
Weak type translation invariant operators on

groups and amenability

Let G be a discrete group. Consider a sym-

metric probability measure µ on G, i.e.

µ =
∑
x∈G

µ(x)δx, µ(x) ≥ 0,

∑
x∈G

µ(x) = 1, µ(x−1) = µ(x).
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The left convolution operator λ(µ) with µ is

bounded on `2(G) and

‖λ(µ)(f)‖2 = ‖µ ∗ f‖2 ≤ ‖f‖2, f ∈ `2(G).

‖µ ∗ f‖2 =

∥∥∥∥∥∥
∑
x∈G

µ(x)[δx ∗ f ]

∥∥∥∥∥∥
2

≤
∑
x∈G

µ(x)‖δx ∗ f‖2 = ‖f‖2.

Thus ‖λ(µ)‖2→2 ≤ 1.
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Kesten (1959) showed that a discrete group

G is amenable iff for any symmetric proba-

bility measure µ on G we have ‖λ(µ)‖2→2 =

1. He showed that G is amenable if condi-

tion is satisfied for one measure µ such that

suppµ generates G algebraically. In partic-

ular let G be generated by g1, g2, . . . , gk and

µ = 1
2k

k∑
i=1

(δgi + δ
g−1
i

). Then G is amenable iff

‖λ(µ)‖2→2 = 1.
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The group G is called amenable if there exists

a linear functional m on `∞R (G) such that

(1) inf
x∈G

f(x) ≤ m(f) ≤ sup
x∈G

f(x),

(2) m(xf) = m(f), where xf(y) = f(x−1y).

m is called a left invariant mean. Then the

functional M(f) = m(m(fx)) satisfies (1), (2)

and is also right invariant, where fx(y) = f(yx).
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Følner condition∗

For any number ε > 0 and any finite set K ⊂ G
there exists a finite set N ⊂ G such that

|xN 4N | < ε|N |, x ∈ K.

Hence N is almost K invariant.
Example. Let G = Z, K = [−k, k] and N =
[−n, n]. Then

|(x + N)4N | ≤ 2k <
k

n
|N |.

For ε > 0 take n ≥ k
ε .

∗I learnt character ø from Christina Kuttler
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G is amenable iff the Følner condition holds.

One direction is easy. Assume G satisfies the
Følner condition and the group G is countable.

Then G =
∞⋃

n=1

Kn, Kn ⊂ Kn+1. For ε = 1
n let

Nn denote the corresponding almost Kn invari-
ant set. Define

mn(f) =
1

|Nn|
∑

x∈Nn

f(x).

Then any accumulation point of the function-
als mn leads to left invariant mean.
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Assume that G is amenable. Let µ be a prob-

ability measure with finite support K. For ε =

η2 > 0 choose N with respect to ε and K. Then

‖µ ∗ χN − χN‖2 =

∥∥∥∥∥∥
∑

x∈K

µ(x)[χxN − χN ]

∥∥∥∥∥∥
2

≤
∑

x∈K

µ(x)‖χxN − χN‖2 =
∑

x∈K

µ(x)‖χxN4N‖2

=
∑

x∈K

µ(x)|xN 4N |1/2 ≤ η|N |1/2 = η‖χN‖2.
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Therefore

‖µ ∗ χN‖2 ≥ (1− η)‖χN‖2
which implies that ‖λ(µ)‖2→2 ≥ 1 − η, hence

‖λ(µ)‖2→2 = 1. Observe that we showed that

if the group is amenable then

1 = ‖λ(µ)‖2→2 = sup
N⊂G

‖µ ∗ χN‖2
‖χN‖2

,

i.e. the operator norm is attained at charac-

teristic functions of finite sets.
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If the group G is amenable the same holds

(with the same proof) for any 1 ≤ p ≤ +∞,

i.e.

1 = ‖λ(µ)‖p→p = sup
N⊂G

‖µ ∗ χN‖p

‖χN‖p
,

which means the operator norm is also attained

at characteristic functions.
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Consider a general σ-finite measure space (Ω, ω)
and 1 < p < +∞. For f ∈ Lp(Ω, ω) and t > 0
we have

tp ω{x : |f(x)| > t} ≤
∫
Ω
|f(x)|pdω(x).

Functions for which the left hand side is bounded
form a linear space

Lp,∞(Ω, ω) =

{
f : sup

t>0
tpω{x : |f(x)| > t} < +∞

}
.

called the weak Lp space. This space contains
Lp(Ω, ω).
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For p′ = p/(p − 1) the predual of Lp′,∞(Ω, ω)

with respect to the standard inner product is

denoted by Lp,1(Ω, ω). We have

Lp,1(Ω, ω) ⊂ Lp(Ω, ω) ⊂ Lp,∞(Ω, ω).

For p > 1 these spaces are normed. The spaces

L1,1(Ω, ω) and L1,∞(Ω, ω) can also be defined

but they are not normed.
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The bounded linear operator T : Lp(Ω, ω) →
Lp,∞(Ω, ω) is called of weak type (p.p). Any op-

erator mapping Lp into itself is called of strong

type (p, p). We will use the following fact.

The linear operator T is bounded from Lp,1

into Lp if and only if

‖T‖(p,1)→p = sup
E⊂Ω

‖TχE‖p

‖χE‖p
< +∞.
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Lp,q spaces have been introduced by Lorentz

(see J. Bergh, J. Löfström, Interpolation Spaces).

By duality and by symmetry of µ we have

‖λ(µ)‖p→p = ‖λ(µ)‖p′→p′,

‖λ(µ)‖p→(p,∞) = ‖λ(µ)‖(p′,1)→p′,

for any group G.

It is convenient to switch to the dual space

because we have easy expressions for the op-

erator norms.
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In case the group G is discrete and amenable

we showed that

‖λ(µ)‖p′→p′ = ‖λ(µ)‖(p′,1)→p′ = 1.

Hence for these groups convolution operators

with nonnegative functions of weak type (p, p)

and of strong type (p, p) coincide. The same

is true for general amenable groups.
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Example. Consider the Hilbert transform

(Hf)(x) = pv
1

π

∫
R

f(x− y)

y
dy

= lim
δ→0+

1

π

∫
|y|>δ

f(x− y)

y
dy,

for f ∈ Cc(R). It can be shown that Ĥf(ζ) =

−i sgn (ζ) f̂(ζ). Hence H is a an isometry on

L2(R). The operator H is not bounded on L1,

because 1/x is not absolutely integrable.
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But H is of weak type (1,1), i.e. it maps L1

into L1,∞. By Marcinkiewicz interpolation the-
orem H is bounded on Lp for 1 < p < 2. By
duality H is also bounded on Lp for p > 2. Of
course this operator commutes with transla-
tions.
The operator I+iH restricts Fourier transform
to positive half axis and is bounded on Lp(R)
for 1 < p < ∞. Hence the operator restricting
Fourier transform to the interval [−1,1] is also
bounded.
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Similar result for Rn, n ≥ 2, is not true due

to the famous result of Ch. Fefferman (1971)

that restriction of the Fourier transform to the

unit ball is bounded only on L2(Rn). In order

to make it bounded the multiplier has to be

smoothed suitably

M̂δf(ξ) = (1− |ξ|2)δ
+f̂(ξ).

The range of p for which Mδ is bounded de-

pends on δ.
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M. Zafran (1975) showed that for G = R, T, Z
and 1 < p < 2 there are translation invari-
ant operators of weak type (p, p) which are
not bounded on Lp(G), i.e. are not of strong
type (p, p). By amenability these operators can-
not be convolutions with nonnegative distribu-
tion. M. Cowling and J. Fournier (1976) ex-
tended this result on all infinite groups. Cowl-
ing (1979) showed that if the group G is amenable
then the weak type (2,2) coincides with strong
type (2,2) for translation invariant operators.
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Three problems remained: determine if weak
and strong type (p, p) coincide for translation
invariant operators in

1. the case p > 2 for any infinite group, even
for G = R, T, Z,

2. the case p = 2 for nonamenable groups,

3. the case 1 < p < 2 for nonamenable groups
and convolution with nonnegative distribu-
tions (by Cowling and Fournier the notions
are different if we do not impose nonneg-
ativity).
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Let Fk be a free group on k ≥ 2 generators.

(Sz1983) There are convolution operators of

weak type (2,2) which are not of strong type

(2,2).

(Sz1983) There are convolution operators of

weak type (p, p) which are not of strong type

(p, p) for p > 2.

Conjecture. The group G is amenable iff the

weak and strong type (2,2) coincide for trans-

lation invariant operators.
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Let Fk = gp{g1, g2, . . . , gk}. The group consists
of reduced words in generators and their in-
verses. This representation is unique. The
number of letters in reduced form defines length
function on Fk. Let χn denote the characteris-
tic function of words of length n. There are
2k(2k − 1)n−1 such words. as we have 2k
choices for the first letter and 2k − 1 choices
for every consecutive one. J. Cohen (1982)
showed that

‖λ(χn)‖2→2 ≈ n(2k − 1)n/2 ≈ n‖χn‖2.
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(Sz1983)

‖λ(χn)‖2→(2,∞) ≈
√

n(2k − 1)n/2 ≈
√

n‖χn‖2.

Hence the norms are not equivalent, i.e. the

corresponding spaces must be different.

Let’s turn to the case p > 2. By duality we are

interested in comparing the norms ‖λ(µ)‖p→p

and ‖λ(µ‖(p,1)→p for 1 < p < 2.
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For 1 < p < 2, T. Pytlik (1982) showed that

‖λ(χn)‖p→p ≈ ‖χn‖p.

But ‖χn ∗ δe‖p = ‖χn‖p‖δe‖p, hence

‖λ(χn)‖(p,1)→p ≥ ‖χn‖p.

Therefore

‖λ(χn)‖p→p ≈ ‖λ(χn)‖(p,1)→p.
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Pytlik showed also that for fn ≥ 0 we have∥∥∥∥∥∥
∞∑

n=0

fnλ(χn)

∥∥∥∥∥∥
p→p

≈
∞∑

n=0

fn‖χn‖p ≈

∥∥∥∥∥∥
∞∑

n=0

fnχn

∥∥∥∥∥∥
p,1

.

Basing on this and using interpolation machin-

ery one can show that (Sz1983) we have∥∥∥∥∥∥
∞∑

n=0

fnλ(χn)

∥∥∥∥∥∥
(p,1)→p

≈

 ∞∑
n=0

|fn|p‖χn‖p
p

1/p

.
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By comparing these two results one can see

that the spaces of convolution operators from

Lp into itself and from Lp,1 into Lp do not co-

incide for 1 < p < 2. By duality, for any p > 2,

there exist convolution operators, with non-

negative function, of weak type (p, p) which

are not of strong type (p, p).
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(Sz 2004.11.27) For 1 < p < 2 we have∥∥∥∥∥∥
∞∑

n=0

fnλ(χn)

∥∥∥∥∥∥
p→(p,∞)

≈

 ∞∑
n=0

|fn|p‖χn‖p
p

1/p

.

By Pytlik result and duality we have for fn ≥ 0∥∥∥∥∥∥
∞∑

n=0

fnλ(χn)

∥∥∥∥∥∥
p→p

≈
∞∑

n=0

fn‖χn‖p

Hence strong and weak type (p, p) do not co-
incide for convolution operators with nonneg-
ative functions.
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Proofs. Let 1 < p < p0 < 2. Functions of the

form f =
∞∑

n=0

fnχn will be called radial. Let

E ⊂ Fk be finite. Consider right hand side

convolution operators

%(χE) : L1
r (Fk) → L1(Fk),

%(χE) : L
p0,1
r (Fk) → Lp0(Fk)

27



For radial function f we have

‖f ∗ χE‖1 ≤ ‖χE‖1‖f‖1

‖f ∗ χE‖p0 ≤
∞∑

n=0

|fn| ‖χn ∗ χE‖p0

≤ ‖χE‖p0

∞∑
n=0

|fn| ‖χn‖p0 ≤ C‖χE‖p0‖f‖p0,1.
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By Calderón interpolation theorem we get

%(χE) : Lp
r(Fk) → Lp(Fk)

‖f ∗ χE‖p ≤ C(p)‖χE‖θ
1‖χE‖1−θ

p0
‖f‖p

where
1

p
=

θ

1
+

1− θ

p0
, 0 < θ < 1.

Hence

‖f ∗ χE‖p ≤ C(p)‖f‖p‖χE‖p.
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This implies that for radial function f we have

‖λ(f)‖(p,1)→p ≤ C(p)‖f‖p.

On the other hand

‖λ(f)‖(p,1)→p ≥ ‖f ∗ δe‖p = ‖f‖p.

Therefore for radial functions the operator norm

from Lp,1 to Lp coincides with Lp norm.
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Case p = 2. Instead of estimating ‖λ(χn)‖2→(2,∞)
we will estimate ‖λ(χn)‖(2,1)→2.

‖χn∗χE‖22 = 〈χn∗χE, χn∗χE〉 = 〈χn∗χn∗χE, χE〉
Let q = 2k − 1. Then
χn∗χn = χ2n+qχ2n−2+. . .+qn−1χ2+(q+1)qn−1χ0.

Lemma.

〈χ2j ∗ χE, χE〉 ≤ qj‖χE‖22.
Hence

‖χn ∗ χE‖22
‖χE‖22

≤ nqn + (q + 1)qn−1 ≤ Cn‖χn‖22.
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Proof of Lemma. Define an operator P by the

rule

〈Pδx, δy〉 =

〈χ2j ∗ δx, δy〉 if |x| ≥ |y|
0 if |x| < |y|.

Then

〈χ2j ∗ δx, δy〉 ≤ 〈Pδx, δy〉+ 〈δx, P δy〉.

〈χ2j∗χE, χE〉 ≤ 2〈PχE, χE〉 = 2〈χE, P ∗χE〉 ≤ 2|E| ‖P ∗χE‖∞.
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〈δx, P ∗χE〉 = 〈Pδx, χE〉 ≤ ‖Pδx‖1.

Next

Pδx =
∑

|w|=2j

|wx|≤|x|

δwx.

Let w = w1w2 where |w1| = |w2| = j. The

conditions |w| = 2j and |wx| ≤ |x| imply that

w2 is determined by the first j letters of x.
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Hence we have as many terms as choices for

w1, i.e. at most qj. Thus

‖Pδx‖1 ≤ qj.

Therefore ‖P ∗χE‖∞ ≤ qj and

〈χ2j ∗ χE, χE〉 ≤ 2qj|E| = 2qj‖χE‖22.
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