
Quiz 3B Rozwiązania

1. Ciąg {an} jest rozbieżny do minus nieskończoności a ciąg {bn} jest ograniczony. Czy ciąg {max(an, bn)}
jest ograniczony od dołu ? Odpowiedź uzasadnić.

Odpowiedź brzmi tak. Z założenia |bn| ¬M dla pewnej stałej M i wszystkich n. Zatem

max(an, bn) ­ bn ­ −M.
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Zatem drugi szereg jest rozbieżny.
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jest zbieżny (wykład), zatem z kryterium porównawczego nasz szereg też jest zbieżny.

3. Czy warunek
∀(η > 0)∃(N ∈ N)∀(n ∈ N){n > N ⇒ |an − a| < 3η}

jest równoważny zbieżności ciągu {an} do liczby a ? Odpowiedź uzasadnić przez podanie dowodu rów-
noważności lub przez wskazanie przykładu wskazującego na nierównoważność.

Odpowiedź brzmi nie. Liczby postaci 3η dla η > 0 są wiȩksze od 1. Ciąg an = (−1)n oraz liczba a = 0
spełniają podany warunek, bo |an − a| = 1 < 3η. Ale ciąg {an} nie jest zbieżny do a = 0 ani do żadnej
innej liczby.

4. Obliczyć granicę ciągu n
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Z twierdzenia o 3 ciągach i z faktu, że n
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