Let s, be indeterminate moment sequence and let p be a solution of the
moment problem. The inequality
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Therefore ¢ > 0 is equivalent to the fact that the upper triangular matrix
B = (bk,n)7 bk,n =0, k > n.

corresponds to a bounded operator on ¢2. From (1) we have
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Consider » = 1. Then by Parseval identity we have
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Therefore the operator B is Hilbert-Schmidt.

It is possible to show much stronger property of B. For example B is of
trace class. Indeed, by (2) and by Parseval identity we have
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For r > 1 we obtain
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which implies that B is of trace class. Inequality (3) implies that B maps

(> into ¢* while (4) gives that B* maps ¢? into ¢*. The latter follows also by

duality from (3). In this way K = B*B maps (> into ¢*. This property is

much stronger than the trace class.



