients of (2) satisfy

e¢]

1+ Jan|
2 ot < @

and that either (27) or (28) holds.?
For any non-trivial solution (r,) of (2) there exists a constant c, depending on the a,, b, and
the initial conditions (ro,r—1) # (0, 0) but independent of z, such that

Vou (@] < e (121), n(z)=]‘[<1+%), n>0, (30)
-1

k=0

and there exists a constant K, > 0 for z € C such that

max { }> K. , n=0. €2
bnt1
In particular,
P(0), 07(0) = O(1/by—1) (32)
and
L
-~ <@ + @] < <Sp (33)

for suitable constants K, L depending on z.
The moment problem is indeterminate.

Proof. By Lemma 4.1 we have b,_| < b, forn > n| > ny.
By the recurrence relation we get

bn— + |a
L@l - B o) <o
n
bn— +
< Z 1|rn71(1)|+wvn(z)|' (34)
n n
Let
by v, =max(U,, Un—1), €, = |z| + |an|

bnb_1’
Since (rg,7—1) # (0,0) we have v, > 0 for n > 1, and by assumption &, < 1 for n sufficiently
large depending on z, say forn > n, > nj.

2 In [1] it is assumed that |a,| < M, > 1/b, < oo and that (28) holds. The assertion (31) is not discussed.
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From the second inequality in (34) we then get
Upiy < bnfl

+H S

" LY bn bn—2

where the last inequality requires log-convexity, assumed for n > ng. For n > n| we then get

|an| |z]
1+¢ <14+ — 1+ .
Upt1 <( n)Un < < m by Un

Up—1+ ety <vp(1+&p),

Therefore
o0 o0
|| |z|
Uny (@) < ] ( *) I1 (1 + —)vnl(z), nzl,
k=n, bibr k=n, b1
and since

ny—1

Uny (2) 1‘[ +|z|/bi-1)

is bounded in the complex plane, we get (30) for n > ny, hence for all n by modifying the
constant. (Remember that b_| :=1.)
From the first inequality in (34) we get for n > n, now using log-concavity

u > A
n+l = ,—bnbn_z

We claim that

Up—] — Eplly 2 Up—| — Egliy. (35)

Vp1 = (I —gy)vp, n2n,.

This is clear if v, = u,, and if v, = u,_1, then u,_; > u, so (35) gives v,41 = Up41 =
(1 — &y)up—1. For n > n, we then get

oo
>, [[(-e0 >0,
k=n;

hence d := inf, > v, > 0. Therefore either /by |ry+1(2)| = d or /Dy—1|ry(2)| > d, which shows
(31) (even with the denominator /b, ).

We still have to prove the inequalities (30) and (31) when the assumptions of log-convexity
and log-concavity are interchanged. To do so we change the definition of u,, to u, = /b, |1, (z)|,
and we get from the second inequality in (34)

bu—_1bp+1
Upt1 < nbin_‘_(un—l + eptty) < V(1 + &),
n
where the last inequality requires log-concavity, assumed for n > ng. Therefore v,y <
(1 + &,)vy,, and (30) follows as above.

From the first inequality in (34) we similarly get

\/bnflbn+l

by (Up—1 — enuty).

Upt] 2
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We now claim that in the log-convex case
Uit 2 (1 —€0)vn,  n2ng,

where n > n, implies ¢, < 1. This is clear if v, = u,, and if v, = u,—1 we have u,_1 > u,,
hence u,_1 — gyu, = (1 —&y)u,—1 = 0.

The proof is finished as in the first case.

From (30) we get for z = 0 with r, = P, and r, = Q, that (32) holds, and this implies
indeterminacy by Theorem 1.1. Finally, (33) is obtained by combining (30) and (31). O

Remark 4.3. The lower bound (31) for non-real z can be obtained differently based on the
Christoffel-Darboux formula, cf. [1, p. 9],

n—1
(Imz) Y | P[> = byt I[Py (2) Pim1 )]
k=0
Hence
mz] - p P >1
bn—l \‘ nf](Z)H n(Z), nzl1.

Similarly, we can get the same inequality with Q, in place of P,. So far we do not need any extra
assumptions on the coefficients in the recurrence relation.

If we know that r,,(z) is bounded above by c¢I1(|z|)/+/bn—1 for any solution of the recurrence
relation, we immediately get

[Imz|
cI(zDv/bn

The same is true for Q, in place of P,.

|Pn(Z)| >

Corollary 4.4. Under the assumptions of Theorem 4.2 we have
1/bu. P (0), Q5(0) = o(1/n).

Proof. Since (b,) is eventually increasing by Lemma 4.1, we obtain from the convergence of
> 1/by that (n/by) tends to zero. Using (32) we see that also (nPnz(O)) and (n Q,Z, (0)) tend to
zero. O

Remark 4.5. Note that (29) is a weaker condition than (8) because (b,) is eventually increasing.

By a theorem of Carleman, ) 1/b, = oo is a sufficient condition for determinacy, and it is
well known that there are determinate moment problems for which > 1/b, < co. The converse
of Carleman’s Theorem holds under the additional conditions of Theorem 4.2.

We give next a family of examples of determinate symmetric moment problems for which
> 1/by < 0.

In the symmetric case a,, = 0 for all n, we have Py,1(0) = 0>,(0) =0, and it follows from
(2) that

boby -+ -byy 2 b1b3 - by

_— 0 =(—1 " )
bibs - by Q2n41(0) = (=D boba -~ ba,

so the moment problem is determinate by Theorem 1.1 if and only if

P, (0) = (—=1)"
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00 2 2

boby .. .boy— bibs...by,—
Z(oz 2 2) +< 1b3 ... boy 1) . 36)
= b1b3...byy—1 boby .. .boy,
If B, > 0 is arbitrary such that > 1/8, < oo, then defining by, = by,1+1 = B, for n > 0, we get
a symmetric moment problem which is determinate because of (36) since

boby by 1
bib3--- by ’
Clearly Y 1/b, < oo and (b,) does not satisfy the conditions (27) or (28).

Proposition 4.6. Let 0 < o < 1, let (uy,) € £* be a sequence of positive numbers and define

oo
K ::Zu‘,f.

n=1

Then

o0
1_[(1 +ruy) <exp(a ' Kr®).

n=1
Proof. The conclusion follows immediately from the inequalities below
14+ru, < (1—{—1’”‘ug)0‘l gexp(a_lr“uz). O
We shall now prove Theorem 1.2, and in order to make the reading easier we repeat the result:

Theorem 4.7. For a moment problem and 0 < o < 1 the following conditions are equivalent:

() (P2(0)), (Q2(0)) € ¢,
(i) (P*(2)), (Q2(z)) € £ forall 7 € C.

If the conditions are satisfied, the moment problem is indeterminate and the two series indicated
in (ii) converge uniformly on compact subsets of C. Furthermore, (1/by,) € £* and

P(z) < Cexp(K|z]*), (37)
where
o 1/2 1 o0
C=(2}ﬁ@+gﬂm>, K=EZM&wﬁ”H&mW%. (38)
n=0 n=0

In particular the moment problem has order p < «, and if the order is «, then the type T < K.

Proof. Condition (ii) is clearly stronger than condition (i).
Assume next that (i) holds, and in particular the indeterminate case occurs because £¢ C A
Following ideas of Simon [24], we can write (3) as

<Amﬂ@ BHﬂn>
Cht1(@) Duyi1(z)

- —Pi(0)04(0)  Q7(0) Au(2) B2
_[1+Z( _Pnz(o) Pn(O)Qn(O)>]<Cn(Z) Dn(z)>' (39)



C. Berg, R. Szwarc / Advances in Mathematics 250 (2014) 105-143

and evaluating the operator norm of the matrices gives

n—1

An(Z) Bn(Z) P )

” (cn(z) D, (z)) ” s g[l +12l(PE0) + 07 (0)]
n—1

— n—1
<[]0 +1=1PZO] ][ +1z108O)]-
k=0 k=0

In particular we have

V1A (z)|2+|cn(z>|2} . =
1+ |z| PZ(0) + 12103 (0)].
VIBu ()2 + D, (2)2 ,E) ,(H

=0
By Proposition 4.6 we obtain

V1A @+ [Ca(2)?
VIBu(2) 2 + Dy (2) 2

} <exp(e 'K (@)]z]),

where

o0

K@) =Y (PO +[0e©)]™).

k=0
We also have [1, p. 14]

Pu(z) = = Pp(0) By (2) + Qn(0) Dy (2),

so by the Cauchy—Schwarz inequality

1P, < (P20) + 020))(|Ba @) * + | D) ).
Combined with (41) we get

1P, < (P20) + Q2(0))" exp(2K () 2]°),

which shows that ZZO:O | Py (2) |2 converges uniformly on compact subsets of C.

Similarly we have

0n(2) = =P, (0)A,(2) + 0,(0)Cp (2),

leading to the estimate

104@)] < (P2O) + 02(0)* exp(2K (@)2]%),
and the assertion (Q% (z)) € £%. By (44) and (41) we also get

oo

P2y =Y P’ < Y (P20 + Q20)(|Ba | + | Du@)[)

n=0 n=0

< (Z(Pnz(O) + Qz(O))) exp(2e ' K (@)z]%),

n=0

showing (37), from which we clearly get that p = pp < o, and if p =@, then Tt =7p < K.

119

(40)

(41)

(42)

(43)

(44)

(45)

(40)
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From the well-known formula

Pa1 (@) 0n(D) = Py Q-1 () = 3— @7)
cf. [1, p. 9], we get

bnz_l <P @ + [P@ + | Qi1 @ + | 0w (48)
hence

b;: <P @ + [ Pa @[ 4] 0um1 @ + |00

which shows that (1/b,) € £¥. O

We next give an almost converse theorem to Theorem 4.7, under the Berezanskii assumptions.
It is a slight sharpening of Theorem 1.4 because we have replaced (8) by (29).

Theorem 4.8. Assume that the coefficients of (2) satisfy

i 1+ |an|
bbby —
and that either (27) or (28) holds. Assume in addition that P satisfies

P(z) < Cexp(K|z|*)

for some o such that 0 < « < 1 and suitable constants C, K > 0.
Then

1/ba, P1(0), Q2(0) = O(n~ '), (49)
so in particular (1/by), (Pnz(O)), (Q% (0)) € 4 ¢ for any & > .

Proof. Using that b,_; < b, for n > ny, we get b := min{b;} > 0. For n > n we find
1 1

< 2 2
bi"_ b2n|b2(n ny) S Aby < Acy, (50)
where we have used (5), (13) and
2
A <b0"'bn11> '
b
Next, (16) leads to
0 . o 2
Z( > AZCZ n — /Pz(re )dtgACzexp[ZKr“].
n=ni bn—l
0
Therefore, forany n > ny,r >0
L < (AC) " exp[Kr®/n]. (51)

bn—l
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1/a

Forr=n we obtain

P O(nfl/"‘), n— 00.

Now in view of (32) we get (49). O

Definition 4.9. For a sequence (z,,) of complex numbers for which |z,| — oo, we introduce the
exponent of convergence

E(Zn)zinf<a>0‘z ! <oo},

nn* |zn|®

where n* € N is such that |z,,| > 0 for n > n*.
The counting function of (z,,) is defined as

n(ry=#{n|lz.l <r}.
The following result is well known, cf. [9,18].

Lemma 4.10.

1
E(zp) =limsup ogn(r).
r—00 1 gr

Theorem 4.11. Assume that the coefficients of (2) satisfy

i Ltlanl _
=1V bnbn—l ’
and that either (27) or (28) holds.
Then the order p of the moment problem is given by p = & (by,).

Proof. We first show that £(b,) < pp. This is clear if pp = 1 because by assumption & (b,) < 1.
If pp < 1 then P satisfies

Mp(r) <gs CXP("“)

forany o > pp. By (49) we then have Y 1/b%™* < oo for a > pp and & > 0, hence E(b,) < pp.
By (30) we get forr,, = P,

00 1/2
1
P(z) <c<2b _1> (jzl), (52)

n=0

and the infinite product I7(z) is an entire function of order equal to £(b,) by Borel’s Theorem,
cf. [18], hence pp < E(by). O

Example 4.12. For « > 1 let b, = (n + 1)*, a, = 0, n > 0. The three term recurrence relation
(2) with these coefficients determine the orthonormal polynomials of a symmetric indeterminate
moment problem satisfying (26) and (28). By Theorem 4.11 the order of the moment problem
is 1/c.

Similarly, b, = (n 4+ 1)log*(n + 2),a, = 0 lead for @ > 1 to a symmetric indeterminate
moment problem of order 1 and type 0.
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Theorem 4.7 and Theorem 4.8 can be generalized in order to capture much slower types of
growth of the moment problem, as well as growth faster than any order. This is done in the
following section.

5. Order functions

Definition 5.1. By an order function’ we understand a continuous, positive and increasing func-
tion « : (rp, 00) — R with lim,_, o, & (r) = 00 and such that the function » /a(r) is also increasing
with lim, oo 7/ (rr) = 00. Here 0 < rp < o0.

If « is an order function , then so is r/«/(r).
Definition 5.2. For an order function « as above, the function
By =—— 0 -
r)= , <r<r
a(r=") 0

will be called the dual function. Since lim,_. 8(r) = 0, we define 8(0) = 0. Note that 8 as well
as r/B(r) are increasing.

Observe that the dual function satisfies

B(Kr) < KB(r), K>1,0<Kr<ry', (53)
B(r1 +r2) < B(2max(ri, r2)) < 28(max(ri, r2)) <2B(r1) +2B(r2), (54)

for 2max(ry, rp) < 1/rg.

Example 5.3. Order functions.

1. The function a(r) = r® with 0 < a < 1 satisfies the assumptions of an order function with
ro=0,and B(r) = a(r).

2. The function «(r) = log® r with @ > 0 satisfies the assumptions of an order function with
ro = exp(«) and

1

(—logr)®’

3. The function «(r) = log® logr with o > 0 is an order function with ro > e being the unique
solution to (logr)loglogr = «.

4. If « is an order function, the so are ca(r) and a(cr) for ¢ > 0.

5. If @1 and &y are order functions, then also o1 (a2 (7)) is an order function for r sufficiently
large.

6. The function a(r) = (log” r) logﬁ logr is an order function for any «, 8 > 0, because

ro r1/(@+p) a+p logr B
a(r) [ (a+pB)logrl/@+h) loglogr

shows that r/a(r) is increasing for r > ry := exp(max(e, o« + )).

B(r) =

3 There is no direct relation between this concept and Valiron’s concept of a proximate order studied in [18].
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Definition 5.4. Let o be an order function. A continuous unbounded function f : C — C is said
to have order bounded by «(r) if

Mf(r) <us eKa(r)logr _ rKa(r)’

for some constant K.

For f as above to have order bounded by a(r) = log® r for some « > 0, is the same as to have
finite logarithmic order in the sense of Section 2.

Given an order function « : (rg, 00) — R and its dual B, we are in the following going to
consider expressions B(u,), where {u,} is a sequence of non-negative numbers tending to zero.
This means that 8(u,) is only defined for n sufficiently large, so assertions like

o0
> Bluy) <oo,  Blup)=0(1/n)
n
make sense. The first assertion means that

D Blun) < o0

n=N

for one N (and then for all N) so large that 8(u;) is defined forn > N.
We begin by proving two lemmas.

Lemma 5.5. Let a : (rg, 00) — (0, 00) be an order function with dual function B and let {u,};2 |
be a sequence of positive numbers such that u, — 0 and u, < 1/rq for all n > ny.
For any numberr >0 let A, ={n|u, > r_l} and N, =#A,.

(a) Assume Zso Bu,) <oo. Then N, = O (x(r)).
(b) Assume N, = O(a(r)). Then for any ¢ > 0

ZIB]Jrg(”n) < 00.

Proof. Let v, be the decreasing rearrangement of the sequence u,,. Then
N, =#{n | Up 21"1},

and since B(r) is increasing, we find for r > rg

Ny <no—1+#{n=no | B = (")}
(a) We have Zn B(v,) < 00, hence nB(v,) — 0 and thus nf(v,) < K for n > ng and a suitable
constant K. Furthermore,
K
Nr<n0—1+#{n>n ‘ —
n

>
—no—1+#{ n0|n Ka(r)},

showing that N, = O («(r)).
(b) Assume N, = O(a(r)). Observing that N 1 >nwegetn < Ka(v_l) for n sufficiently
large and suitable K, i.e., 8(v,) = O(1/n), Wthh implies the conclusion. O
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Lemma 5.6. Assume the conditions of Lemma 5.5(a). For r > ry we then have
o
log [ J(1+run) < Nyllogr + Cl+a(r) Y Bluy),
n=1 n(;éA,O

where C = max{logQuy,)}.

Proof. Forn € A, we have ru,, > 1, hence
log(1 + ru,) <log2ru, =logr +log(2u,) <logr 4 C.
Furthermore, for r > ro, n ¢ A, we have u, < r~! and using that s/B(s) is increasing leads to

Un < Bun) _
B IGa

rup, =

a(r)pun).

7

Thus, for r > rg

log [ (1 +run) =Y log(1 +ruy) + Y log(l + ru,)

n=1 neA, n¢A,

< Nellogr +Cl+ ) a(r)Bun)
n¢A,
< Nellogr +Cl+a(r) Y By). O
n¢Ar,

Combining Lemma 5.5(a) and Lemma 5.6 gives immediately the following.

Proposition 5.7. Let « : (rg, 00) — (0, 00) be an order function with dual function §, and let
{u,}02, be a sequence of positive numbers such that u, — 0 and u, < 1/rq for all n = ny.
Under the assumption Y " B(u,) < 00,

log 1_[(1 + ru,) = O(oz(r) logr),

n=1

and in particular the entire function

f@=]T0+zu)

n=1

has order bounded by «.

Theorem 4.7 and 4.8 can be considered as results about the order function «(r) =r%, 0 <
o <1.

Theorem 5.8 and 5.9 below are similar results for arbitrary order functions. The price for the
generality is an extra log-factor, so the generalization is mainly of interest for orders of slower
growth than «(r) = r*. For the order a(r) = r? it is better to refer directly to the results of
Section 4.
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Theorem 5.8. For an order function o with dual function B the following conditions are equiva-
lent for a given indeterminate moment problem:

(i) B(P2(0)), B(Q2(0)) € ¢!,
(i) B(P.(2)1?), BU0n(2)|?) €€ forall z € C.

If the conditions are satisfied, then the two series indicated in (ii) converge uniformly on compact
subsets of C.
Furthermore, B(1/by,) € £' and P has order bounded by «.

Proof. Condition (ii) is clearly stronger than condition (i).
Assume next that (i) holds. By (45) for o =1,

[P @] < (PIO) + 03 (0) exp2K (D)2, (55)
so by (53) and (54) we get for n sufficiently large
,3(|Pn(Z)\2) <2exp(2K (1)1z]) (B(P7 () + (02 (1)) (56)

This shows that Y B(| Py, @ converges uniformly on compact subsets of C.
The assertion B(|Q,(z)|?) € £! is proved similarly.
By (40) and Proposition 5.7 we obtain

VB @ + | Da(2) > < exp(La(l2) Tog l2]). (57)

for some constant L and |z| sufficiently large. Using (44) and (42) (with « = 1) we then get for
large |z]

P2 =Y "|P.@|" < K(1)exp(2La(Jz]) log |2,

n=0
which shows that P has order bounded by «.
From the inequality (48) we immediately get that 8(1/b,) € ¢!. O

Theorem 5.9. Assume that the coefficients of (2) satisfy

i 1+ |ay|

Dby —

and that either (27) or (28) holds. Assume in addition that the function P(z) has order bounded
by some given order function «.

(1) Ifthereis 0 <a < 1 so that r* <u5 o (r), then

1
B(1/by), B(P2(0)), B(Q2(0)) = 0( °f”>
(i) Ifa(r?) = O(a(r)), then
B(1/by), B(P2(0)), B(Q2(0)) = O(1/n).
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In both cases
B(1/bu), B(PF(0)). B(Q;(0)) € €'
forany e > 0.
Proof. Inserting the estimate
Mp(r) <as exp(Koz(r) log r)
in (16), we get

o
Z rzkc,% Las exp(ZKa(r) log r),
k=0

hence by (50)

o0 r 2n
) ( ) < Aexp(2Ka(r) logr). (58)
n=n bn—l

Choose r; > max(1, rg) so large that the inequality in (58) holds for » > r;. In particular we have

bL <AV exp((K/n)a(r)logr), n>=ny, r>=ri. (59)
n—1

Consider (i). For any n > K« (r1) logry it is possible by continuity of « to choose r =r, > r|
such that

Ko(rp)logr, =n. (60)
For sufficiently large n we then have

1 ACOP I
<

by—1 = T'n T'n
Since B is increasing, we get for sufficiently large n by (53) and (60)
3 3Klogr,

alr) — n

B(/by—1) < BB/rn) <3 /ra) =

(61)

But (60) and the assumption r* <,s a(r) imply that Kry logry < n, for large n. Thus logr, =
O (logn), and by (61) we get

1
B(1/bu-1) = 0(%)

In view of (32) we get that B(P>(0)), B(Q2(0)) = O(logn/n).
We turn now to the case (ii), where «(r2) = O(a(r)). For any n > 2Ka(r1) we now choose
r, such that
K n
a(ry) = 5
Then (59) yields

1 A1/2n 2
<

(62)

/
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for n sufficiently large. Thus

2
B(1/bp—1) < BQ2/ra) <2B(1//rn) = )

By assumption there exists d > 0 such that a(,/r;) = da(r,) for n large enough. Thus in view
of (62) we find

4K

B(1/bn—1) < dat) " dn

As above, the conclusion follows from (32). O
Remark 5.10. The following order functions satisfy the assumption (i) of Theorem 5.9:

a>0.

a(r)=r% O<a<l, a(r) = —p—,
log*r

On the other hand the functions

a(r) =log*r, a(r) =log* logr, a(r) = (log”r) logflogr, a,p>0

satisfy (ii).
Although «(r) = r/log® r is an order function for any « > 0, then an entire function f of
order bounded by «/(r) is only of minimal exponential type under the assumption o > 1.

Example 5.11. Consider a moment problem of logarithmic order p[!! satisfying 0 < p!!l < 0o
and of finite logarithmic type t!!1. Assume that a,, b, satisfy the conditions of Theorem 5.9.

Then P has order bounded by the order o (r) = (log r)pm. Since the case (ii) occurs, and since
B(r) = log_p[l](l/r), we have
log ™" (b,), log ™" (P,2(0), log =" (0,2(0) =0/n).

Therefore

l/bn, PHZ(O), Qﬁ(o) — O(efc‘nl/p[l])

for a suitable constant C > 0. From (55) we also get

i
|P,12(z)| = O(e_Cnl//’ )

uniformly on compact subsets of C. These results can be applied to discrete g-Hermite II poly-
nomials, where a, =0, b,, = q_"_l/z(l — q"+1)1/2, cf. [17], and to q_l—Hermite polynomials,
where a, =0, b, = (1/2)g~"*+D/2(1 — g"*+1)1/2 cf. [16]. In both cases 0 < ¢ < 1 and (b,,) is
log-concave, p“] =1.

In analogy with Theorem 4.11 the logarithmic order of an indeterminate moment problem
of order zero can be determined by the growth of (b;), provided the Berezanskii conditions
hold.
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Theorem 5.12. Assume that the coefficients of (2) satisfy
i I +lanl
A bnby,—
and that either (27) or (28) holds. Assume further that the moment problem has order 0.
Then the logarithmic order p'") of the moment problem is given as p''' = £(log by,).

Proof. We first establish that pl!l > £(logh,), which is clear if pl!! = co. If pl!! < 0o we know
that for every ¢ > 0

/7+£

Mp(r) <as r¢")
In other words P has order bounded by «(r) = (log r)pm"’s, so by Theorem 5.9(ii) we know that
1 14¢
B /by) = m eL ™,

hence £(logb,) < (p!! + 8)(1 —|— ¢) for any & > 0, thus £(logb,) < p!!.
From (52) we get ,01D < Pn . However, ,0,-,] = E(logb,) by Proposition 5.4 in [6]. O

Example 5.13. Fora > 1,«a > 0 let b, = a”l/a, and let |a,| < ac"l/a for some 0 < ¢ < 1. The
three term recurrence relation (2) with these coefficients determine orthogonal polynomials of an
indeterminate moment problem satisfying (26) and (27) or (28) according to

= a=1
b2y < thuibys1 & Ja<l,
> o> 1.

We find £(b,;) =0 and £(logb,) = «, so by Theorem 4.11 and Theorem 5.12 the moment prob-
lem has order 0 and logarithmic order p!!l = a.

Example 5.14. For a > 1 and « > 0 consider the product

)= ]‘[(1 + L/)
n=1 a

_nl/oz

appearing in Lemma 5.6 with u, =a . Let

a(r) = (logo‘ r) (loglogr)?

be an order function of the type considered in Example 5.3 (6). We can use rg =
exp(max(e,2 + «)) and u;, < 1/rg for n > ng with

max(e, 2 + o) \“
np=————=) .
0 loga

For N, =#{n | an'’ < r} we have

logr\“ logr\“
—1<N, < . (63)
loga loga
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Moreover,

Bun) 1 1 1

u = =
Y a T (oga)® n[(1/a)logn +loglogal?
satisfies
o0
C .= Z B(u,) < oo.
n>(1/loga)*

The proof of Lemma 5.6 gives

log f(r) < Zlog( >+Ca(r) Zlog( >+N10g2+Ca(r).

On the other hand
log f(r) > Zlog( ) Zlog( )
n=1
We have
Ny
Zlog( ) Nylogr —loga Zn]/"‘
n=1
and

N,
Lyt oS re e 1 (N, + DiFl/e,
1+1/a " = S+ 1/a "

Therefore, in view of (63) we get
log f(r) = m(logrﬂ‘“"[l +o(D],
showing that the logarithmic order is « (as we already know from Example 5.13), and the loga-
rithmic type is
1
(@ + D(loga)*”

Example 5.15. For a,b > 1 let b, = a’" and la,| < a”" with be < 1. In this case (by) is loga-
rithmic convex, and the coefficients lead to an indeterminate moment problem with order as well
as logarithmic order equal to 0.

This motivates a study of functions bounded by the order function «(r) = (loglogr)%, con-

sidered in the next section.
6. Double logarithmic order

For an unbounded continuous function f we define the double logarithmic order ,0;2] as

p.[fZ] =inf{a > 0| My (r) <u r(loglogr)a},
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where ,053] = 00, if there are no o > 0 satisfying the asymptotic inequality. Of course p?] < 00
is only possible if oy [ — 0

In case 0 < pl? = ,0 f J < 50 we define the double logarithmic type as
. 21
‘E;J =inf{c > 0| My(r) <as pelloglogr)? }.

Theorem 6.1. For an indeterminate moment problem of logarithmic order zero the functions
A,B,C,D, P, Q have the same double logarithmic order p'?! and type ') called the double
logarithmic order and type of the moment problem.

The proof of this result can be done exactly in the same way as the corresponding proof for
logarithmic order and type in [6], so we leave the details to the reader.

For an entire transcendental function f(z) = Y oo ja,z" of logarithmic order O the double
logarithmic order and type can be expressed in terms of the coefficients @, by the following
formulas.

Theorem 6.2.

1
pf ' —lims pL (64)
n—00 logloglog(r)

and if 0 < pl2 _,053]<oo
r}z = lim sup ﬁ (65)
n—oc (loglog 7r—

The proof is given in Appendix A.
The results of Section 3 about @ can also be generalized:

Theorem 6.3. Suppose the logarithmic order of the moment problem is zero. Then @ has the
same double logarithmic order p'?' and type t'?! as the moment problem.

[2]

Proof. From the inequality Mp(r) < corMo (r), cf. (20), we get pl?! = pp' < pm For any

e > 0 we have

P(reig)  (loglog ryple

2]

for r sufficiently large, which by (16) leads to py, [2 < p?, where ¥ is given by (21). From

Theorem 6.2 we see that pfpz 1= ,o‘[p and hence pl?! = pg ! The proof concerning type follows

using similar ideas. O

Theorem 6.4. Assume that the coefficients of (2) satisfy

i I+lanl _
N
and that either (27) or (28) holds.
Then the double logarithmic order p'?! of the moment problem is given as p!?! = £(loglogb,,).
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Proof. We first establish that p!?! > £(loglogb,), which is clear if pI?! = co. If p?l < co we
know that for every ¢ > 0
log log r)?' 2+
Mp(r) gasr(og ogr) .
In other words P has order bounded by «(r) = (loglog r)pm +¢, 50 by Theorem 5.9(ii) we know
that

1
B /by) = —————— e,
" (loglog by )P +e
hence £(loglogb,) < (o' + &)(1 + ¢) for any & > 0, thus £ (loglogb,) < p!?.

From (52) we get pE)z] < pl[-?], hence pm = p%] = E(loglogh,), if we prove that PE] <
E(loglogby,). This is a consequence of Theorem A.3, but follows directly in the following way:
It is clear if £(loglogb,) = co. If p = E(loglogb,) < oo we use Proposition 5.7 for the order
function a(r) = (loglogr)?™¢ and u, = 1/b,, and since

1
2B =D Gostogbyree <

n

we conclude that log M7 (r) = O(x(r)logr), hence p}%] < p, because ¢ > 0 can be chosen

arbitrarily small. O

Example 6.5. Consider
= z
z) = 1+ 7)
a 1j[1< exp(e’)

where 0 < o < 0o. We prove that ,0502] =, r}zl = 1. Note that b, = exp(e"l/u) is eventually

log-convex because exp(x‘/ %) is convex for x > (o« — 1)* when o > 1 and convex for x > 0
when 0 < o < 1. This means that the indeterminate moment problem with recurrence coefficients
an, =0 and b, as above has double logarithmic order equal to £(loglogb,) = «.
Define
a(r) = (loglog >,
which is an order function with rop = exp(max(e, 2)).
For N, =#{n | exp(e”l/a) < r} we have
(loglogr)* — 1 < N, < (loglogr)“. (66)
Moreover, for u, = 1/b, we have B(u,) = 1/a(b,) = 1/n>. Observe that max{log(2u,)} < 0.
Hence Lemma 5.6 gives
log f(r) < N, logr + Ca(r),

where

o0

C=Y pun<)

n¢Ar0 n=1



132 C. Berg, R. Szwarc / Advances in Mathematics 250 (2014) 105-143

Thus
log f(r) < (loglogr)®logr + C(loglog r)2°‘. (67)

To minorize log f (r) we need

1/
eN

N
N
Ze"l/a geNW +/ex]/a dx =eN'" +a / (logt)*'dt
e

n=1

<{ l/‘"(1+ ) for0<a <1,
A+ aN'=1) forl <a.
This gives
N,
log f(r) > Zlog(l exp(en”")> N, logr — Ze
< {logr((loglogr)“— — o) forO<a <1,
logr((loglogr)® —2 — oa(loglogr)"‘_l) forl < a.

These inequalities together with (67) leads to
log f(r)
r—oo (loglogr)®logr

showing the assertion about double logarithmic order and type of f.
7. LivSic’s function

For an indeterminate moment sequence (s,) LivSic [19] considered the function

F(z) = Z — (68)

52n

It is entire of minimal exponential type because limn/ %/s», = 0, which holds by Carleman’s
criterion giving that

oo

Z 1/ %/s2, < 00.

n=0
Moreover, Z/s», is increasing for n > 1.

LivSic proved that pr < p, where p is the order of the moment problem. It is interesting to

know whether the equality sign holds. In fact, we do not know any example with pr < p. We
will rather consider a modification of Livsic’s function given by

L(z) = Z G (69)

It is easy to see that p;, = pr and that T = 277, by the formulas (22) and (23).
We shall give a new proof of the inequality pr < p using the function @ from Section 2. We
shall also consider the entire function
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H() =Y buat", (70)

n=0
where b, , is the leading coefficient of P,, cf. (4).

Proposition 7.1. For an indeterminate moment problem of order p we have

(i) 1< s20b2, < chson.
(i) Mp(r) <Mpu@r) < Mgp(r), r 20

(ii) pr < PH[ ]< Po

@iv) ,o[L1 < pH < p[l] —,o[1 provided p = 0.
W ) < ol < BV = p1, provided p" = 0.

Proof. By orthogonality we have

1= / P2(x)du(x) = by / X" Py (x) dp(x),

so by the Cauchy—Schwarz inequality

1 1/2 1/2
- <(f xz"du(x)> (f P,,Z(X)du(x)) = V52,

which gives the first inequality of (i). The second follows from (13).

The maximum modulus M for an entire function f(z) = > a,z" with a, > 0 is given
by My(r) = f(r), r > 0, and therefore (ii) follows from (i). Finally (iii), (iv) and (v) follow
from (ii). O

The following result gives a sufficient condition for equality in Proposition 7.1.
Proposition 7.2. If

log 3} c2son = o(logn)
and in particular if
ciszn = O(K”)
for some K > 1, then p = pr.
If p =0 then p!M = i) and if pM =0 then p! = pi?.

Proof. Given ¢ > 0 we have for n sufficiently large

1
log % <el log —. 71
og %/s2, < elogn +log e (71)
Dividing by logn leads to
1 2n 10g W
liminf —5 V321 Vsz” inf — V"
n—00 log n—oo logn

so by (22)
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1 1
—<e+—,
PL o
but this gives p < pr.
From (71) we get

elogn
+ 10g<1 + gl )

IOg \’/'/_C—n
If p = 0 the last term tends to 0, and dividing by logn we get as above p!!l < ,o[Ll]. Similarly, if
o= 0 we find pl?! < p[L2]. 0

1
loglog %/s2, < loglog e

ncn

In the next results we shall use the function

C@=) (72)
n=0 "

which is entire if b, — 00.
Lemma 7.3. Suppose that the recurrence coefficients of (2) satisfy

1) a, = O(by),
(ii) (by) is eventually increasing,
(iii) b, — oo.

Then there exist constants A, C > 1 such that
Vs SABC)'boby by, n=0. (73)
Proof. Because of the assumption (i) there exists a constant C > 1 such that |a,| < Cb, for all

n > 0. By (ii) there exists ng > 1 such that b,_; < b, for n > ng and by (iii) there exists n1 > ng
such that b,, > max(1, b, ..., b,,—1), hence

B :=max(1, by, ..., by, —1) < by,. (74)
The three term recurrence relation (2) for P, applied successively leads to

x =agPy+ by Py,

x* = x(aoPo + bo P1) = ao(ao P + boP1) + bo(bo Py + a1 Pi + b1 Py),

and in general there exist an index set I,, with |[,,| < 3", a mapping J,, from I, to {0, 1, ..., n}
and real coefficients d, i, k € I,, such that
X =" du i Pr)- (75)
kel,

In the next step we get
XM=y k(b -1 Pryo—1 + @i, Pryoy + by o Pryo1)s
kel,

which shows how each element k € I, gives rise to two or three elements in 7,41 depending on
Ju(k) =0 or J, (k) > 0.
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Each d,,  is a product of n terms from {ay, ..., a,—1, bo, ..., b,—1}, hence

|dy k] < C" (max(by, ..., ba-1))".

For n < n; we have in particular |dy, x| < (BC)" < B"1C".
We claim that in general

|dn,k| < Bnlcnbnl by, kel n>1, (76)

which is already established for n < n1, where the empty product by, - - - b,_1 is to be understood
as 1. Assume now that (76) holds for some n > n. If J,(k) > n; we have

|dn k|an(k) 1 X |dn k|bJ,,(k) X |dn k|bn B Bnlcnbnl t 'bnflbn,
\dnkllas, o) < Clduklb,@) < B"C" by, - by_1by,

while if J, (k) <n; —1,
|dn k1D, 001, 1dn k|0 g, k) < |dn k| B < B"'C"by, ---by_1by,
\dy i |lag, @ < Cldn kb, @) < B"C" by, - -by_1by,

where we have used that B < b;,; < b,,. This finishes the induction proof of (76), which may be
written

ldn k| < AC"boby -+ by—1, kel,, n>1,

where A = B" /(bob1 - - - by, —1).
Now (73) follows because

s = [ i) = 30 3 ks [ P Pry duce)

kel, lel,

Zankndm—(Zwm) (3"AC"boby ---bym)’. O

kel lel, kel,

Proposition 7.4. Let (s;) denote an indeterminate moment sequence for which the recurrence
coefficients (2) satisfy the conditions of Lemma 7.3. Then

() pg < pp pH provided pg = 0.
(iii) pg] < ,0[2] provzded pl_}] =0.

Proof. From (73), (5) and b,,_; < b, for n > ny, it follows for such n that

S < AQBO)"

where B is given by (74), hence

n
VS82n X < 3C)
bn n

for suitable constants «, y > 0. Introducing

< B"3EO)'b, T,

n,n

<y@BO'HTM, nz=0,
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oo
G*(Z) _ ;Zl‘l
- 2 :bnfnl ’
n=0 """

this gives
Mp(r) =z (1/a)Mu(r/3C) = (1/y)Mg=(r/3C), r=>0,

showing that p; > py > p¢; and similar inequalities for the logarithmic and double logarithmic
orders. If this is combined with Proposition 7.1, we get the equality sign between the orders of L
and H. Furthermore, by (22)

logn logn

oG imsup —n1/mlogh, imsup .

and similarly ,o[Gl] = plGll and p[Gz] = ,0[62,1 O

Theorem 7.5. Given an (indeterminate) moment problem where

i 4 lanl
bnby,_

and where either (27) or (28) holds.
The following holds

() p=pr=pc=pu=pL=_EDn).

If p =0 then

Gi) p! = ph! = p5! = ply) = o)1 = Elog by).
If p'11 =0 then

(i) p1?' = pi! = p5! = plf) = o) = Eloglogby).

Proof. By Lemma 4.1 we know that b,,_1 < b, for n > n1, so the conditions of Proposition 7.4
are fulfilled. By (50) we have

i< ! < Ab;

n>=ny

for a certain constant A, and by replacing A by a larger constant if necessary, we see that there ex-
ists a constant a such that 1/b)} < ab, , for all n. This gives Mg (r) <aMpy(r), hence pg < pH.
By (22) we have

1
pc = limsup ogn
n—o0 10 bn

so for any & > 0 we get n < b2°™ for n sufficiently large. This gives

o0

1
Z PG roI+e) < 0,
n=0“n



C. Berg, R. Szwarc / Advances in Mathematics 250 (2014) 105-143 137

hence £(b,) < pg. Finally, by Theorem 4.11, Proposition 7.1 and Proposition 7.4 we get p =
E(by) < p6 < pu = pL < p. 1 1
If the common order p = 0, we get as above p[G] < ,oE_I], and by (24) we know that

1 . logn
pg = limsup

n—oo loglogh,
For given € > 0 we get for n sufficiently large that
0]
n < (loghy)?6 ¢,
showing that £(logb,) < ,o[G1 I We finally use Theorem 5.12 combined with Proposition 7.1 and

Proposition 7.4 to get (ii), and proceed similarly concerning the double logarithmic order. O

Example 7.6. In [10] symmetric polynomials with the recurrence coefficients b,_; =
2nv/4n? — 1, n > 1, are considered. The sequence is log-concave and the order of the moment
problem is 1/2 by Theorem 4.11.

The case of b, =¢~" for 0 < g < 1 is also considered, and Chen and Ismail find explicit
representations of P, and the entire functions A, B, C, D. Clearly b% = b,_1b,+1 and we find
that the order is O and the logarithmic order is 1 in accordance with the estimates of the paper.
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Appendix A

Proof of Theorem 6.2. To establish (64), we first show that if
Mg(r) < ploglogn® = o S 0. r > 1o,

then
. logn
lim sup ——— <«
n—oo loglog log(m)
This will yield > in (64).
By the Cauchy estimates

(77)

Mf (r) < r(log logr)"‘—n’
i

lay| < r>=ro.

In this inequality we will choose an r approximately minimizing

¢(r) = ((loglogr)* — n)logr.
Note that ¢’(r) = 0 if x = loglog r satisfies

1

x4 ax* —n=0. (78)

Motivated by Lemma A.1 below we choose r such that loglogr = n'/*

larger than ry if n is large enough. Inserting this value for r, we get

log |a,| < ((nl/"‘ — 1)a —n) exp(nl/"‘ —1)=-n(1-(1 —n_l/"‘)a)exp(nl/"‘ -1),

— 1. This is certainly
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hence

loglog —— >n'/* — 1 +1log(1 — (1 —n"*)*) =n'*(1+0(1)),

1
lan|
showing (77).

We next show that the double logarithmic order of f satisfies

logn

oy 21 < limsup (79)

n—00 log log IOg( W)
This is clear if the right-hand side is infinity. Let ©« be an arbitrary number larger than the
right-hand side, now assumed finite. Then there exists ng such that

logn < pwlogloglog n 2= ng,

1
N |an|’

or
lan| < exp(—nexp(n'/*)), n>no.

/Iy _ 1. We next determine n; > ng so that

Fix r > e so large that logr > exp(n,,
exp((n) — 1)1/“) —1<logr <exp(n /“) 1.

For this r we find with C| = ZZ():_() |an|

no—1

My (r) < Z|an|r +Z Jan "

n=ng

<Cir" + Z exp(—n exp(nl/“) +nlogr)
n=nq
ni—1

< Cir"+ Z exp(—n exp(nl/") + (log(l + logr))“ logr)

n=ng
o0

+ Z exp(—nexp(n'/*) +nexp(n'/*) —n),
n=nj

where we have used in the second sum that for ng < n < ny: exp(nl/“) — 1 < logr, hence
n < (log(1 +logr))*, and in the last sum that for n > n

logr < exp(n /“) -1 gexp(nl/“) -1

We then get
l’l]—l
Mg(r)<Cir'" + (log(1+logr))* Z exp(—nexp(n 1/“ Z exp(—n)
n=ng n=nj

< Clrno + r(log(l+1og r)H +1,

where we have majorized the two sums by Y °exp(—n) = 1/(e — 1) < 1. For any given & > 0
we have
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(log(1 +logr))" <a (loglogr)*e,
hence

nte n42e
Mf (r) < 2r(log logr) gas r(log logr) )

This establishes ,o f < o+ 2¢, which shows < in (64).

We next prove (65). For simplicity of notation we put o = p?l and assume that 0 < o < 00.
We show first that if

Mf(r)ng(IOgIOgr)a, K>0,r>r,

then

lim sup ; <K, (80)

n—oo (loglog «77)0( h
which establishes > in (65).
By the Cauchy estimates

< an(r)

lan| <

K(logl “—
< pRlogloen™=n > g,

hence
log |a,| < (K(loglogr)”‘ - n) logr, r>ry.

In this inequality we will choose loglogr = (n/K)!/% — 1 by inspiration from the proof in
the first part. This gives

log lan| < —n(1 = [1 = (n/K)~"*]") exp((n/K)"/* — 1),

hence
1 - o 1
loglog > (/K" —1+1og(1 =1 = m/K)"Y*]™) = (n/K)'/* (1 + 0(1)),
= (-1 ) (1-+0(1)
showing (80).
We next show that the double logarithmic type of f satisfies
[2] n
LTS Llimsuyp — 81)

n—oo (loglog W)"‘

This is clear if the right-hand side is infinity. Let i be an arbitrary number larger than the
right-hand side, now assumed finite. Then there exists ng such that

] o
,u(loglog e |> , n=ng,
vV n

or

lan| < exp(—n exp((n/u)l/“)), n = no.

Fix r > e so large that logr > exp((no/,u)l/"‘) — 1. We next determine n > ng so that

_ 1/
exp((m'u 1) )— 1 <logr <exp((ni/w)"*) —
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. . nop—1
For this r we find with Cy =}, ” )" |a,],

o0
Mp(r) <Crr'" + Z exp(—n exp((n/u)l/o‘) +n10gr)
n=nq
np—1

<Cir'" 4 Z exp(—n exp((n///,)l/“) + 11 (log(1 +logr))* logr)

n=nq
o0
+ Y exp(—n),
n=ni

where we have used that n < p(log(l + logr))* when ng < n < n; — 1, and that logr <
exp((n/u)/*) — 1 whenn >nj.

We then get
n1—1 o0
M,«(r) < Cli"no +r#(log(l+logr))" Z CXp(—I’l exp((n/,u)l/a)) + Z CXp(—l’l)
n=ng n=ny

< Clrno + ru(log(l+logr))"‘ +1.
For any given ¢ > 0 we have

1 (log(1 4+ logr))” <as (u + &) (loglogr)®,
hence

M £(r)) <as 9y (nte)(loglogr)® <as (ut2e)(loglog r)®
This establishes rj[‘-z] < u + 2¢, which shows < in (65). O

Lemma A.1. Let n € N, n > 4 and o > 0. Then the function in (78)

h(x)=x*+ax® 1 —n

has a zero in
[nl/“—l,nl/“] ifa>1,
n—1 ifa=1,
[nl/“—2,n1/°‘—l] f0<a<l.

Proof. We find h(n!/%) = an'~1/% > 0 for all « > 0. Putting y =n'/* — 1 we find for some
£€(0, 1)
a—1

N — o — a—1]>ay ifoa>1,
o+D Y “(y+§) {<oty"‘1 if0<a<1.

This shows that h(n!/¢ —1) <0 (resp. > 0) fora > 1 (resp. 0 < < 1).
Finally, for 0 < < 1 we put y =n'/¢ — 2 and get for some 0 < 1 < 2,

O +2)% —y* =2a(y + 1) > ay*!

if y > 2. This shows that 2(n'/* —2) < 0. Note that y =n!/¢ —2>2forn >4. O
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Propositions 5.3 and 5.4 from [6] can be extended to double logarithmic order.

These results deal with transcendental entire functions f of ordinary order strictly less than 1.
They have infinitely many zeros, which we label {z,} and number according to increasing order
of magnitude. We repeat each zero according to its multiplicity. Supposing f(0) = 1 we get from
Hadamard’s factorization theorem

f@) = l_[(l - f) (82)

n=1 n

The growth of f is thus determined by the distribution of the zeros. We shall use the following
quantities to describe this distribution.
The usual zero counting function n(r) is

n(r) =#n|lz.| <r},

and we define

r

NG) = f @ dt,

0

and

or)y=r % dt.

r

These quantities are related to M ¢ (r) in the following way

N(r)<logMys(r) < N(r) + Q(r) (83)

for r > 0. (This is relation (3.5.4) in Boas [9]).
By a theorem of Borel it is known that p y = £(z,), and if the order is 0, then pE(.]] =E(log|zx)
by Proposition 5.4 in [6]. Furthermore, by Proposition 5.3 in [6] we have '

logn(r)

&(log |zn]) =i .
(log|zal) msup e

The following proposition expresses the double logarithmic convergence exponent
E(loglog|z,|) in terms of the zero counting function of f.

Proposition A.2. We have

1
&(loglog|z,l) = lim sup ogn(r) (84)

r—o0o logloglogr’
Proof. We have
n(e? ) =#{n||zal <e ) =#{n|loglog|z,| <r},
hence by Lemma 4.10

logn(e”) logn(s)

&(loglog|z,l) = lim sup lim sup ——————. |
r—ooo  logr s—oo logloglogs
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Theorem A.3. The double logarithmic order of the canonical product (82) is equal to the double
logarithmic convergence exponent of the zeros, i.e., p?] = E(loglog|zy)-

Proof. We shall prove that L = p}z], where L is given by the right-hand side of (84). Let ¢ > 0
be such that

My(r) < plloglogn® > 0
For r > ro we then get by the left-hand side of (83)
2

,
n(r)logr < n() dt < N(rz) <log Mf(rz) < 2(10glogr2)a logr,

r

hence for any ¢ > 0,

n(r) < 2(log?2 + loglog r)* <, (loglogr)®+e,
which shows that L < « + ¢, leading to L < ,05-2].
To prove the converse inequality we let ¢ > 0 be given. There exists o > 1 such that
n(r) < (loglogr)t*e,  r>r.

For r > ry we then get

ro r ro
t dt t
N(@) < @ dt + f(loglogt)L+8T < / Q dt + (loglogr)t* ¢ logr.
0 ro 0
We also get
x (1 1 )L+8 d
oglog? t
or)<r —n g

r

‘We next use that

12 p 172
(loglogn)l+e — [(log log1)2(L+e) ]

is increasing for ¢ sufficiently large, because (loglogr)® is an order function for any @ > 0. We
can therefore write

o0
(loglogr)L+e
Q(r) <7’T 32 =2(loglogr)"**,

r

so by the right-hand side of (83) we find

. log Mz (r)
1m Ssu X
r_)oop (loglogr)L+élogr

)

and it follows that p?] <L. O
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