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Abstract

Chain sequences are positive sequences {c,} of the form ¢, = ¢g,(1 — g,_1) for a nonnegative
sequence {g,}. They are very useful in estimating the norms of Jacobi matrices and for
localizing the interval of orthogonality for orthogonal polynomials. We give optimal estimates
for the chain sequences which are more precise than the ones obtained in the paper
(Constructive Approx. 6 (1990) 363) and in our earlier paper (J. Approx. Theory 118 (2002)
94).
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1. Introduction

The concept of chain sequences has been introduced by Wall [8] in connection with
continued fractions. These are sequences {¢, },, which can be represented in the form

Cn:gn(l_gn71)7 n=0, (1)
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for a sequence {g,},-,, such that 0<g,<1. Chain sequences have also been used to
locate the interval of orthogonality for systems of orthogonal polynomials. Namely,
let p, be a system of orthogonal polynomials satisfying the recurrence relation of the
form

XPn = VpPn+1 + ﬁnpn + UnPn-1,

for n=0, where y,>0, o,+1>0, f,€R. We use the convention o9 = p_; = 0. Let u
denote an orthogonality measure. It might not be unique. Then the number a is
located to the left of support of y if and only if a< f, for n>0 and the numbers

Ant1V5

(a - ﬁn)(a - ﬁnJrl)

form a chain sequence (see [2, Theorem 2.1, p. 108]). From this point of view, estimates
of the chain sequences are important to obtain precise location of the interval of
orthogonality.

The greatest constant chain sequence is ¢, = }r Chihara [3] obtained some upper

estimates for the chain sequences whose terms are greater than % and stated the
problem of determining sharper estimates. In [7], we sharpened Chihara’s estimates
by showing that if a chain sequence satisfies
1 1+e,
==+ 2
"Z3 T Ten? (2)

for almost all n, where ¢,>0, then (see (11) in [7])

o0
sup(logn) Z %k< + 0.
n k=n+1

On the other hand Jacobsen and Masson [4] found very precise convergence
results for continued fractions which can be reformulated into chain sequence
setting. Theorem 1 of [4] yields the following.

Theorem 1 (Jacobsen, Masson). Let ¢, be a chain sequence such that for n=N there
holds

> ! + 1 + 1 + + 1+e
Cn=— ,
"4 16 16n2(logl n)? 16m2(log nlog? n... logh n)?

where log[k] x denotes the kth composition of the logarithm. Then £¢<0.

In this paper we are going to estimate the remainder in the formula above. Namely
we will show the following.

Theorem 2. Let ¢, be a chain sequence such that
. >1 n 1 n 1 n n 1+e,
"T4 16 16n2(logl!) n)? 16n2(log!" nlog? n... 1ogh n)?
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for n> N, where &,>0. Then,

o0

.

lim log*! n / <4. (3)
n 5 jlog! jlog? . logh

The estimates for chain sequences can be immediately applied to Jacobi matrices
according to the following well-known fact. The Jacobi matrix J defined as

0 Ja 0 0
Ja 0 & o0

J=|l 0 va o y&a
0 0 & o0

is a contraction on the Hilbert space of square summable complex sequences if and
only if the numbers {c¢,},”, form a chain sequence.
For related results on chain sequences we refer to [1], [5], and [6].

2. The proofs
For a sequence {a,} we define Aa, = a,_; — a,.

Lemma 1. Fix a positive integer N. Assume sequences {ay},., and {b,},-, satisfy
lim,,, o, a, = 0, Aa, =0 and there exists a sequence u, such that u, >0 and

1 I A
Up—1 _un>_b += n Up—1Up, (4)

27" Day_ay
for n=N. Then,

lim — 3 b<d (5)

n—ow dy j=ntl
Assuming additionally that
b,=Aa,, n=N (6)
yields u,>a, for n=N. Furthermore if u, = a,(1 + v,) then
by — Aay, Aa,

Up] — Up = + Up_1Up, n=N. (7)
ap-1+ ay ap-1+ ay

Proof. We have
b,.

N —

Up—| — Uy =
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Summing up the terms from n, where n> N, to infinity gives

1 o0
un>§ Z bj, n=N
Jj=n+1

In particular the series ) b; is convergent. On the other hand (4) implies

1 1 1/1 1
- _ >—[—— .
Up Up—1 2 ay ap—1

Thus
1 1 1(1 1)
———>2-———), n=N.
u, uy 2\a, ay

Multiplying inequalities (8) and (9) sidewise and taking the limit gives (5).

Let y be a constant such that
u, = ya, +r,, wherer,=0, n=N.

Then by (4) and (6) we obtain
1 1,
VAan + -1 — Vn?EAan +§y Aay,.

Therefore

(y — 1)*Aay.

N —

p1 — I'n =

(10)

Since a,—0 we get rn>%(y — 1)2an. Let y be the greatest constant for which (10)

holds. The last inequality implies that y = 1. Thus u,>a, for n=N.

Let wu, =a,(1 +v,). Plugging it into (4) and performing straightforward

transformations results in (7). O

Let log!(x) denote the /th composition of the logarithm.

Lemma 2. Let

1
aLO] E,
1
4 =1
log"(n + 1)
Then
AaLI] 1 Aa,[qlﬂ]
T+ 2T

n

(1)

(12)
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Proof. For / = 0 we have

AdY 1 AdY 1

PN PO

and

1 Ady 1 |
2,0 02 log(n+1) — 10gn]<ﬂ.
n—1%n

Let />0. By the mean value theorem we have
Adl! - lAa,[f] B llogm (n+1) —log(n+1-1)
a) +adi 2a), 2 log"(n +1)
1
“2¢10gV log? ¢ Tog" T ElogM(n + 1)
where n+/ — 1<&<n+ 1. On the other hand we have

1 A
_—:_[
2T 2

log" ™ U (n+1+1) —log(n + 1))

1
B 2n logm n log[z] ... logV*” n logm 117

where n+ /<n<n+ 1+ 1. Thus the lemma follows. [

Lemma 3. Fix a positive integer k and a sequence ¢, of nonnegative numbers. Let

B = g0l (1] 41 ...a,[zk_”a,[zkllsn

b,[f] :aLO]aLI]aLz] ...a,[f_l](agll)z + aLO]aLl]aLZ] ...ag_l](a[l] 1)Z(aUHJ)2

+ o +a%dllla? ...a[l‘ll(agll)2(a,[ff11])2... (a[k] )7

n n n—

(AN At RV aly r (14)

+aaya. .

n n—

where 0<I<k. Then for 0<I<k there holds

M _ A 0
a,_ | +an 2

Proof. By the mean value theorem there is & with n + /7 — 1 <&<n + [ such that
1
]]

Adl) =
glogl ¢.. log" ™ ¢ [log ¢

< a([)o]a,[}] ...ag*” (a,[f]_1 )2.
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Therefore
Y RV NI
ALl dl, 72

Now we are in a position to prove Theorem 2. By assumption we have

1
>—+ — 1
Cn—1 +16b ( 6)
forn>N +1 (see (11), (12), (14)) and
Cn—1 :gn(l _gn—l)a 1122 (17)

for a sequence g, such that 0<g,<1, and n>1. Since
1
gn(l _gn—1)>z>gn—l(1 — gn-1), (18)

the sequence g, is nondecreasing for n>N + 1. This and (18) imply that gng%.
Therefore

1
gn:E—uLO], n>N+1 (19)

for a sequence of nonnegative numbers uL]. Substituting this into (16), (17) and

simplifying the terms give

(20)

Lemmas 1 and 3 imply that uLO 1s of the form u,[?] = aL](l + um) Next Lemmas 1-3

combined yield

1 Aan 1
n—1" “n 22 n +_ [1] [1] ,[1]1“5]- (21)

_14n

By iterating this procedure we obtain the existence of a sequence of positive numbers

u,LkH] such that
k+1 1 1 Aad™
u, S = 2 e (22)
dp—y n
Then Lemma 1 yields
li i<, 23
) [k+11 Z (23)
[ Jj=n+1

The latter is equivalent to (3). O
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Theorem 2 implies Theorem 1 immediately. Indeed, assume ¢>0. We have
i 1
frl] jlogmjlogm log[k]

Therefore ¢ = 0.
Theorem 2 is sharp, i.e. there exist chain sequences «, satisfying
1 1 1

C">Z + 16n? * 16n(log!") n)? o 16n2(log!" nlog? n... 1og n)*’

for n big enough. Indeed, let
. n 1 1
I 22n+ Dlogn 220+ 1)logM nlog?
1

2(2n+1) log" nlog? n... logk n

.= +o0.

For n big enough, say n> N, the numbers g, are well defined and 0<g,<1. Let
¢n =gn(l —gy_1) for n=N and ¢, =0 for n<N. Then ¢, is a chain sequence.
Moreover we have

1 1 1 k

“=3% 4@ 1) T a@e =) ; v
where
. 2n 2n
& log!(n — 1) Jogl(n—1)  log"n... logl(n)
i—1
1
- logm log[’ ; log (n—1)... log ’](n -1
1 —1
- logm(n 1).. log[’ n—1) z:: 1] log ( )
1

- logl(n = 1)... 1og(n — 1) log!"'(n) ... 1ogl (n)’
This implies

1 1
= (log[l](n))z... (log[i] (n))2 * 0<”>.

Therefore the sequence ¢, satisfies the assumptions of Theorem 2 with ¢, = 0.
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