
Let sn be indeterminate moment sequence and let µ be a solution of the
moment problem. The inequality
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Therefore c > 0 is equivalent to the fact that the upper triangular matrix

B = (bk,n), bk,n = 0, k > n.

corresponds to a bounded operator on `2. From (1) we have
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Consider r = 1. Then by Parseval identity we have
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Therefore the operator B is Hilbert-Schmidt.
It is possible to show much stronger property of B. For example B is of

trace class. Indeed, by (2) and by Parseval identity we have
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which implies that B is of trace class. Inequality (3) implies that B maps
`∞ into `2 while (4) gives that B∗ maps `2 into `1. The latter follows also by
duality from (3). In this way K = B∗B maps `∞ into `1. This property is
much stronger than the trace class.


