

Matrix coefficients of irreducible representations of free products of groups

by

RYSZARD SZWARC (Wrocław)

Abstract. An analytic series of functions φ_z on the free product of groups $A_1 \circ \ldots \circ A_N$ which are matrix coefficients of irreducible representations is presented. The functions φ_z are radial with respect to a certain length on the free product. Applications to the Fourier–Stieltjes algebra are also given.

1. Introduction. We will work with a group G which is the free product of groups A_1, \ldots, A_N . Each element x of G, $x \neq e$, can be uniquely represented as a reduced word, i.e.

$$x = a_1 \dots a_n$$
, where $a_i \in A_{n_i} \setminus \{e\}, n_i \neq n_{i+1}$.

This gives rise to the notion of length on G defined as |x| = n and |e| = 0 for the identity element e in G. The functions f on G whose values f(x) depend only on the length of x in G will be called radial.

Harmonic analysis on free products was studied by several authors. Iozzi and Picardello [3] considered the free product of finite cyclic groups of the same order. In this case the space of absolutely summable radial functions is a commutative Banach algebra with convolution. This allows one to study the spherical functions on G which are multiplicative functionals on the radial functions and to develop a representation theory related to them. Further results, e.g. a characterization of radial positive-definite functions, can be found in a paper by Młotkowski [4]. Let us also mention the work of Cartwright and Soardi [2] concerning the free product of two cyclic groups of different orders.

The case of the free product of groups Z_2 is strictly connected to the geometry of homogeneous trees. We refer to the PhD Thesis of Steger [5] where this situation was deeply explored.

Let us also recall some recent results of Bożejko [1] who introduced the notion of free product of representations. His construction produces a new

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision): 43A65, 22D12.

Key words and phrases: free products, uniformly bounded representations, irreducible representations.

unitary (or uniformly bounded) representation of the free product $A \circ B$ from two unitary (or uniformly bounded) representations of the groups A and B. His theory concerns the free product of matrix coefficients of representations as well.

In this paper we consider the case when A_1, \ldots, A_N are infinite groups (e.g. the free group $Z \circ \ldots \circ Z$ is covered).

Let z be a complex number in the open unit disc. By [1] the radial function $G \ni x \mapsto z^{|x|}$ is a coefficient of a uniformly bounded representation of G in Hilbert space. By [1], Corollary 3.2, the function $x \mapsto t^{|x|}$ is positive-definite for real positive t. Here we will study the class of radial functions φ_z on G defined by

$$\varphi_z(x) = \begin{cases} 1 & \text{for } x = e, \\ \frac{(N-1)z+1}{Nz} z^{|x|} & \text{for } x \neq e, \end{cases}$$

where |z| < 1 (cf. [4], § 2). Clearly the φ_z are again matrix coefficients of uniformly bounded representations of G. By [4] the function φ_t is positive-definite for t in the segment [-1/(N-1), 1].

The origin of the functions φ_z is the following. Any spherical function on the free product $Z_k \circ \ldots \circ Z_k$ (N times) is of the form $c_z z^{|x|} + c_z' [(N-1)(k-1)z]^{-|x|}$ where c_z , c_z' are constants depending on k and N (cf. [3], Theorem 7). Now we obtain φ_z by letting $k \to \infty$. So the φ_z play the role of spherical functions on the free product of infinite groups.

Assuming that A_1,\ldots,A_N are all infinite we are going to prove that each function φ_z is a matrix coefficient of an irreducible representation of G except z=0 and z=-1/(N-1). In particular, the positive-definite functions φ_t with $t\in (-1/(N-1),1]$, $t\neq 0$, are extreme. Moreover, for nonreal z or $z\in (-1,-1/(N-1))$ the functions φ_z do not belong to the Fourier-Stieltjes algebra of G.

2. Preliminaries. Let G be a locally compact group. Denote by BH(G) the space of all matrix coefficients of uniformly bounded representations of G in Hilbert space, i.e. the space of functions φ on G such that there exists a representation π of G in a Hilbert space H and two vectors ζ , $\eta \in H$ satisfying

(1)
$$\varphi(x) = \langle \pi(x)\zeta, \eta \rangle, \quad \sup_{x \in G} ||\pi(x)|| < +\infty.$$

With a given representation π of G in a Hilbert space we may associate the conjugate representation π^* defined by $\pi^*(x) = \pi(x^{-1})^*$. If π is uniformly bounded then π^* is also uniformly bounded with the same bound. If π is unitary then of course $\pi = \pi^*$.

PROPOSITION 1. Any function φ in BH(G) can be represented as in (1) with ζ a cyclic vector for the representation π and η a cyclic vector for π^* .

Proof. By definition $\varphi(x) = \langle \sigma(x) \xi, \eta \rangle$, where σ is a uniformly bounded representation in H_0 and $\xi, \eta \in H_0$. We may assume that ξ is a cyclic vector for π (if not we restrict σ to the invariant subspace generated by ξ and project η onto this subspace). Next let $H = \overline{\text{span}} \{\sigma^*(x)\eta \colon x \in G\}$ and $\zeta = P_H \xi$ where P_H is the orthogonal projection of H_0 onto H. Put $\pi(x) = (\sigma^*(x^{-1})|_H)^*$. Then π is a uniformly bounded representation of G in H and

$$\langle \pi(x)\zeta, \eta \rangle = \langle \zeta, \sigma^*(x^{-1})\eta \rangle = \langle \xi, \sigma^*(x^{-1})\eta \rangle = \langle \sigma(x)\xi, \eta \rangle = \varphi(x).$$

By construction η is a cyclic vector for π^* . Assume that for some $u \in H$ and every x in G we have $\langle \pi(x)\zeta, u \rangle = 0$. Then $0 = \langle \zeta, \sigma^*(x^{-1})u \rangle = \langle \xi, \sigma^*(x^{-1})u \rangle = \langle \sigma(x)\xi, u \rangle$. Since ξ is a cyclic vector for σ this shows u = 0, i.e. ζ is cyclic for π .

Definition. The function φ in BH(G) is called extreme if no uniformly bounded representation π of G in H such that $\varphi(x) = \langle \pi(x)\zeta, \eta \rangle$, where ζ is cyclic for π and η is cyclic for π^* , has a nontrivial closed invariant subspace.

Remark. If φ is a positive-definite function then the definition above implies that φ is extreme in the usual sense.

3. Free products of groups. Let A_1, \ldots, A_N be discrete groups. Denote by G their free product $A_1 \circ \ldots \circ A_N$. Each element $x \neq e$ in G can be uniquely expressed as a reduced word

$$x = a_1 \dots a_n$$
, where $a_i \in A_{n_i} \setminus \{e\}$, $n_i \neq n_{i+1}$.

We define the length of x by |x| = n and |e| = 0 for the identity element e in G.

For a complex number z in the open unit disc define the functions ψ_z and φ_z on G by

(2)
$$\psi_z(x) = z^{|x|}, \quad \varphi_z(x) = \begin{cases} 1 & \text{for } x = e, \\ \frac{(N-1)z+1}{Nz} z^{|x|} & \text{for } x \neq e \end{cases}$$

(see [4], §2). Clearly we have

(3)
$$\psi_z(x) = \frac{Nz}{(N-1)z+1} \varphi_z(x) + \frac{1-z}{(N-1)z+1} \delta_e(x),$$

where δ_e is the characteristic function of the one-point set $\{e\}$. By [1] (§ 5, p. 180) the functions ψ_z belong to BH(G). As obviously δ_e is in BH(G) we obtain

PROPOSITION 2. For any z, |z| < 1, the function φ_z belongs to BH(G).

THEOREM. Let G be the free product of groups A_1, \ldots, A_N . If A_1, \ldots, A_N are all infinite then the function φ_z is extreme (see the definition in § 2) for any complex $z \in D = \{|z| < 1\}$ except z = 0 and z = -1/(N-1).

Proof. By Propositions 1, 2 we may express φ as $\varphi(x) = \langle \pi(x)\zeta, \eta \rangle$, where π is a uniformly bounded representation of G in a Hilbert space H and ζ, η are cyclic vectors for π, π^* respectively. For any i = 1, ..., N let $\{a_{n,i}\}_{n=1}^{\infty}$ denote a sequence of distinct elements of the group A_i . For any natural n define the operator T_n on H by

$$T_n = \frac{1}{Nz \lceil (N-1)z+1 \rceil} \frac{1}{n} \sum_{k=1}^n \left[z \sum_{i=1}^N \pi(a_{k,i}) + \sum_{i \neq j=1}^N \pi(a_{k,i} a_{k,j}) \right].$$

LEMMA 1. For any x, y in G we have

$$\lim_{n} \langle T_n \pi(x) \zeta, \pi^*(y) \eta \rangle = \varphi_z(x) \varphi_z(y).$$

Proof of Lemma 1. As π is uniformly bounded the contribution of each single term of T_n after the summation sign $\sum_{k=1}^n$ is infinitesimal. We will make computations keeping this in mind. Let $t_n(x, y) = \langle T_n \pi(x) \zeta, \pi^*(y) \eta \rangle$. Then

$$t_{n}(x, y) = \langle \pi(y^{-1}) T_{n} \pi(x) \zeta, \eta \rangle$$

$$= \frac{1}{Nz [(N-1)z+1]} \frac{1}{n} \sum_{k=1}^{n} \left[z \sum_{i=1}^{N} \varphi_{z}(y^{-1} a_{k,i} x) + \sum_{i \neq j=1}^{N} \varphi_{z}(y^{-1} a_{k,i} a_{k,j} x) \right]$$

$$= \frac{1}{N^{2} z^{2}} \frac{1}{n} \sum_{k=1}^{n} \left(\sum_{i=1}^{N} z^{|y^{-1} a_{k,i} x|+1} + \sum_{i \neq j=1}^{N} z^{|y^{-1} a_{k,i} a_{k,j} x|} \right) + o(1)$$

as n tends to infinity. We will consider four possible cases.

1. $x, y \neq e$ and $|y^{-1}x| < |x| + |y|$. This means the reduced words corresponding to x and y start with elements of the same group, say A_i . Then

$$t_{n}(x, y) = \frac{1}{N^{2}z^{2}} \left[z^{|x|+|y|} + (N-1)z^{|x|+|y|+2} + 2(N-1)z^{|x|+|y|+1} + (N-2)(N-1)z^{|x|+|y|+2} \right] + o(1)$$

$$= \left[\frac{(N-1)z+1}{Nz} \right]^{2} z^{|x|+|y|} + o(1) = \varphi_{z}(x)\varphi_{z}(y) + o(1).$$

2. $x, y \neq e$ and $|y^{-1}x| = |x| + |y|$. This means x, y start in A_i, A_j respectively and $i \neq j$. Then

$$t_n(x, y) = \frac{1}{N^2 z^2} \left\{ 2z^{|x|+|y|+1} + (N-2)z^{|x|+|y|+2} + z^{|x|+|y|} \right\}$$

 $+2(N-2)z^{|x|+|y|+1}+[(N-2)^2+N-1]z^{|x|+|y|+2}\}+o(1)$ $=\left[\frac{(N-1)z+1}{Nz}\right]^2z^{|x|+|y|}+o(1)=\varphi_z(x)\varphi_z(y)+o(1).$

3. $x \neq e$, y = e (or x = e and $y \neq e$). Then

$$t_n(x, e) = \frac{1}{N^2 z^2} \left[z^{|x|+1} + (N-1) z^{|x|+2} + (N-1) z^{|x|+1} + (N-1)^2 z^{|x|+2} \right] + o(1)$$

$$= \frac{(N-1) z + 1}{Nz} z^{|x|} + o(1) = \varphi_z(x) \varphi_z(e) + o(1).$$

4. x = y = e. Then

$$t_n(e, e) = \frac{1}{N^2 z^2} [Nz^2 + (N-1)Nz^2] = \varphi_z(e) \varphi_z(e).$$

Proof of the theorem. Since the norms $||T_n||$ are uniformly bounded and ζ , η are cyclic vectors for π , π^* respectively, by Lemma 1 the sequence of operators T_n is weakly converging to the operator T defined by

$$\langle T\pi(x)\zeta, \pi^*(y)\eta\rangle = \varphi_z(x)\varphi_z(y) = \langle \pi(x)\zeta, \eta\rangle\langle \zeta, \pi^*(y)\eta\rangle.$$

Thus T is one-dimensional and $T = \zeta \otimes n$.

From now on we argue in a routine way. Assume that M is a nontrivial closed subspace invariant for the representation π . Then $T_nM \subset M$ and so $TM \subset M$. If $TM \neq 0$ then $TM = \{C\zeta\}$. This gives $\zeta \in M$ and since ζ is cyclic for π it follows that M = H. If TM = 0 then for any x in G and u in M we have $0 = \langle \pi(x)u, \eta \rangle = \langle u, \pi^*(x^{-1})\eta \rangle$. This implies u = 0 because η is cyclic for π^* . Hence M = 0. This completes the proof.

Remark. Observe that for t=0 or t=-1/(N-1) the corresponding functions are not extreme. In fact, $\varphi_0=N^{-1}(\chi_{A_1}+\ldots+\chi_{A_N})$, where χ_{A_i} is the characteristic function of the subgroup A_i in G, and $\varphi_{-1/(N-1)}=\delta_e$.

Recall that by [4], Theorem 1, the function φ_i is positive-definite if $t \in [-1/(N-1), 1]$. So by Theorem 1 we obtain

Corollary 1. Let G be the free product of infinite groups A_1, \ldots, A_N . Then φ_t is an extreme positive-definite function on G for any $t \in (-1/(N-1), 1]$ except t = 0.

COROLLARY 2. Let G be the free product of infinite groups A_1, \ldots, A_N . Then the function $\psi_t(x) = t^{|x|}$ does not belong to the Fourier-Stieltjes algebra B(G) for any $t \in (-1, -1/(N-1))$.

Before the proof of Corollary 2 we need a simple lemma.

(2365)

Lemma 2. Let φ be a matrix coefficient of an irreducible unitary representation of the group G. Then φ is a positive-definite function on G if and only if $\varphi(e) \ge 0$ and $\varphi(x^{-1}) = \overline{\varphi(x)}$.

Proof. Clearly, we only have to prove that the conditions are sufficient. Let $\varphi(x) = \langle \pi(x)\zeta, \eta \rangle$, where π is an irreducible unitary representation of G in a Hilbert space H. Assume $\varphi(x^{-1}) = \overline{\varphi(x)}$. This implies $\langle \pi(x)\zeta, \eta \rangle = \langle \pi(x)\eta, \zeta \rangle$ for x in G, which means that

$$\operatorname{Tr} \left[\pi(x) (\zeta \otimes \eta) \right] = \operatorname{Tr} \left[\pi(x) (\eta \otimes \zeta) \right] \quad \text{for } x \in G,$$

where $\zeta \otimes \eta$ denotes the one-dimensional operator given by $(\zeta \otimes \eta)u = \langle u, \eta \rangle \zeta$. Since span $\{\pi(x): x \in G\}$ is σ -weakly dense in B(H) we have $\zeta \otimes \eta = \eta \otimes \zeta$. This yields that ζ, η are linearly dependent, hence φ is positive-definite because $\langle \zeta, \eta \rangle = \varphi(e) \geqslant 0$.

Proof of Corollary 2. Suppose that ψ_t belongs to B(G). Then by (3) also φ_t belongs to B(G). Hence $\varphi_t(x) = \langle \pi(x)\zeta, \eta \rangle$, where π is a unitary representation of G. By Proposition 1 we may assume that ζ , η are cyclic vectors. Therefore by the Theorem π is irreducible. Since $\varphi_t(x^{-1}) = \overline{\varphi_t(x)}$ and $\varphi_t(e) = 1$, by Lemma 2 the function φ_t is positive-definite. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of distinct elements of A_1 . Then for any natural n

$$0 \leqslant \frac{1}{n(n-1)} \sum_{i=1}^{n} \varphi_{i}(a_{j}^{-1} a_{i}) = \frac{1}{n-1} + \frac{(N-1)t+1}{N},$$

which implies $(N-1)t+1 \ge 0$.

Remark. Just as well, we can apply Lemma 2 to prove that φ_t is positive-definite for t positive. In fact, by [1], Corollary 3.2, the function $x \mapsto t^{|x|}$ is positive-definite for $0 \le t \le 1$. Hence φ_t belongs to B(G). Combining the Theorem and Lemma 2 shows that φ_t is positive-definite.

Now we turn to the case of z nonreal.

PROPOSITION 3. Let G be the free product of two infinite groups A and B. Then for any nonreal number z in the open unit disc the function $\psi_z(x) = z^{|x|}$ does not belong to the Fourier-Stieltjes algebra of G.

Proof. Suppose ψ_z lies in B(G). Then φ_z is in B(G), too (with N=2). Let $\varphi_z(x) = \langle \pi(x)\zeta, \eta \rangle$, where π is a unitary representation and ζ , η are cyclic vectors for π (cf. Prop. 1). Let $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ be two sequences of distinct elements in A and B respectively. Define the operators T_n , $n=1,2,\ldots$, by

$$T_n = \frac{1}{2n} \sum_{k=1}^{n} \left(\pi(a_k) + \pi(b_k) + \pi(a_k^{-1}) + \pi(b_k^{-1}) \right).$$

As in the proof of the Theorem, the sequence T_n is weakly converging to some operator T. We are going to compute T. For $y \neq e$ we have

$$\langle T_n \zeta, \pi(y) \eta \rangle = \frac{1}{2n} \sum_{k=1}^n \left(\varphi_z(y^{-1} a_k) + \varphi_z(y^{-1} b_k) + \varphi_z(y^{-1} a_k^{-1}) + \varphi_z(y^{-1} b_k^{-1}) \right)$$
$$= \varphi_z(y) + z\varphi_z(y) + o(1) = (1+z) \varphi_z(y) + o(1)$$

and $\langle T_n \zeta, \eta \rangle = 1 + z$. Thus

$$\langle T\zeta, \pi(y) \eta \rangle = (1+z) \varphi_z(y) = (1+z) \langle \zeta, \pi(y) \eta \rangle,$$

which gives $T\zeta = (1+z)\zeta$ because η is a cyclic vector for π . On the other hand, since π is unitary, T is selfadjoint. Hence 1+z has to be a real number.

Remark. Obviously Proposition 3 holds for the free product of more than two groups provided that two of them are infinite.

References

- [1] M. Bożejko, Uniformly bounded representations of free groups, J. Reine Angew. Math. 377 (1987), 170-186.
- [2] D. Cartwright and P. M. Soardi, Harmonic analysis on the free product of two cyclic groups, J. Funct. Anal. 65 (2) (1986), 147-171.
- [3] A. Iozzi and M. Picardello, Spherical functions on symmetrical graphs, in: Harmonic Analysis, Proc. Cortona 1982, Lecture Notes in Math. 992, Springer, 1983, 344–387.
- [4] W. Młotkowski, Positive definite radial functions on free products of groups, Boll. Un. Mat. Ital. (7) 2-B (1988), 53-66.
- [5] T. Steger, Ph.D. Thesis, Washington University, St. Louis 1985.

INSTYTUT MATEMATYCZNY UNIWERSYTETU WROCŁAWSKIEGO INSTITUTE OF MATHEMATICS, WROCŁAW UNIVERSITY Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

Received September 24, 1987 Revised version June 24, 1988