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1 Ciagi liczbowe

Bedziemy rozwazali ciagi ztozone z liczb rzeczywistych. Liczby rzeczywiste
R maja wtasnos¢ ciagtosci, z ktorej wielokrotnie bedziemy korzystac.

Podzbior A C R nazywamy ograniczonym z gory jesli x < a dla pewnej
liczby a oraz dla wszystkich liczb x z A. Najmniejszg liczbe ograniczajaca
zbiér A z géry nazywamy kresem gornym (supremum) i oznaczamy Sym-
bolem sup A. Podobnie okre$lamy kres dolny (infimum) i oznaczamy przez
inf A. Wlasno$¢ cigglodci liczb rzeczywstych oznacza, ze kazdy ograniczony
podzbiér A C R posiada kresy dolny i gorny.

Przyktad. Zbiér liczb wymiernych Q nie ma wtasnosci ciggtosci. Rozwazmy

A={zecQ:2°<2}={reQ: —V2<z<V2}.
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Definicja 1.1. Ciggiem {a,} nazywamy odwzorowanie liczb naturalnych w
liczby rzeczywiste. Liczby aq, as, as, ... nazywamy wyrazamsi ciggu.

Przyktlady.
(a) 1,2,3,4,5,....
(b) 2,4,6,8,10,....

(¢) a,=5n+3,b, =2"+ 1.

1 1
(d) a1 =2, apy1 = 5 <Gn+>-

(e) 2,3,5,7,11,..., - ciag liczb pierwszych.
Ciag {a,} nazywamy rosngcym (Scisle rosngcym) jesli
G, < An1 (an < a/n—i—l)

dla wszystkich n. Podobnie okreslamy ciagi malejace i $cisle malejace.

Przyktad. Ciag z przyktadu (d) jest scisle malejacy. Rzeczywiscie, pokazemy
najpierw, ze a, > 1 dla wszystkich n. Mamy a; = 2 > 1. Dalej

1 1 a:+1-2a, (a,—1)>
(an + ) —1= = .
2a,, 2a,,

anJrl_l:* 0
n

2

Jesli a, > 1, to a,.1 > 1. Dalej

=g (o) me=3 (5 a) <0
Ap+1 ap = 2 ap Qp = 9 Qp, )

Qn

bo a, > 1.
1.1 Zbieznos¢ ciggoéw
Przyktlady.

a) Wyrazy ciagu a, = + zblizaja sie do zera, gdy n roénie.
yrazy C1ag n

(b) Dla b, = (—=1)" + # wyrazy o numerach parzystych zblizajg sie do 1,
a te o numerach nieparzystych do —1.
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Definicja 1.2 (intuicyjna). Moéwimy, Ze cigg a, jest zbiezny do liczby g
jesli wyrazy ciggu lezg coraz blizej liczby g dla duzych wskaznikow n. Tzn.
jesli checemy, aby liczba a, znalazla sie odpowiednio blisko g, to wskaznik n
powinien byé odpowiednio duzy. Stosujemy zapis liTILn ap = g.

Definicja 1.3 (Scista). Dla dowolnej liczby € > 0 (ktora okresla, jak blisko
granicy majq znajdowad sie wyrazy ciggu) istnieje liczba N (prog okreslajqcy
jak duzy powinien byé wskaznik ciqgu) taka, Ze dlan > N mamy |a, —g| < €.

Ostatni warunek oznacza, ze dla n > N wyrazy ciagu a, leza w przedziale
(9g—e,9+¢), tzn. w przedziale tym leza prawie wszystkie wyrazy ciagu {a,}.

Przyktlady.

(a) a, = = =1— L. Mamy |a, — 1| = £. Wida¢, ze ciag a, jest zbiezny
do 1 na podstawie intuicyjnej definicji. Prze¢wiczymy Scistg definicje.
Ustalmy liczbe € > 0. Niech N = [if Wtedy dla n > N otrzymamy

n>1 Zatem 1 <e.
€ n

(b) a, = (=1)". Jesli a,, dazy do g, to wyrazy o duzych numerach powinny
lezeé blisko siebie. Ale |a, 41 — a,| = 2.

Twierdzenie 1.4. Zbiezny ciqg posiada tylko jedng granice.

Dowdd. Zatézmy nie wprost, ze lirlgn an = ¢, 1171111 a, = ¢', oraz g < g'. Okresl-
my ¢ = (¢’ — g)/2. Przedzialy (g —e,9 + ¢) oraz (¢’ — €,¢' + €) sa wtedy
roztaczne. Nie jest mozliwe wiec, aby prawie wszystkie wyrazy lezaty zaréwno
w pierwszym jak i drugim przedziale. O

Twierdzenie 1.5. Kazdy cigg monotoniczny (rosngcy lub malejacy) i ogra-
niczony jest zbieziny.

Dowadd. Zatézmy, ze a, jest rosngcy oraz niech g = supa,. Pokazemy, ze
liczba g jest granicg ciggu a,,. Ustalmy liczbe € > 0. Liczba g—e¢ nie ogranicza
ciagu a, od goéry. Tzn. ay > g — € dla pewnego wskaznika N. Wtedy dla
n > N mamy

g—e<an < a,<g<g-+e.

]

Twierdzenie 1.6. Zalozmy, ze li%n an, = g oraz liﬁn b, = h. Wtedy ciggi po
lewej stronie wzorow ponizej sq zbieine oraz:
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(a) lirlgn(an +b,) = lim ay, + lim b,.
(b) ligbn(anbn) = h};n Qy, - li}rbn by,

i = e T
(c) 1711115:@,02617511”7&0.

n

Dowdd. Udowodnimy tylko (c). Zaczniemy od wersji

ol
Wb, Timb,

Oznaczmy &1 = |h|/2. Z zalozenia istnieje prog Ny taki, ze dla n > N; mamy
|b, — h| < |h|/2. Stad |b,| > |h|/2. Dla n > N; otrzymujemy zatem

I 1| [bp—h] 2]b,—h

—— —| = . 1.1
b Bl R AP (1)

Ustalmy € > 0. Istnieje prog N taki, ze dla n > N mamy
h2
b — Bl < - (1.2)

Niech n > max(Ny, N). Wtedy z (1.1) i (1.2) uzyskamy

1 1
E — E <e€
Z (b) mamy wtedy
1 lim a,,
1i7£nb—: = lignan . b = lignan . ligna = li?nbn'

Uwaga: Przy dowodzie (b) mozna skorzystaé ze wzoru

tnbn — gh = (an — g)(by — B) + (an — g)h + g(b, — R).

Whniosek 1.7. Jesl lign an =g, to li£ncan =cg.

Twierdzenie 1.8. Jesli ciggi a, i b, sq zbieine, to
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(a) [lima,| = lim [a,|.
(b) Jesli a,, > 0, to lima, > 0.
(c) Jesli a, < by, to lign ay, < lirrln b,,.

(d) (twierdzenie o trzech ciggach) Jesli a, < ¢, < b, oraz lirrln a, =
lign b, to ciqgg ¢, jest zbieiny oraz liT{n Cn = liTILn .

Dowdéd. (a) Oznaczmy lima,, = g. Wtedy teza wynika natychmiast z nierow-
n
nosci

anl = Ig1] < lan 9]

(d) Z zalozenia mamy
0<e¢c,—a, <b, —a,. (1.3)
Dalej

lign(bn —a,) = li}ln b, + li;bn(—an) = li;bn b,, — li;bn a, = 0.

Ustalmy liczbe € > 0. Istnieje prog N taki, ze dlan > N mamy 0 < b, —a,, <
e. Wtedy z (1.3)
0<¢e, —a,<e, dlan>N.

Stad li}ln(cn — ap) = 0. Ciag ¢, jest zbiezny jako suma ciagdéw ¢, — a, oraz
a,. Ponadto liyrln Cp = lign Q- O

Definicja 1.9. Dia ciggu {a,} i Scisle rosngcego ciagu liczb naturalnych m,
ciqg {am, } nazywamy podciagiem.

Przyktady. a,2, an, a,,, gdzie p, jest n-tg liczba pierwszg.
Dla rosnacego ciaggu m,, liczb naturalnych mamy m,, > n.

Twierdzenie 1.10. Podcigg ciggu zbieznego jest zbiezny do tej samej liczby
co pelny ciqg.

Dowdéd. Oznaczmy g = liqgn a,. Dla liczby € > 0 rozwazamy przedzial (g —
e,9 + €). Z zalozenia prawie wszystkie wyrazy ciagu a, znajduja sie w tym

przedziale. Tym bardziej prawie wszystkie wyrazy podciagu a,,, tam sie
znajduja. ]
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Uwaga. Prawdziwe jest twierdzenie odwrotne: jesli kazdy podciag ciggu a,
zawiera podciag zbiezny do liczby g, to caty ciag jest zbiezny do g.

Twierdzenie 1.11 (Bolzano, Weierstrass). Kazdy cigg ograniczony zawiera
podcigg zbieiny.

Dowéd. Zatézmy, ze wyrazy ciagu ¢, znajduja sie w przedziale [a, b;]. Be-
dziemy konstruowac¢ podciag d,, ciagu ¢,. Niech d; := ¢;. Przynajmniej jeden
z przedziatow [ay, (a1 +b1)/2], [(a1+b1)/2, b1] zawiera nieskonczenie wyrazow
ciagu ¢,. Oznaczmy ten przedzial przez [ag, by]. Niech my oznacza najmniej-
szy wskaznik, wiekszy niz 1, dla ktérego ¢,,, =: d lezy w [az, bs]. Dalej jeden
z przedzialéw [ag, (as+b2)/2], [(as+b2)/2, by zawiera nieskonczenie wyrazéw
ciggu ¢,. Konce tego przedziatu oznaczmy przez as i b3. Podobnie jak wcze-
$niej wybieramy najmniejszy wskaznik mg > mag, dla ktérego c,,, =: d3 lezy
w [as, bs]. Postepujac tak dalej otrzymamy nieskoriczony ciag przedziatéw
[a,, b,] oraz podciag d,, := ¢,,, o wlasnosciach

dn € [ana bn] C [an—h bn—l]a bn — ap = %(bn—l - an—l)-

Mamy
ai < Ap—1 < (7% < bn < bn—l < bl-
Ciag a, jest rosnacy i ograniczony, natomiast ciag b, jest malejacy i tez

ograniczony. Zatem ciggi te sg zbiezne. Z rownosci

1
b, —a, = = (by —a)

wynika lim(b,, — a,) = 0. Zatem lim b,, = lim a,,. Poniewaz a,, < d,, < by, to
n n n
z twierdzenia o trzech ciggach otrzymujemy, ze ciag d,, jest zbiezny. O

Czasami chcemy rozpoznaé, czy dany ciag jest zbiezny, ale nie potrafimy
wskazaé granicy. Wtedy mozemy uzy¢ warunku Cauchy’ego.

Definicja 1.12. Mowimy, ze cigg spetnia warunek Cauchy’ego jesli dla du-
zych wskaznikow wyrazy ciggu lezg blisko siebie. Scisle: dla dowolnej liczby
e > 0 istnieje prog N taki, Ze dla m,n > N mamy |a, — a,| < €.

Przyktady.
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(a)
1 1 1
Zatoézmy, ze n > m. Wtedy:
! + ! +...+ !
Ay — Qpy = oo+ =
(m+1)2  (m+2)? n?
< ! + ! +...+ !
mm+1)  (m+1)(m+2) " (n—1)n

1 1 1 1 1 1 1 1
()t om o)t - ) e <

m m+1 m+1 m+2 n—1 n m n m
Chcemy, aby 1/m < e. Niech N = [1/¢]. Wtedy dlan > m > N mamy
1/m < e, zatem

1
O<a, —a,<—<e¢.
m

(b)

S S S
w=lt gttt

Obliczamy
1 1 1 1 1 1 1

by — by = ——— o — > — 4 — =
2 P R R LI T s T

n sktadnikéw

Zatem warunek Cauchy’ego nie jest spetniony.

Twierdzenie 1.13. (Ciqg jest zbiezny wtedy 1 tylko wtedy, gdy spetnia waru-
nek Cauchy’ego.

Dowéd. (=) Niech g = lim a,. Wtedy
|an — am| = [(an — g) = (am — 9)| < lan — gl + [am — gl

Z zatozenia dla liczby € > 0 istnieje prog N, dla ktérego |ar — g| < 5 dla
k > N. Niech n,m > N. Wtedy

la, —an| < e.

(«<=) Pokazemy, ze ciag a, jest ograniczony. Dla ¢ = 1 istnieje prog N (liczba
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naturalna) taki, ze |a, — a,,| < 1 dla n,m > N. Niech
M = max{|a1],|as|, ..., |lan|, |ans1]| + 1}.

Wtedy |a,| < M dla wszystkich n. Rzeczywiscie:

(1) Dlan=1,2,..., N mamy |a,| < M w oczywisty sposéb.

(2) Dlan > N mamy |a, —any1| < 1 zatem

|an| = |(an — ant1) + ansi| < lan — ania| + laya| <1+ [aya| < M.

7 twierdzenia Bolzano-Weierstrassa ciag a, posiada podciag zbiezny. Niech
g = liTILn apm, . Pokazemy, ze lirrln a, = g. Ustalmy liczbe € > 0. Istnieje prog
Ny taki, ze |a, — am| < § dla n,m > N;. Dalej istnieje prog N taki, ze dla

n > Ny mamy |am,, —g| < 5. Okredlmy N = max(Ny, Ny). Wtedy dlan > N
otrzymujemy m,, > n > N, zatem
e €
|an — gl = [(an = am,) + (am, — 9)| < lan — am, | + lam, — g| < ) + 9= €.
O

Definicja 1.14. Mowimy, ze cigg a,, jest rozbiezny do nieskonczonosci (o)
jesli dla dowolnej liczby M istnieje prog N taki, Ze dlan > N mamy a,, > M,
tzn. w przedziale (M, 00) znajdujq sie prawie wszystkie wyrazy ciggu.
Przyktad.
bn:1+1+1+...+l.
2 3 n
Wiemy, ze by, — b,, > % Zatem

bgn == (an - bzn—l) —|— (bzn—l - b2n—2) + RPN + (b2 - bl) —|— b1 > g —|— 1

Dla liczby naturalnej & > 2 mamy 2" < k < 2""! dla pewnej wartosci n.
Wtedy n + 1 > log, k oraz

1 1
g} nt > —log, k.

b = bon > 1
k 2 + 5 5

Definicja 1.15. Liczbe o nazywamy punktem skupienia ciggu a, jesli mozna
znaleZé podciqg ay, zbieiny do a.

Uwaga. Zbiezny ciag posiada tylko jeden punkt skupienia.
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Przyktady.
(a) ap, = (=1)". Wtedy ag, =11 ag,r1 = —1.
(b) an = sinn. Zbiér punktéow skupienia jest réwny [—1, 1].
(¢) Rozwazmy ciag
111119111
7399199939459 3y g
Wtedy zbiér punktéw skupienia jest réwny {0, 1, %, %, .

Twierdzenie 1.16. Dla ograniczonego ciggu a, istniejg najmniejszy i naj-
wiekszy punkt skupienia nazywane granicq dolng i gorng ciggu i oznaczane
symbolams lim inf a,, oraz limsup a,,.

Dla ciagu z przyktadu (c) granica dolna wynosi 0, a gérna 1.

Uwaga. Mozna udowodni¢, ze

liminf a,, = sup inf a,,, limsupa, = inf sup a,,.
n mzn " om>n

1.2 Liczba e

Rozwazmy dwa ciggi

1 n 1 n+1
xn:(l—l—) , yn:(1+> )
n n

Mamy x,, < ¥,. Obliczamy

sl )= (65) 7 0

T, (1 + l)nH n (n+1)2 n

n

(o) el () e

W ostatniej linii skorzystaliémy z nieréwnosci Bernoulli’ego (14 x)" > 1+nx
dla x > —1. Udowodnilismy, ze ciag z,, jest rosnacy. Dalej

n+1
Yn—1 (1 + ﬁ) L n? "1
(n+1)(n—-1) n

Yn (1—{—%)n+1 1+ﬁ

1 ntlpy 1 n—1
<+n2—1) n (+n—1> n
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Zatem y,, jest ciagiem malejacym. Mamy zatem
2= <2< ... <2, <Y <...<y2 <y =4
Oba ciagi sa wiec zbiezne. Oznaczmy
1 n
e =limz, = lim (1+ ) .
n n n
Wtedy
1
yn—xn<1+> — e.
n
Zmajdziemy teraz inng przydatng postac liczby e. Mamy
N & fn\ 1
n = 1 — — _
’ ( * n> kz:% (k) nk
B “nn—1)(...n—k+1) 1 "1
=1+ K pr Sl

k=1

Ustalmy liczbe naturalng m. Dla n > m mamy

I\" “nn—-—1)(..(n—k+1)1
S=(1+2) >1 Bl
v ( +n) +,;1 nk k!

:1+I§<1_;> (1—2)...(1_’?;1);!

Przechodzimy z n do nieskonczonosci i otrzymujemy

Reasumujgc mamy

1\" "1
1+—-) <1 — <
( + n) + 1?:21 o S ©
Zatem
—tim (1 1 1 1 1
Twierdzenie 1.17. Liczba e ma przedstawienie
PR IR R VIR B ()
= o203 7l nln’

gdzie 0 < 0(n) < 1.
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Dowdd. Dla m > n mamy

—1+1+1+1+ R
TTRPTRNET n!

_ 1 1 1 1
~ T ) [ +n+2+(n+2)(n+3>+'“+(n+2>(n+3)-....m]
1 1 1 ]

< c,+ +

1 R e v—
(n—f—l)![ +n+2+(n—|—2)2 +(n+2)m—n—1

1
1 I (n+2)mn<c X 1 n+2

(n+1)! 1-—5 (n+1)!n+1

:CTL+ 1
n+

Przechodzac do granicy, gdy m — oo otrzymujemy

1+1+1+1+ +1< cipty 11, 1 nlnt?)
e < — 4=t 4. =+ —
o203l 20 3l n!  nln (n+41)2

Zatem

1 1)< 1 n(n+2)< 1'
nln (n+1)2 " nln

1 1
O<e—(1+1|+2|+3|+ -+

n!
Stad otrzymujemy teze twierdzenia. O

Whniosek 1.18. Liczba e jest niewymierna.

p
q’

dla liczby naturalnych p i ¢, to {qle} = 0. Ale z poprzedniego twierdzenia

Dowdd. Symbolem {z} oznaczamy cze$¢ utamkowa liczby z. Gdyby e =

mamy
0(n)
le} =¢——= 0.
ey = {121
m
Wiemy, ze
1\" 1 n+1
<1+> <e<<1—|—> .
n n
Zastosujmy logarytm przy podstawie e do nieréwnosci. Otrzymamy
1 1 1
<1 (1 ) < —. 1.4
ntl 8 * n n (1.4)
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Rozwazmy ciag
1+ L +...+ ! log(n+ 1)
Uy = —+...+ — —log(n .
2 n &
Mamy
1 1 1
Up — Up_1 = — —log(n+ 1) + logn = —10g(1—|—> > 0,
n n n
na podstawie pierwszej nieréwnosci w (1.4). Rozwazmy inny ciag
1 1
Up=14+—-4+... 4+ — —logn.
2 n
Mamy
! log(n +1) +1 ! 1 <1+1><0
Ups1 — Uy = —— — log(n ogn =———1o — ,
i n+1 & & n+1 & n
na podstawie drugiej nieréwnosci w (1.4). Dla n > 1 otrzymujemy

U < Up < Uy < V1.

Zatem oba ciagi sa zbiezne jako ciagi monotoniczne i ograniczone. Poniewaz
Up = Up—1 + %, to granice obu ciagdéw sg rowne. Oznaczmy symbolem c te
granice. Wtedy

0<l—=log2=u3<c<wv =1

Reasumujac

1 1
(1+2+...+—10gn>:c, 0<c< 1. (1.5)
n

Liczbe ¢ nazywamy stata FEulera.

2 Szeregi liczbowe

Dla ciggu a,, okreslamy cigg sum cze$ciowych s, wzorem
Sp=a1+as+ ...+ ay.

W szezegblnosci s5 = ay + ag + asz + a4 + as. Jesli ciag s, jest zbiezny (do
granicy s), to méwimy, ze szereg jest zbiezny i zapisujemy

00
Z anp = S.
n=1

Przyktady.
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(a) Rozwazmy ciag geometryczny a, = ¢" dla |¢| < 1. Wtedy

_q_qn—H q
= —_— ,
l1—q n» 1—g¢q

Sn=q+ ¢+ .. "

bo ¢" — 0, dla |¢| < 1." Zatem

00 . q
nz::lq l—q

(b) Rozwazmy szereg harmoniczny o wyrazach a, = =. Wiemy, ze

1 1
Sn=14+—-+...4+—>logn.
2 n
Szereg »  — jest rozbiezny (do nieskoriczonosei).
n=1

Twierdzenie 2.1 (Warunek Cauchy’ego dla szeregu). Szereg Zan jest

n=1
zbiezny wtedy 1 tylko wtedy, gdy spetnia warunek, ze dla dowolnej liczby € > 0
istnieje prog N taki, ze dla n > m > N mamy

|a/m+1 + am+2 + R an| < €.
Dowéd. Dla n > m mamy
IS0 — Sm| = |@me1 + oo + ...+ a,| < e.

To oznacza, ze warunek w twierdzeniu jest identyczny z warunkiem Cau-

chy’ego dla ciggu s,. O]
o

Twierdzenie 2.2. Jesli szereg Z a, jest zbiezny, to liTan a, = 0.
n=1

Dowod. Mamy a,, = s, — s,_1. Oznaczmy s = lim a,,. Wtedy
n
lima, =lims, —lims,_1 =s—s=0.
n n n

]

*Wystarczy pokazaé |g|" — 0, czyli rozwazaé¢ 0 < ¢ < 1. Niech 1/g =1+ a, dla a > 0.
Wtedy 1/¢" = (1+a)” > 1+ na. Czyli 0 < ¢" < 1/(1 + na).
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Uwaga. Warunek w tezie nie wystarcza do zbieznosci szeregu. Na przyktad
szereg o wyrazach

7§7§a§7§7§7”'
nie jest zbiezny. Ile wynosi wyraz szeregu o numerze 2014 7 Ktére numery
maja wyrazy szeregu o wartosci 1/2014 7

Twierdzenie 2.3. Dla kazdego szeregu zbieznego ciqg sum cze$ciowych jest
0gTraniczony.

Dowdd. Ciag s, spelia warunek Cauchy’ego wigc jest ograniczony. [

Twierdzenie 2.4. Zalozimy, Ze szeregi Z Qp 1 Z b, sq zbiezne. Wtedy zbiez-

n=1 n=1

ne sq szeregi Z a, +by,) Z @, 010z

n=1

Zani—b = Zani—an,
n=1 n=1 n=1
Z)\an = )\Zan.
n=1 n=1

Definicja 2.5. Szereg Z a, jest bezwzglednie zbiezny jesl szereg Z la,| jest
n=1 n=1
zbiezny.

Twierdzenie 2.6. Szereg bezwzglednie zbiezny jest zbieziny.
Dowdéd. Teza wynika z nieréwnosci dla n > m

|am+1%—am+2+m..%—an|<|am+1y+|am+gy+...+¢anL

[e.e]

Zatem warunek Cauchy’ego dla szeregu Z la,| pociaga ten warunek dla
n=1

oo
szeregu Z Q. O]

n=1

Uwaga. Zbiezny szereg nie musi by¢ bezwzglednie zbiezny. Na przyktad
szereg o wyrazach

=
| =
D
D
=
[ I

1
Y 47

[\

| —
e~ =
e~ =
e~ =
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jest zbiezny do liczby 0, ale nie jest zbiezny bezwglednie.

Uwaga. Zbieznos¢ ciggu a, i szeregu Z a, nie zalezy od zachowania sie
n=1
skonczonej liczby poczatkowych wyrazéw. Tzn. jesti a, = b, dlan > N to

ciagi a, i b, sa jednocze$nie zbiezne lub jednoczes$nie rozbiezne. To samo

dotyczy szeregbéw Z Gy 1 Z by,

n=1 n=1

Twierdzenie 2.7 (Kryterium Dirichleta). Zalézmy, Ze cigg a,, jest malejacy
014z Ay — 0. Zalozmy rowniez, ze sumy czeSciowe ciggu b, sq ograniczone
(tzn. cigg o wyrazach s, = by + by + ...+ b, jest ograniczony). Wtedy szereg
Z anby, jest zbiezny.

n=1

Dowdd. Sprawdzimy warunek Cauchy’ego. Z zalozenia |s,| < M. Niech n >
m. Wtedy

|Gt 10ma1 + Qmg2bmaz + ..+ anby|

+ .ot an(sn — Sno1)|

= |=Gm115m+(@mi1—mi2) Smi1+ (Amy2—ma3)Smiot. . A (An_1—0p)Spn—_1F0, 5,

< @1 |Sml+(@ms1—mi2) [Sm1 [ (@mi2—amas) [Smro|+ A (an—1—an)[Sn1|+an| 0]
< M [ami1 + (ms1 — Ama2) + (@ — Amas) + oo+ (a1 — @) + an] = 2Mag, 1.

- |am+1 (Sm—i-l - Sm) + am+2(sm—|—2 — Sm+1

~— —

Dla € > 0 istnieje liczba naturalna mg taka, ze a,,, < 53;- Wtedy dlam = mq
mamy

|@ms10ms1 + @miobmaos + ..+ apby| < 2May, 1 < 2Mag,, < €.

O
) X sinnx ) ..
Przyklad. Rozwazamy szereg Z . Dla © = k7 szereg jest zbiezny,
n=1

1
bo kazdy wyraz sie zeruje. Zatézmy, ze x # 2kn. Przyjmujemy a,, = — oraz
n

b, = sinnx. Bedziemy korzysta¢ ze wzoru trygonometrycznego

cosa — cos 3 = 2sin’6’Tasin

Bta
5
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Badamy sumy czesciowe ciagu b,,.

sinx +sin2x + ...+ sinnx

= (281n§sin$+281n§sin2x+...—l—ZSingsinnx)

2sin g 2 2 2

1 T 3z 3z 5z (2n—1)z (2n+1)z

= — [(0085 —0087) + (cos? —cosg> + ...+ (COST — COS “—5——
2sin %
nT (n+1):p
1 z (2n+1)x S 5~ S1N ~—
= (cos 5 —cos~—; = — .
2sin 5 sin 5
Otrzymujemy
. . ) 1
|sinz +sin2x + ... +sinnz| < ———.
| sin |

Whniosek 2.8 (kryterium Leibniza o szeregu naprzemiennym). Jesli cigg a,,

jest malejgcy oraz a, — 0, to szereg Z(—l)

n=1

"a, jest zbieiny.

Dowéd. Przyjmujemy b, = (—1)""!. Wtedy sumy czedciowe ciagu b, maja
postac sg, = 01 So,01 = 1. Zatem szereg jest zbiezny. O

00 (_ )n—l—l
Przyklad Szereg Z —_—

n=1 n
(1.5) mozna wykazaé, ze szereg jest zbiezny do liczby log 2.

jest zbiezny z kryterium Leibniza. Ze wzoru

Whniosek 2.9. Jesl a,, jest zbieznym ciggiem monotonicznym a szereq Z by,

n=1
oo
jest zbiezny, to zbieiny jest szereg Z by,

n=1

Dowdéd. Mozemy zatozyé, ze ciag a, jest malejacy. Oznaczmy a = 1irrln Q.-

Wtedy a, —a \, 0. Z twierdzenia Dirichleta szereg » (a, —a)b, jest zbiezny.

n=1
Ale
anb, = (a, — a) + ab,,

zatem szereg Z anb, jest zbiezny. ]

n=1

)
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Twierdzenie 2.10 (Kryterium poréwnawcze). Zatéimy, ze 0 < a, < by,.

Jesli szereg Z b, jest zbiezny, to zbieiny jest szereq Z (.-

n=1 n=1
oo
Whniosek 2.11. Jesli 0 < a,, < b, oraz szereg Z a, jest rozbiezny, to szereg
n=1

Z b, tez jest rozbiezny.

n=1

e nt* + 8n
Przyklad. Bad _—
rzykta adamy szereg ; R

n* +8n nt 1

mS+n2+47 2P+ nd4+4n5  Tn’
1
Wiemy, ze Z — = 00, wiec badany szereg jest rozbiezny.
n
Twierdzenie 2.12 (Kryterium Cauchy’ego). Zalézmy, Ze

a = lim 1/|a,|.
n

(i) Jesli a < 1, to szereg Z a, jest bezwglednie zbieziny.

n=1

(it) Jeslia > 1, to szereg > a, jest rozbiezny.

n=1

Uwaga. Kryterium nie rozstrzyga zbieznosci, gdy a = 1. Dla szeregow 3 #
Z% mamy a = 1. Pierwszy z szeregéw jest zbiezny a drugi rozbiezny.
Dowdd. (i) a < 1. Niech r = 1. Wtedy a < r < 1. Istnieje prog N taki, ze
dla n > N mamy {/|a,| < r. Zatem |a,| < r* dlan > N + 1. Z kryterium
poréwnawczego szereg Z |a,| jest zbiezny.

n=1

(ii) @ > 1. Dlar = “t istnieje prog N taki, ze dlan > N mamy {/|a,| > r >
1. Tzn. |a,| > ™ dla n > N, czyli a, jest rozbiezny do nieskonczonosci. [
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Twierdzenie 2.13 (Kryterium d’Alemberta). Zaldzmy, ze

(1) Jesli a < 1, to szereg Z a, jest bezwglednie zbieiny.

n=1
(it) Jeslia > 1, to szereg > a, jest rozbiezny.
n=1
Dowdd. Zastosujemy oznaczenia z dowodu kryterium Cauchy’ego.

(i) Istnieje N takie, ze dla n > N mamy lansi]l . Wiedy

+
|an|

|@n]  lan-] |an sl n—N-1 lanal
= : S < = (21
i || |an—2] |an 1] anal < lail PN (2.1)
oo
Z kryterium poréwnawczego szereg »  |a,| jest zbiezny.
n=1

1l > r > 1. Ze wzoru (2.1)

la
\

(ii). Istnieje N takie, ze dla n > N mamy 7
otrzymujemy wtedy

Zatem |a,| — 0. O

|an+1|
|an|

Uwaga. Mozna udowodni¢, ze z istnienia granicy lim wynika
n

a,| = lim @11
n ag]

\ |

lim
n

Whniosek 2.14. Je$li cigg a,, spetnia zatozenia kryterium Cauchy’ego lub
d’Alemberta, to dla a < 1 cigg ten jest zbieiny do zera, a dla a > 1 wartosci
bezwzgledne wyrazow dgzg do nieskonczonosci.

Przyktady.



20 Analiza matematyczna ISIM I

(a) > —- Stosujemy kryterium d’Alemberta
= n!
An+1 2n+1 n! 2
ay, (n+1)! 20 n41 n
o k

(b) > g—n, dla k € N. Uzywamy kryterium Cauchy’ego.

n=1
LA 1

|
() Y . Wygodniej bedzie uzy¢ kryterium d’Alemberta.
nn

n=1

any1  (n41)! nt ot 1 _)1<1
an (n+ 1)+t n! (n+41)" (1 + )n '

Zatem szereg jest zbiezny.

Twierdzenie 2.15 (Cauchy’ego o zageszczaniu). Zaldzmy, Ze cigg a, jest
[e.e]

malejgcy oraz a, — 0. Szereg Z a, jest zbieiny wtedy i tylko wtedy, gdy
n=1

zbiezny jest szereq Z 2" agn .

n=1
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Przyktady.
(a) Rozwazmy szereg » —, dla o > 0. Szereg zaggszczony ma postac
n=1 n

002n

e 2 ()

Szereg ten jest zbiezny tylko jedli 227! > 1, czyli dla o > 1.

1

nlog®n’

(b) Niech a,, = , dlan > 2 oraz a > 0. Wtedy

7;2 aon = nz::l 2n(10g Zn)a = Z

= nlog*2’

Zatem szereg jest zbiezny tylko dla o > 1.

(¢) Mozna pokazaé, ze szereg o wyrazach

1
nlogn(loglogn)®’

Ap —

jest zbiezny tylko dla a > 1.

Dowdd twierdzenia o zageszczaniu. (=) Mamy

Z 2k(l2k = ay + 2ay + dag + ...+ 2" tay

B
Il
—

1
2
< ag + (a3 + aq) + (a5 + ag + a7 + ag) + .. —|—(a2n_1+1—|—...+a2n)

<En< Lo

(o9}

Zatem Z 2% aqr < 25. To oznacza, ze sumy czesciowe szeregu Z 2k G
k=1 k=1

sg ograniczone od géry. Stad szereg jest zbiezny, bo sumy czesciowe

tworzg ciag rosnacy.
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(<) Obliczamy

n on 1
dap < Y a

k=1 k=1

=ay+ (ay+az) + (ags +as +ag +ar) + ...+ (agn-1 + ...+ agn_q)

oo
<ap+2ay +4ag+ ...+ 2" ager < ay + Y 2Fagp =1 3.

k=1
o0
Sumy czesciowe szeregu Z a, Sa ograniczone przez s, zatem szereg jest
. . n:1
zbiezny.
O
oo
Dla zbieznego szeregu s = Z a, okreslamy ciag n-tych ogonéw wzorem
n=1
o
r, = Z ap. Mamy
k=n+1
Spt+Tpn =38, Th =35 S,
zatem

limr, = lim(s — s,) = 0.

2.1 L3acznosé i przemienno$¢ w sumie nieskonczonej

o0
Jesli szereg Z a, jest zbiezny, to zbiezny jest szereg postaci

n=1

(a1 +as+ ...+ ap) + (@1 + apygo + .o+ apy)
+ oo F (1 F A2 Ay ) o (22)

Sumy czesSciowe szeregu (2.2) maja postaé
Snys Sngs -y Smps -y

zatem ciag s,, jest podciggiem ciggu s,.
Uwaga. Wynikanie odwrotne nie jest spelnione. Szereg (2.2) po otworzeniu

nawiaséw moze by¢ rozbiezny:

(14+ D+ (=14 D)+ (=1+1)+...
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Jesli w kazdym nawiasie szeregu wyrazy maja ten sam znak i szereg (2.2)
jest zbiezny (do s), to szereg bez nawiaséw tez jest zbiezny. Rzeczywiscie,
zauwazmy, ze jesli ngy < n < ngyq, to suma s, lezy pomiedzy s, 1 sy, . Dla
duzych wskaznikow k liczby sy, 1 sy, , leza blisko liczby s. Wtedy wielkosci
s, dla ng < n < ngyq réwniez leza blisko s.

Permutacja zbioru liczb naturalnych nazywamy ciag o, o9, ..., 0n, ... zto-
zony z liczb naturalnych, w ktérym kazda liczba wystepuje doktadnie raz, np.

2,1,4,3,....2n,2n — 1,. ..

[e.e]

Twierdzenie 2.16. Jesli szereqg Z a, jest bezwglednie zbieiny, to szereg
n=1

Z a,, jest zbieiny dla dowolnej premutacji o oraz

n=1

[e's) 00
o= 0
n=1 n=1

Uwaga. Zalozenie bezwzglednej zbieznosci jest istotne. Rozwazmy szereg
00 (_1)n+1

. Mamy
n=1 n
2 3 4 5 6 7 2 3
1—1—1 1—1—(1—1—1 1)—1— —1—( L + L 1>—|— >1+1
3 2 in—3 4dn—1 2n 3 ’

5 7 8
—_———

>0 >0

Dowdd. Oznaczmy s = Z a,. Ustalmy liczbe € > 0. Istnieje liczba naturalna

n=1
[e.e]
N, dla ktoérej Z lan| < 5. Rozwazamy permutacj¢ {o,, }. Istnieje liczba na-
n=N+1
turalna M taka, ze wsérod liczb a,,, a4y, - - ., ay,, Wystepuja wszystkie wyrazy

ai,as,...,ay. Niech n > M. Wtedy

m m N o0
ZGUk_‘S:(ZaUk_Zak)_ Z Q-
k=1 k=1 k=1

k=N+1

1

2
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W nawiasie wyrazy si¢ uproszcza i pozostana tylko wyrazy o numerach wick-
szych od N. Zatem

oo o
+ ) anl <2 D |a] <e.
k=N+1 k=N-+1

<

m N
Z Qg — Z Q.
k=1 k=1

m
Z Qg — S
k=1

Twierdzenie 2.17 (Riemann). Jesli szereg jest zbiezny warunkowo, tzn. jest
zbiezny, ale Y |a,| = oo, to poprzez zamiane kolejnosci wyrazéw mozna uzy-
skac szereg zbiezny do z gory ustalonej liczby, rozbiezny do —oo, 400 lub
szereq rozbiezny.

2.2 Mnozenie Cauchy’ego szeregow.

o0 o0
Rozwazmy dwa wielomiany Z a,x" oraz Z b,x" (zaktadamy, ze a, = b, =

0 dla duzych n). Mnozymy te wielomiany i grupujemy wyrazy z ta sama
potega przy x:

(ap + a1z + agx® + ...+ apa™ + .. ) (bo + by 4+ box® + ..+ b 4. )
= (Iobo + (albo + agbl)l‘ + (a2b0 + (llbl + aon)ZL'2 + ...

+ (anbo + apn_1b1 + ... + a1b,—1 + agby)z™ + ... = Z <Z ankbk) "

n=0 \k=0

Podstawmy x = 1 aby otrzymac

o o) [e.e] n

Z (7% Z: bn = Z Z an_kbk. (23)

n=0 k=0



Szeregi liczbowe 25

o] [o¢]
Wzér (2.3) mozna uzasadni¢ w inny sposéb. Chcemy pomnozy¢ > a,i ) | by.

n=0 n=0
Tworzymy tabele mnozenia

bo by by ... by b,
Qo aobo Qo b1 Qo bg Qo bn
ai a, by a1 by a1bp—1
a2 asby
Ap—1 Ap—1b1
(07% anbO

Nastepnie sumujemy wyrazy na przekatnych i wyniki dodajemy.

o0 o
Twierdzenie 2.18. Jesli szeregi Z Ay 0 Z b, sa zbiezne, przy czym co-

n=0 n=0

najmniej jeden z nich bezwzglednie, to szereg o wyrazach c, = Z by jest
k=0
zbiezny oraz

) o0 o)
Z an Z b, = Z Cp-
n=0 n=0 n=0

Uwaga. Zalozenie bezwglednej zbieznosci jest istotne. Niech ag = by = 0
oraz

Wtedy

=1 ) (n—k)k

Korzystajac z nieréwnosci 2ab < a? + b? otrzymamy

(n—k)+k n
_ < Y1
(n—k)k 5 5
Zatem )
= 1 2(n —1
k=11/(n —k)k n

To oznacza, ze ciag c, nie jest zbiezny do 0, czyli szereg o wyrazach c, nie
moze by¢ zbiezny.
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3 Funkcje i granice

Jesli kazdej liczbie z pewnego podzbioru E C R przyporzadkowana jest jakas
liczba rzeczywista, to mamy do czynienia z funkcja. Funkcja sktada sie z
dziedziny E oraz przepisu, ktory mowi jakie liczby nalezy przyporzadkowaé
liczbom z E. Zwykle przepis podany jest wzorem y = f(x).

Przyktady.
(a) £E=1(0,1), f(z) = .
(b) E'=(0,00), f(x) = V.

sinx —1<xz<0,
(c) E=(-11), f(z) = {5 r =0,
x? 0<z<l.

Definicja 3.1 (intuicyjna). Zalézmy, Ze funkcja f(z) jest okreslona wokol
punktu a (ale niekoniecznie w punkcie a). Méwimy, Ze liczba g jest grani-
cq funkcji f(x) w punkcie a, jesli wartosci f(x) lezqg coraz blizej liczby g
dla argumentow x lezgcych coraz blizej liczby a, ale x # a. Piszemy wtedy

lim f(z) = g.

T—a
Powyzsza definicja wystarcza do obliczenia wickszosci granic. Uscislenia tej
definicji mozna wykonaé¢ na dwa sposoby.

Definicja 3.2 (Heine). Zatézmy, ze funkcja f(x) jest okreslona wokét punktu
a (ale niekoniecznie w punkcie a). Mowimy, Ze liczba g jest granicq funkcji
f(z) w punkcie a jesli dla kazdego ciggu x, zbieinego do a, ale x, # a, cigg
f(z,) jest zbiezny do liczby g.

Przyktlady.

(a) E =R, f(z) = 2% Wtedy hII(l) 2? = 0. Rzeczywiscie, niech x, — 0,
Ty # 0. Wtedy 23 — 0.

(b) E = (=1,0) U (0,1), f(z) = 913 _ :c:51-+1 Tle wynosi lim f(x) ?

1 1 r+1—-1 T 1
v oavr+l  ave+l  arrl(We+l+1) Vet l(WVe+1+1)

Gdy z, — 0, to f(zy) — 3
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Definicja 3.3 (Cauchy). Mowimy, Ze liczba g jest granicqg funkcji f(x) w
punkcie a jesli dla dowolnej liczby € > 0 istnieje liczba 6 > 0 taka, Ze jesli
0<|z—al<d,to]|f(x)—g|l<e.

Uwaga. Definicja Cauchy’ego odpowiada definicji intuicyjnej. Osoba wat-
piaca, ze f(x) moze znalezé sie blisko g, wyraza zadanie, aby odlegtosé¢ f(x)
i g byta mniejsza niz ¢, np. dla ¢ = 0,0001. Naszym zadaniem jest wskazanie
liczby 6 > 0, ktora zagwarantuje, ze jesli odlegtos¢ argumentu x # a od a
jest mniejsza niz 4, to faktycznie odlegtosé f(z) od g bedzie mniejsza niz
. Po wykonaniu zadania osoba watpigca moze zmniejszy¢ wartos¢ € np. do
0,00001. Wtedy my musimy znalezé nowa (zwykle znacznie mniejsza) war-
tos¢ dla liczby 9, aby zaspokoi¢ zadanie. Jesli potrafimy to zrobié¢ dla dowolnej
wartosci €, to faktycznie granica funkcji w punkcie a jest rowna liczbie g.

—1
Przyktad. f(z) = Ve T Chcemy obliczy¢ granice w punkcie 1 z definicji

Cauchy’ego. Mamy f(z) = . Z definicji intuicyjnej widaé, ze granica

1
Vo +1

w 1 wynosi % Mamy

|z —1].

‘f(x)_;:‘ 1 1|_y1—\/§|_ o1 _1

+1 2| 2(Jz+1) 2(/z+1)? 2
Dla liczby € > 0 niech 6 = 2e. Wtedy dla 0 < |z — 1| < 2¢ mamy
|fz) — 3| <ilz—1|<e.

Uwaga. Zapis kwantyfikatorowy definicji Cauchy’ego ma postac

Ve>030>0Vae{0<|z—a|<d = |f(x)—yg|<e}.

Twierdzenie 3.4. Definicje granicy wedtug Cauchy’ego © Heinego sq¢ row-
nowazne.

Dowéd. Udowodnimy tylko implikacje (H) = (C). Zalézmy nie wprost, ze
liczba ¢ nie jest granica funcji f(z) w punkcie a w sensie Cauchy’ego. To
oznacza, ze istnieje liczba € > 0 taka, ze dla dowolnej liczby 6 > 0 mozna
znalez¢ argument x spelniajacy 0 < |z—a| < 0, ale | f(x)—g| > €. Przyjmijmy
Op = % i niech z,, oznacza argument odpowiadajacy liczbie 6,,. Otrzymujemy
0 < |z, —a| < L oraz |f(z,) — g| > e. Wtedy =, — a, ale f(zy) -9 U
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Co zrobi¢, gdy nie wida¢ kandydata na wartosé¢ granicy funkcji ? Do tego
stuzy warunek Cauchy’ego. Intuicyjnie oznacza on, ze jesli dwa argumenty
x i 2’ leza blisko liczby a, ale z,2" # a, to wartosci f(z) i f(z') leza blisko
siebie. Sciste okreslenie znajduje sie w nastepnym twierdzeniu.

Twierdzenie 3.5 (Warunek Cauchy’ego). Funkcja f(x) posiada granice w
punkcie a wtedy 1 tylko wtedy, gdy dla dowolnej liczby € > 0 mozna znalezé
liczbe 6 > 0 takq, Ze

0<|z—allz’—al <d = |f(x)—f(2)|<e. (3.1)

Dowdd. Udowodnimy tylko implikacje (<). Niech x, — a, ale x, # a.
Wtedy ciag f(x,) spelnia warunek Cauchy’ego dla ciagéw. Rzeczywiscie, dla
e > 0 istnieje J spetniajaca (3.1). Poniewaz x,, —a,t00 < |z, —a| < § dla
duzych wartosci n, np. dla n > N. Wtedy dla n,m > N na podstawie (3.1)
otrzymamy |f(z,) — f(xn,)| < €. Zatem ciag f(x,) jest zbiezny. Oznaczmy
g = li1£n f(z,). Wtedy 2l}g{l1 f(z) = g w sensie Heinego. Rzeczywiscie, niech
x —al x! # a. Z poprzedniego rozumowania wiemy, ze ciag f(z!,) jest
zbiezny, np. do liczby ¢'. Rozwazmy nowy cigg postaci

/

/ /
.T1,1‘1,$2,$2,...,Qj‘n,xn,...

Ten ciag dazy do a. Zatem odpowiadajacy ciag wartosci funkcji

fQ@r), f(@h), f@2), f(a), - flan), f(a7),
jest zbiezny. To jest mozliwe tylko dla g = ¢'. O

3.1 Wazna granica

Twierdzenie 3.6. )
. sinxz
lim =1.
z—0

Dowdd. Dla kata 0 < x < 7 rozwazmy trojkat prostokatny o kacie x i przy-
prostokatnej dhugosci 1 przy tym kacie. Trojkat ten zawiera w sobie wycinek
kota o kacie x i promieniu 1, ktory z kolei zawiera trojkat réwnoramienny
o kacie wierzchotkowym z i ramionach dtugosci 1. Porownujac pola figur
otrzymamy nieréwnosé '
sinx
2

tgx
< < —.
2

N8
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Zatem i
sin x

sine < x < )
CoS ¥

2 3
1—2(‘75) —r—
2 2

7, drugiej nieréwnosci otrzymujemy

. Lo T
SINT > TCOST =2 {1—2s1n2 2] >z

Uzyskujemy wiec

3
x T
x—?<sinx<x, 0<x<§. (3.2)
7 nieréwnosci wynika, ze
. sinx

lim =1

z—0t X
7 parzystosci funkcji otrzymujemy teze. [

3.2 Granice jednostronne

Przyktad. Z wysokosci 20 m upuszczamy kamien. Chcemy znalezé¢ predkosé
kamienia w chwili uderzenia w ziemie. Przed uderzeniem wysokos¢ wynosi
h(t) = 20 — 1gt*. Przyjmijmy g = 10m/s>. Wtedy h(t) = 20 — 5t*>. Kamien
spadnie po 2 sekundach. Srednia predkosé¢ kamienia od momentu ¢ < 2 do
momentu uderzenia w ziemie wynosi

h(t) —h(2) 20 — 5t (t—2)(t+2)
= = —b5—"—— = 5(t+2).
t—2 t—2 t—2 (t+2)
Predkos¢ chwilowa w momencie uderzenia wynosi zatem
h(t) — h(2

lim hit) = 1(2) = —20m/s.

t—2 t—2

t<2

Definicja 3.7. Zalézmy, Ze funkcja f(x) jest okreslona w pewnym przedziale
a <z <a+n (naprawo od punktu a). Mowimy, Ze funkcja f(x) ma granice
lewostronng w punkcie a rowng liczbie g, jesli dla kazdego ciggu x, — a,

x, < a, mamy f(z,) — 9. Réwnowaznie

Ve>030>0Ve {a—d<zx<a = |f(z)—yg|<e}.
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Podobnie okresla si¢ granice prawostronna.

Twierdzenie 3.8. Granica glcllrlll f(x) istnieje wtedy i tylko wtedy, gdy istniejq
granice jednostronne lim f(x) i lim, f(z) i sq sobie réwne.

Dowdd. (<) Zatézmy, ze lim f(x) = lim+ f(x) = g. Dlaliczby € > 0 istnieja
liczby 01,02 > 0 speliajace warunek: dlaa — 0y <z <aluba <z <a -+ d
mamy |f(z) —g| < e. Przyjmijmy 6 = min(dy, d2). Wtedy jesli 0 < |z —al < 0
toalboa—d; < a—d <x <aalboa <z <a+d < a+dy. W obu przypadkach
uzyskujemy |f(z) — g| < e. O

Przyktad.

3.3 Granice niewlasciwe i granice w punktach niewta-
Sciwych

Definicja 3.9. Funkcja f(x) ma granice oo w punkcie a jesli dla kazdego

ciQgu T, — a, Tn # a, mamy f(x,) — 0. Rownowaznie, dla dowolnej

liczby M istnieje liczba 6 > 0, dla ktérej warunek 0 < |z — a|] < 0 pocigga
f(z) > M.

Definicja 3.10. Zaldimy, ze funkcja f(z) jest okreslona w przedziale (a, 00).
Moéwimy, ze liczba g jest granicg funkcji f(x) w oo jesli dla dowolnego ciggu

Ty — 0O mamy f(zn) — 9. Rownowaznie

Ve>03IMVe{z>M = |f(z)—g|<e}

Podobnie okresla si¢ granice —oo i granice w —oo0.
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3.4 Dzialania na granicach

Twierdzenie 3.11. Zaldimy, Ze lim f(z) = A oraz lim g(xz) = B. Wtedy

(i) lim[f(x) + g(z)] = A+ B.

r—a

(i1) lim f(x)g(x) = AB.

r—a

. ey A
(117) lim —— = — o ile B # 0.
ag(z) B
Dowdd. Teza wynika z odpowiedniego twierdzenia o ciagach. ]

Uwaga. Twierdzenie jest prawdziwe dla granic jednostronnych i granic w
punktach niewtasciwych.

Twierdzenie 3.12 (Reguta podstawienia). Jesli lim f(z) = b, 111111) g(y) = ¢,
r—a y—

oraz funkcja f(x) nie przyjmuje wartosci b w poblizu punktu a, to lim g(f(x)) =
c.

Dowdd. Niech z, — a, In # a. Wiemy, ze f(z) # b w pewnym przedziale
(a —n,a+n)\ {a}. Wtedy z,, lezy w tym przedziale dla duzych wartosci n,
np. dla n > N. Zatem y,, := f(z,) # b dlan > N oraz y, = f(x,) — b.

Otrzymujemy g(f(z,)) = 9(yn) — O
Uwaga. Przy zastosowaniu regulty podstawienia postugujemy sie zapisem

limg(f(z)) = limg(y)=c

r—a y=f(z) y—b

. / 1
lim ¢/ + —.
x—2 X

1
Przyjmujemy f(z) = x+—, g(y) = /y. Wtedy b = g oraz ¢ = \/g W innym
T

zapisie mamy
/ 1 5
limy/x4+—- = lim =4/=.

Przyktad.
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1
Trzeba sie upewnié, ze x + — # g, gdy = # 21 x lezy blisko 2. Rownanie
x

+1 > 2—|—1
€T —_— = = = —
x 2 2

1
ma dwa rozwigzania r = 2ix = % Dla 0 < |r—2| < 1 mamy wiec x+— # g
x

3.5 Funkcje ciggle

Definicja 3.13. Mowimy, Ze funkcja f(x) jest ciggla w punkcie a, jesli f(x)
jest okreslona w pewnym przedziale wokol punktu a, wigcznie z punktem a,
oraz

(1) istnieje granica lim f(z),

(2) lim f(z) = f(a).

r—a

Przy zastosowaniu definicji Cauchy’ego granicy funkcji, ciagtos¢ w zapisie
kwantyfikatorowym ma postac

Ve>030>0Ve{|r—al]<d = |f(z)— fla)| <e}.

Mozna pomina¢ warunek 0 < |z — a|, bo dla x = a mamy |f(z) — f(a)| =
0<e.

Przyktady.
(a) .
sinx
) x 07
f) = 7
1 rz=0
. . sinz
lig f(@) = limg 2 = 1 = (0)

lim f(z) = 0= f(0), bo |zsin 2| < |z|.

x—0
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()

in 1
o= A

Granica w punkcie 0 nie istnieje. Niech z, = n—lﬂ oraz ¥, =

Wtedy f(z,) =0 oraz f(z]) = 1.

1
2nm+73

Twierdzenie 3.14. Jesli funkcje f(x) i g(x) sq ciggle w punkcie a, to funkcje

) £ gle), flalglo) i 10
przypadku zakladamy, Ze g(a) # 0.

sa rowniez ciggle w a, przy czym w ostatnim

Uwaga. Jedli g(a) # 0, to z ciagtoéci wynika, ze g(x) # 0 dla x w poblizu
punktu a. Rzeczywiscie, przyjmijmy ¢ = “"(2—“)‘. Wtedy istnieje liczba 6 > 0

taka, ze dla |z — a| < 6 mamy |g(z) — g(a)| < |g(2a)|' Dalej

()| — lo(a)] < lg(@) — gla)] < L
Zatem |g(x)| > ‘g(;)’_

Przyktady.
(a) Kazdy wielomian jest funkcja ciagta w kazdym punkcie.

(b) Iloraz dwu wielomianéw jest funkcja ciagta poza miejscami zerowymi
mianownika.

Twierdzenie 3.15. Jesli funkcja f(x) jest ciggla w punkcie a, a funkcja
g(z) jest ciggla w punkcie b = f(a), to funkcja ztozona g(f(x)) jest ciggla w
punkcie a.

Dowéd. Niech z, — a. Wtedy y,, := f(zn) — f(a) = b. Zatem g(y,) —
g(b). To omacza, 76 g(f(2n)) — g(f(@)). n

Przyktad. Zatézmy, ze f : (0,1) — R oraz lim f(z) istnieje dla wszystkich
punktow 0 < a < 1. Okreslmy f(w) = }gré f(z). Czy funkcja f jest ciagla w
kazdym punkcie przedziatu (0,1) 7
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Definicja 3.16. Méwimy, Ze funkcja f(x) jest ciagla w przedziale (a,b), jesl
jest ciagla w kazdym punkcie tego przedziatu. Mowimy, Ze funkcja f(x) jest
ciaglta w przedziale [a,b], jesli dodatkowo lim f(z) = f(a) oraz liril_ fz) =

f(b).

Przyktady.
1
(a) f(x) wi=2) 0<z<

(b) A(y) =y, y > 0.
Sprawdzenie: dla yo > 0 mamy

v — ol 1
’\/_ \/_0‘ \/g_i_\/go \/@0’ |

Dla yo = 01ie > 0 niech 0 <y < e®. Wtedy /y <e.
(¢) flz)=/z(1—2),0< x < 1.

Twierdzenie 3.17 (Jednostajna ciaglos¢ funkcji). Funkcja f(x) ciggla na
przedziale domknietym [a, b] jest jednostajnie cigglta, tzn. dla dowolnej licz-
by € > 0 istnieje liczba § > 0 taka, Ze dla z, 2’ z |a,b], jesli |x — 2’| < 6, to

[f(x) = f(a)] <e.
Uwaga. Zapis kwantyfikatorowy cigglosci jednostajnej ma postaé
Ve>036>0Vx € [a,b V' €la,b{|lz—2"|<d = |f(x)—f(2')| <e}.

Dla poréwnania zapis kwantyfikatorowy ciaglodci w kazdym punkcie x prze-
dziatu [a, b] ma postac

Ve>0Va€la,b]30>0Va €la,b] {|lz—2'| <0 = |f(x)—f(a")] <e}.

Przy jednostajnej cigglosci liczba 6 > 0 jest uniwersalna dla wszystkich punk-
téw z € [a,b], gdy przy ciaglosci punktowej ta liczba jest dobierana indywi-
dualnie dla kazdego punktu z € [a, b].

Intuicyjnie jednostajna ciagto$¢ oznacza, ze jesli dwa argumenty funkcji
leza blisko siebie, to odpowiadajace im wartosci funkcji sa roéwniez potozone
blisko siebie, niezaleznie od potozenia tych argumentow.
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Dowéd. (nie wprost). Zaldézmy, ze warunek jednostajnej ciagtosci nie jest
spetniony. Tzn., ze istnieje liczba ¢ > 0 taka, ze dla dowolnego wyboru liczby
d > 0 znajda sie punkty =, 2’ w przedziale [a,b] takie, ze |z — 2/| < § oraz
|f(z) — f(2)] > e. W szczegolnosci dla 6, = & istnieja punkty z,, 2}, w

przedziale [a, b] spelniajace

o =) < 1f(m) — ()] > (33)

7 twierdzenia Bolzano-Weierstrassa z ciagu x,, mozna wybraé¢ zbiezny pod-
ciag ,,. Oznaczmy x = lilgn Tp,. Z plerwszego warunku w (3.3) mamy

/
Tp, — — < X < Xy, +—.
k N Tk k N

7 twierdzenia o trzech ciggach wnioskujemy, ze x = lilgn x;k 7 ciggtosci w

/

punkcie z otrzymujemy f(z,,) e flx)i f(x,,) — f(x). To oznacza, ze

f(n,)—f(y,) — 0, co stoi w sprzecznosci z drugim warunkiem w (3.3). O

Przyktady.

(a) Domknigtosé przedziatu jest istotna. Rozwazmy f(z) = I na przedziale

(0,1]. Dla @,, = & i @), = + mamy f(z,) = 2n, f(z},) = n. Zatem

Ty — o — 0, flag) — flay,) — oo
(b) Funkcja w poprzednim przykladzie byla nieograniczona. Rozwazmy
f(x) = sini na na przedziale (0,1]. Dla x, = 57— i @], = m
mamy
/

dy g — 0, f(a) = fle) = 1
(c) Jesli nachylenie wykresu funkcji jest ograniczone, tzn.

f@1) = fla2)

X1 — T2

< L7 g 7é1'27

to funkcja jest jednostajnie ciggta. Istotnie mamy wtedy

|f(z1) = f(z2)] < Llzy — 2],
Np. f(z) = z jest jednostajnie ciggta na catej prostej. Z kolei f(z) = =
nie jest jednostajnie ciggla na catej prostej, bo dla z,, = n + %, x=n
mamy &, — &, — 0 oraz flah) — f(z,) > 2.

2
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(d) Ograniczone nachylenie wykresu nie jest warunkiem koniecznym dla
jednostajnej ciagtosci. Np. funkcja f(z) = \/Mjest jednostajnie ciggta
na calej prostej mimo, ze nachylenie wykresu w poblizu punktu 0 jest
nieograniczone.

Twierdzenie 3.18 (Weierstrass). Funkcja ciggla f(x) na przedziale do-
mknietym |a, b] jest ograniczona oraz osigga swoje kresy gorny M i dolny m.
Tzn. istniejg punkty ¢ © d w przedziale |a,b] takie, ze f(c) =m i f(d) = M.

Uwaga.
m = inf f(x), M = su x).
it f(a) M= s f(z)
Dowdd. Dla liczby e = 1 istnieje liczba § > 0 taka, ze jesli |[x — 2/| < ¢,
to |f(z) — f(z')] < 1. Wybierzmy liczbe naturalng n tak, aby >~ < §. Np.
niech n = [I’TT“] + 1. Dzielimy przedzial [a,b] na n réwnych czesci punktami
ap =a+ =% dla k =0,1,...n. Oznaczmy

C =max{|f(a)|+ 1, |f(ax)| + 1, ..., |f(an)| + 1}.

Niech a < z < b. Wtedy a1 < = < a; dla pewnej liczby £ = 1,2,...,n.
Zatem

b—a
< 0.

2 —ar] < ap — a1 =

Wtedy
[f(@)| = [f(ar)] < |f(z) = flap)] < 1.

Otrzymujemy wiec

|f(@)] <[f(a)] +1<C,

czyli funkcja f jest ograniczona.
Zalézmy, nie wprost, ze f(z) < M dla wszystkich a < z < b. Rozwazmy

funkcje g(x) . Funkcja g(x) jest ciagta na przedziale [a,b]. Z

T M= fl@) T |
pierwszej czesci dowodu wynika, ze g jest ograniczona z gory, tzn.
! (r) <N
= — gz :
M=)~ T
dla pewnej statej N. Po przeksztalceniu otrzymamy
M~ f(@) > 5. cayli flx) < M-+
- xr =z 1 CZ 1 T XX e
N N



Funkcje i granice 37

Dalej

1
M= sup f(x)<M——

)
a<z<h N

O

co daje sprzecznosc.

Twierdzenie 3.19 (Wlasnos¢ Darboux). Funkcja ciggla na przedziale [a, b]
przyjmuje wszystkie wartosci posrednie, tzn. wartosci pomiedzy liczbami f(a)

i £(b).

Dowéd. Rozwazymy przypadek f(a) < f(b). Niech f(a) <1 < f(b). Chcemy
udowodnié, ze f(zo) = [ dla pewnego punktu z w [a, b]. Zat6zmy, nie wprost,
ze f(x) # 1 dla wszystkich x. Rozwazymy funkcje

1
9@ = =1

7 twierdzenia Weierstrassa mamy

1 —
[f(@) 1]

dla pewnej statej N. Zatem

g(xr) < N,

7 jednostajnej ciagtosci dla ¢ = % mozna znalez¢ liczbe 4, dla ktorej

-] <8 = |f(e) ~ fo)] < 1

Dzielimy przedzial na n réwnych czesci punktami ax, = a + b’T‘lk tak, aby
bea < 4. Zatem |f(ay) — flap-1] < %. Mamy f(ao) < | < f(a,). Niech k
bedzie najmniejszym wskaznikiem, dla ktorego [ < f(ax). Wtedy f(ar_1) <
[ < f(ax). Poniewaz |f(ay) — f(ar—1| < w, to |f(ar) — ] < %. Otrzymujemy

sprzecznosé z (3.4). O

Whniosek 3.20. Funkcja cigglta na przedziale domknietym przyjmuje wszyst-
kie wartosci pomiedzy swoimi kresami dolnym @ gornym.
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Dowdéd. 7 twierdzenia Weierstrassa istniejg punkty c i d takie, ze f(c¢) =m i
f(d) = M. Z wlasnosci Darboux zastosowanej do przedzialu pomiedzy ¢ i d
funkcja przyjmuje wszystkie wartosci pomiedzy m i M. O]

Przyktady.
(a) Chcemy rozwigzaé réwnanie
w(r) = 2®+22° + 2 — 3 =0.

Mamy w(0) = —3 1 w(l) = 1. Z wlasnosci Darboux w(xy) = 0 dla
pewnego punktu zy pomiedzy 0 i 1. Poniewaz w(%) < 0, to mozna
znalez¢ rozwigzanie pomiedzy % il.

(b)

sint 0<|z| <1,
T) = r
/(@) {0, x = 0.

Funkcja ma wlasno$¢ Darboux mimo, ze nie jest ciagta w punkcie 0.

Twierdzenie 3.21. Funkcja monotoniczna w przedziale [a, b] jest ciggla wte-
dy i tylko wtedy, gdy ma wtasnosé Darbouz.

Lemat 3.22. Funkcja monotoniczna posiada granice jednostronne w kazdym
punkcie.

Dowadd. Pokazemy, ze

lim f(x) = inf f(x)

r—ct x>c
dla dowolnej funkcji rosnacej. Dla x > ¢ mamy f(x) > f(c), zatem a :=
ir>1f f(z) > f(c). Dla liczby € > 0 istnieje argument xy > ¢ spelniajacy
f(xg) < a+e. Wtedy dla ¢ < < xg mamy a < f(x) < f(zg) < a+e.
Zatem |f(x) — al < e. O

Dowdd twierdzenia. Rozwazmy funkcje rosnaca f(x) i punkt ¢ wewnatrz [a, b].
Nieciagtos¢ oznacza, ze przynajmniej jedna z nieréwnosci

lim f(z) < f(c) < lim f(x)

Tr—c

jest ostra. W kazdym przypadku funkcja nie miataby wtedy wtasnosci Dar-
boux. 0
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Definicja 3.23. Méwimy, Ze funkcja f(x) jest réznowartosciowa na podzbio-
rze E C R, jesli dla dwu argumentow x1 # xo z E mamy f(x1) # f(x2).

Niech F' = {f(x) : € E} dla funkcji r6znowartosciowej. Wtedy dla
wartosci y € F' istnieje jedyny element = € FE taki, ze f(x) = y. Mozemy
okresli¢ g(y) = x. Wtedy g(f(x)) =z oraz f(g(y)) = v.

Twierdzenie 3.24. Funkcja ciggla i réznowartosciowa jest monotoniczna.

Dowaod. Zatézmy, ze f nie jest monotoniczna. To oznacza, ze mozna zna-
lez¢ trzy argumenty x; < xo < xz spetniajace f(z1) < f(z2) > f(x3) albo
f(z1) > f(x2) < f(x3). Tzn. f(x2) nie lezy pomiedzy f(z1) i f(x3). Rozwaz-
my przypadek f(z;) < f(z2) > f(z3). Oznaczmy a = max{f(z1), f(x2)}.
Z wtasnosci Darboux wartosci z przedziatu [« f(z2)] sa przyjete dwukrotnie
przez funkcje f, raz w przedziale (z1, x5) i drugi raz w przedziale (xq, z3). O

Twierdzenie 3.25 (o funkcji odwrotnej). Jesli funkcja f(x) jest ciggla i
réznowartosciowa na przedziale |a, b], to funkcja odwrotna g(y) jest ciggla na
przedziale [m, M|, gdzie m = inf f(x) oraz M = sup f(z).
a<z<h aLz<h

Dowdd. Wiemy, ze f(x) jest SciSle monotoniczna. Przyjmijmy, ze f(x) jest
rosngca. Wtedy funkcja odwrotna tez jest rosnaca na przedziale [m, M]. Dla
ciagtosci wystarczy zatem pokazaé¢ wlasnos¢ Darboux. Niech y; < yo oraz
9(y1) < ¢ < g(y2). Trzeba znalezé argument y taki, ze g(y) = c¢. Naktadamy
na nier6wnos¢ funkcje f i otrzymujemy

= flaly)) < fle) < fg(2)) = 2.

~——
Y

O

Dalej g(y) = g(f(c)) = c.

Przyktad. Dla funkcji f(z) = 2™, 0 < x < M funkcja odwrotna jest g(y) =
VY, 0 <y < VM. Poniewaz M jest dowolng dodatnig liczba, to g(y) = /¥y
jest ciagta na [0, 00).
3.6 Scisle wprowadzenie funkcji wyktadniczej
Ustalmy liczbe a > 1. Dla liczb wymiernych w € Q okreslamy

a“’:(ap)é, jes’liwzg, qgeN,peZ.

Wynik nie zalezy od przedstawienia liczby w tej postaci.
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Definicja 3.26. Podzbior E C R nazywamy gestym jesl dla dowolnej liczby
x € R istnieje ciqg liczb a, € E zbiezny do x.

Zbior liczby wymiernych jest gesty w R. Rzeczywiscie, dla x € R mamy
nr — 1 < [nz] < nx. Zatem

_ 1 _ [na]
x n<n<x.

To oznacza, ze [n—f] — .
n

Lemat 3.27. Jesli funkcje g(x) i h(x) sq ciggle na R oraz g(a) = h(a) dla
punktow a z gestego podzbioru E C R, to g(x) = h(x).

Dowadd. Dla x € R bierzemy ciag a, punktéow z E zbiezny do x. Wtedy

g(x) = li};ﬂg(an) = lim h(a,) = h(z).

Okreslamy
F(z) = supa®.

weQ
w<x

Wtedy F(x) jest funkcja $cisle rosnaca. Istotnie, niech x; < z5. Mozna zna-
lezé liczby wymierne wq, ws takie, ze x1 < wy; < we < x9. Wtedy

F(z1) < a™ < a" < F(x,).

Zbadamy ciaglosé funkcji F'(z). Dla liczby x istnieje ciag liczb wymiernych
w, spetniajacy
Wy, < Ty < Wy, + %
_ [nzo]

Np. w,, = — % Obliczamy

n

2
lim F(z) = lim F(w, + 2) = lim a’tn

I—>$g

= lim a™" lign(cﬂ)% = lima"" = lim F(z).

T—T

Lemat 3.28. F(z +y) = F(x)F(y).
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Dowdd. Niech w, T, Uy —— Y, gdzie wy,, v, € Q. Wtedy
F(z +y) = lim F(w, +v,) = lima"" ™" = lima"”"a™
= lim a*" lim ¢ = lim F(w,) lim F(v,) = F(z)F(y).
UJ

F(z) nazywamy funkcja wyktadnicza. Funkcja wyktadnicza ma nastepu-
jace wlasnosci (dla a > 1).

(1) Fz+y) = F(z)F(y).
(2) F(z) < F(y), dla = < y.
(3) F(1) = a.

(4) F(z) jest ciagha.

Mozna udowodnié, ze powyzsze wlasnosci okreslajg funkcje wyktadniczg w
sposéb jednoznaczny. Przyjmujemy oznaczenie F(x) = a®. Mamy

= 0.

: . ) 1
lim ¢* =00, lim o= lim

T—00 T——00 r——00 %

Funkcje odwrotna, okreslona na potprostej (0,00) nazywamy logarytmem
przy podstawie a i oznaczamy symbolem log, .
4 Ciagi i szeregi funkcyjne
Definicja 4.1. Niech f,, bedzie ciggiem funkcji okreslonych na A C R, np.
A =[a,b], [a,00), (a,b). Méwimy, Ze cigg f, jest zbiezny punktowo do funkcji
f, jesli dla kazdego punktu x ze zbioru A mamy f,(z) — f(z).

W zapisie kwantyfikatorowym definicja przybiera postaé

Ve>0Vexe AINVn>N{|f.(z) - f(x)] <e}

Prog N zalezy od punktu z i od e.
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Definicja 4.2. Mowimy, Ze cigg f, jest zbieiny jednostagnie do funkcji f
na zbiorze A, jesli

Ve>03aNVee AVn> N {|fu(z) — f(z)] <e}.
Uzywamy zapisu f, = f.

Tym razem prog N nie zalezy od x, jest uniwersalny dla wszystkich punk-
tow ze zbioru A.
Co oznacza warunek

Vee AVn> N{|f.(zx) = f(x)|<e}?
Po przeksztatceniu otrzymamy
Vee AVn> N {f(x) —e < fulz) < f(x) +£}.

Tzn. od pewnego miejsca (dla n > N) wykresy funkcji f,(z) leza w pasie o
promieniu € wokol wykresu funkcji f(z).

Przyktlad. f,(z) =2", 0 <z < 1.

limz" =
n

{0 0<x<1u:f@»

1, z=1.

Czy mozliwa jest zbieznos¢ jednostajna ? Niech ¢ = % W pasie o promieniu
% wokot wykresu funkeji f nie ma wykresu zadnej funkcji ciagte;j.

Niech f,(z) = 2™, 0 < z < a < 1. Wtedy ciag f, jest jednostajnie zbiezny
do 0. Rzeczywidcie, dla ¢ > 0 istnieje liczba naturalna N, dla ktérej oV < e.
Wtedy dlan > N i0 <z < a mamy

0< fulz) =2"<a" <ad" <e.

Przyktad.
nx 0<z< %,
fa@)=12—nz L<z<2
0 2<r< L

Mamy f,(x) — 0 dla 0 < x < 1. Nie ma jednak zbieznosci jednostajnej,

bo f.(1) = 1. W pasie o promieniu ; wokol zera nie ma wykresu zadnej z

2
funkcji f,.
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Twierdzenie 4.3. Granica jednostajnie zbieinego ciggu funkcyi ciggtych jest
funkcjq cigglq.

Dowdéd. Zatézmy, ze ciag f,(x) jest zbiezny jednostajnie do funkcji f(x).
Sprawdzamy ciggtos¢ funkcji f w punkcie xq. Ustalmy liczbe ¢ > 0. Z za-
lozenia istnieje prog N, taki, ze dla n > N mamy |f,(z) — f(z)] < 5. W

g .
szczegbdlnosci
3

frsa(@) = F(@)] < 5.

Z ciagtosci funkcji fyq istnieje liczba § > 0 taka, ze dla |x — 2| < 6 mamy

|fN+1(=T) - fN+1(ZE())| < %

Zatem dla |z — xo| < § otrzymujemy

|f(2)=f(xo)| < |f(x)=fnea(@) [+ v (@) = fnra(@o) [+ fv i (o) — fv s (20)]

<E+§+E—€
3 3 3

]

Whiosek 4.4. Jesli cigg funkcyi ciggtych f, jest zbieiny punktowo do funkcyi
f, ale f nie jest ciggla, to cigg f, nie jest zbieiny jednostajnie.

Przyktad. f(z) = 2", 0 < x < 1. Granica punktowa nie jest funkcja ciagla.

Twierdzenie 4.5. Zaloimy, Ze istnieje cigg liczb an > 0 taki, ze ap — 0
oraz
|fn(x> - f(x)l <a, IE A.

Wtedy ciqg f, jest zbiezny do funkcji f jednostajnie na zbiorze A.

Przyktady.
(a) fo(z) = 1f , > 0. Mamy f,(0) = 0. Dla z > 0 szacujemy
na
1
fulz) < T~ 2 Zatem
nr n

0< fulz) <
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(b) fn(x):x”—x"+1,0<x<1.D1a0<x<1—ﬁmamy

)"

0< fulz)=2"(1—2) <2" < (1-—

S

Zkoleidlal— L <z<1

n

o 9

< falz) =2"(1—-2)<1—-2<

5

Zatem dla 0 < x < 1 uzyskujemy

0< fale) (1= )"+ 7 — 0,

n

bo
(1= = [ - v

Twierdzenie 4.6 (warunek Cauchy’ego zbieznosci jednostajnej). Cigg funk-
cji fn(x) jest jednostajnie zbieiny na zbiorze A wtedy i tylko wtedy, gdy

Ve>03INVaexe AVn,m> N {|fu(z) — f(x)] <e}.
Uwaga. Intuicyjnie oznacza to, ze jesli n i m sg duze, to wykresy funkcji f,
i fn leza blisko siebie.

Dowdd. (<). Z zalozenia dla kazdego punktu x z A ciag liczbowy f,(z)
spelia warunek Cauchy’ego. Zatem f,(x) jest zbiezny. Oznaczmy f(r) =
ligbn fa(z). Checemy pokazaé, ze f, = f. Niech € > 0. Z zalozenia istnieje prog

N taki, ze dla n,m > N mamy
|fu(z) = fm(@)] <5, z €A
Wtedy dla n > N otrzymujemy
[fn(2) = f(2)] = lim [ fo(2) = fm(2)] < § <e.
O

Twierdzenie 4.7 (Dini). Niech f,(x) bedzie monotonicznym ciggiem funk-
cji ciaglych okreslonych na przedziale [a,b], tzn. spelniony jest jeden z dwu
warunkow:
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(a) fo(z) < froy1(z) dlaa <z <b neN.
(b) fu(z) = fori(z) dlaa <x<b néeN.

Zalozmy, ze f, jest zbieiny punktowo do funkcji f cigglej na [a,b]. Wtedy
zbieinosé f, do f jest jednostajna.

Dowdd. Zatézmy, ze f,(x) / f(z). Oznaczmy g, (x) = f(x) — fu(x). Wtedy
gn(2) \ 0. Trzeba pokazac ze gn :; 0. Zal6zmy nie wprost, ze g, ﬁ 0.

To oznacza ze istnieje liczba € > 0 taka ze dla dowolnego wyboru hczby
naturalnej N istnieje liczba naturalna n > N oraz punkt xy w [a, ] takie,
ze gn(zy) = €. Wtedy

gnii(en) > galan) > ¢, dlan> N,

Na podstawie twierdzenia Bolzano-Weierstrassa mozemy wybra¢ podciag
zbiezny zy, . Oznaczmy o = lilgn zy,. Wtedy dla m < Nj, otrzymujemy

Im(TN,) 2 gns1(TN,) = €.

Przechodzimy do granicy, gdy k — oo aby uzyskac g,,(x¢) = lilgn gm(znN,) > €.

Ale g (7o) — 0, co daje sprzecznosc.

Definicja 4.8. Mowimy, Ze szereg an(x) jest jednostajnie zbiezny dla

n=1

x € A, jesli cigg sum czesSciowych s, (z Z fr(x) jest jednostajnie zbiezny.

Przyktad. Z ", 0 <z < 5. Mamy

n=1

<L
2"

n
p =T
= [ h—

Sprawdzamy zbiezno$¢ jednostajng

1 1
T ™t on+1 1

S(I) 11—z 11—z 1-— N
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Twierdzenie 4.9 (Warunek Cauchy’ego). Szereg Y fo(z) jest jednostajnie
n=1

zbiezny wtedy 1 tylko wtedy, gdy

Ve>03INVr e AVn>m >N {|frs1(2) + frnsa(z) + ... + fulz)| < e}

Dowad.
$n(T) = sm(2) = frns1(2) + frpa(z) + .. 4 ful2).
O

Twierdzenie 4.10 (kryterium Weierstrassa o majoryzacji). Jesli szereg licz-
oo

bowy > a, o wyrazach nieujemnych jest zbiezny oraz | fo(2)| < a, dlax € A,
n=1

to szereg Z fu(z) jest zbiezny jednostajnie i bezwzglednie dla x € A.
n=1

Dowadd. Sprawdzamy warunek Cauchy’ego. Dla n > m mamy

| frm41(@) + fint2(@) + .+ ful@)] < [frr (@) + frs2(@)] + ...+ [ful2)]
S Umt1 + Ay + ..o+ Ay

Teze¢ uzyskujemy z warunku Cauchy’ego dla szeregu Z Q. [

n=1

[e.e]
Twierdzenie 4.11. Jesli funkcje f,(x) sq ciggle oraz szereq Y fo(x) jest

n=1
zbiezny jednostajnie na A, to suma szeregu s(xr) = Z ful(z) jest funkcjq
n=1

cigglq na A.

n

Przyktad. Z x—| Szereg jest zbiezny dla wszystkich wartosci x np. z kry-
“— n!

terium d’Alemberta. Rozwazmy |z| < a. Wtedy

n n

i a

ol

n!
7, kryterium Weierstrassa szereg jest zbiezny jednostajnie i bezwzglednie w
przedziale [—a, a]. Suma szeregu reprezentuje wiec funkcje ciagta na R, bo a
jest dowolng dodatnig liczbg. Oznaczmy

OO:L,TL

exp(z) =) —.
= n!
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Wtedy exp(0) = 1 oraz

1 1 1 1
eXp(l):1+ﬂ+i+§+...+m+...—

|
o

Korzystajac z mnozenia szeregéw metoda Cauchy’ego otrzymamy

expl)exply) =3 13 =3 >
(

n=0 = n=0 k=0
=33 (Ve = S ey
n=0 """ k=0 n=0 )

W oparciu o podrozdziat 3.6 z whasnosci funkeji exp(z) wynika, ze exp(z) =
e”. Udowodnilismy wiegc, ze

- o mn
e’ = —.
— n!
Przyktlady.
> sin nx
(o) fa) =3 "5 w e R
n=1
sin nx 1
n2 | S p2

Zatem f(x) jest funkcja ciagla.

>, sinnx
(b) g(z) = >
n=1
Dirichleta. Mozna pokazaé¢ analizujac dowod twierdzenia Dirichleta i
pierwszy przyktad po tym twierdzeniu, ze zbieznos¢ jest jednostajna
dla |z — 2k7| > ¢ > 0.

, x € R. Szereg jest zbiezny dla x € R z kryterium

o0
Definicja 4.12. Szeregi postaci Z a,x" nazywamy potegowymi.

n=0

Przyklad. Szereg ) z" jest zbiezny tylko dla |z| < 1. Méwimy wtedy, ze
n=1
liczba 1 jest promieniem zbieznosci tego szeregu.
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[e.o]

Definicja 4.13. Promieniem zbiezZnosci szerequ Z a,x" nazywamy kres gor-
n=0
ny wartosci bezwglednych liczb x, dla ktorych szereg jest zbiezny.

[e'e] (_1)n+1xn

(a) >

n=1

. Znajdziemy promien zbieznosci z kryterium d’Alemberta.

n
(_1)n+1xn

—1)nt2entl 1
s = (14 2) bl o lal.
n+1 n n

Dla |z| < 1 szereg jest bezwzglednie zbiezny a dla |z| > 1 jest rozbiezny.
Promien zbiezno$ci wynosi 1.

e} n

(b) > — - Promien zbieznosci wynosi oo.
n=0 """
o
(¢) Y nlz™. Promieni zbieznosci wynosi 0.
n=0
o
Twierdzenie 4.14. Jesli R > 0 jest promieniem zbieznosci szerequ Z apx",
n=0

to szereg jest zbiezny dla |x| < R i rozbiezny dla |z| > R. Ponadto zbieznosé
jest jednostajna w kazdym przedziale [—r,r] dla 0 < r < R.

Dowdd. 7 okredlenia liczby R szereg jest rozbiezny dla |z| > R. Kazda liczba
|| < R lezy w pewnym przedziale [—r,r] dla r < R, (np. r = |z|). Z

okreslenia promienia zbieznosci istnieje liczba g spelniajaca r < |zg] < R
oo
oraz szereg Y  a,xy jest zbiezny. Wtedy |a,zf| — 0. Zatem |a,zf| < M
n
n=0

dla pewnej dodatniej liczby M. Niech Niech |z| < r. Wtedy

" (T) |
i |JZO|
Ale IJTI < 1. Zatem z kryterium Weierstrassa uzyskujemy jednostajng i bez-

wzgledna zbiezno$é¢ w przedziale [—r, r]. O

|anxn| = |anxg|

Uwaga. Z dowodu wynika, ze

R = sup {|a:] : Z a,x" jest zbieZny}

n=0

= sup{|z| : a,z" jest ograniczony} (4.1)
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‘ 1 , : o ,
Twierdzenie 4.15. (i) R = ————, 0 ile granica wyraZenia w mia-
lim,, {/|a,|

nowniku istnieje.

(i) R =

, 0 tle granica wyrazenia w mianowniku istnieje.

W obu przypadkach dopuszczamy granice rowng 0 lub oo. Wtedy R = oo
lub R = 0, odpowiednio.

Przyktlady.
o x?’l/ . . T B
(a) T;ﬁ Mamy lim (/-5 = 1.
=1 2 . . , .
(b) Z Q—nx” . Wtedy ag914 = 0. Nie mozemy zastosowaé¢ poprzedniego
n=0

twierdzenia. Stosujemy kryterium Cauchy’ego

1 . 0 |zl <1,
\n/27\$’"2 = glal* = 3 lzl=1

oo x| > 1.
Zatem R = 1.
oo .nl
(c) Y I—' Z kryterium d’Alemberta
L
DL || ! L 0 |z <1,
(n+ 1! | n+1 noloo x| > 1.

Uwaga. Mozna udowodni¢, ze R = Rzeczywiscie, niech A =

1
lim sup 1Y |an|.
{]z| : apx™ jest ograniczony}. Dla z € A mamy |a,z"| < M dla pewnej liczby
M > 0. Zatem
Ml/n
S fe
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Niech o oznacza najwiekszy punkt skupienia ciagu |a, |*/". Wtedy |a,, |*/™ —

a dla pewnego podciagu liczba naturalnych ny. Zatem

MY/ 1
<—— — =
’x‘ X |a/nk‘1/nk T Q

Na podstawie (4.1) otrzymujemy

1 1
R —=——"7-—"-—.
S o limsup|a,|V/"
7 kolei jesli
1
> e —
= lim sup |a,|'/™’

to lim sup |anx”|1/" > 1. To oznacza, ze ciag a,x" nie jest ograniczony.

Twierdzenie 4.16. Suma szeregu s(x Zana: jest funkcjg ciggle w
n=0

przedziale (—R, R).
Dowaéd. s,(z) = Zakxk jest funkcja ciagla. Wiemy, ze s, () :i s(z) dla

—r <x<rdla dowolneJ liczby 0 < r < R. Stad otrzymujemy teZQ O

Twierdzenie 4.17 (Abel). Jesli szereg f(x Zanx jest zbiezny dla

n=0
xr = a, to funkcja f(x) jest lewostronnie ciggla w punkcie x = a jesli a > 0 1
prawostronnie ciggta, jesli a < 0.

Dowéd. Wystarczy rozwazy¢ przypadek a = 1. Chcemy udowodni¢, ze

lim f(x Z .-

rz—1—

Oznaczmy s, = Z apis= Z a,. Wtedy (przyjmujac s_; = 0 otrzymujemy
k=0 n=0

n n

n n—1 n
= Z spt — Z spat = (1 —2) Z spr® + s,z
k=0 k=0

k=0
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Dla 0 < x < 1 przechodzimy do granicy w podkreslonych wyrazeniach.
Poniewaz ciag s, jest ograniczony, to s,z" ! — 0. Zatem

o0 o
=> apz" =(1—xz)) spa”
n=0 n=0

Dalej
@)= f1) = (1=0) 3 s = s
(1—2) anx —(1—-2) st =(1—x) i

Otrzymujemy wiec

N o0
|f(@) = fOI< A=) [sp—sla" +(1—x) > |sn—s|a
n=0 n=N+1
Dla ¢ > 0 istnieje liczba naturalna N taka, ze |s, — s| < /2. Ciag s, jest
ograniczony wiec |s,| < M dla pewnej liczby M > 0. Wtedy

[e.e]

|f<x)—f(1)|<2M(1—$)Z_:0$"_|_%(1_$)Z‘;xn
<2M(N +1)(1 —x) +

£
2°

Jesli o — 1] < s to [F(@) — F(D)] <e. O

5 Pochodne

Przez punkt P i Q # P okregu przeprowadzamy sieczng. Gdy punkt @)
zbliza si¢ do punktu P, to przyjmujemy, ze graniczne polozenie siecznych
okresla potozenie stycznej do okregu w punkcie P. Bedziemy zajmowaé sie
stycznymi do wykresow funkcji y = f(z). Checemy znalezé styczng do wykresu
w punkcie (a, f(a)). Wybierzmy inny punkt wykresu (z, f(x)). Nachylenie
(wspo6tezynnik kierunkowy) siecznej przechodzacej przez punkty (a, f(a)) i

(z, f(x)) wynosi
f(&) - fla)

r—a
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Zatem nachylenie stycznej wyraza si¢ wzorem

i 1@) = )

r—a T — Q

Wyrazenie pod granicg nazywamy ilorazem réznicowym.

Obiekt porusza sie po linii pionowej i jego wysoko$¢ w chwili ¢t wynosi
h(t). Chcemy obliczy¢ predkosé w chwili t = a. Wybieramy moment czasu ¢
blisko a, ale t # a (np. t > a). Srednia predko$é w przedziale czasu od a do
t wynosi

h(t) — h(a)
t—a
Predkos¢ chwilowa okreslona jest wzorem
h(t) —h
lign 70 = @)

t—ma  t—a

Definicja 5.1. Mdéwimy, Ze funkcja f(z) okreslona w pewnym przedziale wo-
kot punktu a ma pochodng w tym punkcie, jesli istnieje granica

) — tim 1) = 1@

e —q

Uwaga. Liczba f’(a) okresla chwilowe tempo zmiany wartosci funkcji w
punkcie a.

Jedli f'(a) istnieje, to rownanie stycznej do wykresu funkcji y = f(z) w
punkcie (a, f(a)) ma postaé

y— fla) = f(a)(z — a).
Przyktad. Chcemy znalezé réwnanie stycznej do wykresu y = /& w punkcie

(2,4/2). Mamy

N R e S S U
v=2 (Ve V2(Vrt+v2)  VEtv2 e 2v2

Roéwnanie stycznej to
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Definicja 5.2. Jezeli funkcja f(x) jest okreslona w przedziale [a,a + ) (lub
(a — 0,a)) oraz istnieje granica

(@) = tim 12 =10 ( lub f/(a) = lim fo)"j(a)>,
T—a~ r—a
to mowimy, Ze istnieje pochodna prawostronna (lub lewostronna) w punkcie

a.

Przyktad. Zrzucamy kamien z wysokosci 20m. Jaka jest predkos¢ kamienia
w chwili uderzenia w ziemie 7 Mamy

20 — 512 0<t<2,
h(t) =
0 t>2.
Trzeba obliczyé¢ b’ (2).
2 20 — 5¢t? — 2
B (2) = lim h(t) — n(2) _ 0—5¢ _ lim 5(t—2)(t + )_20'
t—2— t— 2 t—2— — t—2— f/—/?

Oczywiscie b/, (2) = 0.

Twierdzenie 5.3. Jesli funkcja f(x) ma pochodng w punkcie a, to jest w
tym punkcie ciggla.

Dowad.
fo) — fa) = TOTO o o) g
No
N i)

Twierdzenie 5.4. Zaldzmy, ze f'(a) i ¢'(a) istniejg. Wtedy
(1) (f £9)(a) = f'(a) £ g'(a).
(i) (fg9)'(a) = f'(a)g(a) + f(a)g (a).
NGAY o) = £ (@g(a) — fa)g'(a)
@i (1) (o
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Dowad. (iii)

Przyktlady.
(a) f(@)=c. f'(a)=0.
(b) fulx)=2"n> 1.

" —a”

fr(a) = lim = lim (2" ' +az" 2 ++a’2" P+ 4" Prta )
=ad"'+ad" '+, +ad" =na"
n skladnikéw
(©) gule) =27 = ——, 2 £0
¢) gp(z)=a"=——
fu()
1\ —fix) —na"!
/ n —n—1
gn(ﬂf = = = = —Nnx .
) (fn<x>> Jule? ~ am

Uwaga. Przyktady (b) i (c) daja (z") = na" ! dlan € Z.
Czasami stosuje si¢ inny zapis dla pochodnej. Przyjmujac h = x—a mamy
h) —
f(a) = pim O T10)

h—0

Ile wynosi lim n? [f(2 + %) — f(2)} ? To wyrazenie jest réwne
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(d)

6achh —e* eh -1
T\ __ 12 — LT — T
(e7) = fim — clim— =
-1
(e) (sinz) = cosz. Rzeczywiscie
sin(z +h) —sinz _ sinz(cosh —1) 4 coswsinh
h - h
. cosh—1 sin b
=S8Ny ———— +COsT —> COS X.
h h h—0
—_————
—0 7
cosh—1  cos?h—1 sinh  h
pr— = — _
h h(cosh +1) h? cosh+1 h—0

Uwaga. Niech f(z) = g(x +b). Wtedy f'(x) = ¢'(x + b). Istotnie

() = lim L@ EO) Fh) =gl +0)

o
lim . =g (x+0).
(f) (cosz)' = —sinx, bo cosx = sin(z + §) zatem
(cosx) = sin'(z + g) = cos(z + g) = —sinuz.
sinz\’ cos’z +sin’z b s
(g) (tgz) = ( ) = 5 =4 cos?x T # — +kn.
cos T cos® x 1+te2a 2

1
(h) z >0, (logz)" = —. Uzasadnienie:
T

. log(z4+h)—logz 1 . log(1+2) 1 log(l+t)
lim = — lim ———*= lim ———~+
h—0 h T h—O0 b T t—0

Niech u = log(1 +t). Wtedy v — 0, gdy ¢t — 0. Zatem

log(1+t¢
limM = lim v 1.
t—0 t u—0 g% — 1
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Twierdzenie 5.5 (Reguta tancucha). Jesli funkcja f(x) jest rézniczkowalna
w punkcie x = a, natomiast funkcja g(y) jest rézniczkowalna w punkcie b =
f(a), to funkcja ztoZona (g o f)(z) = g(f(x)) jest rozniczkowalna w punkcie
T =a oraz

(g0 f)(a) =g'(b)f (a) = g'(f(a))['(a). (5.1)

Dowdd. Niesciste, ale obrazowe uzasadnienie jest nastepujace.

g(f(x)) —9(f(a)) _ g(f(x)) = 9(f(a)) f(z) - f(a)7

r—a f(x) = f(a) r—a

przy zatozeniu f(z) # f(a). Dla x — a mamy f(z) — f(a). Zatem pierwszy
utamek dazy do ¢'(f(a)) a drugi do f'(a).
Przejdziemy do $cistego dowodu. Z zatozenia mamy

Jw = f(@) +ul), u(z) =0
Podobnie b
PZI) — (1) + olw). o) — 0.

Mamy zatem

f@) = fla) = (x — a) [f'(a) +

9(y) —g(b) = (y =) [g'(b) + v(y)]-
Podstawmy y = f(x) i b= f(a).

9(f(x)) = g(f(a)) = [f(z) = f(a)llg'(f(a)) + v(f(x))]
= (z = a)[f(a) + u(@)]lg'(f(a)) + v(f(2))].

Otrzymamy

Czyli

D = ITEO _ () 4 ()l () + ()]
Gdy = — a, to u(x) — 0. Ponadto y = f(z) — f(a) = b. Zatem v(f(z)) —
0. Ostatecznie w granicy otrzymujemy f’(a)g'(f(a)). O

Uwaga. Wzor (5.1) mozna tez zapisa¢ w postaci

(go f)(z) =g () f'(x), gdzey=f(z).

Przyktady.
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(a) Obliczy¢ (logsinx)’.

y= f(zr) =sinz  f'(xr) =cosz
1
9(y) = logy 9 =
Zatem
Y 1
(logsinz) = —— cosx = ctg .

(b) h(x) = cos(z®). h'(x) = — sin(x°) 5z*.
5.1 Zapis Leibniza

Ay = f(z + Az) — f(z).

Ay
Iloraz A reprezentuje stosunek zmiany wartosci y do zmiany wartosci x.
T

Ay dy
/
f'(z) = lglﬁm0 T dy

Prawa strona jest oznaczeniem pochodnej w zapisie Leibniza.
Zobaczmy jak wyglada reguta tancucha w tym zapisie. Wprowadzamy
oznaczenia u = f(x), y = g(u). Wtedy

du_

) Y _ gy = g(f()).

du y=f(z)
Dalej

Wzér (5.1) przyjmuje postaé
dy dy du B
de  du dx’ u=f(z)

Przyktady.

(a) y = sin®z. Niech u = sinz, y = u®. Wtedy
dy dy du

2 =2 —8u"cosx = 8sin’ rcoszx.

dr  du dx
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(b) y = log(cos(z?* + 1)). Niech u = 2*> + 1, v = cosu, y = log v.

dy _dydvdu_1

dr  dvdudx v

2z sin(z? + 1)
cos(z2+1)

(—sinu) 2z =

Definicja 5.6. Mowimy, Ze funkcja f(x) jest réiniczkowalna w przedziale
(a,b) jesli f'(x) istnieje w kazdym punkcie x z (a,b). Méwimy, Ze funkcja
f(x) jest rézniczkowalna w przedziale [a,b] jesli dodatkowo istniejq f', (a) oraz

JL(b).
Przyktady.

o1
rsin x#0,

(a) fx) =

0 x = 0.
Dla x # 0 pochodna istnieje i wynosi
1 —1 1 1 1 1
f'(x) =sin ~ + 2 — cos — = sin — — ~ cos —.
T T T r x

Sprawdzimy istnienie pochodnej w 0.

f@)—f0) _ 1

Otrzymane wyrazenie nie ma granicy, gdy x — 0.

(b) flz) = {gQSini x%g, Dla = # 0 mamy
r=0.
f'(z) = 2xsin i oS ;
Dalej
f(x) — f(0)

= zsin — — 0.
xr xr x—0

Zatem

2rsinlcost x#0
/Q? — T T )
/(@) {0 x=0.

Zauwazmy, ze funkcja f'(z) nie ma granicy w punkcie 0.
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Twierdzenie 5.7. Niech g oznacza funkcje odwrotng do funkcy f. Zaloz-
my, ze f'(a) istnieje oraz f'(a) # 0. Wtedy funkcja g jest rézniczkowalna w
punkcie b = f(a) oraz

s 1
70 = pay
Uwaga. Przy oznaczeniach g = =% a = f~1(b) mamy
—1\/ o 1
Oy
Dowdd. Dla y = f(z) mamy
9ly) —gb) _ xz—a

y=b  fl@) = fla)

Gdy y — b, to z ciagltosci funkeji g w punkcie b otrzymujemy g(y) — g(b),
czyli © — a. Zatem

i 9W) —9(0) _ 1 _ 1
yb o y—b ema flr) = fla)  fla)’

70 PN S S

Znajdziemy posta¢ wzoru na pochodng funkcji odwrotnej w zapisie Leib-
niza. Dla y = f(x) i z = ¢g(y) mamy

dy o dx o
7=/ (z), a9 (y)
Zatem
de _ 1
dy dy”
dx

Przyktady.
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(a) y =tgx, x = arctgy. Wtedy

de 1 1 1
dy dy  1+4+tg?x  1+y*
dx
W szczegdlnosci
, 1
(arctgt) =—.
t=1 2
(b) (arcsinz)’ = —=—==. Rzeczywiicie, niech y = sinz, —§ < x < 7.

V1—a?

Wtedy o = arcsiny, —1 < y < 1. Zatem

1 1 1 1
(arcsiny) = —— = = = ‘
sinfx  cosx /1 —sin?z V1-—192

W szczegélnosei (arcsinz)’| = 1.
=0
Jesli a jest katem nachylenia stycznej do wykresu funkcji y = f(x) w
punkcie (a, f(a)), to f'(a) = tg a. Przy zamianie z i y rolami kat 8 = § — «
okresla nachylenie wykresu x = ¢(y) (czyli tego samego wykresu) w punkcie
(9(b),) = (a, f(a)). Zatem

1Y — t0 B — to (T — o) — N
g'(b) =tg B =tg (5 a)—ctgoz—tga—f,(a>

5.2 Maxima 1 minima

Definicja 5.8. Zaldimy, ze funkcja f(x) jest okreslona w otoczeniu punktu
a i w pewnym przedziale (a — 0,a + §) mamy f(x) < f(a). Mowimy wtedy,
ze [ posiada lokalne maksimum w punkcie a. Jesli nierownosé jest ostra dla
x # a z przedziatu (a — 0,a + 0), to mamy do czynienia ze Scistym lokalnym
maksimum. Podobnie okresla sie lokalne minimum @ Sciste lokalne minimum.

Twierdzenie 5.9. Zalézmy, Ze funkcja f(x) jest rézniczkowalna i posiada
lokalne ekstremum w punkcie a. Wtedy f'(a) = 0.

Dowdéd. Zatézmy, ze w a wystepuje lokalne minimum. Wtedy dla a < z <

a + 0 mamy
f(z) — f(a)

r —a

> 0.
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Zatem

z—a™t r—a
Dla a — 6 < x < a mamy

fo) - @) _
r—a

czyli

z—at Tr—a
Stad f'(a) = 0. O

Definicja 5.10. Punktami krytycznym funkcji nazywamy punkty, w ktorych
pochodna nie istnieje lub istnieje i wtedy jest réwna 0 (punkty stacjonarne).

5.3 Metoda znajdowania wartosci najwiekszej i naj-
mniejszej funkcji ciaglej na przedziale [a, b]
Z twierdzenia Weierstrassa wiemy, ze istnieja punkty c i d w przedziale [a, b]
takie, ze
fle)= min fz),  f(d) = max f(z).

Zajmiemy si¢ potozeniem punktu c. Mamy nastepujace mozliwosci.
1. ¢=a lub ¢ = b, tzn. ¢ jest jednym z koncow przedziatu.
2.a<c<hb.

2(a) Pochodna w ¢ nie istnieje.
2(b) Pochodna w ¢ istnieje i f'(c) = 0, bo ¢ jest w szczegdlnosci mini-

mum lokalnym.

Reasumujac, wartosci m i M sa przyjete na koncach przedziatu lub w jakichs
punktach krytycznych. Aby wyznaczy¢ m i M wykonujemy nastepujgce czyn-
nosci.

(a) Znajdujemy wszystkie punkty krytyczne funkcji.

(b) Obliczamy wartosci funkcji w punktach krytycznych i na konicach prze-
dziatu.
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(c) Najwieksza z otrzymanych wartosci jest rowna M, a najmniejsza to m.

Przyktad. f(z) = 2%/3 — 2 = (2*)'/3 — z, [~1,1]. Obliczamy
f(z) = $(z*) 7232z — 1, x # 0.

Sprawdzamy istnienie pochodnej w 0.

f@) = fO) _ P -z Ty T

X X — 0. ¢]
z—0t

Zatem 0 jest punktem krytycznym. Rozwiazujemy réwnanie f'(z) = 0. Czyli

?)(1:2)2/39(: —1=0.

Stad x = %. Mamy
F(=1) =2, f(1) =0, f(0) =0, f() =3

Zatem m =01 M = 2.

Twierdzenie 5.11 (Rolle). Niech f(x) bedzie funkcjq ciggle na [a,b] i 16z
niczkowalng w (a,b). Jesli f(a) = f(b), to f'(c) = 0, w pewnym punkcie
a<c<hb.

Dowdd. Jedli f jest stala, tzn. f(z) = f(a), to f'(x) = 0. Jedli f nie jest stala,
to m < M. Zatem warto$¢ m lub M jest przyjeta w punkcie wewnetrznym
c. Ale wtedy f’(c) = 0. O

Twierdzenie 5.12 (Cauchy). Funkcje f(x) i g(z) sq ciggle w [a,b] i 16z
niczkowalne w (a,b), przy czym ¢'(x) # 0, dla a < x < b. Wtedy

f(b) = fla) _ f'(¢)

g(b) —g(a)  g(c)

dla pewnego punktu c, a < ¢ < b.
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Dowdd. Mamy g(a) # g(b), bo gdyby g(a) = g(b), to z twierdzenia Rolle’a
mielibysmy ¢'(¢) = 0 dla pewnego punktu a < ¢ < b. Okre$lmy funkcje

—oi— < lg(x) — g(a)].

Wtedy h(a) = h(b). Z twierdzenia Rolle’a otrzymujemy h'(c) = 0 dla pewngo
a<c<b Tzn.

f(0) = f(a) ,
0=—f"(c)+ J(c).
ANTORFOR
Po przeksztateceniu otrzymujemy teze. O]

Twierdzenie 5.13 (Lagrange, o wartosci sredniej). Jesli f(x) jest funkcjg
ciggle na [a,b] i rézniczkowalng w (a,b), to dla pewnego punktu a < ¢ < b

mamy
f(b) B f(a) _ f/(C)
b—a ‘
Dowéd. Stosujemy twierdzenie Cauchy’ego dla g(x) = z. O
Uwaga. Wyrazenie w jest wspotezynnikiem nachylenia siecznej prze-

chodzacej przez punkty (a, f(a)) i (b, f(b). Z kolei f'(c) jest wspolezynnikiem
nachylenia stycznej do wykresu w punkcie (¢, f(c¢)). Twierdzenie Lagrange’a
mowi zatem, ze w pewnym punkcie styczna do wykresu jest roéwnolegta do
siecznej.

Whniosek 5.14. Jesli f'(z) = 0 dla wszystkich a < x < b, to funkcja f(x)
jest stata.

Dowdéd. Niech a < x,y < b. Mozemy przyja¢ z < y. Wtedy

y—x
dla pewnego punktu x < z < y. Zatem f(z) = f(y). O

Whniosek 5.15. Jesli f'(z) = ¢'(z) dlaa <z < b, to f(z) = g(x) + ¢ dla
pewnej stalej c.

Dowéd. Dla h(zx) = f(z) — g(z) mamy h'(x) = 0, zatem h(x) = c. O
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Twierdzenie 5.16. Jesli f'(z) > 0 dla a < x < b, to f(x) jest funkcjq
rosngcq. Jesli f'(x) > 0 dla a < x < b, to f(x) jest Scisle rosngca.

Uwaga. Podobne twierdzenie jest prawdziwe dla przeciwnej nieréwnosci.

Dowéd. Niech a < z <y < b. Wtedy z twierdzenia Lagrange’a mamy

y—x
dla pewnego punktu z < z < y. Zatem f(y) > f(z). W przypadku f'(z) > 0
otrzymujemy f(y) > f(z). O

Uwaga. Jedli f(x) jest Scisle rosnaca, to nie znaczy, ze f'(x) > 0 dla kazdego

punktu z. Np. f(z) = 3.

Przyktad. Udowodnié, ze
(1+2)*>14ar, dlazx>-1, 2#0, a>1. (5.2)
Okreslamy
fle)=(142)* —azx —1.

Pomocniczo obliczamy

(ma)/ — (ealogx)/ — eocloga:g — Oz:L‘a_l, x> 0.

x

Zatem

fllo)=a(l+z)*  —a=all+2)""" 1]

Stad f'(z) > 0 dla z > 0 oraz f'(x) < 0 dla —1 < = < 0. To oznacza,
ze funkcja f(z) Scisle rosnie na poélprostej [0, 00) i $cisle maleje na (—1,0].
Whioskujemy, ze f(z) > f(0) dlaz > —1,2 # 0. Czyli (1+2)*—az—1>0
dla x > —1, z # 0.

5.4 Wyzsze pochodne

Definicja 5.17. Jesli f'(x) jest rézniczkowalna w punkcie a, to jej pochodng
oznaczamy symbolem

f”(a) — lim f/($) _ f/(a)

1 nazywamy drugg pochodng w punkcie a.
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Przyktady
(a) f(x) =sinz, f'(z) =coszx, f"(z) = —sinz.

(b) fla) = a2, f(x) = ba/2, f(a) = — Lo

Podobnie okreslamy nastepne pochodne. Czyli n-ta pochodna funkeji jest
pochodna (n — 1)-tej pochodnej. Uzywamy symbolu f™),

Przyktad
f(z) =sinzx f(x)=cosz  f'(z)=—sinzx
f"(x) = —cosx fW(x)=sinz [fC1) =sinax.
Przyspieszenie

Druga pochodng potozenia obiektu (poruszajacego sie po linii prostej) wzgle-
dem czasu nazywamy przyspieszeniem, czyli chwilowym tempem zmiany pred-
kosci. Srednie przys$pieszenie od chwili ¢ty do chwili ¢ wynosi

vu(t) — v(to)
t—ty
Wtedy
a(ty) = tlgg U@i : :O(to) = tli_)r% f,(ti : i:(to) = f"(to),

gdzie f(t) oznacza potozenie obiektu na prostej.

5.5 Robzniczkowanie niejawne
Funkcje w dotychczasowych przyktadach byty podane jawnym wzorem y =
2

f(z), np. y = o2 y = tgx. Zatézmy, ze y jest zwiagzane z x poprzez
x
roOwnanie, np.

23 4+ 3 = 2zy, (5.3)

przy czym y jest funkcja zmiennej x. Zatdézmy, ze y jest rozniczkowalna.
Chcemy obliczy¢ y'. Rézniczkujemy tozsamosé (5.3), czyli naktadamy d/dx
pamietajac, ze y = y(x). Otrzymamy

dy

dy dy
dx’

322 + 3y
x+ydx

=2y + 2z
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czyli
dy 2y —3a2?
dr 3y — 2z’

Przyktad. Zatozmy, ze y jest rézniczkowalng funkcjg zmiennej x spetniajaca

3y? # 2.

roOwnanie
3_ .4 2
' =y +x°siny + 1,

d
oraz y = 0 dla x = 1. Chcemy obliczy¢ d—y . Naktadamy pochodna d/dx
Tlz=1
na tozsamosc.

d d
3z% = 4y373J + 2z siny + 2° cosy—y. (5.4)
dz dx
Dalej
dy 3x? — 2xsiny
dr  4y3 + 22cosy’
dy e y . . dPy
Zatem —— = 3. Rézniczkujac tozsamosé (5.4) mozna obliczy¢ i

y=0

Uwaga. Oznaczenie Leibniza na wyzsze pochodne funkcji y = f(z)

F ) =

g w.
Przyktad. Znalez¢ styczng do wykresu funkcji y zadanej réwnaniem
Py =1

w punkcie (—%, ?) Obliczamy

d
2x+2yd—i —0.

Zatem
dy  x
dr vy’
dy 1 , :
Stad — Styczna ma zatem réwnanie

rz=—1/2 = :
dx y=v3/2 \/3

BLed)
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5.6 Related rates

Pompujemy balon w ksztalcie sfery. Wtedy objeto$¢ V' i promien r sa funk-
cjami czasu t zwigzanymi ze soba réwnaniem

4
V = mrd,
37T
Rézniczkujac réwnanie wzgledem ¢ otrzymamy
av dr
— =dmr® —. 5.5
at — "t (5:5)

Balon jest pompowany w tempie 10cm?/s. Jakie jest tempo zmiany pro-
mienia w momencie, gdy r = 10cm ? Niech ¢, oznacza moment czasu, gdy
r = 10. Do wzoru (5.5) podstawiamy ¢t = t,. Wtedy

dV dr
10 = — =4710° —| .
dt li=t, dt li=¢,
Zatem p )
r
il = 307 (cm/s).

Na odcinku drogi z ograniczeniem 60 km /h policja ustawita radar 5m od
drogi (za krzaczkami). Samochéd jedzie z predkoscia 90 km/h. Jaki bedzie
odczyt na radarze, gdy samochod znajdzie si¢ 20m od miejsca na drodze,
w poblizu ktorego ustawiono radar ? Niech y oznacza odlegto$¢ pojazdu od
radaru a x odlegtos$¢ pojazdu od odpowiadajacego miejsca na drodze. Wtedy

y? = 22+ 5% Chcemy znalezé d—gz w momencie, gdy x = 20 m. Rézniczkujemy

rownanie wzgledem ¢. Otrzymamy

dy dx
2y —= =21 —.
Yar =
Zatem
@ B x dx T dx

dt _Qazx/x2+5a.

Wiemy, ze fl—f = —90. Niech ty oznacza moment czasu, gdy =z = 20. Wtedy

dy 20

= —90——m=xxs ~ —87,3.
dt lt=t, v400 + 25
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Jaki jest pomiar na radarze, gdy x = 4 7 Oznaczmy przez t; ten moment
czasu.

dy 4
— = —90—= ~ —56, 22.
dt l1=t, V4l

5.7 Aproksymacja za pomocg stycznej

Rozwazamy funkcje f(x) = z'/3. Chcemy obliczy¢ /T, 1. Ogdlnie zatézmy,
ze f(x) jest rézniczkowalna w punkcie a, czyli

f(x) — f(a)

— f'(a).
r—a r—a
To oznacza, ze
f(l’) : f(a) ~ f’(a),
T —a

gdy x lezy blisko a. Otrzymujemy
f(@) = f(a) + f'(a)(x — a).

Prawa strona reprezentuje rownanie stycznej do wykresu w punkcie a. Oznacz-
my h =x — a. Wtedy

fla+h)= f(a)+h f'(a). (5.6)
Aby obliczy¢ przyblizong wartosé /1, 1 przyjmujemy a = 11 h = 0, 1. Mamy
fi(x) = 2723 zatem f'(1) = 1. Z (5.6) otrzymujemy
1
31,1%1+O,1~§:1,033....

Dla poréwnania doktadna wartos¢ wynosi

J1=1032....

5.8 Reguta de ’Hospitala

Twierdzenie 5.18 (Reguta de 'Hospitala). Zaldzmy, ze funkcje f(x) i g(x)
sq ciggle w [a,b) oraz rézniczkowalne w (a,b). Ponadto f(a) = g(a) =0 oraz
g (z) #0 dla a < x <b. Wtedy
/!
lim —f(x) = lim J'@)

it g(@)  emat g(a)

Y

o ile granica po prawej stronie istnieje.
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Uwaga. Analogiczne twierdzenie jest prawdziwe dla granicy lewostronnej i
dwustronne;j.

Dowéd. Niech x > a. Wtedy

dla pewnego &, a < £ < z. Gdy x — a™, to £ — a™. Zatem

g 1) _ 1y 10

2o g(z)  ema g(€)

Uwaga. Teza jest prawdziwa rowniez dla granicy niewtasciwe;j.

Przyktlady.
(a)

. 1l—-cosz @) .. sin 1 1
lim ——— = lim ———— = lim = -,
r—0 sin“x z—02sinxcosxy =—02cosx 2

Lepszym wyjsciem jest uzycie wzoréw trygonometrycznych

1—coscc_ 1 —cosz 1 1
sifz  1—costz 1+ cosz o—0 2
(b)
sin Tx . TCOSTX . w1 —x2cosmx
lim ——— = lim — = — lim = 0.

z—1— /1 — 2 z—1— ;fo T—1— T
Mozna tez obliczy¢ granice bezposrednio

sinrz_ sinw(l—2) V1-= i
Vi—z22  w(l—-2) JVi+z e \/5

=0.

vVsin x CosS T T COST

lm — = lim — = lim ——— = —o0.

a—n— log % z—m= 24/8in :10 = z—m 24y/sinx
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Whniosek 5.19. Zalozmy, ze funkcje f(x) i g(x) sq réiniczkowalne w prze-
dziale (a,00), ¢'(x) # 0 dla x > a, oraz xh_)rrolo flz) = whl& g(x) = 0. Wtedy

o @) )

R g(a) = g (o)

Y

o ile druga granica istnieje.
Dowéd. Mozemy przyjac, ze a > 1. Okreslmy funkcje
1 1 1 1
f() 0<y<-—, g() 0<y<-—,
F(y) = y a Gly)=4"\¥y a
0 y =0, 0 y=0.
Wtedy F i G sa rozmiczkowalne w przedziale (0,1) i ciggle w punkcie 0.

Rzeczywiscie
lim F(y) = lim f( )= lim f(z) =

y—0t y—0+ Tr—00
Dalej
f@) F&E) — I'(}) 1) ()
QCHOO 1’) y—>0+ g(;) y—>0+ —= g (;) y—0t g (i) T—00 ¢ (l‘)
[
Przyktad.
1
T _ 1, 2
lim x (W —arctgx) = lim ﬂ = lim _lta? lim — =1
x x?

Twierdzenie 5.20 (Reguta de I'Hospitala dla %2). Funkcje f(x) i g(x) sq
rozniczkowalne w (a,b) oraz ¢'(x) # 0 dla a < x < b. Zalézmy, ze

lim f(z) = lim, g(x) = oo.

z—at r—a™t

Witedy
/
lim —f(x) = lim f/(a:)’
z—at g($) z—at @ (l’)
o ile granica po prawej stronie istnieje.
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Uwaga. Analogiczne twierdzenie jest prawdziwe dla granic lewostronnych,
obustronnych i granic w +o0.
Uwaga. Przeksztatcenie

flx) _ g(@)™!

gle) — fla)™!

i uzycie Twierdzenia 5.18 nie bedzie skuteczne, bo

(o)) g(@) ()

g
(flx)=1) f(2) (9(2))?

Dowdd. Idea dowodu polega na tym, ze dla x blisko a wyrazenia f((x; oraz
g(x

M zachowuja sie podobnie. Niech a < x < xy. Wtedy

9(x) — g(o)

f(if) - f(ifo) f(l"o) f/(f) i f(iﬁo)
_ 9(x) = g(x0) (9()%) —9(xo) _ g(€)  g(x) —g(xo)
g(xo g(zo
M) — g(wo) M o) — oG

dla pewnego punktu & potozonego pomiedzy x i xy. Oznaczmy L = lim+ ]gc :Ej))
Wtedy

1€y o)~ Ly()
— ol

fle) o _ 9@ 9(x) — g(xo)
(o) o)
9(x) — g(xo)
Ustalmy liczbe 0 < n < 1/2. Wybierzmy x, tak, aby
/(1)
— L dl t .
0 <mn, aa<t<ux

e f'(€)
FGHE .

<.
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Poniewaz g(z) — oo dla x — a™, to mozemy teraz znalezé a < xy < xg tak,

aby
- L
|f(z0) — Lg(zo)| + [g(z0)] <n dlaa<z<z.
lg(z) — g(xo)]
Niech a < z < z1. Otrzymamy
f'(€) ‘ ‘f ) — Lg(wo)
/ - 2
'f(m) Il < g (¢) 9(wo) U
9() o ‘ g<x0> =y
9(x) — g(xo)
]
Przyklady.
1
(a) lim L = lim — =0.
r—00 et r—00 el
1
log . = )
(b) xll>161+ * logx N a:ll{(l)’lJr 1 - a:ll%’lJf 1T - :pli%gr _x) -
x x?
o a? 21
(¢) lim — = lim — = 0. Mozna tez uzasadni¢ inaczej: dla x > 0 mamy
r—00 et r—00 T
K k k+1)!
(k41! v
(d) lim 2" = lim e"'6* = lim ¢¥ = 1.
x—0t x—07t y=x logx y—>0*

5.9 Pochodna ciggu i szeregu funkcyjnego

Twierdzenie 5.21. Funkcje f,(x) sq ciggle i rézniczkowalne w sposdb ciggly
w przedziale [a,b]. Zaloimy, Ze ciggi fn(x) i f!(x) sq jednostajnie zbieine
do f(z) i g(x ), odpowiednio. Wtedy f'(x) = g(z) (na koticach przedziatu
fia) = g(a) i fL(b) = g(b)). Tan.

(lim fo(2))" = lim f} (2).
Czyli pochodna granicy ciggu funkcji jest granicg pochodnych tych funkcji.
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Dowdd. Niech a < zg < b. Chcemy pokazaé, ze f'(xo) = g(x¢). Z zatozenia
dlae > 0 istnieje prog N taki, ze dlan > N mamy |f)(t)—g(t)| < ¢/3,dlaa <
t < b. Wiemy, ze funkcja g(z) jest ciagta, jako granica jednostajnie zbieznego
ciagu funkcji f! (x). Zatem istnieje liczba 6 > 0 taka, ze dla | — x| < § mamy
lg(&) — g(xo)| < €/3. Niech 0 < |z — x| < §. Wtedy dla n > N otrzymujemy

fu(x) = fnl20)

r — g

— g(xo)| = |£,(§) — g(xo)]

2

<1206 = 9O +19(8) — glwo)] < 5 + 5 = 3e.

dla pewnego punktu £ lezacego pomiedzy x i zg. Zatem dla 0 < |z — zo| < 0
mamy

'M - g(xo)‘ _ li | £2(8) ~ Inlxo) g(xo)| < Ze<e
T — Xo " L — ZTo 3
To oznacza, ze
lim f(z) = flwo) = g(wo),
T—Io T — X
czyli f'(zo) = g(xo). -

Uwaga. W dowodzie wykorzystana byla jedynie zbieznos¢ punktowa ciggu
[

Uwaga. Wystarczy zalozy¢, ze ciag f,(x) jest zbiezny w jednym punkcie ¢
przedziatu [a, b]. Rzeczywiscie, z tego warunku wynika jednostajna zbieznosé
ciagu f,(x). Sprawdzimy jednostajny warunek Cauchy’ego dla ciagu f,(z).

(@) = fin(@)] < | [fnl2) = fn(@)] = [fn(€) = [ ()] [+ [fn(€) = fn(c)]

h(zx) h(c)
= [ f2(&) = [ (&) [z = c| + | fulec) = fin(c)]
R’ (£)

< (b= a)lfu (&) = [l + | fule) = fm(e)].
Whniosek 5.22. Zaloimy, ze funkcje f,, sq ciggle i rozniczkowalne w sposob

ciggly w przedziale [a,b]. Jesli szereg Z fu(z) jest zbieiny przynajmniej w

n=1
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jednym punkcie, natomiast szereg Z f1(x) jest zbiezny jednostajnie, to suma
n=1
szerequ s(x Z fulx) jest funkcjq réiniczkowalng oraz

tzn. pochodna sumy szerequ funkcyjnego jest szeregiem pochodnych.

Dowéd. Niech s, (x Z ). Ciag funkcyjny s, (z) spelnia zatozenia po-

/
przedniego twierdzenia. Zatem (lim sn(x)> = lim s/, (), co jest réwnoznacz-
n n

ne z (5.7). O
Przyktad. s(z) = 2673, 0 < z < 1. Przyjmujemy f,(z) = ¢ 3
n=1 " n
, Qxe " ) , 2
Wtedy f)(r) = ———5—, co daje |f,(7)| < —;. Zatem szereg Zf
n

n=1

jest jednostajnie zbiezny. Szereg Z fn(x) tez jest jednostajnie zbiezny. Czyli

n=1
o —TL.Z‘Q
§'(x) =22 c
n=1 Tl2
Twierdzenie 5.23. ZaZéz'my, ze liczba R > 0 jest promieniem zbieinosci
szerequ potegowego f(x Z apx”. Wtedy funkcja f(x) jest réiniczkowalna
w przedziale (—R, R) oraz f'(x Znanx -1

Uwaga. Szereg potegowy dla funkcji f/(z) ma wicksze wartosci bezwzgled-

ne wspotczynnikéw, wiec promien zbieznosci nie moze by¢ mniejszy od R.

Jednak promienie zbiezno$ci obu szeregéw sg takie same. Istotnie, niech R’
o0

oznacza promien zbieznosci dla 27! Z na,x" x # 0.

n=1
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n 1
(a) Jesli istnieje granica lim ‘Ta:i‘ oL to
1 . (n+ Dlan| . Jantal 1
2 i P DOl = .
R " W el R

1
b) Jedli istnics ica lim ]an] = = t
(b) Jesli istnieje granica im /| an| 7 b0

1 1
= lim § nla,| = lim In lim lan| = lim § la,| = 75
Ogolnie mamy

1
= limnsup vUnla,| = lim In limnsup an| =

L
-

Dowdéd. Szereg pochodnych Z na,z" ' jest zbiezny w przedziale (—R, R).
n=1

Wiemy, ze zbieznosé jest jednostajna w kazdym przedziale [—R + §, R — ¢,
dla 9 > 0. Z Wniosku 5.22 otrzymujemy teze, czyli

00 / 0o
(Z anx"> = Z na,x" .
n=0 n=1
H

Whiosek 5.24. Funkcja f(z) = Y a,z" dla —R < x < R, gdzie R jest
n=0
promieniem zbieznosci, jest nieskonczenie wiele razy rozniczkowalna oraz

00 (k) 00
f®(z) = (Z ana:”> =Y nn—1)...(n—k+1aa""
n=0 n=~k

Dowaéd. Stosujemy wielokrotnie Wniosek 5.22, korzystajac z faktu, ze pro-
mien zbieznosci nie zmienia si¢ przy roézniczkowaniu. ]
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Przyktady.

(a) Rozwazmy funkcje f(x) =log(l + x), x > 1. Mamy

f(z) = => (=1)"2", dlalz| <1
n=0
1)71 n+1 .- (_1)n+1 n s .. s .
Rozwazmy szereg Z ] "= Z ——~—2". Promien zbiezno$ci
n

n= 0 n=1
tego szeregu wynosi 1. Z Twierdzenia 5.23 mamy

(5 C00) = (S Ee) = Sy = 1 = Gostie

n=1 n

Zatem
n+1

log(1+2) = Z "+ C, |z <1,

dla pewnej statej C. Podstawiajac x = 0 uzyskamy C' = 0. Zatem

[ee] n+1
log(1 Z ) ——2" dla —l<az<l. (5.8)

7 kryterium Leibniza szereg po prawej stronie jest zbiezny rowniez dla
x = 1. Zatem z Twierdzenia 4.17 otrzymujemy

1n+1
logQ—Z )
(b) f(z) = arctgx. Wtedy
1 o0
"(z) = = (=1)"z™ 1.
F@) = e = X el <
(=1)"

Rozwazmy szereg Z ~ 22?1 Szereg ten jest zbiezny dla |z| < 1.

(2n+1
Wiemy, ze

(f: (L ) B e —"

n=0
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czyli

(e 9]

(_1)n 2n41
tgr =Y ——az" C, < 1.
arctg x 2 o0y 1% + ||

Podstawiamy x = 0 i otrzymujemy, ze C' = 0. Zatem

© (1)
arctgr = » 2(n—|—)1x2n+1’ lz| < 1. (5.9)

n=0

Podobnie jak w poprzednim przyktadzie mozemy podstawi¢ x = 1 i
uzyskaé

T i": (—1)"
1 =+l

5.10 Wzory Taylora i MacLaurina

Twierdzenie 5.25 (Wzor Taylora). Niech f(z) bedzie funkcjg n-krotnie réz-
niczkowalng w przedziale wokot punktu a. Wtedy dla liczb b z tego przedziatu
mamy

(b—a)*
2l

f"(a)+ ...+ %ﬂ"‘l)(a) + R,

gdzie R, ma jedng z dwu postaci:

(1) R, = (b ;'a)”

w postac'zf Lagrange’a),

F™(a+0(b—a)), dla pewnej liczby 0 < 0 < 1 (reszta

(2) R, = Eb — al))' (1= (a+6(b—a)), dla pewnej liczby 0 < §' < 1
n—1)!

(reszta w postaci Cauchy’ego).

Uwagi
1. Oznaczmy b — a = h. Wtedy

hnfl

o @ R

fla+h)= f(a)+ ﬁf/(a) + Z!f”(a) +...+F

(L= f"(a+0'h).

hn
R, = —f"(a+6h) =
n! n
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2. Reszta R, oraz 010 zalezg od a, b i n.

Dowadd. Oznaczmy

g(x) = f(b)—f(z)—
Wtedy

:—W+W b—x ,/ b— 1) ,,/ b—a: ,,,/

+...+<b__“")! T(z) — (lzn_“")) f(”( ). (5.10)

Mamy g(a) = R, oraz g(b) = 0. Z twierdzenia Lagrange’a otrzymujemy
g9(b) — g(a)
b—a
dla pewnej liczby 0 < ¢ < 1. Zatem R, = —(b—a)g'(a+ ¢'(b — a)). Podsta-
wiamy x = a + 0'(b — a) do wzoru (5.10). Wtedy

b—x=b—a—600b—-—a)=(1-0)b—a)

(b—=)
1!

(b— )
2l

(b—a)""

(o) = — Wf(n_l) (z).

f'(w)—

=g (a+0'(b—a)),

oraz

(b—a)"
(n—1)!
Rozwazmy funkcje u(x) = (b — x)". Mamy u(a) = (b—a)" oraz u(b) = 0.
Z twierdzenia Cauchy’ego otrzymujemy
g9(b) —g(a) _ g'(a+0(b—a))
u(b) —u(a)  u'(a+60(0b—a))’
dla pewnej liczby 0 < 6 < 1. dalej

R, = (1 =)™ (a+6(b—a)).

ng'(a+0(b—a)
w(a+6(b—a))
Mamy u'(z) = —n(b— x)"'. Z (5.10) wynika, ze

R,=(b—a)

gx)  f" ()
u'(r)  nl
Ostatecznie ) .
R = P20 100 406 )
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Uwaga. Przy dowodzie wzoru na reszte w postaci Lagrange’a skorzystalismy
z twierdzenia Cauchy’ego, natomiast przy postaci Cauchy’ego skorzystaliSmy
z twierdzenia Lagrange’a.

We wzorze Taylora przyjmijmy b = z i a = 0. Wtedy otrzymujemy wzoér
McLaurina

f@y:ﬂm+fmn+fg”ﬁ+”.+@Tjﬂﬂ%Wm+Rm (5.11)

xn

T ) g — _
B = 27 /002) = 2y

o el)n—lf(n) (9’%) .
Uwagi.

1. Jesli f(z) jest wielomianem, to R, = 0, gdy n przekroczy stopien wie-
lomianu.

2. 7 warunku R, — 0 wynika

f(0)

n!

z".

f(x) = £(0) + i

n

Jesli | f()(t)| < M dla statej niezaleznej od n, to R,, — 0, bo x—' —0
n n n

(np. z kryterium d’Alemberta). Mozna dopuscié¢ tez stabszy warunek
[fO )] < M™.

3. Reszta R, nie musi dazy¢ do zera nawet, gdy szereg jest zbiezny. Roz-
wazmy funkcje
e VT x40,
fz) =
0, r=0.

Mozna udowodnié¢, ze f jest rézniczkowalna nieskonczenie wiele razy

“1/t
SH—)

oraz f™(0) = 0 (w tym celu wystarczy pokazaé, ze tlircl]}r "

Wtedy ze wzoru (5.11) otrzymujemy f(x) = R,,.

o
4. Przypusémy, ze szereg potegowy f(z) = Y a,z" ma dodatni promien
n=0
zbieznosci. Prawa strona jest wtedy automatycznie szeregiem McLauri-
£ (0)

na funkcji f(x), tzn. a,, = e Rzeczywiscie, na podstawie Wniosku
n!

5.24 mamy f*)(0) = kla.




80 Analiza matematyczna ISIM I

Przyklad. f(z) = (1 + 2)* = > —1. Mamy
fY@)=ala—1)... (a —n+ 1)1 +z)*™

Zatem

n! n!

fM0)  ale—1)...(a—n+1) <a>

o
Ze wzoru McLaurina otrzymujemy, przy konwencji ( > =1,

(1+2)*= nz—:l <2>l‘k + R,.

k=0

Pokazemy, ze R,, — 0 dla |z| < 1. Skorzystamy z postaci Cauchy’ego reszty.

= (1 —(9)”*1@(&— 1)...(0@—714—1)(1_’_9&:)01771

- n(z> 2(1 — 0)" Y (1 + z)° ™.

Wyrazenie n<a> " dazy do 0 dla |z| < 1, np. z kryterium d’Alemberta.
n

Wystarczy udowodnié¢, ze wielkos¢ (1 — 6)" (1 + 6x)* ™" jest ograniczona.
Dla || <1i0< 6 <1mamy 1—06 <1+ 60z. Zatem

(1—0)"" 1+ 02)* " < (14 02)" (1 +0x)* " = (1 + 0z)*".
Zaleznosé od n jest jeszcze ukryta w 6. Dalej

91 a>1,

1+0 a—1<
) {(1—|x|>a1, o<,

przy czym dla o < 1 skorzystaliSmy z nieréwnosci 1 4 6z > 1 — |z|. Reasu-
mujac otrzymaliSmy uogélniony wzér dwumianowy Newtona.

(1+2)* = gjo (Z):c" 2] < 1. (5.12)
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Przyjmijmy o = —%. W miejsce z podstawmy —z? dla |z| < 1. Wtedy

\/117_1+Z< §> 1)z,

13 2n — 1
1 - = n
=3\ _( w22 7 9 . @) (=1)"(2n
<n>_( b n! = (=1 omplonpl  4n n)’

2n)!
bo (2n — !l = ni Ostatecznie uzyskaliSmy

2nn!
1 2 (20 [\
LGS ) e
SR G)
Ale (arcsinz) = L dla |z| < 1. Zatem
V1— a2
2 2 2n+1
arcsinz = = + Z o+ 1( n) (g) ;x| < 1 (5.13)
n

Dla z = 3, po pomnozeniu przez 2 obu stron (5.13), otrzymamy

1 (20 1
f_l .
3 +Z2n+1< )16”

f

1
2

i mnozac (5.13) przez v/2 uzyskamy
s > 1 2n\ 1
SN = (") =
2v/2 +n§12n—|—1<n>8”
Zauwazmy, ze dla 0 < x < 1 mamy

0 2 2 2n+1
g = arcsin 1 > arcsinz = nz::O ST ( :) (g)

Podstawiajac dla odmiany =z =
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Przechodzac do granicy  — 1~ otrzymamy

r X1 on\ 1
— > —
2 Z2n—i—1<n)4n

n=0

Poniewaz liczba N jest dowolna, to

T © 1 2n\ 1
2 z:2n+1<n>4”

n=0

Dalej

0 2 2 2n+1
arcsin r = Z < n) <x>
o2n+1\n 2
s 2 2n 1\ 27t © 1 2n\ 1
< - = —.
z:2n—1-1<n><2) 7;)271—1—1(71)4”

n=0

Przechodzimy do granicy x — 17, aby uzyska¢

T e 1 2n\ 1
2 22n+1<n>4n

n=0

Otrzymujemy zatem

s > 1 2n\ 1

- = —— —. 5.14

Sl 619
Uwaga. Zbiezno$¢ szeregu po prawej stronie (5.14) mozna tez uzyskaé ze
wzoru Stirlinga podajacego przyblizona wartosé¢ wielkosci n! ~ n"e™"v/27n.
Twierdzenie 5.26 (Reszta Peano). Jesli funkcja f(x) jest n-krotnie réz-

niczkowalna w punkcie a, to

h /! h2 2 h‘n n
flath) = fla)+ /(@) + 5 f"(@) + . [ (@) + Ra(h),

gdzie
lim Fu(h)

b0 7}1,” — 07

tzn. wielkosé R, (h) jest mata w stosunku do h™ dla matych wartosci |h.
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Dowdd. Zastosujemy wielokrotnie regute de’Hospitala.

oo Bah) L flath) = fla) = §f'(a) = 5 f"(0) = .. = B F" ()
h—0 hn h—0 hn
. f/(a + h) — f/(a) _ %f”(a) _ gfm(a) - %f(n)(a)
= lim
h—0 nhnfl
o U@ h) = 0 @) — S a)
h—0 n'h
1 (n—1) h) — (n—1)
] e e RG] B

Ostatnia granica wynosi zero bezposrednio z okreslenia pochodnej w punkcie
a. O

Definicja 5.27. Punkt x¢ nazywamy punktem przegiecia funkcji f, jezeli
@) — [z
D) piay),

dla wszystkich punktow x # xo w poblizu xo mamy

flz) = f(zo)

lub dla wszystkich takich punktéw mamy po—— < f(xo).
— Zo

Uwaga. Geometrycznie oznacza to, ze czesci wykresu funkcji dla =z < xg
idla x > xg leza po przeciwnych stronach stycznej do wykresu w punkcie

f(ZE) B f(l‘()) > f/(l'()>. Wtedy

(xo, f(z0)). Rzeczywiscie, niech
T — Tg
f(x) > f(xo) + f(wo)(x —x0), dlax> x,
fx) < f(xo) + f(xo)(x —x0), dlaz < .
Twierdzenie 5.28. Funkcja f(x) jest n-krotnie réiniczkowalna w przedziale
wokdt punktu a oraz f™ jest ciggla w a. Zaldimy, Ze

(@)= f'@) = ... = f" (@) =0, f™(a) £0, 0> 2.
Jesli n jest liczbg parzystq, to funkcja posiada Sciste ekstremum lokalne w

punkcie a. W przeciwnym wypadku a jest punktem przegiecia funkcji f.

Dowdd. Rozwazymy przypadek f(™(a) > 0. Z ciaglosci mozemy przyjaé, ze
f™(t) > 0 dla argumentéw ¢ blisko a. Niech x lezy blisko a. Wtedy ze wzoru
Taylora z reszta w postaci Lagrange’a otrzymujemy

()

n!

f(@) = fla) + (z —a)",
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dla pewnego punktu £ pomiedzy a i x. Jedli n jest liczbg parzysta, to drugi
sktadnik po prawej stronie wzoru jest dodatni. Zatem f(x) > f(a) dlax # a
w poblizu a. To oznacza, ze w a wystepuje Sciste minimum. Jesli n jest liczba
nieparzysta, to

f@) = fa) _ f"™()

L S @0 > 0= ),

dla x blisko a. Wtedy a jest punktem przegiecia. O]

Uwagi.
1. W punkcie przegiecia nie moze wystepowac ekstremum lokalne.

2. Jedli f"(a) > 0, to w a jest Sciste minimum, a dla f”(a) < 0, Sciste
maksimum.

Przyktady.

(a) Chcemy znalez¢ ekstrema funkcji f(z) = x* + 4z. Obliczamy f'(z) =
4(x® +1). Zatem f'(—1) = 0. Dalej f”(—1) = 12. Zatem w punkcie —1
wystepuje Sciste lokalne minimum.

(b) f(z) = 2* + 2*. Mamy f'(z) = 32% + 423 = 2*(3 + 4x). Pochodna
zeruje sie w 0 1 w —%. Dalej f"(x) = 6z + 1222 = 6x(1 + 2z). Zatem
f(=32) > 0. Mamy f”(0) = 0. Ale f”(0) > 0. W rezultacie w punkcie
—% wystepuje $ciste lokalne minimum, a w punkcie 0 przegiecie wykre-
su.

Definicja 5.29. Méwimy, ze funkcja f(x) okreslona w przedziale (a,b) jest
wypukla w dét, jesli dla dowolnych punktow a < x1,x9 < b oraz liczb o, B >
0, a+ G =1 mamy

f(OéJZ'l + ﬁmg) < Oéf(ib’l) + ﬂf(x2> (515)
Podobnie, f(x) jest wypukta w gore jesli
flax + Bra) > af (v1) + Bf(x2). (5.16)

Uwaga. Wypuktos¢ w dot oznacza, ze fragment wykresu pomiedzy punktami
(21, f(x1)) 1 (22, f(x2)) lezy pod sieczna przechodzaca przez te punkty. Rze-
czywiscie, jesli u(x) jest funkcja liniows oraz u(z1) = f(x1), u(xs) = f(x2),
to u(azy + Brz) = au(wr) + Pulzz) = af (z1) + Bf(z2).
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Twierdzenie 5.30. Jesli f/(x) > 0 dla a < x < b, to funkcja f(x) jest
wypukia w dét. Natomiast jesli f"(x) < 0 dla a < x < b, to funkcja f(x) jest
wypukta w gore.

Dowdéd. Udowodnimy pierwsza czes¢ twierdzenia. Zaktadamy, ze xy < xo
oraz «, >0, a + 3 = 1. Z twierdzenia Lagrange’a mamy

flaxy + Brg) — af(z1) — Bf(22)
= af(ax1 + Bra) — f(z1)] — Blf(22) — flax1 + Bx)]
= af(zy —21)f'(&) — af(@2 — 21) f'(&2)
= af(z2 — 21)[f' (&) — (&) = aB(z1 — 22)(&2 — &) ' (n),

gdzie 1 < & < awy + Bry < & < xq oraz & < n < &. Zatem

flawy + Bry) — af(x1) — Bf(x2) <0

dlaa,6>0ia+ (=1 ]

Uwagi.

1. Twierdzenie odwrotne jest tez prawdziwe, ale w tezie otrzymamy staba
nieréwnosé dla f”. Istotnie zalézmy, ze f jest wypuklta w dot. Dla x; <
x9 1, f > 0, z nieréwnosci (5.15) otrzymujemy

alf(axy + Bra) — f(21)] < B[f(22) — flaxs + Baa)].

Zatem
flaxy + o) — f(21) < flaxy + Bxs) — f(1)
5(302 - $1) h Oé($2 - x1) ‘

Po przeksztatceniu dostajemy

flaxy + Bry) — f(1) < f(x2) — flaz, + Bxg)
(wy + Bxg) — 1 S pg— (axy + Brg)

Gdy a — 07, to § — 1~ oraz axy + Bres — x9. Otrzymujemy wiec

f22) = fla1)

T2 —T1

< fl(z2).
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Podobnie, z 3 — 07 wynika
f(x2) — f(x1)
To — X1 '

Zatem f'(x1) < f'(xq), czyli f’ jest funkcja rosnaca. Tzn. f” > 0.

f(@1) <

2. Zalozmy, ze f jest Scisle wypukla w dét. Wtedy funkcja f’ jest Scisle ro-
snaca. Istotnie, gdyby f’'(z1) = f'(x2) dla pewnych x; < xs, to funkcja
f’ bytaby stata w przedziale [z, z5]. To by oznaczato, ze f jest funkcja
liniowg w tym przedziale.

6 Iloczyny nieskonczone

Dla liczb a,, > —1 rozwazamy ciag iloczynow
Po=1+a)1+as)...(1+a,) = ﬁl—I—ak
k=1
Moéwimy, ze iloczyn nieskonczony
ﬁ 1+ay,)

jest zbiezny, jesli ciag P, (iloczynéw czesciowych) jest zbiezny do liczby do-
datniej P. Piszemy wtedy

H l+a,) =

W przeciwnym wypadku, tzn. gdy ciagg P, nie ma granicy lub jest zbiezny
do zera, méwimy, ze iloczyn nieskonczony jest rozbiezny.

1
Przyklad. Rozwazmy iloczyn H (1 — ) Mamy
n?

n 1 nok— 1"k—i—1
R=Il(1-) =1

k=2 k=2 =2

1 n—i—l n
- n, -
E n 2

Zatem
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e 1
Przyktad. Iloczyny czesciowe dla H (1 — ) . maja postac
n

n=2
k-1 1
P=T]" =1 "0
iy K n
. bt Iy . .
Zatem iloczyn [[ (1 — ) jest rozbiezny (do zera).
n=2 n
Twierdzenie 6.1. Jesli iloczyn [[(1+ ay) jest zbiezny, to a, — 0.
n=1

Dowdd. Niech P = lim,, P,. Wtedy

1+a,= — 1.
n—1

Stad a,, — 0. O

Definicja 6.2. Mowimy, ze iloczyn H (1+ay,) jest zbiezny bezwzglednie, jesli

n=1

idoczyn [[ (1 + |an|) jest zbiezny.
n=1
Lemat 6.3.
1
|log(1+ 2)| < 2|z| < 4log(l+ |z]), |z] < 5

Dowdd. Dla 0 < t < 2 mamy

e.¢] n T
1+t<et<1+§2n71:1+q<1+2t. (6.1)
Stad
log(14+1t) <t<log(l+2t), 0<t<2. (6.2)
A o |
Podstawiajac t = it = x otrzymamy drugg nieré6wnos¢ oraz pierwsza

nieréwnos¢ dla nieujemnych wartosci x. Pozostaje udowodni¢ pierwsza nie-

1
rownos¢ dla z = —y, 0 <y < 7 Otrzymujemy

1
|log(1 + z)| = log !

= log <1 + y) < log(1 + 2y) < 2y = 2|z,
Y

gdzie ostatnia nieréwnosé¢ wynika z (6.2) poprzez podstawienie t = 2y. [
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Twierdzenie 6.4. Illoczyn bezwzglednie zbiezny jest zbiezny.

n

Dowéd. Oznaczmy P, = H (1+ |ag|). Z Twierdzenia 6.1 wynika, ze |a,| —

0. Zatem |ay| < 1 dla k > k:o Wtedy dla n > m > ko mamy

|log P, —log P,| = | 10g[(1 + @ms1)(1 + ams2) ... (1 + ay)]]
< [108(1+ )|+ 10g(1 + amya)] + -+ [10g(1 + )
< 4llog(1 + |amy1|) + log(L + |am42|) + ... +log(1 + |an])]
— 4[log P, — log P,,],

gdzie druga nieréwnos$é wynika z Lematu 6.3. Z zalozenia ciag log P, jest
zbiezny, wiec spetnia warunek Cauchy’ego. Zatem ciag log P, tez spelnia
warunek Cauchy’ego, czyli jest zbiezny. Oznaczmy g = lim log P,,. Wtedy

n
P, =e¢l8tn 1, 09 5.

]

Twierdzenie 6.5. Dla a, > 0 iloczyn H (1+ ay,) jest zbieiny wtedy i tylko

n=1
(e}
wtedy, gdy zbiezny jest szereg Z .

n=1

Dowdd. Zatézmy, ze iloczyn [] (1 + a,) jest zbiezny. Wtedy

n=1
l4ar+a+...+a, <(1+a)(l+a)...(14+a,) <[]+ a).
k=1

Stad wynika zbieznosé szeregu.
[e.e]

Zatézmy teraz, ze szereg Z a, jest zbiezny. Wtedy dla pewnego wskaz-
n=1
nika ny mamy

> 1
Z ap < —.
k=ngp+1 2

Z nier6wnosci Bernoulli’ego (zadanie 3, lista 1) otrzymujemy

(1 = ang+1)(1 = Gngs2) - - (L — @) > 1 — apgs1 — Angga — -+« — Gy > —.
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Zatem dla n > ny mamy

n no n 1n
Hl—ak H(l—ak) H 1—ak §H 1—ak
k=1 k=1 k=ng+1 k=1

Ciag @), jest malejacy i ograniczony od dotu przez liczbe dodatnia. Zatem
iloczyn (1 — an) jest zbiezny. Zauwazmy, ze P,Q, < 1, czyli P, < Q;".

n=1
Rosnacy cigg P, jest wiec ograniczony od gory, skad wynika jego zbieznosc.

]

6.1 Liczby pierwsze

Wiadomo, ze zbidr liczb pierwszych jest nieskonczony. Pokazemy, ze liczb
oo

pierwszych jest na tyle duzo, ze szereg Z —, gdzie p, oznacza n-ta liczbe
n=1
pierwsza.
~1
Rozwazmy iloczyn H (1 - > . Korzystajac ze wzoru na sume szere-
k=1 Pk

gu geometrycznego otrzymamy

fi(- 1) g e k).

k=1 Pk k=1 Pk

Po wymnozeniu sum dostaniemy sume odwrotnosci wszystkich liczb natu-
ralnych majacych w rozktadzie na czynniki pierwsze liczby py,po, ..., pn. W
szczegbdlnosci w sumie pojawig sie odwrotnosci wszystkich liczb od 1 do n,
bo p, > n. To oznacza, ze

fi(-5) =5

k=1 Pk

L 1
Stad iloczyn jest rozbiezny do nieskonczonosci. To oznacza, ze iloczyn H <1 — >
k=1 Pk

1
jest rozbiezny do zera. Z Twierdzenia 6.4 zastosowanego do a,, = —— otrzy-
Pn
o
1

mujemy rozbiezno$¢ szeregu Z —

n=1
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—1
i 1
Dla liczby a > 1 rozwazmy iloczyn H <1 — a> . Otrzymujemy

k=1 Dk
-1
n 1 n 1 1
H(l—a) _H<1+a+2a+...>.
k=1 Py k=1 Pr Dk

Po wymnozeniu sum dostaniemy sume¢ poteg rzedu a odwrotnosci wszyst-
kich liczb naturalnych majacych w rozktadzie na czynniki pierwsze liczby
D1, D2, - - s Pn- W szczegblnosci

-1

S 1

To oznacza, ze iloczyn H <1 — a) jest zbiezny. Z twierdzenia o trzech
k=1 Py

ciggach otrzymujemy tozsamosé¢ Eulera

o0 1 -1 o0 1
1—— = —, a>1.
n=1 p% n=1 ne

7 Ulamki tancuchowe
Wykonamy dzielenie z reszta liczb 75 1 23.

75—3+6—3+ L =3+ !
23 23 5 1
3+ - 34+ ——

Bedziemy stosowacé zapis

g, 1
23 13 |1 |57

Ogolnie, niech ng i ny beda liczbami naturalnymi bez wspoélnych dzielnikow.
Wykonujemy dzielenie z reszta.

Ng = q1N1 + No, gdzie 0 < ny < ny.
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Wtedy
U N9 1
— =@t =0t
U3 U3 n
N2

Te sama czynnos$¢ wykonujemy dla liczb nq i ns.

n 1
—0:q1+ , 0 < nzg < no.
nq U
g2 + —
ns
Powtarzamy te czynno$¢ dopoki ng = 1. Wtedy g, = —— oraz
Ny
n 1 1 1
L L (7.1)
m |2 g3 | i

Wyrazenie postaci (7.1) nazywamy skoriczonym utamkiem lanicuchowym.
7 rozumowania wynika, ze kazda liczba wymierna ma przedstawienie w po-
staci skonczonego utamka tancuchowego.

Przyktad.
1 1
1+V2=2+(V2-1)=2+ =24 —
1++/2 1
2+
1++/2
=24 !
B 1
2 +
2+ ——
1++/2

To oznacza, ze w pewnym sensie liczba 1 + v/2 ma nieskoficzone przedsta-
wienie w postaci

1 1 1
1+\/§=2+|2|+|2‘+|‘+....

Ogoélnie rozwazmy dodatnig liczbe niewymierng zy. Wtedy

xo = ag + 1o, gdzie ag = [xg], ro = {0}
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1
Wtedy 0 < rg < 1, czyli 1 := — > 1 oraz
To

Tog=ag+ —.
Ty

Podobne czynnosci wykonujemy dla liczby z;. Wtedy
1

vy =ar+—, ap =[], v2> 1.
T2
Otrzymujemy
1
Tog = ag + 1 .
ap + —
T2
Postepujac tak dalej otrzymamy
1 1 1 1
$F%+J+J+J%‘+J, (7.2)
lar a2 |an-1 |z
gdzie
Tp—1 = Qp_1+—, T > L.
Tk
W pewnym sensie otrzymujemy réwnosé
1 1 1
;m:am+—l+—l+.”+—l+.“. (7.3)

lar | ay | an

Naszym celem jest nadanie sensu wyrazeniu po prawej stronie wzoru, gdzie ag
jest nieujemna liczba catkowita, a liczby a,, sa naturalne dlan > 1. Rozwazmy
wyrazenia

1 1] 1 1]

Rp=ay+—+—+...+ + —.
|a1 |Cl2 |6Lk—1 |Gk

Liczby Ry, sa wymierne. Nazywamy je reduktami utamka tancuchowego (7.3).
Pokazemy, ze Ry — ¢, co pozwoli uzasadni¢ wzér (7.3).

Przechodzimy do analizy wielkosci Rj. Wyrazenia R sa funkcjami wy-
miernymi zaleznymi od liczb ag,aq,...a;. Ry sa dobrze okreslone rowniez,
gdy aq, as,...,a; sa dodatnimi liczbami rzeczywistymi. natomiast ag jest
nieujemny liczba rzeczywista.
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Okreslmy rekurencyjnie dwa ciagi liczb Py 1 Q. zaleznych od ciagu {ax }72,
wzorami

PO = Ao, QO = ]-7
Py = apa; + 1, Q1= ay,
Py = apPr_1 + Py_o, Qr = apQr—1 + Qp—2.
P
Lemat 7.1. R, = R
Qk
Dowod. Wzoér jest spetniony dla k =01idla k=1, bo
a 1 agay + 1
R():*O, R1:G0+7:L.
1 ai ai

Wzor jest prawdziwy réowniez dla k = 2:

Pz a2P1—|—P0_(a0a1+1)a2+a0

Qy  aQ1+Qo ayas + 1

(05} 1
a0+a1a2+1 do + 1 2
a; + —
a2

Zaloézmy, ze wzor jest spetniony dla 2 < k& < n i dowolnego wyboru liczb ay.

Wtedy

R _&_ anPn—1+Pn—2
" Qn anQn—l + Qn—Q .

otrzymamy nowy ciag reduktow Ry

Przy zamianie liczby a, na a, +
An41

przy czym ék = R, dla k <n-—1oraz Rn = R,11. Z zatozenia indukcyjnego
otrzymujemy wtedy

1
~ " P,_ P,_
P, o <a * an+1> ' ?

Qn (an + ! ) anl + Qn72

Anp+1
_ [an(Pn—l + Pn—2]an+1 + Pn—l _ an—i—lpn + Pn—l _ Pn+1
[an(Qn—l + Qn—?]an—i-l + Qn—l an—i—lQn + Qn—l Qn—i—l '
[l

Rn+1 = En
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Lemat 7.2.
Ap =P 1Qp — PQp = (-1)* k>1

Dowod. Mamy

P P ag apay + 1
s =lgr o[t
Dalej dla k£ > 2
Ay = Pr1 agPr1+ Pro _ Pi1 Pro — AL
Q-1 axQr—1+ Qr—2 Qr-1 Qr—2
Stad Ay, = (—=1)* 1A, = (1)~ O

Uwaga 7.3. Z okreslenia ciggdéw P i QQy,e dla naturalnych wartosci liczb ay,
liczby Py i Q) sa naturalne. Z lematu 7.2 wynika, ze liczby Py i Q) nie maja

wspolnego dzielnika, czyli utamek Ry = Q—k jest nieskracalny.
k

Twierdzenie 7.4. Dla dodatniej liczby niewymiernej xq cigg reduktow R,
jest zbiezny do xg. Co wiecej cigg Ro, jest rosngcey, cigg Roni1 jest malejgcy
oraz

|Rn+1 — [L’[)’ < ‘Rn — .CC()‘.

Dowdéd. 7 (7.2) otrzymujemy

1] 1
To=ap+ — +...+— +

| ai |a7n | Tn41 .

Niech Rn+1 oznacza redukt rzedu n + 1, gdzie liczba a,,, zostala zastgpiona
liczba x,,11. Wtedy

- ﬁn+1 anran + Pnfl
0= = = .
Qn+1 xn+1Qn + anl

Zatem

xn+1Pn + Pn—l Pn

l'n-l-lQn + Qn—l B @
- An o (_1)n
= o On G )0n ~ onGn + Oryn Y

xO_Rn:
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Poniewaz a,+1 = [Tpi1], t0 Tpi1 < anp1 + 1. Otrzymujemy wiec

1 1

(xn-l-lQn + Qn—l)Qn ~ ($n+1Qn + Qn—l)Qn

1 1
g (tni1 +1)Qn + Qn-1]Qn  (Qn+ Qn1)Qy (7.5)

Z pierwszej réwnosci w (7.4) zastosowanej do n + 11 z faktu, ze x,10 > 1
dostajemy

|Rn - x0| =

1 1
B o (Tng2Qni1 + Qn)Qni1  (Qn + Qn1)Qn (7.6)
Zestawiajac (7.5) i (7.6) otrzymujemy
1
’RnJrl — iL’o’ < |Rn — x()] < (77)

(Qn + anl)Qn '

Z okreslenia ciagu ), wynika, ze @, = Qn-1+ Qn-2 > Qn—1 +1dlan > 2.
Zatem Q,, > n. To oznacza, ze R, —— xq. Z (7.4) oraz (7.7) wynika, 7e ciag
Ry, jest rosnacy a ciag Rs,.1 malejacy. ]

Uwaga 7.5. Z Twierdzenia 7.4 wynika, ze liczba xq lezy pomiedzy R, 1 R,,_1
zatem ]

r— R, 1| <|Ry.1— Ry, = ———.
| 1’ | ' | Qn—lQn

(7.8)

1
Przyktad. Liczba +

podziale odcinka oraz wystepuje we wzorze na wyrazy ciggu Fibonacci’ego.

nazywana jest zlota. Pojawia si¢ przy ztotym

Mamy
1 —1 1
+\/5:1+\/5 =1+ .
2 2 1+5
2
Zatem Y
1++5 1 1] 1|
=14+—+—4+—+4....
> "ttt

Przeanalizujemy zagadnienie odwrotne. Niech ay bedzie nieujemng liczbg
catkowita i a,, n > 1 ciagiem liczb naturalnych. Uzywajac metod uzytych w
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dowodzie ostatniego twierdzenia mozemy wywnioskowaé, ze liczby Ry okre-
slone wzorem

11 1
Rp=ap+ —+—+...+ +—
a1 |ay lar—1 | ax
spelniaja
1
Lan_WRn|<: — m > n.
n(n+1)

To oznacza, ze ciag R, jest zbiezny, bo spetnia warunek Cauchy’ego. Oznacz-
my
xozzlgnfﬁ,

Chcemy pokazaé, ze liczby ag, aq, ..., a,, ... powstaja z rozwiniecia liczby x
w utamek tancuchowy.
7 argumentacji uzytej wyzej wynika, ze dla dowolnej liczby n ciagi
n 1 1 1 1
(n) _ | | I

Ry, ap + + +..+
|an+1 |an+2 |an+k—1 |an+k

sg zbiezne. Oznaczmy
T (n)
Ty = h]gn R;.
Ze zwigzku
R =a, + 1
k+1 = An R](€n+l)

wynika
1

Ln+1 ’
Stad x,41 > 0, czyli x, > a, > 1 dlan > 1. Z (7.8) otrzymujemy zatem a,, =
[,], czyli liczby a, pochodza z rozwiniecia liczby zo w utamek tancuchowy.

7 przeprowadzonego rozumowania wynika, ze rozwiniecie liczby dodatniej
xo w utamek tancuchowy jest jednoznaczne. W szczegdlnosci nieskonczone
utamki tancuchowe reprezentuja liczby niewymierne.

Ty = ap + n > 0. (7.9)

Twierdzenie 7.6 (prawo najlepszego przyblizenia). Zalézmy, Ze dla dodat-
niej liczby niewymiernej xg 1t liczb naturalnych r © s mamy

r
IO—-8’<|I0—ﬂRnL

Wtedy s > Q. Czyli sposrod liczb wymiernych o mianownikach nie przekra-

czajgcych @Q,, redukt R, = = stanowi najlepsze przyblizenie liczby xo.

n
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Dowdod. 7 Twierdzenia 7.4 mamy

r
o — S‘ < |Qf() _Rnl < |$0 —Rn_1|.

r
7 pierwszej czesci tezy Twierdzenia 7.4 wynika zatem, ze liczba — lezy po-
s

miedzy liczbami R,,_; i R,,. Otrzymujemy wiec

r A, 1
O0<|-—R,_1|<|R,— R,_1| = = )
S ! ‘ 1| Qn—lQn Qn—l@n
Tzn.
0 < |TQn—1 - S-Pn—1| < 1 '
anls anlQn
Stad wynika, ze s > Q. ]

7.1 Okresowe utamki lancuchowe

Przypusémy, ze rozwiniecie w utamek tancuchowy liczby x

jest okresowe, tzn.
bpik = bn, dlan > ng.

Rozwazmy cze$¢ utamka

bny + a +...+ L] +...+ L +
’ | bno+1 | bno-i-k—l | bno+k
Wprowadzmy oznaczenia a,, = byy+pn. Wtedy
1] 1] 1]
y=ag+—+...+ o
| a1 | ar—1 | ax
7, okresowosci otrzymujemy wiec

1
y:ao—i——‘—i—...—i— . .
| ay | ag—1 |y
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Niech Ry, oznacza k-ty redukt, gdzie liczba ay zostala zastapiona przez y.
Wtedy

5 Py yPea+ P
y=Rp == =———".
Qr  YQi—1 + Qr—2

Liczba y jest dodatnim pierwiastkiem trojmianu kwadratowego

Qry? + (Qro— Pr1)y— Py =0,

z naturalnymi wspotczynnikami. Wyréznik tréjmianu jest réwny

W= Q-2 — Pr1)* + 4Q_1Pi_»
= (Qro+ Pe1)? +40, 1 = (Q_o + Pr1)? — 4(—1)F.

Zatem

_|_
2Qr-1 2Qk—1

Liczby x i y sa zwiazane wzorem

Pt — Q 1
y = k—1 k—2 \/E

b+ iy M 1 1
b b |bno—1 |y

W zwiazku z tym
Tr=u-+ U\/E,

dla pewnych wymiernych liczb v i v.

Implikacja odwrotna tez jest prawdziwa. Ponizszy dowdd pochodzi od La-
grange’a. Zalézmy, ze liczba dodatnia x jest pierwiastkiem tréjmianu kwa-
dratowego, tzn.

az? +bxr + ¢ =0,

dla pewnych liczb catkowitych a, b1i ¢, przy czym a, ¢ # 0. Rozwazmy macierz

M= [bC/LQ bﬂ

i wektor u = (x,1)". Wtedy

(Mu,u) = az® + bz + ¢ = 0.
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1
Wyznacznik macierzy M jest réwny ac — —b®. Niech a;, oznaczaja liczby z
rozwiniecia xy := x w ulamek lancuchowy. Ze wzoru (7.2) otrzymujemy
xnpnfl + Pan
x = .
ann—l + Qn—Q

Podstawiamy to wyrazenie do tréjmianu kwadratowego i po przeksztatceniu
otrzymujemy

a(xnpnfl + Pnf2)2 + b(xnpnfl + Pn72)(ann71 + anZ)
+ C(ann—l + Qn—2)2 = 0. (710)

Rozwazmy macierz

anl Qn72

Dla wektora v = (,,1)* réwnanie (7.10) ma postac

U — [Pnl Pn2‘|

(MUv,Uv) = 0.
Zatem
(U'MUwv,v) = 0.

To oznacza, ze x, jest pierwiastkiem tréjmianu kwadratowego
Ap2? + Byx, + O, =0,
gdzie

An = CLPg?l + anlenfl + CQ?th
B, = 2aP, 1Qn 1 +b[Py1Qn o+ Py oQpn 1] +2cQn 1Q o,
Co = aPy y+bP, 1Qn 2+ cQr_,.

Liczby A,,, B, i C,, sa catkowite oraz A, = C, 1. Dalej

1 1
A,C, — ZBZ =det(U'MU) = det M = ac — ZbQ.

Z (7.8) wynika, ze

1 1
|$Qn_1 — Pn—1| < 7 < Qn_l.
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Zatem

5
Qn—l ’
dla pewnej liczby § speliajacej |0] < 1. Zatem

Pn—l = xQn—l +

i\ 5
An =a <xQn—1 + ) + b (xQn—l + > Qn—l + cQ?I—l
Qn—l Qn—l
52 52
= (az® + bz +¢) 7211+(2ax—|—b)5+a21:(2ax+b)5+a21
Dalej

2
——| < |2ax + | + |al.
n—1

|&J:MMx+®6+

To oznacza, ze jest tylko skonczenie wiele mozliwosci na wartos¢ A,,. Ponadto

Cul = |Au 1|, |Ba| = /0? — dac+44,C,,

wigc jest tylko skonczenie wiele trojek (A, By, Cy,). Zatem dla pewnej liczby
k mamy x,, = Tk, czyli utamek tancuchowy liczby x jest okresowy.

8 Calka Riemanna

Definicja 8.1. Podzialem P przedziatu [a,b] nazywamy skoticzong rodzine
punktow a = x9 < r1 < T2 < ... < x, = b. Przyjmujemy oznaczenie
A,Ti =T — Tj—1.

Dla ograniczonej funkcji f(z) okreslonej w [a, b] okreslamy liczby m; oraz
M; wzorami
m; = inf f(z), M;= sup f(z).

;-1 STLT; i1 <TLT;

Definiujemy sumy dolne i gérne wzorami

i=1 =1
Uwaga. Jedli f > 0, to liczba L(P, f) przybliza od dotu pole obszaru pod
wykresem funkcji, natomiast liczba U (P, f) przybliza to pole od géry.
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Przypusémy, ze m < f(z) < M dla a < x < b. Wtedy

n

L(P,f) =2 > mAz; =m(b— a),

U(P, f) < iMA:L‘Z-—M(b—a).

Okredlamy catki dolng i gébrna wzorami

b b
/ dx—supLPf / da:—lnfU(P f)-

Definicja 8.2. Mdowimy, ze funkcja f(z) jest catkowalna w sensie Riemanna

na przedziale [a,b], jesli catka dolna jest rowna calce gornej. Wtedy wspding
b

wartos$é oznaczamy symbolem /f(m) dz.

a

Uwaga. Pokazemy wkrotce, ze funkcja ciggle sg catkowalne. Istniejg jednak
funkcje niecatkowalne.

Przyktady
(a)

1 2z eqQ,
fo-{y Tee

Dla przedziatu [0, 1] mamy L(P, f) = 0 oraz U(P, f) = 1. Zatem

/1f(x) dz =0, /1f(x) dz =

Y

f(z) = {1 U=

<1
2 1<x<2.
Dla Pn={0,1,1+%,2} mamy

1 1 1
L(P., [) = 1+1-n+2<1—)=3—,

n n

UP,, f) = 1+2'1+2(1—1>:3.

n n
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Zatem
2 2
/f(m) dr > 3, /f(:r) dr < 3.
0 0

Pokazemy wkroétce, ze

zatem

) *=Lp€Z geN (pg =1,
o-{s ook

Rozwazamy przedziat [0, 1]. Mamy L(P, f) = 0. Ustalmy liczbe natu-

ralng NV > 2. Okredlimy specjalny podzial P. Kazdy utamek nieskra-

1
2N3*

Takich utamkéw fest mniej niz N?2. Przedzialami podziatu sa wtedy

, gdzie ¢ < N oraz przedzialy pomiedzy nimi. Prze-

calny postaci 2, dla ¢ < N otaczamy przedzialem o promieniu

p__1 p 1
q 2N37 g + 2N3
dziaty postaci [g — ﬁg + ﬁ} sg roztaczne. Rzeczywiscie, rozwazmy

dwie rézne liczby g i %, dla ¢q,q¢ < N. Wtedy

_pd =g 1 1 1

p 7
- —= — > —.
‘ qq qq’ ~ N2 N3

q

/ . . .
%’ zachodzity na siebie, to

Gdyby przedzialy odpowiadajace g i

p P 1
g ¢| 7 2N3  N®
Niech A sktada sie z numeréw odpowiadajacym przedziatom [§ — ﬁ, § +
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Wtedy

i=1 i€A i¢A
< ZA%‘FZ;[A% <N2-L+

1 2
icA i¢A N® N

N.

1
Poniewaz N jest dowolna liczba naturalna, to [ f(x)dz = 0.
0

Definicja 8.3. Podzial P’ przedziatu P nazywamy rozdrobnieniem podziatu
P, jesli P C P'. Dla podziatow Py i Py podzial Py U Py nazywamy wspolnym
rozdrobnieniem Py ¢ Ps.

Twierdzenie 8.4. Jesli P C P’ to L(P,f) < L(P',f) oraz UP, f) >
U(P', f), tzn. przy rozdrobnieniu sumy dolne si¢ zwiekszajg a sumy gorne
2Mniejszajq.

Dowdd. Wystarczy rozwazy¢ przypadek P’ = P U {z'}. Niech

P = {x07x17"'7'ri717xi7"‘71;%}7

/ /
P = Azxo,x1,. .k, 2 T, T )
Oznaczmy

o=, ol J@), we= Rf @)

Wtedy wy,ws > m; zatem

L(P,f) = L(P, f) = wi(2' — 2i_1) + wo(x; — ') — mAw;

> m;(2' — xiq) + mi(x; — ') — mAx; = 0.
Podobnie pokazujemy, ze U(P’, f) < U(P, f). O

Whiosek 8.5. (i) Dla dwu podziatow Py i Po mamy L(Py, f) < U(Pa, f).
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Dowod. Mamy

L(P1, f) S L(PLUPy, f) SU(PLUPy, f) < U(Py, f).

Biorac kres gorny wzgledem P; otrzymamy

Teraz bierzemy kres dolny wzgledem Py i otrzymujemy czesé (ii) wniosku. [

Twierdzenie 8.6. Ograniczona funkcja f(x) na przedziale [a,b] jest cal-
kowalna wtedy 1 tylko wtedy, gdy dla dowolnej liczby € > 0 mozna znaleZé
podziat P, dla ktorego

UP,f)—L(P, f) <e. (8.1)

Dowdd. Udowodnimy tylko implikacje («<). Zatézmy, ze dla e > 0 istnieje P
speliajacy (8.1). Wtedy

f)</bf( /bf UP,f) < L(P,f) +

Czyli .
b b
0</f(a:)dx—/f(x)dx<s.

[]

Whiosek 8.7. Kazda funkcja ciggla na przedziale [a,b] jest catkowalna. Po-
nadto dla dowolnej liczby € > 0 mozna znaleZé liczbe & > 0 takq, zZe dla
kazdego podziatu P = {xg,x1, ..., T}, jesli

d(P) := max Ax; <9,

1<i<n

to dla dowolnego wyboru punktow posrednich x;_y < t; < x; mamy

zn:f(ti)Axi . /f(:n) da

<e.
i=1
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Dowdd. Ustalmy liczbe € > 0. Z jednostajnej ciagtosci mozna znalezé liczbe
6 > 0 taka, ze jesli [z — 2'| < 4, to |f(z) — f(2')] < 3= Niech P bedzie
podziatem spetiajacym d(P) < §. Wtedy

UP,f)—L(P, f) = zn:(]\/[z —m;)Ax; < bja(b— a) = e.

i=1

Stad mamy calkowalno$é¢ funkcji f. Ponadto

L(P, ) < /bf P.5),

oraz .
P, f) <D ft:)Az; < U(P, f),
=1

b
bo m; < f(t;) < M;. Z nieréwnosci (8.1) liczby Zf ) Ax; oraz /f(x) dr

i=1 a
leza w przedziale o dtugosci mniejszej niz e. [

Liczbe d(P) nazywamy $rednica podziatu P. Wyrazenie

n

S(P, f)=>_f(t:)Az;

i=1
nosi nazwe sumy catkowej. Mamy nastepujace typy sum catkowych:

(a) t; = x;_1 - lewy koniec,
(b

&F

; = x; - prawy Kkoniec,

(¢) t; = (@1 + x;) - $rodek przedziatu,

)
)
)
(d) indywidualnie dobierane punkty t;.

Whiosek 8.8. Niech f bedzie funkcjq ciggle na przedziale |a,b]. Rozwazmy

cigg podziatow Py, takich, ze d(P,,) — 0 (np. P, jest podziatem nan réwnych

czesci). Wtedy
b

S(Pu f) == [ f(x)dx.

a
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Dowdd. Ustalmy liczbe € > 0. Z poprzedniego wniosku istnieje liczba ¢ > 0
taka, ze

<,

‘S(P,f) - [ f(@)da

dla d(P) < 4. Z zalozenia istnieje prog N taki, ze jesli n > N, to d(P,) < 0.
Wtedy dla n > N mamy

b

S(Pucf) — [ f(x)da

a

<E.

]

1
1
Uwaga. Wkrétce udowodnimy, ze / vidr = 3 Chcemy obliczy¢ granice
0

1 n
wyrazenia — ) k*. Mamy
=

bo wyrazenie w Srodku jest suma catkowa typu prawy koniec dla funkcji
f(z) = 2? i dla podziatu przedziatu [0, 1] na n réwnych czesci.
Przyktad.
cos% 0<z<1,
0, xz=0.

Pokazemy, ze funkcja f jest catkowalna. Rozwazymy podziat

11 1 1 2 1 nd—n?
P=10,— —4+—,—+—,...,— .
n'n n¥n nd n n3
Niech z,y > % oraz |z — y| < 5. Wtedy
1 1 \Siné\’ 111
cos — —cos —| = ——|x — - ==
T &2 y\#n?’ n’
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bo & > % Zatem najwicksza rozpietos¢ wartosci funkcji na przedziatach
podziatu P, ktére maja dtugosé 7713’ nie przekracza 1. Otrzymujemy wiec

n
7’L3—7'L2 1

UP, )~ L(P. ) = (My —mo) + 3 (M~ mi) -

i=1

2
<+
n

Zadanie. Znalez¢ funkeje f : [0, 1] ln—_a1> [0,1], ktérej wykres jest gestym

podzbiorem w [0, 1] x [0, 1].

Zapis f € R oznacza, ze f jest calkowalna w sensie Riemanna.

Twierdzenie 8.9. (i) Jesli f,g € R, to f £g,cf € R oraz

/b[f(if) +g(2)] de = /bf(iﬂ) dxi/bg(if) dz,
/bcf(:v)dx:c/bf(x)dx.

(ii) Jesli f,g € R oraz f(z) < g(x) dlaa <z <b, to
b b
/f(a:) dx < /g(x) dz.
(111) Jesli f € Rla,b] oraza < c <b, to f € Rla,c] NR]c,b] oraz
b c b
/f(x)dx:/f(x)dx—i-/f(x)dx.
() Jesli f € R oraz |f(x)] < M dlaa <z <b, to

b

[ fiw)da

a

< M(b—a).
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Dowdd. Dla liczby € > 0 mozna znalez¢ podziaty P i P, dla ktorych
UPLf) = L(PLf) < 5. UPaig) = L(P.g) < 5.

Wtedy dla podziatu P = P; U Py mamy
UP.)=L(P.f) < 5. U(P.g)=L(P.g) <

W rezultacie

w\m

Dalej

n

UP, f+g) =) M(f+g)Az

i=1
< ZMi( sz—l—ZM VAz; = U(P, f) +U(P,g). (8.3)

Podobnie
L(P,f+g) > L(P,f)+ L(P,g). (8.4)

W s$wietle (8.2) otrzymujemy

b
Stad f + g jest catkowalna. Warto$¢ catki / [f(z) + g(x)] dx lezy pomiedzy

liczbami L(P, f+g¢g) i U(P, f+g). Z (8. 3? i (8.4) wartos¢ ta lezy w prze-
dmale pormgdzy liczbami L(P, f)+L(P,g) i U(P, f)+U(P,g). Ale wielkosé

/f ) dx + /g ) dx tez lezy w tym przedziale. Z (8.2) dtugos¢ tego prze-

dmalu jest mmejsza niz €. To oznacza, ze

b b b

JUr@) + g@)de ~ [ @) de~ [ g(w)da

a a a

< E.

Stad otrzymujemy
b

@) + g@) dz = / fla)de + / g() da

a
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Dla liczby ¢ > 0 i podziatu P mamy
mi(cf) = cemi(f),  M(cf) = cMi(f),

natomiast dla ¢ < 0
mi(cf) = eMi(f),  Mi(cf) = emi(f).

b
To wystarcza do przeprowadzenia dowodu réwnosci f cf(z)dr =c f f(x)dx

Czesé (ii) twierdzenia jest oczywista. Przechodz1my do dowodu (iii). Dla
liczby e > 0 mozna znalez¢é podzial Py przedziatu [a, b] speliajacy U (P, f)—
L(Po, f) < e. Wtedy dla podziatu P = Py U {c} mamy

UP, f) — L(P, f) < <. (8.5)

Podzial P mozemy zapisaé¢ jako suma podziatéw P; i Py przedzialtéw [a, c] i
[¢, b], odpowiednio. Ponadto

U[a,b] <P7 f) = U[a,c} (Ph f) + U[c,b] (7)27 f)7 (86)
L[a,b}<P7 f) = L[a,c} (Pb f) + L[c,b] (PZa f) (87)

Na podstawie (8.5) otrzymujemy wiec
U[a,c] (Pla f) - L[a,c] (Pla f) <g,

Upe,s) (P2, ) = Liey) (P2, f) <e.
Stad funkcja f jest catkowalna w przedziatach [a, c] i [¢, b]. Wartosé / f(z)dx
lezy pomiedzy liczbami Liap) (P, f) 1 Uqy (P, f). Na podstawie (8. 6) (8.7)
wartosé / f(x)dr + / f(z)dx tez lezy pomiedzy tymi liczbami. Wtedy z

(8.5) otrzymujemy
b

/f(x)dx—/cf(x)da:—/bf(x)dx

a

< E.

Zatézmy, ze |f(z)| < M. Wtedy —M < f(x) < M. Zatem

b

—M@b-a) = /b(—M)dx < [fw)de < /bde — M® - a).

a
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Uwaga. Przyjmujemy, ze / f(x)dx =0 oraz dla b < a okre$lamy

/bf(x)da::—/af(x)d.x.

Wtedy wzér w Twierdzeniu 6.9(iii) jest prawdziwy niezaleznie od konfiguracji
liczb a, b i c.

Twierdzenie 8.10. Przypu$émy, ze funkcja f(x) jest calkowalna na prze-
dziale [a,b] oraz m < f(x) < M dla a < x < b. Niech g(y) bedzie funkcjg
ciggla na [m, M]. Wtedy funkcja ztozona g(f(x)) jest catkowalna na [a,bl.

Dowdd. Ustalmy liczbe € > 0. Istnieje liczba § > 0 taka, ze jesli |y; —y2| < 6,
to |g(y1) — g(y2)|] < e. Z catkowalnosci funkeji f mozna znalezé podzial P
taki, ze

i=1

Jesli liczba M; — m; jest duza, to liczba Az; musi by¢ mata. Niech

Dla i € A maksymalna rozpietosé wartosci funkcji f na przedziale [x;_q, x;]
jest mniejsza od §. Zatem maksymalna rozpieto$¢ wartosci funkcji g(f(z))
na tym przedziale jest mniejsza od . Oznaczmy

M; = sup g(f(z)), mi= 1inf g(f(r)), K= max [g(y)l

T;i—1<TLT; i1 STKT4 m<ys<M

Maksymalna rozpietosé wartosci funkeji g(y) nie przekracza zatem 2K. To
samo dotyczy wigc rozpigtosci wartosci funkcji g(f(z)) na kazdym przedziale
[z;_1,2;] dlai € B, tzn.
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Wtedy

n

U(P,go f)—L(P,go f)=> (M —m])Az;
i=1
- Z(MZ* —m})Ax; + Z(MZ* —m})Ax; < 52 Az; + 2K Z Az;
ieA i€B ieA ieB

2K 2K &

ieB 1=1

2K
<5(b—a)+755:5(b—a+2}().

]

Whniosek 8.11. Jesli funkcje f i g sq calkowalne na przedziale [a,b], to
réwniez funkcje |f|, f? oraz fg sq calkowalne. Ponadto

[ swrae] < [rnas

Dowéd. Dla funkcji |f| i f? stosujemy poprzednie twierdzenie z g(y) = |y| i
9(y) = y*. Dalej

fg=(f+9P = 1(f "

4
Stad fg jest catkowalna. Mamy —|f(x)| < f(z) < |f(z)|. Calkujac nier6w-
nos¢ otrzymamy

—iuumm<]f@Mm<fu@nw.

a a

Uwaga. Metody szacowania wartosci catek.

1. Obliczenie wartosci catki.

2. m(b— a) </f(yc)d:v< M(b— a).
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3. Znalez¢ funkcje g(x) i h(x) takie, ze g(x) < f(z) < h(z). Wtedy

b b b
[ot@)d < [ f@yaz < [ne)dr.

b
3. L(P,f) < [ f(z)dz <U(P, f).
Przyktad. Stosujac metode 2 otrzymamy
2
2 < /\/1 +otde < 2V1T.
0
Lepszy wynik uzyskamy rozdzielajac catke
2 1 2
/\/1—|—:B4d:v: /\/1+:v4d:)3+/\/1—|—a74d:17.
0 0 1

Wtedy
2
1+¢§</ﬁ+x4dx<¢§+m.
0

8.1 Zasadnicze twierdzenie rachunku rézniczkowego i
catkowego

Twierdzenie 8.12. Jesli funkcja f(x) jest calkowalna na [a,b] to funkcja
F(x) = /f(t) dt jest ciggla na [a,b]. Jesli f jest ciggla w punkcie xo, to F(x)

jest rézniczkowalna w vy oraz F'(xg) = f(xo) dlaa < x9 <b i F'.(a) = f(a),

F'(b) = f(b).
Dowdéd. Zatézmy, ze |f(z)| < M, czyli —M < f(z) < M. Dlaa < 77 < 23 <
b mamy
T2
- L/ £(t) dt
1

|F(z9) — F(x1)| = < M(zy — 1)

72f(t) dt — 7f(t) dt
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Jedli f jest ciagta w a < x¢ < b, to dla liczby € > 0 mozna znalez¢ liczbe § > 0
taka, ze dla |t —xo| < 6 mamy |f(t) — f(zo)| < e. Zalbézmy, ze 0 < x —x¢ < 0.
Wtedy

- x—lxo/f(t)dt_x—lxo/f(mo)dt :x—lxo V[f(t)_f(xo)]dt
< —— [ 1) - sG] d

Poniewaz zo <t <z, to g <t < x9 + 6. Wtedy |f(t) — f(x0)] < €. Funkcja
podcatkowa jest wiec mniejsza niz . Stad

‘F(l’) — F(xo)

pr— — [ (o)

<E.

To oznacza, ze

FJIF(ZUO) = f(zo)-
Dla pochodnej lewostronnej przeprowadzamy podobne rozumowanie przyj-
mujac a < xo < b. Wtedy dla g — § < x < xg mamy

PP ) = | PO iy
— [0 - syt <

Whiosek 8.13. Dla funkcji f(x) cigglej na przedziale |a,b] istnieje funkcja
F(x) taka, ze F'(x) = f(x) dla a < x <b oraz F' (a) = f(a) i F'(b) = f(b).
Funkcje F(x) nazywamy funkcjg pierwotng do funkcji f(x).
Twierdzenie 8.14 (Zasadnicze twierdzenie rric). Jesli funkcja f(x) jest cal-
kowalna na [a,b] oraz F(z) jest funkcjg pierwotng do f(x), to
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Dowdd. Dla liczby € > 0 bierzemy podziat P taki, ze

U(Pvf)_L(Pvf) <é

Niech xg, 1, ..., x, oznaczaja punkty podziatu P. Wtedy z twierdzenia La-
grange’a otrzymujemy

FO) = Fa) = () = Fao) + Flaz) = Fea) + .+ Flaa) = o)
= ZF’ VAz; = Zf Az, = S(P, f),

dla pewnych punktow x; ; < t; < x;. Mamy

L(P,f) < S(P.f) <U(P, ),

\@

f U(P, f).

Zatem

Uwaga. Wzér w twierdzeniu jest prawdziwy rowniez dla a > 0.

Przyktady.

1

dr = arctgx
0

1
1
)/
) 1+ 22
0
Twierdzenie 6.14 moze by¢ uzyte do obliczania réznego rodzaju granic.

Przyktady.
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(a) Chcemy obliczy¢

. 1 3 2n —1

Wyrazenie pod granicg mozemy zapisa¢ w postaci

1,1 3 2n —1
G+o+..+ ).
n\n n n

2 Ti_1t+x

2
Przyjmijmy, ze z; = — oraz t; = 5 Mamy Ax; = —. Zatem
n n

2
1
wyrazenie pod granicg ma posta¢ sumy catkowej dla catki 3 / rdr =1.

0
Stad granica wynosi 1. Mozna zauwazy¢, ze wyrazenie pod granica jest

rowne 1, niezaleznie od wartosci n.

(b) Mamy do obliczenia

1 1 1
lim + T pl——————
n <\/n2+1 \/7124—22 \/n2+n2>

1
"”<\/1 + % \/1+ ,/1+ ) /m
= log(z + Va2 + 1)‘0 = log(1+v2).

Twierdzenie 8.15 (Calkowanie przez podstawienie). Przypu$émy, Ze
funkcja f(u) jest ciggla, a funkcja p(z) jest rézniczkowalna w sposéb
ciggly na przedziale [a,b] oraz zbior wartosci ¢([a,b]) jest zawarty w
obszarze okreslonosci funkcji f. Wtedy

b #(b)
[ 1tetang/ @y de = [ fu)du. (8:8)
a @(a)

Dowdéd. Symbolem F' oznaczymy funkcje pierwotng do f. Wtedy
[F'(p(2))] = F'(¢(2))¢ () = flp(2))¢'(z).
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7 Twierdzenia 6.14 otrzymujemy zatem

Uwaga. Patrzac mechanicznie na wzoér (8.8) widzimy, ze nastapita za-
miana u = () i du = ¢'(x)dz, oraz konce przedziatlu catkowania
zostaly odpowiednio zmodyfikowane.

Przyktlady.
w/2
(a) Dla catki /sinxcosxdx stosujemy podstawienie u = sinx =: p(z),

0

1
f(u) = u. Wtedy du = cosx dz. W wyniku otrzymujemy /u du = 5
0

(b) Wzér (8.8) moze by¢ zastosowany w przeciwna strone. Rozwazmy catke
/1 du
2 V1t u?

Zastosujemy podstawienie u = sinh z. Wtedy du = cosh x dz. Trzeba
znalez¢ granice catkowania a i b odpowiadajace liczbom 01 1. W tym

celu rozwigzujemy réwnania sinha = 0 i sinhb = 1. Otrzymujemy
a = 0. Drugie réwnanie przeksztalcamy do postaci

Loy o 1

e —e'—-=0

2 2

Jedynym dodatnim pierwiastkiem tréjmianu kwadratowego jest 1++/2.
Zatem e’ = 1+ /2, czyli b = log(1 + v/2). Otrzymujemy wiec

1 log(14++/2) L log(14++/2)
cosnx
/ —_— / ——dr = / dleog(l—i—ﬂ),
0 1 + U2 0 \Y; 1 + Slnh2 0

bo coshz = /1 + sinh? z.
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Twierdzenie 8.16 (Calkowanie przez czesci). Zalézimy, Ze funkcje u i v sq
ciggle natomiast v’ i v’ sq calkowalne w sensie Riemanna na przedziale [a, b].
Wtedy

/u’(x)v(af;) dr = u(x)v(x)

Dowdd. Mamy (uv) = w'v + uv'. Z Twierdzenia 8.14 otrzymujemy wiec

u(z)v(z) b = /b W (z)v(x) 4+ u(z)v'(z)] do = /b u (z)v(z) de + /b u(x)v'(z) d.
/ / a D
Przyktad.
[zsinzds = —veona| + [eonzds = .

Uwaga. Czesto tatwiej znalez¢ funkcje pierwotna zamiast stosowaé catkowa-

nie przez czesci. W przyktadzie (—x cosx + sinz)’ = xsinz. Gléwna czesdcia

funkcji pierwotnej jest sktadnik —x cosz. Po obliczeniu pochodnej pojawia

sie dodatkowy sktadnik — cosz. Stad w funkcji pierwotnej wystepuje korek-
1

ta o sinz. Podobnie przy obliczaniu catki / z2e® dz mozemy latwo znalezé

0
funkcje pierwotng metoda korekt. Otrzymamy
(22" — 2xe” 4 2e%) = 2",

Zatem .

/x2e’” dr = (2° — 22 + 2)e”
0
Wzér na catkowanie przez czesci mozna stosowaé wielokrotnie.

1
=e— 2.
0

Whniosek 8.17. Zatozmy, zZe funkcja u jest ciggta natomiast funkcja g jest n-
krotnie rézniczkowalna w sposéb ciggly na przedziale [a,b]. Niech uy oznacza
funkcje pierwotng rzedu k dla funkcji u, tzn. uy = f oraz ), = ug_; dla
k> 1. Wtedy
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Dowdd. Dla n = 1 wzoér sprowadza si¢ do Twierdzenia 8.16 przy czym role
funkcji v’ pelni u.. Zaltézmy, ze wzér jest spelniony dla liczby n. Pokazemy,
ze jest prawdziwy dla liczby n + 1. Rzeczywiscie stosujac catkowanie przez
czesci otrzymamy

(=1)" [ un(@)p (@) o = (=1)"tms1(2)0 ()

Ten wzoér mozna zastosowaé do szybkiego obliczenia niektorych catek. Np.

1 5
/ ez’ dr = (—1)Fe”(2%)®
U k=0 0
=(1-5420—60+ 120)e — 120(e — 1) = 120 — 44e = 0, 3955...

1

Twierdzenie 8.18 (Reszta we wzorze Taylora w postaci catkowej). Jesl
funkcja f(x) jest n + 1-krotnie rézniczkowalna w sposéb ciggly w otoczeniu
punktu a, to dla punktow b z tego otoczenia mamy

(b—a)"

(@) + Buga,

£0) = s+ =)+ O pray 4y

gdzie
b

1
_ o n £(n+1)
R, oy /(b x)"f (x) dx.

a

Dowaod. Mamy
b
1) = fl@) = [1- /@) da.

"Wniosek 8.17 i Uwage zawdzieczam studentowi z kursu Analizy 1T (2020)
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Zastosujemy Wniosek 8.17 do calki przyjmujac u(z) = 1 oraz v(z) = f'(z).
Wtedy

(—D)Fuy(z) = ;(b —o)f, k>1
Wtedy
b - 1 1 b
/N@M=—;M®:NNW%+M<%MWWW@M
b
=32 b= @)+ =0y f O @) da

Twierdzenie 8.19 (Twierdzenie o wartosci $redniej). Funkcje f i g sq cal-
kowalne na [a,b], przy czym g(x) > 0 dla a < x < b. Wtedy

b b
[ f@g(@)de = [ g(a) da
dla liczby X lezgcej pomiedzy kresami dolnym m i gornym M funkcyi f.
Dowdd. Mamy mg(x) < f(x)g(x) < Mg(z). Calkujac otrzymamy

m/bg(x) dx < /bf(x)g(a:) dr < M/bg(x) dx.

b b b
Jedli [ g(x)dx = 0, to réwniez [ f(z)g(z) dx = 0. W przypadku [ g(z)dx > 0
otrzymujemy

[ f(2)g(w) da

(x) dz

m <

S —
Q

Przyktad.
f(x)sinzdr = /\/sinxdx =2\
0

//\ o\:‘

dla pewnej liczby m < A < M.
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Whniosek 8.20. Jesli funkcja f jest ciggla a funkcja g(x) nieujemna i cat-

kowalna, to
b

fme@Mx:ﬂa/mm¢r

a

dla pewnego punktu a < & < b.

Dowdd. 7 poprzedniego twierdzenia mamy m < A < M. Z wtasnosci Darbo-
ux mozna znalezé¢ £ taki, ze f(§) = \. O

Przyktad. Jesli f jest ciggla, to
/f(yc) sinx dr = 2f(€).
0

Twierdzenie 8.21. Jesli f(z) jest nieujemnqg funkcia malejacq a g(x) funk-
cjq catkowalng na [a,b], to

[ f@)g@)de = f(a) [ g(a)da (89)

dla pewnego punktu & z przedziatu [a, b)].

Dowod. Niech
My = sup |g(z)|.

a<z<b
Z catkowalnosci funkcji f istnieje podziat P = {xg,z1,...,2,} przedziatu
[a, b] taki, ze
€
P f)—L(P,f) < —.
UP.f) = L(P.f) < 37
Wtedy
b n Ti
[i@g@ydz =Y [ f@)g(@)de
) =17
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Mamy
BI<Y. [ ey - F@) o) de < My 3 04() — () As
) <M9[U(P7f)_L(Paf)]<€

Dalej stosujac oznaczenie

uzyskujemy

Niech
M = max G(z), m = min G(z).

a<x<b a<x<b

Wtedy

n

A< Sl ftris = £e] + 50)] M = M)

i=1
Podobnie otrzymujemy
A> Mf(a).

Reasumujac dostajemy nieréwnosci

mf(a) —e < /f(x)g(x) de < M f(a) +e.

Stad

mf(a) < [ f(@)g(x) de < Mf(a).
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Poniewaz funkcja G(x) jest ciagla, to z whasnosci Darboux otrzymujemy

[ 1@)g(@) dz = £(@)G(&) = f(a) [ g(w)da

dla pewnego punktu a < & < b.

Uwaga. Jesli g(z) jest nieujemna i malejaca, to

b‘f(sc)g(x) de = g(a) E‘ f(x)dz
/ /

Przyklad. Dla 0 < a < b mamy

b . £
sin 1 . cosa — cos &
dr = — | sinzdr = ———.

T a a
a a

b .
sin x
/ dx
T
a

Zatem

2
< -
a

8.2 Wzory Wallisa i Stirlinga

G,
Dla dwu ciggoéw liczb dodatnich a,, i b,, zapis a, =~ b, oznacza, ze T 1.

) (2) s () = n

2
liczba ( n) jest najwieksza. Wzor Wallisa podaje informacje jaki jest stosu-
n

We wzorze

nek tej liczby do sumy wszystkich symboli, czyli do 4.
Twierdzenie 8.22 (Wzor Wallisa).
124"
lim (n)

OV A
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w/2
Dowéd. Oznaczmy I, = /sin”xdx. Mamy Iy = g oraz Iy = 1. Dalej dla
0

n = 2 mamy

w/2
I, = /(— cos ) (sinz)" ! dx
0

/2
+(n—-1) / cos’ z (sin )" 2 dx
0

/2
n—1 /

= —cosz (sinx)
0

w/2
—(n—1) / [ —sin?2] (sine)" 2de = (n — V)l o— (n — 1)1,
0
Zatem

n—1
I, = - I, . (8.10)

Poprzez iteracje (8.10) otrzymujemy

2n —1 2n—1)2n—3)...3-1 (2n)! =«
Iy, = 9 I o=...= Iy = 50
n 2n(2n —2)...4-2 4n(nl)? 2
(8.11)
o 2n Lo - (2n)(2n —2)...4-2 I - 4" (n!)?
T o1 T T 2+ 1) (2n—1)...5-37 T @n+ 1)
(8.12)

Ciag I, jest malejacy, czyli o, o < Izpy1 < Io,. Zatem na podstawie (8.10)
dostajemy
2n + 1 Ign+2 I2n+1
= <
2n + 2 [211 IZn

< L

Whioskujemy, ze Io,.1/1a, — 1. Stad korzystajac z (8.11) i (8.12) mamy

Dy | 42(nh)?2 4n(nl)2 2 47(n!)? 2n
b \ L, J Cn+ 1) (2n) 7 (2n)lym V2n+1
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Twierdzenie 8.23 (Wzor Stirlinga).

|
lim ————— = 1,

nonte="\/21n
tzn. n! = n"e "/ 2mn.

Dowdd. Udowodnimy nastepujaca nieréwno$cé, z ktorej wynika teza twierdze-
nia.

n"e~"V2mn < nl < ne "V2mn e, (8.13)
Oznaczmy
n! n!e”
Ap = 1 = 1
n"tie—n  ptta
Wtedy
a, 1 (n+1)"tr 1 (1+ 1)”+%
ans1  (n+1)e  prts e n ’
Dalej

an 1 1
log :(n—i-)log(l—i-)—l.
(nt1 2 n
Rozwazmy fragment wykresu funkcji y = 1/z od punktu z; = n do punktu
ro = n + 1. Wykres jest wypukly w doét. Zatem pole trapezu pod sieczng
przechodzaca przez punkty (x1,1/z1) i (z9,1/x2) jest wieksze niz pole pod
wykresem funkcji. Z kolei to ostatnie pole jest wieksze niz pole trapezu pod
styczng do wykresu w punkcie (z3,1/x3) dla 3 = (21 + 22)/2 = n+ 5. Pole
pod wykresem wynosi
n+1 1 1
/ ;d:z::log(n—i—l) —logn = log (1—|—n) :

n

Zatem
1/1 1 n+ 3

1 1
g1+ L) <L(Ly Ly
n+3 o8 +n 2 n+n+1 n(n+1)

Pomno6zmy nierownosé przez n + % i odejmijmy 1. Wtedy

1 1 (n+1)° 1
0< — )1 (1 )—1<2—1:.
(n—i— 2) s\ Th n(n+1) dn(n+1)
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To oznacza, ze

an, 1/1 1
0 < log < - ( — ) ,
ani1 4 \n n+1
czyli
1
[P
Ap+1 ei(nt1)

Stad ciag a, jest malejacy. Niech o = lima,,. Ostatnia nier6wnos¢ pociaga
n
rowniez )
a ein
1< = < —.
A4k e 4(n+k)

Przechodzimy do granicy, gdy £ — oco. Otrzymujemy
1< < et (8.14)
o

To oznacza, ze a > 0. Obliczymy teraz wartos¢ liczby . Mamy

al  (nl)2e* (2n)*3 (n!)24n

_ _ .
a2 T Qe 2n)la

V.

Ale

a? a? o)
H f—

CLQn\/§ " O{\/Q B ﬁ
Stad a = v27. Z (8.14) uzyskujemy

a 1
n < € 4n s
V2mn

co jest rownoznaczne z (8.13). O

1<

Twierdzenie 8.24. Cigg funkcji f, cigglych na przedziale [a,b] jest jedno-
stagnie zbiezny do funkcjyi f. Wiedy
b

llqgn/bfn(x) dx:/f(x) dz.

a

Uwaga. Twierdzenie méwi, ze

hén/bfn(x) dx = /bli}ln folz) dx,

tzn. mozna wejs¢ z granica pod znak catki, przy zbieznosci jednostajnej.
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Dowdd. Dla ustalonej liczby € > 0 mozna znalez¢ prog N taki, ze dlan > N
oraz a < x < b mamy |f,(z) — f(x)] <e/(b—a), czyli

f@) = 5= < fule) < fla) + 57—

Catkujac otrzymamy

b b

/f(x)dx—5</bfn(x)dx</f(x)dx+5,

a a

tzn.
b b

[ ful@yde = [ f@)ds

a a

<E.

Przyktady.

0 0<z<1,
1 z=1.

1

1
Zatem f,(x) nie jest zbiezny jednostajnie, ale /x” dr = 1 — 0.
n
0

n

(¢) fu(z) =n’2"(1 —z). Mamy f,(z) — 0, dla 0 <z < 1. Ale

3

1 1 ) n
- = — 0.
n+1l n+2 m+1)(n+2) »

1
/n?’x"(l —x)dr =n® (
0



Catka Riemanna 127

8.3 Calka nieoznaczona

Definicja 8.25. Przypusémy, zZe funkcje f(x) i F(x) sq okreslone na usta-
lonym przedziale i spetniajq F'(x) = f(x). Funkcje F(x) nazywamy funkcjg
pierwotng do funkcji f(x) lub calkq nieoznaczong funkcji f(x) i zapisujemy

/f(x) dx = F(z).

Jesli G(z) jest inng funkeja pierwotna do f(x), to G(z) = F(x) + C dla
pewnej stalej C. Rzeczywiscie,

(G(z) = F(z)) = G'(x) = F'(x) = f(z) = f(z) = 0.

Zatem funkcja G(x) — F(x) jest stala na przedziale. Stwierdzenie nie jest
prawdziwe dla dwu przedzialéw. Na przyktad niech z € (0,1) U (2, 3). Niech
F(x) = 2? oraz

Glx) ?+1 0<z<l,
€Tr) =
2 -1 2<x<3.

Wtedy G'(z) = F'(x) = 2.
Przyktad.

1 log x x>0,
/fd:v: = log |z|.
x log(—z) <0

Zapis stosowany w wielu podrecznikach

1
/—dleog]a:\+0
T

jest mylacy, bo sugeruje, ze na obu potprostych dodatniej i ujemnej musimy
wzig¢ te sama stalg.

Twierdzenie 8.26.

Ji@) +g@lda = [ fl@)do+ [ gx)dr,
/cf(x)dx = c/f(a:)d:v.
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Twierdzenie 8.27 (Calkowanie przez podstawienie). Zaldzmy, ze funkcja
o(x) jest rozniczkowalna w sposdb ciggly natomiast funkcja f(u) jest ciggla
na zbiorze wartosci funkcyi . Wtedy

[ Fe@)¢ @) de = Fp()),

gdzie F(u) = /f(u) du.
Dowdd.

d

T F(e(2)) = F'(p(2))¢' () = f(p(@))# ().

Uwaga. Teze¢ mozemy zapisa¢ w postaci

[ 1p@)g' @) de = F(u),  gdzie u = (a)

Inaczej
[ 1te@) @) de = [ fu)du,  gazie u = p(a).

Stosowanie twierdzenia

1. Chcemy obliczyé¢ [ f(e(x))¢'(z)dz. Obliczamy [ f(u)du i po wyko-
naniu obliczen podstawiamy u = ¢(x). Formalnie wyrazenie ¢'(x) dx
zamienito si¢ na du, tzn. du = ¢'(z) dx. To jest zgodne z zapisem Le-

d
ibniza, bo ¢(x) = d—z

2. Chcemy obliczy¢ [ f(u) du. Podstawiamy u = ¢(x). Obliczamy [ f(p(z))¢'(x) dx.
Nastepnie pozbywamy sie zmiennej x przez podstawienie u = ¢(z). Po-
nownie du = ¢'(x) dx.

Przyktady.

(a)

1
/e_\/‘% dr = /2\/56_\/52\/5 dx.

Stosujemy podstawienie u = p(z) = /x, f(u) = 2ue ™. Zatem du =

1 . )
7 dz. Otrzymujemy wiec

/e’ﬁ dr = /2ue’“ du = —2ue™" — 2e* = —2y/ze V¥ — 27 VT,
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(b)

/sin\/ﬂdu :2/sinx 2vdr = —2xcosx + 2sinx
= —2v/usin /u + 2sin /u.

Twierdzenie 8.28 (Catkowanie przez czesci).
| @) dr = f@)ga@) - [ f@)g (@) do.
Dowéd. Mamy (f(x)g(z)) = f'(x)g(x) + f(x)g (z). Zatem

@) = [ F@g@) e+ [ f@)g (@) da.
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Przyktady.
(a) /xe’“f dx = /(—e’x)’x de = —xe " + /e*x de = —ze " —e °.

1
b) /logxdx:/x’logxdx:xlogx—/x—dx:xlogx—x.
x

(c) /exsinxdx:exsin:t—/excosx:exsinx—{excosa:+/exsinxda: :

(d) /09815 :Smx—/anx( cosx) do — 1+ /COSJ;dx.

ST ST SN0 S T

8.4 Catkowanie funkcji wymiernych

Bedziemy sie zajmowali obliczeniem / @ dx, gdzie p(z) i ¢(x) sa wielo-

()

mianami. Jedli deg p > deg ¢, to wykonujemy dzielenie z resztg
p(x) = w(z)q(z) +r(z), degr < degg.

Wtedy

Przyktady.

1
) /fdx = log |z|. Zatem
T

F@) e
| oy e =to8 17 (@)1

/(x—QC)fo—?)):/(xl—Z%_xiZ) e
T —3
|

= log |z — 3| — log |z — 2| = log :
r—2
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Ogolnie przy catkowaniu r(x)/q(z) rozktadamy mianownik na czynniki
postaci (z — a)" oraz [(z — ) + ~v%™. Wtedy wyrazenie r(z)/q(x) rozktada
si¢ na sume¢ wyrazen postaci

1 Co Cn
—a (x — a)? o (x —a)"’

dir + e dox + €3 . n Ay + €,
(@=B8P+7 [@=072+P  [z=82+"

Przyktad.

/ dz p _/ dz
Bl (x+1D)(22—az+1)

1 A Bx +C
= + . (8.15)
(x+1)(x2—2z+1) z+1 a2—z+1
Chcemy znalezé state A, Bi C.
Sposéb I.
Mnozymy obie strony réwnosci przez x + 1 i podstawiamy x = —1. Otrzy-

Wiemy, ze

mujemy A = 3 Dalej

1 1 B —22 4+ x+2
(z+1)(22—z+1) 3x+1) 3@@+1)(a2—z+1)
(r+1)z—-2) r—2

3+ D2 —z+1)  3@2—z+1)
Ostatecznie otrzymalismy
1 1 x—2

(x+1)(22 =z +1) - 3(x+1) o 32—z +1) (8.16)

Sposéb II.
Mnozymy réwnosé (8.15) przez (x + 1)(z* — x + 1) i otrzymujemy
=A@’ -2+ 1)+ (Br+C)(x+1)=(A+B)2*+(B+C - A)x+ A+ C.
Nastepnie rozwiazujemy uktad rownan
A+B = 0,
B+C—-A = 0,
A+C = 1
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Na podstawie (8.16) obliczamy

/dw:llog|x+1|.
3r+1) 3
Dalej
Tr— 2 1 2z-1 3 1
xQ—a:—|—1:§ 2—r4+1 222—x+1
1 1 4 1
3

2 1 1\?, 3
Ostatecznie otrzymujemy wynik

/ @ el |z + 1 L (2 =2+ 1)+ tg 221
— axr = — 102 |T — = 10g\Tr™ — X arc —_—
PO 6 8 3 s

dx
Przykl d./ .
SR A IS VIR
Mamy

1 A B Cz+D

v (8.17)

G122+ -1 @=1p Zii
Jak najszybciej znalez¢ stale A, B, C' i D ? Oznaczmy f(z) = 1/(2? + 1).
Mnozymy réwno$é przez (x — 1)? i podstawiamy x = 1. Dostajemy B =

f(1) = L. Przeksztalcamy réwnosé do postaci

fle)  f@) _Cx+D
(x—1)2 (x—1)2 2241~

Po pomnozeniu przez x — 1 otrzymujemy

flz) = f(1) Cx+ D
1 —A+(x—1)x2+1.
Czyli

e—1 o —1 (22 +1)% =1 2’

Na podstawie (8.17) obliczamy

1 1 1 1 1
(33—1)2(1’2—1—1)_2(33—1)2+§:U—1
:2—(x2+1)+(x—1)(x2+1)_ x(x —1)? x

2(x — 1)2(z2 + 1) S 2 —1)2(22+ 1) 2(22+1)
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Ostatecznie otrzymujemy

dz 1 1 1
= Zloglr—1] — ——— + ~ log(z® + 1).
/kx—D%ﬁ+&) 3 logle =1 =gy + glogle” + 1)

/()

Ogolnie, rozwazamy sktadnik postaci e gdzie f(x) jest funkcja
—a

nieskonczenie wiele razy rézniczkowalng w punkcie a. Ze wzoru Taylora mamy

rT—a (z —a)k! (x —a)*

f(z) = [f(a) 1 f/(a)+-~-+Wf(k_l)(a)+Tf(k)(f),
dla pewnego punktu ¢ pomiedzy a i . Wtedy
f(z) f(a) f'(a) f* 1 (a)
(x —a)k - (x —a)k + (x —a)k—1 et (k—1)!(z —a)  Ril@),

oraz

® (®)
lim Ry (z) = lim / kk!(f) _f ’;!(a)

9

co oznacza, ze w mianowniku funkcji Ry(x) nie wystepuje czynnik = — a.
Kazdy sktadnik postaci ¢;,/(x — a)* catkujemy wedtug wzoréw

d 1 1
/( Ik:_ k>0,

T — ) k=1 (x—a)V
dx
/ =log|z — «af.
r—«
Sktadniki postaci
(dkl’ + €k)
[(z — B)> + 2]

przez podstawienie afiniczne sprowadzamy do wyrazen postaci

(u?2+ 1)k~

Dalej
(dku + gk) ~ u 1

@ )F - @ E TR e
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1
3 log(u? + 1) k=1,

u
Ty L1k 1 1
/(u2+1)’“ — > 2.
D@Lyt P22

du
- Wtedy I = arctgu oraz

OZnaCZy Ik = / m

1 u 2u? du
o= [o o du= ek [
k u (u + 1)k u (u2 + 1)k - (u? + 1)k+1
u [(u? +1) — 1] du
-

(u? +1) + 1)k
u
= m + 2k1, — 2k 1.
Otrzymujemy wiec
1 u 2k — 1

1.

L1 = —
HLT R T )F 2k

8.5 Podstawienie wykladnicze i trygonometryczne

Przyktady.

d
(a) /\/1 — e* dx. Podstawiamy u = e*, du = e*dx czyli dx = —u, aby
u

otrzymac
J1 =
/\/l—exdm:/ udu.
u

Nastepnie podstawiamy v = /1 —u. Wtedy u = 1 — v?, czyli du =

—2v dv.
V1—u v 202 1
/ U du /1—1}2( v) dv /v2—1dv /( —1—02_1)(11}
1 1
:22)/(2;—1_1)—{—1) dv =2v + log |v — 1| — log |v + 1]

=2v1—e*+log(l —v1—e*) —log(l+v1—e?)

el’
=2v/1—e* +log ———— —log(l + /1 —e*
v B vice et vi—e)

=2V1—e* 4z —2log(l+V1—e").
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(b) Przypomnimy podstawowe wzory dotyczace funkcji hiperbolicznych.

cosh? x = sinh? 2 + 1,
sinh 2z = 2sinh x cosh z,

cosh 2z = 2cosh?z — 1 = 2sinh?z + 1.

W calce / V2?2 4+ 1dx wykonujemy podstawienie x = sinht. Wtedy
dx = coshtdt. Zatem

1
/\/$2 Fldr = /costhdt - 5/[cos,hzt+ 1] dt
1 1 1 1
= §t + 1 sinh 2t = 575 + 5 sinh t cosh t
Z réwnosci z = (e' — e7') /2 otrzymujemy
1 1

—e* —zel — = =0.

2 2
Wtedy €' = x4+ Va2 + 1 oraz t = log(x + Va2 + 1). Zatem
1 1
/\/352 +1ldz = ilog(x +Vaz+1)+ ix\/xz + 1.

(c) Przy catce / Va2 —1dx x > 1 wykonujemy podstawienie x = cosht,
t > 0. Wtedy v2? — 1 = sinht. Zatem

1
/\/x2—1dx:/sinh2tdt: §/[coshzt—u dt
1 1 1 1
= —§t+ isinhtcosht = ilog(:v +va?—1)+ 595\/952 -1

(¢) W calce /\/1 — 22 dv wykonujemy podstawienie z = sint, —5 < x <
5. Wtedy

1 1 1
/\/1—w2dx:/cos2tdt:5/[cos2t+1]dtzzsin2t+§t

1 1 1 1
= §sintcost—|— §t = §x\/1 — 2+ iarcsinx.
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Rozwazamy wyrazenie postaci R(x,vaz? + bzx + ¢), gdzie R(x,y) jest
funkcja wymierna dwu zmiennych. Poprzez podstawienie afiniczne x = at+ (3
sprowadzamy wyrazenie do jednej z trzech postaci i wykonujemy podane w
tabeli podstawienia.

R(t, 1) a>0, A<0 t = sinhu
R(t,v/t?—1) a>0, A>0 t = coshu

R(t,v/1—t?) a<0, A>0 t =sinu

Otrzymamy w wyniku wyrazenie postaci R(cosh u,sinhu) lub R(cos u, sinu).
Jesli nie potrafimy bezposrednio wskaza¢ funkcji pierwotnej na tym etapie
wykonujemy podstawienia v = e* lub v = tg 3, odpowiednio. Przy podsta-
wieniu v = e* mamy

dv

1
coshu = ~(v+ov! sinhu = (v —ov™? du = —.
Przy podstawieniu v = tg § otrzymujemy

cos u = cos’ g — sin® g = cos? % [1 — tg? zﬂ = cos? g (1—v?),

u u u Uu u
SN u S1n 9 COS 9 COS 9 g 9 COS 9 v,

1 U
=—(1+ 2) .
dv 2( tg2 du

Korzystajac ze wzoru

o U 1
I+te 5_0082%

otrzymamy

1—? _ 2v 2
cosu=-——, sinu=-——, du=
1402 1402 1402

dv.

Przy obu podstawieniach otrzymujemy funkcje wymierng zmiennej v.

Przyktad. Nie zawsze warto sprowadzaé obliczenie do calki z funkcji wy-
miernej. Czasami lepiej zastosowaé¢ wzory trygonometryczne, aby szybciej

osiagna¢ cel. Przy zastosowaniu podstawienia v = tg 7§ do catki cos® x dx

1—02 2
/cos :1::/ 52 1_H}2dv.

otrzymamy
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Uwaga. Mozna unikna¢ podstawienia trygonometrycznego. Np. w catce / V1—22dx

dla z > 0 mozemy zastosowaé podstawienie z = 1/u. Wtedy dr = —du/u?.
Zatem

8.6 Zastosowanie calek oznaczonych do obliczania wiel-
kosci fizycznych

Pole obszaru na ptaszczyznie

Jedli y = f(x) jest nieujemna funkcja ciagla na [a, b], to pole S obszaru pod
wykresem funkcji i nad osig x wynosi

S = /bf(x) dx.

N

Pole obszaru pomiedzy wykresami dwu funkcji ciagtych f(z) < g(z), a
x < b wynosi zatem

s = [lgle) - f(@)] da.

Srodek masy obszaru

Zaktadamy, ze obszar miesci sie pomiedzy wykresami funkeji f(z) 1 g(z), a <
x < b, przy czym f(z) < g(x). Przyjmujemy, ze masa jest proporcjonalna do
powierzchni. Dzielimy przedzial [a, b] na n réwnych czesci punktami x;, gdzie
1 =0,1,...,n. Temu odpowiada podzial obszaru na n waskich fragmentow
zwiazanych z przedziatami [x; 1, x;]. Masa fragmentu wynosi w przyblizeniu

m; = [g(x:) — f(x:)]Az;.
Srodek masy tego fragmentu znajduje sie w przyblizeniu w punkcie
X; o= (i, 3[f () + g(x)])

Srodek masy catego obszaru jest réwny w przyblizeniu srodkowi masy uktadu
punktow (X;,m;) dlai=1,2,... n. Srodek masy tego uktadu znajduje sie
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w punkcie
d_wimi Y glf (@) + gla)m
X =~ Zi; =L -
R

Dalej

n b

Yomi = Ylgla) — f@)Ae — [lo@) - f(a)]d,

Soem = 3 alate) - fe))dn o [ loa) - ) de

UG baledm = 53 lole = S g [l = st

Przeanalizujemy btad wystepujacy w obliczeniach. Dla funkeji h i liczby 6 > 0
okreslamy oscylacje wzorem

osc (h,0) = sup{[h(z) = h(y)| - a <2,y <b, |z —y[ <0}

Przy obliczaniu pojedynczego sktadnika btad nie przekracza

b— b—
aosc (h, a>7
n n

gdzie w roli funkcji h wystepuja funkcje g — f, x(g — f) oraz ¢g*> — f2. Po
zsumowaniu btad nie przekracza wielkosci

n

b—
(b —a)osc (h, na) — 0.
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Dlugosé krzywej

Krzywa na plaszczyznie zadana jest poprzez parametryzacje © = x(t), y =
y(t), a < t < b. Zakltadamy, ze funkcje x(t) i y(t) sa rézniczkowalne w
sposéb ciagly. Checemy obliczyé dtugo$é krzywej. Dzielimy przedziat [a, b] na
n rownych czesci punktami ¢;, ¢« = 0,1,...,n. Fragment krzywej pomiedzy
kolejnymi punktami (z(t;—1), y(t;—1) i (x(t;), y(t;) przyblizamy odcinkiem dla
kazdej wartosci ¢ = 1,2, ..., n. Otrzymamy tamang o dtugosci

L= 3 yfielt) = et + [y(e) — ulte )P

7 twierdzenia Lagrange’a mamy

x(t;) —x(tis) = 2'(¢;)Aty,
y(t) —y(tic) = y'(di)At,

dla pewnych punktow ¢; i d; pomiedzy t;_; i t;. Zatem

Z\/x (d;)? At;.

Okredlmy wielkos¢

Lo= > Jo(ap +y(r ot — [\o@r+y32a

=1

Dalej

|En—Ln| <Z

=1

Ve + y(di)? = () +y ()]

Skorzystamy z nieréwnosci trojkata

‘\/CL%—Fb%—\/CI%—Fb% < \/(&2-&1)2+(b2—b1)2.

Zatem

_ n b— b_
L, — Ln| <Dy (di) — v/ ()| At; < ¢ osc (y’, a)
=1 n
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bo funkcja 1’ jest jednostajnie ciggla. Reasumujgc otrzymaliSmy

L, — /\/x’(t)z F (b2 dt.

Przyjmujemy wiec, ze dtugos¢ krzywej wynosi

L= /\/m’(t)Q Fy(h2dt.

Przyktad. Okrag o promieniu » mozemy sparametryzowaé przez x = r cost,

y =rsint, 0 <t < 2r. Wtedy

L= / \/<—T sint)? + (r cost)? dt = 27r.

Wracamy do sytuacji ogélnej. Niech s(t) oznacza dtugo$¢ krzywej, gdy czas
zmienia sie od a do t. Wtedy

t

s(t) = / \/x’(u)2 + v/ (u)? du.

a

Zatem
s'(t) = \2'(t)? + v/ ()2

W zapisie Leibniza wzor ma postaé
ds _ | (da\" (dy\’
dt -\ \dt dt ) -

ds = /(dx)? + (dy)?.

Niech y = f(x) bedzie funkcja rézniczkowalng w sposéb ciagly na [a, b].
Chcemy obliczy¢ dhugosé wykresu. Stosujemy parametryzacje x = t, y =

f(t). Wtedy b b
L— /,/1+f/ £)2 dt = /,/1+ff( )2 dz.

Uzywa sie tez zapisu
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Przyktad. y = v1 — 22, —1 <z < 1. Wtedy
1 1
— arcsin & =T.

1 = ]
L:/w1 Y e = [ ———
el +1_$2 ! V1—2? -1

Uwaga. Funkcja podcatkowa nie jest okreslona dla x = 1, wiec obliczenie

Le—_

nie jest do konca $ciste. W celu uscislenia obliczen mozna ograniczy¢ sie do
—149 < z < 1—-6. W wyniku dostaniemy arcsin(1—9) —arcsin(—1-+46). Przy
5 — 0% otrzymamy 7. Calke z funkcji, ktéra nie jest okreslona w niektérych
punktach przedziatu catkowania, nazywamy catka niewtasciwa. Teorig takich
catek zajmiemy sie w drugiej czesci kursu.

Dtugosé krzywej we wspoétrzednych biegunowych

Dla punktu X(z,y) okreslamy wspolrzedne biegunowe (r,6), gdzie r jest
odlegtoscig punktu od poczatku uktadu, natomiast 6 jest katem pomiedzy
dodatnig pélosig x i polprosta OX. Zatem r = y/x? + y2. Ponadto x = r cos 6
iy=rsinf.

Zalozmy, ze krzywa jest zadana przez zwigzek pomiedzy r i 0 wzorem
r= f(0), 0, <0< 0, Wtedy

x = f(0)cosl, y= f(0)sinf, 0; <0< bs.

Zatem

L:/¢mww%e—ﬂmmwp+meme—ﬂmmew.

Po uproszczeniu otrzymujemy

L:/way+fwyw.
01

Przyktady.

(a) r = sinf, 0 < 6 < 7. Mozna sprawdzié¢, ze krzywa opisuje okrag o
promieniu £ i §rodku w (0, 3). Mamy

L:/\/00820+sin20d9:7r.
0
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(b) r =0, 0 < 0 < 4r. Krzywa opisuje dwa obroty spirali. Mamy

4m
1 1 4
L= /\/1 07 d0 = SOVT+ 6 + S log(0+ VI +07)
0
0
1
=21V 1+ 1672 + 5 log(4m + V1 4 1672).

Srodek masy krzywej

Rozwazamy krzywa x = z(t), y = y(t), a < t < b. Zaktadamy, Ze masa jest
proporcjonalna do dtugosci krzywej. Dzielimy przedzial na n réwnych czesci.
Masa fragmentu krzywej odpowiadajacego przedziatowi [t;_1,t;] wynosi

— / ()2 + o/ (t)2 dt = \/90’(%-)2 + ' (ui)2At;,

dla pewnego punktu u; pomiedzy ¢;_; i t;. Cata mase tego fragmentu umiesz-
czamy w punkcie (x(u;), y(u;)). Otrzymamy uktad n punktéw z masami m;.
Srodek masy tego uktadu znajduje sie w punkcie

Dalej

my = Zl Vol + ypat = [ e +yo2 .

i=1

i o (u;) =ix (i) (us)? + o (w2t —>/ /()2 + 1/ (t)2 dt.

Podobnie

b

imﬂ/(ui) — /y(t) 2/ ()2 4 /()2 dt.

a
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Srodek masy znajduje sic wiec w punkcie

[alt) w08 + WP de [ y(e)/a0F + /()2

NGO

Mamy §'(t) = /' (t)2 + v/(t)2. Przyjmijmy oznaczenie ds = §'(t) dt. Srodek
masy ma wtedy wspolrzedne

J S0 (02 dt

b b
Jxds [yds

)

b b
[ ds [ ds

Przyktad. f(z) = V1 — 22, —1 < z < 1. Wykres opisuje gbérny pélokrag o

promieniu 1. Obliczamy druga wspotrzedng srodka masy. Mamy

1 5 1
/\/l—xﬂll—l—%dxz/dxzz
el -t el

2

Wspotrzedna ta wynosi zatem —.
T

Pole powierzchni figur obrotowych

Chcemy obliczy¢ pole powierzchni bocznej S figury otrzymanej przez obrét
krzywej x = z(t), y = y(t) < 0, a < t < b wokét osi z. Dzielimy prze-
dziat czasu na n réwnych czesci punktami ¢;. Rozwazamy fragment krzywej
odpowiadajacy przedziatowi [t;_1,t;]. Dlugosé tego fragmentu wynosi

L;= / \/a:’(u)2 + vy (u)? du = \/a:’(ul-)z + v/ (u;)2At;

dla pewnego momentu ¢;_; < wu; < t;. Pole powierzchni otrzymanej przez
obrét fragmentu jest réwne w przyblizeniu 27y(u;)L;. Zatem

S~ 21 Y ylu) /o ()2 + 3 ()2 At
=1
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Przechodzac do granicy, gdy n — oo otrzymamy

—27r/y ()th

Uwaga. Druga wspoétrzedna srodka masy krzywej wynosi

/b Vo2 +y ()2 dt,

gdzie L jest dhugoscig krzywej. Zatem

h \

S = 271'@/0 L.

Tzn. pole powierzchni obrotowej jest réwne iloczynowi dtugosci krzywej i
drogi jaka przebywa $rodek masy przy obrocie (reguta Guldina).

Jesli krzywa jest fragmentem wykresu funkcji y = f(z), a < < b, to
pole powierzchni obrotowej wyraza sie wzorem

b

S = 27T/f(:v) 1+ f(2)2 da.

a

Przyktlady.

(a) Jakie jest pole powierzchni bocznej stozka $cietego o dtugosci tworzacej
[ i promieniach podstaw r i R 7 Powierzchnie otrzymujemy przez obrét
odcinka o dtugosci [, ktorego konce znajduja sie na wysokosciach r i R
nad osia z. Druga wspoirzedna srodka masy wynosi (r + R)/2. Zatem

r+ R

S =27 l=m(r+ R)L

(b) Jakie jest pole powierzchni torusa, czyli figury powstalej przez obrot
okregu o érodku w (a, b) i promieniu r < b ? Srodek masy znajduje sie
w (a,b). Zatem
S = 27b 27 = 4n’br.
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(¢) Rozwazamy gorny pétokrag f(x) = 1 —2%, —1 < x < 1. Chcemy
obliczy¢ pole powierzchni otrzymanej przez obrét fragmentu wykresu
a < x < b. Mamy

—2%/\/1—:52 1+ dx—27r(b—a)

Pole powierzchni zalezy tylko od dtugosci przedziatu [a, b].

Objetos$é bryly obrotowej przy obrocie wokoét osi x

Rozwazamy wykres funkcji ciaglej i nieujemnej y = f(z), a < x < b. Chcemy
obliczy¢ objetos¢ V' bryty otrzymanej przez obrot obszaru pomiedzy wykre-
sem funkcji i osia x, przy obrocie wokét osi x. Dzielimy przedziat [a,b] na
n rownych czeéci punktami z;. Symbolem V; oznaczamy objetos¢ fragmentu
bryty odpowiadajacej przedziatowi [z;_1,x;]. Niech m; i M; oznaczaja mini-
mum i maksimum funkcji na przedziale [z;_1, x;]. Fragment bryly zawiera w
sobie walec o wysoko$ci Ax; i promieniu m; a sam jest zawarty w walcu o
wysokosci Ax; i promieniu M;. Zatem

Wmfoi <V < ’/TMZ?AQL’Z'.

Z wtasnosci Darboux dla funkcji f(z)? mamy V; = 7 f(t;)?Ax;, dla pewnej
wartosci x;_1 < t; < x;. Catkowita objetos¢ wynosi wiec

n

b
V= WZf(ti)2A:z;i — 7T/f(x)2 dx

i=1
Rozwazamy obszar A pomiedzy wykresami dwu funkcji y = f(z), y =

g(x),a <z <boraz 0 < f(z < g(x). Objetosé bryly otrzymanej przez obrét

wokot osi x wynosi
b

V= 7T/ [g(x)2 - f(x)ﬂ dx.

a

Uwaga. Druga wspétrzedna srodka masy obszaru A jest rowna

=5 /07 107]
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gdzie S jest polem obracanego obszaru. Zatem
V = 2my,S.

To oznacza, ze objetos¢ jest réwna iloczynowi powierzchni obracanego obsza-
ru i drogi jaka przebywa srodek masy obszaru przy obrocie (reguta Guldina).

Przyktad. Rozwazmy obszar ograniczony przez y = v R? — 22, y = /12 — 22,
dla0<r < Roraz —r <a<b<ria<x<b Objetos¢ bryty obrotowej
jest rowna

VZW/[( R2 — 22)* — ( r2—x2)2] dr = n(R* - r*)(b— a).

a

Objetosé zalezy tylko od dtugosci przedziatu [a, b].

Objetos$¢ bryly obrotowej przy obrocie wokét osi y

Rozwazamy ponownie wykres funkcji ciagtej i nieujemnej y = f(x), a <
x < b. Checemy obliczy¢ objetos¢ V' bryly otrzymanej przez obrét obszaru
pomiedzy wykresem funkcji i osig x, tym razem przy obrocie wokot osi y.
Dzielimy przedzial [a,b] na n réwnych czesci punktami z; i symbolem V;
oznaczamy objeto$¢ fragmentu bryly odpowiadajacej przedziatowi [x; 1, z;].
Wtedy

Vi & i fay) — mad  f(x) = w(wiy 4+ 2) f(20) Ay = 27w, f (1) Ay

Po zsumowaniu otrzymamy

" b
21> @ f (z)Aw; — 27T/xf(3:) dx.

Zatem
b

V= 27r/:cf(:c) dx.
Rozwazmy teraz obszar pomiedzy wykresami funkcji y = f(z), v = g(x),
a <z <boraz 0 < f(zr) < g(x). Objetosé brylty przy obrocie wokdt osi y
WYnosi

V =or / lg(x) — f(z)] da.
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Zatem
V= 271'3305,

gdzie S jest polem obracanego obszaru, a x jest pierwsza wspotrzedna srodka
masy. To oznacza, ze reguta Guldina jest spetniona przy obrocie wokét osi y.

Przyklad. y =1 — (z — 2)% 1 < z < 3. Wtedy

V= 27r/1;[1 — (v —2)*] dx.

Praca

Przypusémy, ze przy przesuwaniu obiektu wzdtuz linii prostej do punktu
a do punktu b wywieramy stata sile c. Wtedy wykonana praca jest rowna
c(b—a). W przypadku, gdy sita nie jest stata i wynosi f(z) dlaa < z < b, to
dzielimy przedzial [a, b] na n réwnych czesci. Praca potrzebna do przesunigcia
od z;_1 do x; wynosi w przyblizeniu f(x;)Ax;. Catkowita praca jest réwna
w przyblizeniu

n b
i=1 p
Przyjmujemy wiec
b
W= / f(z) da.

Przyktad. Pchamy cieknaca taczke przez 100 m. Z powodu wycieku sita

wywierana na taczke wynosi

Zatem

W 1676 Robert Hooke sformutowal prawo mechaniki: sita wywierana
przez sprezyne rozciaggnietg o x jednostek poza naturalng dtugosé sprezyny
jest proporcjonalna do z (dla matych wartosci x). Tzn. g(x) = —kz, gdzie k
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jest stalym wspotczynnikiem. Zatem praca potrzebna do rozciagniecia spre-
zyny od a do b jednostek poza naturalng dlugo$¢ wynosi

b
W:/k;mdx.

Przyktad. Praca potrzebna do rozciaggniecia sprezyny o 10 cm wynosi 10 J.
Ile wynosi praca potrzebna do rozciggniecia o dodatkowe 20 cm ? Mamy

0,1

Wi = /kxdx ~ 10.
0

Czyli k = 2000. Dalej

0,3
Wigs0 = / 20002 dz = 20000,20,2 = 80 (J).

0,1

Praca potrzebna do wypompowania pojemnika

Chcemy wypompowaé¢ wode z pojemnika przez odplyw znajdujacy sie na
pewnej wysokosci. Jedli mamy podnieéé warstwe wody o objetosci V' (m?) o
[ metréw w gére, to wykonana prace bedzie réwna

W =9,8-1000- VL.

Zaktadamy, ze woda miesci si¢ pomiedzy poziomami z = a i * = b. Dzieli-
my przedzial [a,b] na n réwnych czesci. Objeto$é warstwy wody pomiedzy
poziomami x; 1 1 x; wynosi w przyblizeniu A(x;)Ax;, gdzie A(z) oznacza
pole powierzchni przekroju pojemnika na poziomie z. Praca potrzebna do
podniesienia warstwy wynosi W; ~ 9800 A(z;)Az;(I — x;). Calkowita praca
wynosi w przyblizeniu

W~ 9800 > (I — z;)A(z;) Ax;.

i=1
Zatem

W= 9800/([ — 2)A(z) dx.
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Przyktad. Pojemnik w ksztalcie dolnej potkuli o promieniu 10 m jest wy-
petniony wodg. Chcemy wypompowaé wode przez odptyw znajdujacy sie 1 m
nad poziomem wody. Umieszczamy skale tak, ze woda miesci si¢ pomiedzy
poziomami —10 i 0. Przekrdj pojemnika na wysokosci z jest kotem o promie-
niu r(z) = V100 — 2. Zatem A(z) = 7(100 — z?). Otrzymujemy wiec

0
VV’::9800L/(l——aﬂn(lOO——x2)dx.

—10

Objetosci bryt w R3

Przypusémy, ze bryta miesci sie pomiedzy ptaszczyznami pionowymi x = «a
i x = b. Niech A(z) oznacza pole przekroju bryty plaszczyzna pionowa w
punkcie z. Aby obliczyé objetosé bryty dzielimy przedzial [a, b] na n réwnych
czesci. Objetos$¢ fragmentu bryty pomiedzy ptaszczyznami x = x; 1 i x = x;
wynosi w przyblizeniu V; ~ A(x;)Ax;. Zatem catkowita objetos¢ jest réwna

i=1

Stad
b
V = /A(x) dz.

Uwaga. Ze wzoru wynika, ze dwie bryty majace te same pola przekrojow na

kazdym poziomie majg rowne objetosci.

Przyktad. Jaka jest objetos¢ piramidy o wysokosci 4m i podstawie 3m

na 3 m? Umieszczamy o$ x pionowo. Zakladamy, ze podstawa piramidy

znajduje si¢ na poziomie -4, natomiast wierzchotek na poziomie 0. Przekroj

piramidy ptaszczyzng prostopadtla do osi x na poziomie x jest kwadratem o
9.2

boku a = —%x. Zatem A(z) = {z0° oraz

9 o 9 4
sz/ﬁmz—/fmzu
16 /-4 16 Jo

8.7 Przyblizone obliczanie calek

Przy obliczaniu catek oznaczonych nie zawsze mozliwe jest doktadne podanie
wartosci liczbowe;.

Przyktady.
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(a) Chcemy obliczy¢ dtugosé wykresu funkcji y = %x?’ dla 0 < = < 1.
Wtedy

1
L:/\/1+x4dx.
0

(b) Rozwazmy elipse o pétosiach 11 2. Mozemy uzyé parametryzacji x =
cost, y = 2sint, 0 < t < 2m. Wtedy dtugosc elipsy wynosi

27 27
L:/\/Sin2t—|—4C082tdt:/\/1+3COS2tdt.
0 0

Metoda trapezow

b
Mamy do obliczenia / f(z)dz, gdzie f(x) > 0. Dzielimy przedzial na n

réwnych czesci. Kolejne punkty wykresu (z;_1, f(z;—1) 1 (zy, f(x;) taczymy
odcinkiem. Otrzymujemy tamana, ktéra przybliza wykres funkcji. Pole pod

b
ta tamanag przybliza pole pod wykresem funkcji, czyli liczbe / f(x) dx. Zatem

flaeo) + f@)b—a  fle) + f@)b=a | flea) +f@)b-a
2 n 2 n 2 n

czyli

b
/f(x) dx ~ b2

—a
n

[fla) +2f(z1) +2f(22) + ...+ 2f (zn1) + f()].

2
1
Przyktad. / —dx = log 2. Zastosujemy metode trapezow dla n = 4. Wtedy
x
1

1 4 2 4 1
log2~ - [142-—-4+2- —4+2. -+ —| = 23 ...
og 8{—1— 5—|— 3+ 7+2 0,697023
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Wiadomo, ze log2 = 0,693147..., wigc doktadno$é¢ obliczenia jest réwna
okoto 0,4 procenta. Blad w metodzie trapezéw wynosi

BN = | [ ayde =" (@) + 27 () + - 2f () + 0]

Mozna udowodnic, ze

G e |7(2)].

12n?  a<a<b

EN(f) <

1 2
Dla funkcji f(z) = — mamy f"(z) = —. Zatem
T T

EZ(1)<12:1‘
¢) 12716 7 96

Metoda Simpsona

Thomas Simpson (1710-61) byt angielskim matematykiem, ktéry w 1743

opracowal metode przyblizonego obliczania caltek. Dzielimy przedzial [a, b]

na parzysta liczbe n = 2k czesci o dtugosci h = =2, Trzy kolejne punkty

wykresy (w0, f(20)), (21, f(21)) 1 (22, f(22)) taczymy paraboly p(x). Mamy
zatem

(x —x1)(x — 29) (x — xo)(x — 29) (x — x)(x — 29)

p(x) = f(xg) o2 —f(z1) % +f(x2) OR2

Calke / f(z) dzx zastepujemy przez
zo

T2 T2 h,

[ f@)de~ [ p(a)de = 5 [f(z0) +4f (@) + F(a2)]
Ostatnia réwnos¢ wynika ze wzoréow

7 7 2h?

/(x —xo)(x — 1) dx = /(:): —11)(x — xg) dx = =

7 4h?

(x — xo)(x — 29) dx = —5

Zo
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To samo wykonujemy dla wszystkich pozostatych przedziatéw postaci [z, 4],
[1'4, 1'6], ey [l’gk,Q, [L’Qk]. Tzn.

T2 24

[ f@yde~ [ pie)de =

T2i—2 T2i—2

Z [f(@ai—2) + 4f (225-1) + f(2)],

gdzie p; oznacza wielomian kwadratowy dla przedziatu [x9; o, x9;]. Reasumu-
jac otrzymujemy

b

~ T (a) + AF (01) + 2f (22) + -+ 2f (T 2) + A (@a 1) + F(D)).

1
Przyktad. Zastosujemy metode Simpsona dla catki log2 = / —dx przy
x
1

n = 4. Wtedy

12N1144224410693253
082~ +-5+-3+-7+2]—,
Wiemy, ze log2 = 0,693147. .., wiec doktadno$¢ obliczenia jest dziesiecio-
krotnie lepsza nize przy metodzie trapezéw, przy tej samej ilosci wlozonej
pracy.

Mozna udowodnié, ze btad w metodzie Simpsona spetnia

b= s [/,

S(F) <
En(f) < 180nt a<a<b

9 Twierdzenie Weierstrassa i wielomiany Bern-
steina

Twierdzenie 9.1 (Weierstrass). Dla dowolnej funkcji cigglej f(x) na prze-
dziale [0,1] mozna znaleZé cigg wielomiandw p,(x) spelniajocy p, = f na
przedziale [0,1]. To oznacza, ze dla dowolnej liczby € > 0 w pasie o promie-
niu € wokdl wykresu funkcji f(x) znajduje sie wykres jakiegos wielomianu.
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Uwaga. Teza twierdzenia jest prawdziwa dla dowolnego przedziatu [a, b].
Rzeczywiscie, dla f € Cla,b] okreSlamy f(z) = f((b — a)z + a). Wtedy
e Clo,1]. Jesli pn = f, to pn = f, gdzie py(x) = pu (52) -

Dowdd (wg S. Bernsteina (1880-1968)). Dla funkcji ciagtej f(x) i liczby n
okreslamy wielomiany Bernsteina wzorem

k=0 k=1
kzz:l n (k—1x< ?) +nkz::1<k‘—1>x( 2
n—1 T n—1, y T —*
= :an_l(x)(:v)+%Bn_1( )= T4+ —r=a"+

Rozwazamy funkcje ciagta f na [0, 1]. Ustalamy liczbe € > 0. Z jednostajnej
ciggtodci mozna znalezé liczbe 0 > 0 taka, ze

t— s < 8= [f() = f(s)] < 5.

Ustalmy punkt x w przedziale [0, 1]. Liczby naturalne N, = {0,1,2,...,n}
podzielimy na dwa podzbiory

A={keN,: |t —z|<d},
B=N,\A
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€ n £ < [(n €
< —_ k _ n—k < —_ k _ n—k = _,
Sa 5 > <k>x (1—2) 5 ;;:0 <k>x (1—2) 5

keA
Niech M = Inax, |f(z)]. Wtedy

Sp<2M > (Z)xk(l —2)"F < 2;\2/[ > (Z) (m — z>2xk(1 )

keB
IM I [n E\°
6° k=0 <k> (SL’ n) 7 z)

2M
— 572[1:2371(1) —22B,(7)(z) + Byn(2?)(2)]
2M | s o x(l—x) 2M 5 M
52 x T+t + - 62”(:10 z°) 552,

M
Dla n > 52 mamy Sp < €/2. Zatem |B,(f)(z) — f(z)| < e dla odpowiednio
duzych wartosci n. O

Uwaga. Dla funkgji f i liczby x wielko$¢ B, (f)(z) jest $rednia wazona liczb
f (%), dla k = 0,1,2,...,n, ze wspOlczynnikami (Z 28(1 — )" *. Suma
wspotczynnikow jest rowna 1. Sprawdzimy, ktory wspotczynnik jest najwiek-

szy. W tym celu rozwiazujemy nieréwnosé

<k i 1) 2* (1 — z)nm D (Z) (1 — )",
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Po prostych przeksztatceniach otrzymujemy warunek réwnowazny

k <
T
n—{—l\

Zatem najwickszy wspotczynnik odpowiada wartosci kg, dla ktorej

k ko+1
0<x<0+.

n+1 n+1

Zauwazmy, ze
k’g < l{Q k’o +1

n+1 n n+1"

Zatem

ko 1
< .
n+1
Przyktad. Prawdopodobienstwo sukcesu w jednej prébie wynosi p, 0 < p <

1. Wykonujemy probe n razy. Przy n prébach wygrana wynosi f (%) , gdzie
k jest liczba sukceséw, a f jest ustalona funkcja ciagla na [0,1]. Np. jesli
f (%) = 10, to przy 12 sukcesach w 60 probach, wyptata wynosi 10. Wartos¢
oczekiwana wygranej przy n probach wyraza sie wzorem

E, = Zn: (Z)f (i) p"(1=p)" " = Ba(/)p) — f(p).

k=0
Przyktad. Rzucamy kostka do gry. Sukcesem jest wypadniecie szostki. Funk-
cja wyptaty f(z) spehia

f(1) = 10°, f (é) = —0,01.

Czy gra jest optacalna przy duzej liczbie rzutéw ?



