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Abstract

Chain sequences are positive sequences fcng of the form cn ¼ gnð1� gn�1Þ for a nonnegative
sequence fgng: They are very useful in estimating the norms of Jacobi matrices and for

localizing the interval of orthogonality for orthogonal polynomials. We give optimal estimates

for the chain sequences which are more precise than the ones obtained in the paper

(Constructive Approx. 6 (1990) 363) and in our earlier paper (J. Approx. Theory 118 (2002)

94).
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1. Introduction

The concept of chain sequences has been introduced by Wall [8] in connection with

continued fractions. These are sequences fcngNn¼1 which can be represented in the form

cn ¼ gnð1� gn�1Þ; nX0; ð1Þ
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for a sequence fgngNn¼0; such that 0pgnp1: Chain sequences have also been used to

locate the interval of orthogonality for systems of orthogonal polynomials. Namely,
let pn be a system of orthogonal polynomials satisfying the recurrence relation of the
form

xpn ¼ gnpnþ1 þ bnpn þ anpn�1;

for nX0; where gn40; anþ140; bnAR: We use the convention a0 ¼ p�1 ¼ 0: Let m
denote an orthogonality measure. It might not be unique. Then the number a is
located to the left of support of m if and only if aobn for nX0 and the numbers

anþ1gn

ða � bnÞða � bnþ1Þ

form a chain sequence (see [2, Theorem 2.1, p. 108]). From this point of view, estimates
of the chain sequences are important to obtain precise location of the interval of
orthogonality.

The greatest constant chain sequence is cn ¼ 1
4
: Chihara [3] obtained some upper

estimates for the chain sequences whose terms are greater than 1
4
and stated the

problem of determining sharper estimates. In [7], we sharpened Chihara’s estimates
by showing that if a chain sequence satisfies

cnX
1

4
þ 1þ en

16n2
ð2Þ

for almost all n; where enX0; then (see (11) in [7])

sup
n
ðlog nÞ

XN
k¼nþ1

ek

k
oþN:

On the other hand Jacobsen and Masson [4] found very precise convergence
results for continued fractions which can be reformulated into chain sequence
setting. Theorem 1 of [4] yields the following.

Theorem 1 (Jacobsen, Masson). Let cn be a chain sequence such that for nXN there

holds

cnX
1

4
þ 1

16n2
þ 1

16n2ðlog½1
 nÞ2
þ?þ 1þ e

16n2ðlog½1
 n log½2
 ny log½k
 nÞ2
;

where log½k
 x denotes the kth composition of the logarithm. Then ep0:

In this paper we are going to estimate the remainder in the formula above. Namely
we will show the following.

Theorem 2. Let cn be a chain sequence such that

cnX
1

4
þ 1

16n2
þ 1

16n2ðlog½1
 nÞ2
þ?þ 1þ en

16n2ðlog½1
 n log½2
 ny log½k
 nÞ2
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for n4N; where enX0: Then,

lim
n

log½kþ1
 n
XN

j¼nþ1

ej

j log½1
 j log½2
 y log½k
 j
p4: ð3Þ

The estimates for chain sequences can be immediately applied to Jacobi matrices
according to the following well-known fact. The Jacobi matrix J defined as

J ¼

0
ffiffiffiffiffi
c1

p
0 0 yffiffiffiffiffi

c1
p

0
ffiffiffiffiffi
c2

p
0 y

0
ffiffiffiffiffi
c2

p
0

ffiffiffiffiffi
c3

p
&

0 0
ffiffiffiffiffi
c3

p
0 &

^ ^ & & &

0
BBBBBB@

1
CCCCCCA

is a contraction on the Hilbert space of square summable complex sequences if and

only if the numbers fcngNn¼1 form a chain sequence.

For related results on chain sequences we refer to [1], [5], and [6].

2. The proofs

For a sequence fang we define Dan ¼ an�1 � an:

Lemma 1. Fix a positive integer N: Assume sequences fangNn¼0 and fbngNn¼0 satisfy

limn-N an ¼ 0; DanX0 and there exists a sequence un such that un40 and

un�1 � unX
1

2
bn þ

1

2

Dan

an�1an

un�1un; ð4Þ

for nXN: Then,

lim
n-N

1

an

XN
j¼nþ1

bjp4: ð5Þ

Assuming additionally that

bnXDan; nXN ð6Þ

yields unXan for nXN: Furthermore if un ¼ anð1þ vnÞ then

vn�1 � vnX
bn � Dan

an�1 þ an

þ Dan

an�1 þ an

vn�1vn; nXN: ð7Þ

Proof. We have

un�1 � unX
1

2
bn:
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Summing up the terms from n; where n4N; to infinity gives

unX
1

2

XN
j¼nþ1

bj; nXN: ð8Þ

In particular the series
P

bj is convergent. On the other hand (4) implies

1

un

� 1

un�1
X
1

2

1

an

� 1

an�1


 �
:

Thus

1

un

� 1

uN

X
1

2

1

an

� 1

aN


 �
; nXN: ð9Þ

Multiplying inequalities (8) and (9) sidewise and taking the limit gives (5).
Let g be a constant such that

un ¼ gan þ rn; where rnX0; nXN: ð10Þ

Then by (4) and (6) we obtain

gDan þ rn�1 � rnX
1

2
Dan þ

1

2
g2Dan:

Therefore

rn�1 � rnX
1

2
ðg� 1Þ2Dan:

Since an-0 we get rnX
1
2
ðg� 1Þ2an: Let g be the greatest constant for which (10)

holds. The last inequality implies that g ¼ 1: Thus unXan for nXN:
Let un ¼ anð1þ vnÞ: Plugging it into (4) and performing straightforward

transformations results in (7). &

Let log½l
ðxÞ denote the lth composition of the logarithm.

Lemma 2. Let

a½0

n ¼ 1

n
; ð11Þ

a½l

n ¼ 1

log½l
ðn þ lÞ
: ð12Þ

Then

Da
½l

n

a
½l

n�1 þ a

½l

n

X
1

2

Da
½lþ1

n

a
½lþ1

n�1 a

½lþ1

n

: ð13Þ
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Proof. For l ¼ 0 we have

Da
½0

n

a
½0

n�1 þ a

½0

n

X
1

2

Da
½0

n

a
½0

n�1

¼ 1

2n
;

and

1

2

Da
½1

n

a
½1

n�1a

½1

n

¼ 1

2
½logðn þ 1Þ � log n
p 1

2n
:

Let l40: By the mean value theorem we have

Da
½l

n

a
½l

n�1 þ a

½l

n

X
1

2

Da
½l

n

a
½l

n�1

¼ 1

2

log½l
ðn þ lÞ � log½l
ðn þ l � 1Þ
log½l
ðn þ lÞ

¼ 1

2x log½1
 x log½2
 xy log½l�1
 x log½l
ðn þ lÞ
;

where n þ l � 1oxon þ l: On the other hand we have

1

2

Da
½lþ1

n

a
½lþ1

n�1 a

½lþ1

n

¼ 1

2
½log½lþ1
ðn þ l þ 1Þ � log½lþ1
ðn þ lÞ


¼ 1

2Z log½1
 Z log½2
 Zy log½l�1
 Z log½l
 Z
;

where n þ loZon þ l þ 1: Thus the lemma follows. &

Lemma 3. Fix a positive integer k and a sequence en of nonnegative numbers. Let

b½kþ1

n ¼ a½0


n a½1

n a½2


n ya½k�1

n a

½k

n�1en

b½l

n ¼ a½0


n a½1

n a½2


n ya½l�1

n ða½l


n�1Þ
2 þ a½0


n a½1

n a½2


n ya½l�1

n ða½l


n�1Þ
2ða½lþ1


n�1 Þ
2

þ?þ a½0

n a½1


n a½2

n ya½l�1


n ða½l

n�1Þ

2ða½lþ1

n�1 Þ

2
yða½k


n�1Þ
2

þ a½0

n a½1


n a½2

n ya½l�1


n ða½l

n�1Þ

2ða½lþ1

n�1 Þ

2
yða½k


n�1Þ
2en; ð14Þ

where 0plpk: Then for 0plpk there holds

b
½l

n � Da

½l

n

a
½l

n�1 þ a

½l

n

X
1

2
b½lþ1


n : ð15Þ

Proof. By the mean value theorem there is x with n þ l � 1oxon þ l such that

Da½l

n ¼ 1

x log½1
 xy log½l�1
 x ½log½l
 x
2

p a
½0

0 a½1


n ya½l�1

n ða½l


n�1Þ
2:
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Therefore

b
½l

n � Da

½l

n

a
½l

n�1 þ a

½l

n

X
b
½l

n � Da

½l

n

2a
½l

n�1

X
1

2
b½lþ1


n : &

Now we are in a position to prove Theorem 2. By assumption we have

cn�1X
1

4
þ 1

16
b½0


n ð16Þ

for n4N þ 1 (see (11), (12), (14)) and

cn�1 ¼ gnð1� gn�1Þ; nX2 ð17Þ

for a sequence gn such that 0pgnp1; and nX1: Since

gnð1� gn�1ÞX
1

4
Xgn�1ð1� gn�1Þ; ð18Þ

the sequence gn is nondecreasing for n4N þ 1: This and (18) imply that gnp1
2
:

Therefore

gn ¼ 1

2
� u½0


n ; n4N þ 1 ð19Þ

for a sequence of nonnegative numbers u
½0

n : Substituting this into (16), (17) and

simplifying the terms give

u
½0

n�1 � u½0


n X
1

2
b½0


n þ 1

2
u
½0

n�1u

½0

n

¼ 1

2
b½0


n þ 1

2

Da
½0

n

a
½0

n�1a

½0

n

u
½0

n�1u

½0

n : ð20Þ

Lemmas 1 and 3 imply that u
½0

n is of the form u

½0

n ¼ a

½0

n ð1þ u

½1

n Þ: Next Lemmas 1–3

combined yield

u
½1

n�1 � u½1


n X
1

2
b½1


n þ 1

2

Da
½1

n

a
½1

n�1a

½1

n

u
½1

n�1u

½1

n : ð21Þ

By iterating this procedure we obtain the existence of a sequence of positive numbers

u
½kþ1

n such that

u
½kþ1

n�1 � u½kþ1


n X
1

2
b½kþ1


n þ 1

2

Da
½kþ1

n

a
½kþ1

n�1 a

½kþ1

n

u
½kþ1

n�1 u½kþ1


n : ð22Þ

Then Lemma 1 yields

lim
n-N

1

a
½kþ1

n

XN
j¼nþ1

b
½kþ1

j p4: ð23Þ

The latter is equivalent to (3). &
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Theorem 2 implies Theorem 1 immediately. Indeed, assume eX0: We have

XN
j¼nþ1

1

j log½1
 j log½2
 y log½k
 j
¼ þN:

Therefore e ¼ 0:
Theorem 2 is sharp, i.e. there exist chain sequences an satisfying

cnX
1

4
þ 1

16n2
þ 1

16n2ðlog½1
 nÞ2
þ?þ 1

16n2ðlog½1
 n log½2
 ny log½k
 nÞ2
;

for n big enough. Indeed, let

gn ¼ n

2n þ 1
� 1

2ð2n þ 1Þ log½1
 n
� 1

2ð2n þ 1Þ log½1
 n log½2
 n

� ?� 1

2ð2n þ 1Þ log½1
 n log½2
 ny log½k
 n
:

For n big enough, say nXN; the numbers gn are well defined and 0pgnp1: Let
cn ¼ gnð1� gn�1Þ for nXN and cn ¼ 0 for noN: Then cn is a chain sequence.
Moreover we have

cn ¼ 1

4
þ 1

4ð4n2 � 1Þ þ
1

4ð4n2 � 1Þ
Xk

i¼1
gi;

where

gi ¼
2n

log½1
ðn � 1Þy log½i
ðn � 1Þ
� 2n

log½1
 ny log½i
ðnÞ

� 1

log½1
 ny log½i
 n

Xi�1
j¼1

1

log½1
ðn � 1Þy log½ j
ðn � 1Þ

� 1

log½1
ðn � 1Þy log½i
ðn � 1Þ

Xi�1
j¼1

1

log½1
ðnÞy log½ j
ðnÞ

� 1

log½1
ðn � 1Þy log½i
ðn � 1Þ log½1
ðnÞy log½i
ðnÞ
:

This implies

gi ¼
1

ðlog½1
ðnÞÞ2yðlog½i
ðnÞÞ2
þ o

1

n


 �
:

Therefore the sequence cn satisfies the assumptions of Theorem 2 with en ¼ 0:
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