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Matrix coefficients of irreducible
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Abstract, An analytic series of functions @, on the free product of groups 4, C...0Ady
which are matrix coeflficients of irreducible reprasentations is presented. The functions ., are
radial with respect to u certain length on the free product. Applications to the Fourier-Stieltjes
algebra arc also given,

1. Introduction. We will work with a group G which is the free product
of groups Ay, ..., Ay. Each element x of G, x # e, can be uniquely repre-
sented as a reduced word, ie.

X =ay...a,, where ged, \le}, m #my,.

This gives rise to the notion of length on G defined as |x| = n and |e| = 0 for
the identity element e in G. The functions f on G whose values f(x) depend
only on the length of x in G will be called radial.

Harmonic analysis on free products was studied by several authors.
Tozzi and Picardello [3] considered the free product of finite cyclic groups of
the same order. In this case the space of absolutely summable radial
functions is a commutative Banach algebra with convolution. This allows
one to study the spherical functions on G which are multiplicative functio-
nals on the radial functions and to develop a representation theory related to
them. Further results, e.g. a characterization of radial positive-definite func-
tions, can be found in a paper by Miotkowski [4]. Let us also mention the
work of Cartwright and Soardi [2] concerning the free product of two cyclic
groups of different orders.

The case of the free product of groups Z, is strictly connected to the
geometry of homogeneous trees, We refer to the PhD Thesis of Steger [3]
where this situation was deeply explored. :

Let us also recall some recent results of Bozejko [1] who introduced the
notion of free product of represeniations. His construction produces a new
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unitary (or uniformly bounded) representation of the free product 4o B from
two unitary (or uniformly bounded) representations of the groups 4 and B.
His theory concerns the free product of matrix coefficients of representations
as well.

In this paper we consider the case when Ay, ...,
(e.g. the free group Zo...0Z is covered).

Let z be a complex number in the open unit disc. By [1] the radial
function G x> 2" is a coefficient of a uniformly bounded representation of
G in Hilbert space. By [1], Corollary 3.2, the function x>t is positive-
definite for real positive ¢. Here we will study the class of radial functions ¢,
on G defined by

Ay are infinite groups

for x =e,

for x # e,

1
qoz (x) = {Mﬂz[xi

Nz

where z] <1 (cf. [4], §2). Clearly the ¢, are again matrix coefficients of
uniformly bounded representations of G. By [4] the function ¢, is positive-
definite for ¢ in the segment [—1AN—1), 1].

The origin of the fanctions ¢, is the following. Any spherical function on
the free product Z,0...0Z, (N times) is of the form ¢,z +c [(N-1)(k
—1)z1 ™ where ¢, c; are constants depending on k and N (cf. [3], Theorem
7). Now we obtain ¢, by letting k = cc. So the ¢, play the role of spherical
functions on the free product of infinite groups.

Assuming that A,, ..., Ay are all infinite we are going to prove that
each function ¢, is a matrix coefficient of an irreducible representation of G
except z = 0 and z = — 1/(N—1). In particular, the positive-definite functions
@, with te(~1/(N—1), 1], ¢t #0, are extreme. Moreover, for nonreal z or
ze(—1, —1/(N —1)) the functions ¢, do not belong to the Fourier-Stieltjes
algebra of G.

2. Preliminaries. Let G be a locally compact group. Denote by BH(G)
the space of all matrix coefficients of uniformly bounded representations of G
in Hilbert space, i.e. the space of functions ¢ on G such that there exists a
representation « of G in a Hilbert space H and two vectors {, n € H satisfying

(1) ' px) = (r(x){, 1),

sup|iz(x)|| < +o0.
xel

With a given representation = of G in a Hilbert space we may associate
the conjugate representation n* defined by #*(x) = m(x™1)*. If = is uniformly
bounded then =* is also uniformly bounded with the same bound, If = is
unitary then of course © = m*.

ProrosiTion 1. Any finction ¢ in BH(G) can be represented as in (1) with
£ a cyclic vector for the representation m and n a cyclic vector for n*.
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Proof. By definition ¢(x) = {o(x)¢, #), where o is a umformly bound-
ed representation in H, and £, neH,. We may assume that £ is a cyclic
vector for w (if not we restrict ¢ to the invariant subspace generated by £ and
project » onto this subspace). Next let H = span {o* (x)n: xeG) and { = Py
where P,I is the orthogenal projection of Hy, onto H. Put =n(x)

:((10‘*( |u) Then n is a uniformly bounded representation of G in H
an

Xy = o* ) = & e* (x> = (o(X) &, ) =

By construction # is a cyclic vector for #*. Assume that for some u el and
every x in G we have {(n(x)(, u) 0. Then 0=, a*(x"YHud
=&, o*(x" Yud = {o(x}&, ud. Since £ is a cyclic vector for ¢ this shows
u=10, ie. { is cyclic for .

Derinrion. The function ¢ in BH(G) is called extreme if no uniformly
bounded representation 7 of G in H such that ¢ (x) = n(x)£, >, where ¢ is
cyclic for = and y is cyclic for #*, has a nontrivial closed invariant subspace.

Remark. If ¢ is a positive-definite function then the definition above
implies that ¢ is extreme in the usnal sense.

3. Frec products of groups. Let A4, ..., Ay be discrete groups. Denote by
G their free product A4, 0...04y. Each element x # e in G can be uniquely
expressed as a reduced word

x=ay..a, where a;ed,\le}, m#ny,.

We define the lenqrh of x by |x| =n and |e| = 0 for the identity element
ein G

For a complex number z in the open unit disc define the functions
W, and ¢, on G by

1 for x =e,
2 = Jxl = N"—
( ) ]//z (X) z, [P (x) (_______]%gzz—i- 1 z{xl for x #e
(see [4], §2). Clearly we have
. Nz 1—z
(3) Wa () = o Tyl )+(N—-1)z+lb"( x),

where &, is the characteristic function of the one-point set {e}. By [1] (§5,
p. 180) the functions i, belong to BH({G). As obviously J, is in BH(G) we
obtain

Prorosttion 2. For any z, |z| <1, the function @, belongs to BH (G).
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THEOREM. Let G be the free product of groups Ay, AN .IfAI, ey Ay
are all infinite then the function @, is extreme (see the definition in §2) for any
complex zeD = {|z] <1} except z=0and z = ~1/{N—1).

Proof. By Prepositions 1, 2 we may express ¢ as cp(x).= m(x) L, 1),
where n is 2 uniformly bounded representation of G in a Hilbert space H
and ¢, n are cyclic vectors for =, n* respectively. For any i=1,..., N let
(a,;}=, denote a sequence of distinct elements of the group 4,. For any
natural » define the operator T, on H by

1 1 n N N
= R L)+ Tl p thye, 53]
& .NZ[(N”1)2+1]"k§'1 [ZI§1MG"J) i¢,jz=1 )]

Lemma 1. For any x, y in G we have

lim (T, w(x){, =* () = @ (x) . ().

Proof of Lemma 1. As 7 is uniformly bounded the contribution of
each single term of T, after the summation sign ) §.., is infinitesimal. We will
make computations keeping this in mind. Let f,(x, y) = {T,n(x){, n* (¥ n>.
Then

ta(x, y) = xly Y T2, 1)
= ] '1'2”: (z i @, (™ @y X)+ ﬁ @y (V™ gty g %))
Nz[(N-1)z+1]n2 - /5 ' P#f=1
n N _ N —
= Nzl zi 2 (Z zw lak,i"|+1+ Z ZJJ’ lﬂk,i“k..ixl)_l__a(l)

2 Ny=1 =1 1#j=1

as n tends to infinity. We will consider four possible cases.
1. x,y#eand [y x| <|x|+|y. This means the reduced words corres-
ponding to x and y start with elements of the same group, say 4;. Then

t,(x, y)= N:zz [z"‘”l’"+(N—~1)z|’“|+“’|”+Z(N...I)zlxl |yt

+(N=2) (N~ 1) #1120 (1)

~ [(N~1)z+1

2
] 240 (1) = @, (). (1) +o(1),
Nz

2. x,y#eand |y”' x| =[x|+1yl. This means x, y start in A4,, A; respec-
tively and i #j. Then

1
ta(x, ¥) = NT {2z1F I+ L L (N 2y Ix + ol +2 gl 413
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H2N= RPN [N — 22 4 N—1] 204 11+ 2) 4 (1)

(N=-Dz+1F el ]
T TN | e = e.(x) @, () +o(1).

J.xse y=e(or x=¢ and y # €). Then

1
%, €) = 1 [ (N — 1) 2l 42 (N 1) i+
+(N=1)*zM* 21 40(1)
(N=Dz+1
=Ty E o) = e (x) e, (@) +o ().
4. x = y = ¢, Then
1
tu(e, e) = Wi [Nz2+(N —1) Nz%] = g, (¢) 0, (¢).

Proof of the theorem. Since the norms (1Tl are uniformly bounded
and {, n are cyclic vectors for n, n* respectively, by Lemma 1 the sequence of
operators T, is weakly converging to the operator T defined by

TrE 2* 0 = 0.0 9, (0) = @@, 1> L, T*0) 1.

Thus T is one-dimensional and T = { ®n.

From now on we argue in a routine way. Assume that M is a nontrivial
closed subspace invariant for the representation . Then T,M <M and so
TM M. If TM 50 then TM = {CL}. This gives { eM and since ¢ is cyclic
for 7 it follows that M = H. If TM = 0 then for any x in G and u in M we
have 0 = {(m(x)u, n> = (u, n* (x™Y#>. This implies u = 0 because n is cyclic
for n*. Hence M = 0. This completes the proof.

Remark. Observe that for t =0 or t = —1/(N~1) the corresponding
functions are not extreme. In fact, @, =N_1(X41+ -+ %ay), where y,, is
the characteristic function of the subgroup 4, in G, and Oy N-1) = Op.

Recall that by [4], Theorem 1, the function ¢, is positive-definite if
re[—1/(N—1), 1]. So by Theorem 1 we obtain

CorovLary 1. Let G be the fiee product of infinite groups A;, ..., Ay.
Then @, is an extreme positive-definite function on G for any te(—1/(N~1),1]
except =0,

CoroLLARY 2. Ler G be the free product of infinite groups Ay, ..., Ay.
Then the function i, (x) = (™ does not belong to the Fourier~Stielties algebra
B(G) for any te(~1, —1AN=1)).

Before the proof of Corollary 2 we need a simple lemma.
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Lemma 2. Let ¢ be a matrix coefficient of an irreducible unitary represen-
tation of the group G. Then ¢ is a positive-definite function on G if and only if

o(e) 20 and @(x™ 1) =@ (x).

Proof. Clearly, we only have to prove that the conditions are sufficient.
Let @(x) = {m(x){, #>, where = is an irreducible unitary representation of G
in a Hilbert space H. Assume ¢(x~') =gp(x). This implies {z(x){, %)
= {n{x)n, {> for x in G, which means that

Trln(E @] = Tr[z(x)(n®)] for xeG,

where {®n denotes the one-dimensional operator given by ({®n)u
= (u, n»{. Since span {n(x): x€G)} is o-weakly dense in B(H) we have { ®y
=n®(. This yields that {, n are linearly dependent, hence ¢ is positive-
definite because ¢, 1) =p(e)= 0.

Proof of Corollary 2. Suppose that ¥, belongs to B(G). Then by (3)
also ¢, belongs to B(G). Hence ¢,(x) = {n(x){, n)>, where = is a unitary
representation of G. By Proposition 1 we may assume that {, n are cyclic
vectors. Therefore by the Theorem n is irreducible. Since ¢,(x™?) :m
and ¢,(e) = 1, by Lemma 2 the function ¢, is positive-definite. Let {a,}2, be
a sequence of distinct elements of A;. Then for any natural »

l . Sy, (N=-1)t+1
n(n_l)i’j{:lfpr(aj ai)"“‘n“1+ N ,

which implies (N-1)t+1 2 0.

0<

Remark. Just as well, we can apply Lemma 2 to prove that o, 18
positive~-definite for ¢ positive. In fact, by [1], Corollary 3.2, the function
x 11 is positive-definite for 0<t < 1. Hence ¢, belongs to B(G). Com-
bining the Theorem and Lemma 2 shows that g, is positive-definite.

Now we turn to the case of z nonreal,

ProrosiTion 3. Let G be the free product of two infinite groups A and B.
Then for any nonreal number z in the open unit disc the function W, (x) = z/¥
does not belong to the Fourier-Stieltjes algebra of G.

Proof. Suppose y, lies in B(G}). Then ¢, is in B(G), too (with N = 2).
Let ¢.(x) = m(x){, 4>, where = is a unitary representation and ¢, y are
cyclic vectors for x (cf. Prop. 1). Let -{a,}=,, {b,} 2, be two sequences of
distinct elements in 4 and B respectively. Define the operators T,,
n=1,2,..., by

T, =2i Y (m(a) +a b+ a4+ (b b)),
Ny '

n
1
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As in the proof of the Theorem, the sequence 7, is weakly converging to
some operator T We are going to compute T For y # e we have

1
(LI, n(nd= "?:;!k=l(¢’z Ol ad+ e (T B+ o (v ag D, (v B D)

= @, (3)+2¢, (N +0(1) = (1+2) p, () +o(1)
and {T,{,%>=14z. Thus

TEnn>=1+2e:0) = (1+2) & 27,

which gives T{ == (142){ because 5 is a cyclic vector for =. On the other
hand, since = is unitary, T is selfadjoint. Hence 1+ 2 has to be a real number.

Remark, Obviously Proposition 3 holds for the free product of more
than two groups provided that two of them are infinite.
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