

Weak type translation invariant operators on groups and amenability

Let G be a discrete group. Consider a symmetric probability measure μ on G , i.e.

$$\begin{aligned}\mu = \sum_{x \in G} \mu(x) \delta_x, \quad & \mu(x) \geq 0, \\ \sum_{x \in G} \mu(x) = 1, \quad & \mu(x^{-1}) = \mu(x).\end{aligned}$$

The left convolution operator $\lambda(\mu)$ with μ is bounded on $\ell^2(G)$ and

$$\|\lambda(\mu)(f)\|_2 = \|\mu * f\|_2 \leq \|f\|_2, \quad f \in \ell^2(G).$$

$$\begin{aligned} \|\mu * f\|_2 &= \left\| \sum_{x \in G} \mu(x) [\delta_x * f] \right\|_2 \\ &\leq \sum_{x \in G} \mu(x) \|\delta_x * f\|_2 = \|f\|_2. \end{aligned}$$

Thus $\|\lambda(\mu)\|_{2 \rightarrow 2} \leq 1$.

Kesten (1959) showed that a discrete group G is amenable iff for any symmetric probability measure μ on G we have $\|\lambda(\mu)\|_{2\rightarrow 2} = 1$. He showed that G is amenable if condition is satisfied for one measure μ such that $\text{supp } \mu$ generates G algebraically. In particular let G be generated by g_1, g_2, \dots, g_k and $\mu = \frac{1}{2k} \sum_{i=1}^k (\delta_{g_i} + \delta_{g_i^{-1}})$. Then G is amenable iff $\|\lambda(\mu)\|_{2\rightarrow 2} = 1$.

The group G is called amenable if there exists a linear functional m on $\ell_{\mathbb{R}}^{\infty}(G)$ such that

- (1) $\inf_{x \in G} f(x) \leq m(f) \leq \sup_{x \in G} f(x),$
- (2) $m(xf) = m(f), \quad \text{where } xf(y) = f(x^{-1}y).$

m is called a left invariant mean. Then the functional $M(f) = m(m(f_x))$ satisfies (1), (2) and is also right invariant, where $f_x(y) = f(yx)$.

Følner condition*

For any number $\varepsilon > 0$ and any finite set $K \subset G$ there exists a finite set $N \subset G$ such that

$$|xN \Delta N| < \varepsilon|N|, \quad x \in K.$$

Hence N is almost K invariant.

Example. Let $G = \mathbb{Z}$, $K = [-k, k]$ and $N = [-n, n]$. Then

$$|(x + N) \Delta N| \leq 2k < \frac{k}{n}|N|.$$

For $\varepsilon > 0$ take $n \geq \frac{k}{\varepsilon}$.

*I learnt character \emptyset from Christina Kuttler

G is amenable iff the Følner condition holds.

One direction is easy. Assume G satisfies the Følner condition and the group G is countable.

Then $G = \bigcup_{n=1}^{\infty} K_n$, $K_n \subset K_{n+1}$. For $\varepsilon = \frac{1}{n}$ let N_n denote the corresponding almost K_n invariant set. Define

$$m_n(f) = \frac{1}{|N_n|} \sum_{x \in N_n} f(x).$$

Then any accumulation point of the functions m_n leads to left invariant mean.

Assume that G is amenable. Let μ be a probability measure with finite support K . For $\varepsilon = \eta^2 > 0$ choose N with respect to ε and K . Then

$$\begin{aligned}
\|\mu * \chi_N - \chi_N\|_2 &= \left\| \sum_{x \in K} \mu(x) [\chi_{xN} - \chi_N] \right\|_2 \\
&\leq \sum_{x \in K} \mu(x) \|\chi_{xN} - \chi_N\|_2 = \sum_{x \in K} \mu(x) \|\chi_{xN \triangle N}\|_2 \\
&= \sum_{x \in K} \mu(x) |xN \triangle N|^{1/2} \leq \eta |N|^{1/2} = \eta \|\chi_N\|_2.
\end{aligned}$$

Therefore

$$\|\mu * \chi_N\|_2 \geq (1 - \eta) \|\chi_N\|_2$$

which implies that $\|\lambda(\mu)\|_{2 \rightarrow 2} \geq 1 - \eta$, hence $\|\lambda(\mu)\|_{2 \rightarrow 2} = 1$. Observe that we showed that if the group is amenable then

$$1 = \|\lambda(\mu)\|_{2 \rightarrow 2} = \sup_{N \subset G} \frac{\|\mu * \chi_N\|_2}{\|\chi_N\|_2},$$

i.e. the operator norm is attained at characteristic functions of finite sets.

If the group G is amenable the same holds (with the same proof) for any $1 \leq p \leq +\infty$, i.e.

$$1 = \|\lambda(\mu)\|_{p \rightarrow p} = \sup_{N \subset G} \frac{\|\mu * \chi_N\|_p}{\|\chi_N\|_p},$$

which means the operator norm is also attained at characteristic functions.

Consider a general σ -finite measure space (Ω, ω) and $1 < p < +\infty$. For $f \in L^p(\Omega, \omega)$ and $t > 0$ we have

$$t^p \omega\{x : |f(x)| > t\} \leq \int_{\Omega} |f(x)|^p d\omega(x).$$

Functions for which the left hand side is bounded form a linear space

$$L^{p,\infty}(\Omega, \omega) = \left\{ f : \sup_{t>0} t^p \omega\{x : |f(x)| > t\} < +\infty \right\}.$$

called the weak L^p space. This space contains $L^p(\Omega, \omega)$.

For $p' = p/(p - 1)$ the predual of $L^{p',\infty}(\Omega, \omega)$ with respect to the standard inner product is denoted by $L^{p,1}(\Omega, \omega)$. We have

$$L^{p,1}(\Omega, \omega) \subset L^p(\Omega, \omega) \subset L^{p,\infty}(\Omega, \omega).$$

For $p > 1$ these spaces are normed. The spaces $L^{1,1}(\Omega, \omega)$ and $L^{1,\infty}(\Omega, \omega)$ can also be defined but they are not normed.

The bounded linear operator $T : L^p(\Omega, \omega) \rightarrow L^{p,\infty}(\Omega, \omega)$ is called of weak type $(p.p)$. Any operator mapping L^p into itself is called of strong type (p,p) . We will use the following fact.

The linear operator T is bounded from $L^{p,1}$ into L^p if and only if

$$\|T\|_{(p,1) \rightarrow p} = \sup_{E \subset \Omega} \frac{\|T\chi_E\|_p}{\|\chi_E\|_p} < +\infty.$$

$L^{p,q}$ spaces have been introduced by Lorentz (see J. Bergh, J. Löfström, Interpolation Spaces). By duality and by symmetry of μ we have

$$\begin{aligned}\|\lambda(\mu)\|_{p \rightarrow p} &= \|\lambda(\mu)\|_{p' \rightarrow p'}, \\ \|\lambda(\mu)\|_{p \rightarrow (p, \infty)} &= \|\lambda(\mu)\|_{(p', 1) \rightarrow p'},\end{aligned}$$

for any group G .

It is convenient to switch to the dual space because we have easy expressions for the operator norms.

In case the group G is discrete and amenable we showed that

$$\|\lambda(\mu)\|_{p' \rightarrow p'} = \|\lambda(\mu)\|_{(p',1) \rightarrow p'} = 1.$$

Hence for these groups convolution operators with **nonnegative functions** of weak type (p,p) and of strong type (p,p) coincide. The same is true for general amenable groups.

Example. Consider the Hilbert transform

$$\begin{aligned}
 (Hf)(x) &= \text{pv} \frac{1}{\pi} \int_{\mathbb{R}} \frac{f(x-y)}{y} dy \\
 &= \lim_{\delta \rightarrow 0^+} \frac{1}{\pi} \int_{|y|>\delta} \frac{f(x-y)}{y} dy,
 \end{aligned}$$

for $f \in C_c(\mathbb{R})$. It can be shown that $\widehat{Hf}(\zeta) = -i \operatorname{sgn}(\zeta) \widehat{f}(\zeta)$. Hence H is a an isometry on $L^2(\mathbb{R})$. The operator H is not bounded on L^1 , because $1/x$ is not absolutely integrable.

But H is of weak type $(1,1)$, i.e. it maps L^1 into $L^{1,\infty}$. By Marcinkiewicz interpolation theorem H is bounded on L^p for $1 < p < 2$. By duality H is also bounded on L^p for $p > 2$. Of course this operator commutes with translations.

The operator $I+iH$ restricts Fourier transform to positive half axis and is bounded on $L^p(\mathbb{R})$ for $1 < p < \infty$. Hence the operator restricting Fourier transform to the interval $[-1, 1]$ is also bounded.

Similar result for \mathbb{R}^n , $n \geq 2$, is not true due to the famous result of Ch. Fefferman (1971) that restriction of the Fourier transform to the unit ball is bounded only on $L^2(\mathbb{R}^n)$. In order to make it bounded the multiplier has to be smoothed suitably

$$\widehat{M_\delta f}(\xi) = (1 - |\xi|^2)_+^\delta \widehat{f}(\xi).$$

The range of p for which M_δ is bounded depends on δ .

M. Zafran (1975) showed that for $G = \mathbb{R}, \mathbb{T}, \mathbb{Z}$ and $1 < p < 2$ there are translation invariant operators of weak type (p,p) which are not bounded on $L^p(G)$, i.e. are not of strong type (p,p) . By amenability these operators cannot be convolutions with nonnegative distribution. M. Cowling and J. Fournier (1976) extended this result on all infinite groups. Cowling (1979) showed that if the group G is amenable then the weak type $(2,2)$ coincides with strong type $(2,2)$ for translation invariant operators.

Three problems remained: determine if weak and strong type (p, p) coincide for translation invariant operators in

1. the case $p > 2$ for any infinite group, even for $G = \mathbb{R}, \mathbb{T}, \mathbb{Z}$,
2. the case $p = 2$ for nonamenable groups,
3. the case $1 < p < 2$ for nonamenable groups and convolution with nonnegative distributions (by Cowling and Fournier the notions are different if we do not impose nonnegativity).

Let \mathbb{F}_k be a free group on $k \geq 2$ generators. (Sz1983) There are convolution operators of weak type $(2,2)$ which are not of strong type $(2,2)$.

(Sz1983) There are convolution operators of weak type (p,p) which are not of strong type (p,p) for $p > 2$.

Conjecture. The group G is amenable iff the weak and strong type $(2,2)$ coincide for translation invariant operators.

Let $\mathbb{F}_k = \text{gp}\{g_1, g_2, \dots, g_k\}$. The group consists of reduced words in generators and their inverses. This representation is unique. The number of letters in reduced form defines length function on \mathbb{F}_k . Let χ_n denote the characteristic function of words of length n . There are $2k(2k - 1)^{n-1}$ such words. as we have $2k$ choices for the first letter and $2k - 1$ choices for every consecutive one. J. Cohen (1982) showed that

$$\|\lambda(\chi_n)\|_{2 \rightarrow 2} \approx n(2k - 1)^{n/2} \approx n\|\chi_n\|_2.$$

(Sz1983)

$$\|\lambda(\chi_n)\|_{2 \rightarrow (2, \infty)} \approx \sqrt{n}(2k-1)^{n/2} \approx \sqrt{n}\|\chi_n\|_2.$$

Hence the norms are not equivalent, i.e. the corresponding spaces must be different.

Let's turn to the case $p > 2$. By duality we are interested in comparing the norms $\|\lambda(\mu)\|_{p \rightarrow p}$ and $\|\lambda(\mu)\|_{(p,1) \rightarrow p}$ for $1 < p < 2$.

For $1 < p < 2$, T. Pytlík (1982) showed that

$$\|\lambda(\chi_n)\|_{p \rightarrow p} \approx \|\chi_n\|_p.$$

But $\|\chi_n * \delta_e\|_p = \|\chi_n\|_p \|\delta_e\|_p$, hence

$$\|\lambda(\chi_n)\|_{(p,1) \rightarrow p} \geq \|\chi_n\|_p.$$

Therefore

$$\|\lambda(\chi_n)\|_{p \rightarrow p} \approx \|\lambda(\chi_n)\|_{(p,1) \rightarrow p}.$$

Pytlik showed also that for $f_n \geq 0$ we have

$$\left\| \sum_{n=0}^{\infty} f_n \lambda(\chi_n) \right\|_{p \rightarrow p} \approx \sum_{n=0}^{\infty} f_n \|\chi_n\|_p \approx \left\| \sum_{n=0}^{\infty} f_n \chi_n \right\|_{p,1}.$$

Basing on this and using interpolation machinery one can show that (Sz1983) we have

$$\left\| \sum_{n=0}^{\infty} f_n \lambda(\chi_n) \right\|_{(p,1) \rightarrow p} \approx \left(\sum_{n=0}^{\infty} |f_n|^p \|\chi_n\|_p^p \right)^{1/p}.$$

By comparing these two results one can see that the spaces of convolution operators from L^p into itself and from $L^{p,1}$ into L^p do not coincide for $1 < p < 2$. By duality, for any $p > 2$, there exist convolution operators, with non-negative function, of weak type (p,p) which are not of strong type (p,p) .

(Sz 2004.11.27) For $1 < p < 2$ we have

$$\left\| \sum_{n=0}^{\infty} f_n \lambda(\chi_n) \right\|_{p \rightarrow (p, \infty)} \approx \left(\sum_{n=0}^{\infty} |f_n|^p \|\chi_n\|_p^p \right)^{1/p}.$$

By Pytlik result and duality we have for $f_n \geq 0$

$$\left\| \sum_{n=0}^{\infty} f_n \lambda(\chi_n) \right\|_{p \rightarrow p} \approx \sum_{n=0}^{\infty} f_n \|\chi_n\|_p$$

Hence strong and weak type (p, p) do not coincide for convolution operators with nonnegative functions.

Proofs. Let $1 < p < p_0 < 2$. Functions of the form $f = \sum_{n=0}^{\infty} f_n \chi_n$ will be called radial. Let $E \subset \mathbb{F}_k$ be finite. Consider right hand side convolution operators

$$\begin{aligned}\varrho(\chi_E) : L_r^1(\mathbb{F}_k) &\rightarrow L^1(\mathbb{F}_k), \\ \varrho(\chi_E) : L_r^{p_0,1}(\mathbb{F}_k) &\rightarrow L^{p_0}(\mathbb{F}_k)\end{aligned}$$

For radial function f we have

$$\|f * \chi_E\|_1 \leq \|\chi_E\|_1 \|f\|_1$$

$$\begin{aligned}\|f * \chi_E\|_{p_0} &\leq \sum_{n=0}^{\infty} |f_n| \|\chi_n * \chi_E\|_{p_0} \\ &\leq \|\chi_E\|_{p_0} \sum_{n=0}^{\infty} |f_n| \|\chi_n\|_{p_0} \leq C \|\chi_E\|_{p_0} \|f\|_{p_0,1}.\end{aligned}$$

By Calderón interpolation theorem we get

$$\varrho(\chi_E) : L_r^p(\mathbb{F}_k) \rightarrow L^p(\mathbb{F}_k)$$

$$\|f * \chi_E\|_p \leq C(p) \|\chi_E\|_1^\theta \|\chi_E\|_{p_0}^{1-\theta} \|f\|_p$$

where

$$\frac{1}{p} = \frac{\theta}{1} + \frac{1-\theta}{p_0}, \quad 0 < \theta < 1.$$

Hence

$$\|f * \chi_E\|_p \leq C(p) \|f\|_p \|\chi_E\|_p.$$

This implies that for radial function f we have

$$\|\lambda(f)\|_{(p,1) \rightarrow p} \leq C(p) \|f\|_p.$$

On the other hand

$$\|\lambda(f)\|_{(p,1) \rightarrow p} \geq \|f * \delta_e\|_p = \|f\|_p.$$

Therefore for radial functions the operator norm from $L^{p,1}$ to L^p coincides with L^p norm.

Case $p = 2$. Instead of estimating $\|\lambda(\chi_n)\|_{2 \rightarrow (2, \infty)}$ we will estimate $\|\lambda(\chi_n)\|_{(2, 1) \rightarrow 2}$.

$$\|\chi_n * \chi_E\|_2^2 = \langle \chi_n * \chi_E, \chi_n * \chi_E \rangle = \langle \chi_n * \chi_n * \chi_E, \chi_E \rangle$$

Let $q = 2k - 1$. Then

$$\chi_n * \chi_n = \chi_{2n} + q\chi_{2n-2} + \dots + q^{n-1}\chi_2 + (q+1)q^{n-1}\chi_0.$$

Lemma.

Hence
$$\langle \chi_{2j} * \chi_E, \chi_E \rangle \leq q^j \|\chi_E\|_2^2.$$

$$\frac{\|\chi_n * \chi_E\|_2^2}{\|\chi_E\|_2^2} \leq nq^n + (q+1)q^{n-1} \leq Cn\|\chi_n\|_2^2.$$

Proof of Lemma. Define an operator P by the rule

$$\langle P\delta_x, \delta_y \rangle = \begin{cases} \langle \chi_{2j} * \delta_x, \delta_y \rangle & \text{if } |x| \geq |y| \\ 0 & \text{if } |x| < |y|. \end{cases}$$

Then

$$\langle \chi_{2j} * \delta_x, \delta_y \rangle \leq \langle P\delta_x, \delta_y \rangle + \langle \delta_x, P\delta_y \rangle.$$

$$\langle \chi_{2j} * \chi_E, \chi_E \rangle \leq 2 \langle P\chi_E, \chi_E \rangle = 2 \langle \chi_E, P^* \chi_E \rangle \leq 2|E| \|P^*\|.$$

$$\langle \delta_x, P^* \chi_E \rangle = \langle P \delta_x, \chi_E \rangle \leq \|P \delta_x\|_1.$$

Next

$$P \delta_x = \sum_{\substack{|w|=2j \\ |wx| \leq |x|}} \delta_{wx}.$$

Let $w = w_1 w_2$ where $|w_1| = |w_2| = j$. The conditions $|w| = 2j$ and $|wx| \leq |x|$ imply that w_2 is determined by the first j letters of x .

Hence we have as many terms as choices for w_1 , i.e. at most q^j . Thus

$$\|P\delta_x\|_1 \leq q^j.$$

Therefore $\|P^*\chi_E\|_\infty \leq q^j$ and

$$\langle \chi_{2j} * \chi_E, \chi_E \rangle \leq 2q^j |E| = 2q^j \|\chi_E\|_2^2.$$