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We show that under certain conditions any cubic matrix b(n, m, k), n, m, ke N,
determines a locally compact topological space, a Radon measure, and an
orthogonal system of continuous vanishing at infinity functions 7, such that

Loty= Y bln,m k).

nlm
k=0

The space and the system of functions r,, neN, are unique. © 1993 Academic

Press, Inc.

1. INTRODUCTION

The motivation for this work comes from the following result of
R. Askey and G. Gasper [1]. Let &#Z(x) be the Lageurre polynomials
normalized so that #(0)=0. The functions ¢ *¥% form an orthogonal
basis for the Hilbert space L*([0, + o), x*¢~ dx). The product of two such
functions e ~*.#* and e~ *.¥ 2 belongs to this Hilbert space hence there are
coefficients b(n, m, k; ) such that

e " Lre L~ Y bln,m k;a)e L2 (1)
k=0
THEOREM (Askey and Gasper [1]). Ler a = (/17 — 5)/2. Then
b(n, m, k; 2) are nonnegative.

It turns out that the series on the right hand side of (1) is uniformly
convergent on [0, +oc) thus we have pointwise equality in (1). Evaluation
of (1) at x=0 gives then

Y b(n,m, kya)=1. (2)
K=o
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Let w, be defined as

1

mn=<r e "'fz”,,(x)jz,'c"e"'dx> : (3)

x

By multiplying both sides of (1) by ¢ %7 and integrating against the
measure x*e*dx we get

JI LX) LX) LI(x)x% Ndx=bnmkia)w, . (4)
0

n

This implies that the quantity h(n, m, k:a)w, ' is invariant for the
permutations of the variables n, m, k.
The formula (1) and the associativity of the product

e CPIx)e “LA(x)e TLHUX)=(¢ “Lix)e “Lr(x))e “LLx)

nL ”m
implies

S b(n, m,jia) bUj k, )= blm, k. ji o) b(n, ), I o). (5)

i=0 j=0

The aim of this paper is to show that any matrix b(n, m, k) with
nonnegative entries satisfying (2), (5), and such that b(n, m, k)w, " is
symmetric for a sequence of positive numbers w,, determines a locally
compact topological space, a Radon measure, and an orthogonal system
with respect to this measure of functions which satisfy the formula
analogous to (1). The problem was already studied by Haar [4] under
significantly stronger assumptions.

2. CONVOLUTIONS OF SEQUENCES

Let /'(N) be the space of absolutely summable sequences of complex
numbers. Let 6, denote the sequence whose terms are all zero except for
the nth one which is equal to 1. Let b(n, m, k) be a matrix such that

2’: b(n,m k)=1, (6)

k=0

b(n,m, k)=0, n,m, keN. (7)
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Let us define the operation *, called a convolution, according to
kO, =Y b(n,m k). (8)

By (6) and (7) this operation can be extended linearly to the whole space
YN,
Assume that the condition securing the associativity of the operation =

Y b(n,m,j)b(j kD) =Y b(m, k.j) b(n.j, 1) 9)

;=0 F=0

is satisfied. Assume also that there is a sequence of positive numbers w,,
such that

bn,m kyw, '=bm n ko, '=bnk mw,’. (10)

In other words the quantity h(n, m, k) o, '

implies that * is a commutative operation.
The formula (8) gives rise to a convolution operation on /'(N). Indeed,
if sequences @ = {a,} and b= {b,} are absolutely summable then

is symmetric. In particular this

”a*b“/‘< Z |a(n)b(’n)‘ “511*6'11“/1
nom=0

S Jan)yb(m)| Y b(n m, k)

nm=0 k=0

x©

2 la(ybm)=lal, 15l

=0

It

However, working with #'(N) has a heavy disadvantage. Namely we
have no inequality

faxbl,<lalllbl,,

that one would like to hold. This can be achieved by considering a
weighted /' space. It turns out that the right choice is to take 7'(N, w,),
that is, the space of all sequences a= {a,} such that

e
(‘a“/'uu,,): Z la,| w,<+wx.
0

n=

Let T, be the linear operator acting on sequences by

(T‘na)m= i b(n, n’sk)ak' (]])
k=0
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Thus

T,8,,= Y, bnk,m)d,.
k=0

Then T, is symmetric with respect to the inner product
<asb>/2(w)= Z anl;nwn‘
n=0

Indeed,
<Tn5m’ 51( >/l((u) = b(n» k, m) wk = b(n’ m, k) (Um
= <6m9 Tn6k>/l(w)'

If we show that 7, is bounded on /%N, w,) then we conclude it is
selfadjoint.

LEMMA 1. T, is a contraction on (N, w,), for every p= 1.

Proof. First we show that T, is a contraction on ¢*. To this end
observe that (6) and (11) imply

T,1=1,
where 1 denotes the constant unit sequence. Assume that a={a,} is a
sequence bounded by 1. Thus

[Taall-<|T,1l,-=1]=L

The first inequality makes use of the positivity of the coefficients b(n, m, k),
which yields that the operators T, are order preserving. Once we have
made sure that T, is a contraction on /™ by symmetry it is such on /' (N,
®,). Now by interpolation (which in this case reduces to applying Holder’s
inequality twice) we can conclude that T, are contractions on the
intermediate spaces £7(N, w,), for p> 1.

We gave up the space /' (N) for the weighted space /'(N, w,). It is
worthwhile transferring convolution operation  to the new space to get an
operations. It can be done as follows.

Define the linear operator from ¢' to /' (w) acting according to

~ 5 — !
10,0, =w, ' d,.
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The mapping is clearly an isometry from ¢! to #'(w). Let us define the
convolution » on ¢'(w) by the rule

8,98, =(8,%5,)". (12)

Since * is commutative and associative obviously the operation-is such.
Let us compute a, - 6, explicitly.

8,u08m=(8,%8,)" =Y bln,mk)d,

k=0

=Y bnnmk)o;'é,= Z b(n, k,m)w, '8,
=0

k k=0

=w, 'T,8,=T,5,. (13)

Thus the action of T, on #%(N, w,) coincides with the s-convolution with
5, ie.,

T,a=6,ca, a=1{a,}el’(N,w,). (14)

Using (14) and the fact that the operation o is commutative and associative
we can conclude that the 7, commute with each other. Moreover by (13)
and (14) we have the following expression for their product:

T,T, = Z bin, m, k) T,. (15)

k=0

The series on the right hand side of (15) is absolutely convergent with
respect to the operator norm on /2(N, w,), as each T, is a contraction and
the coefficients are nonnegative and sum up to 1. Since T, are contractions
on /*(N, w,), we can show the following.

LEMMA 2.

” asb “ #P(t3n) < “ a ” 7 {wn) ” b H £ P{wsn)? (16)

laehll,« <lall e 181 g (17)
where p=1,andp ' +q '=1.

Proof. Let a= f;oa,,g,,. Then

acb=7Y a,(d,°b)=
n=0



24 RYSZARD SZWARC

Thus by Lemma | we have

la-bl, < 3 lalibl,,=lall 161,

n=0

By the first part of the lemma we have in particular

H(l"h”,, < “aH/lqm,,) ”bH/‘a

lachl, <lall,. &),

{y)*

Then we get (17) by the multilinear interpolation theorem [2,
Theorem 4.4.1, p. 96, and Theorem 5.1.2, p. 107].

We can state now the main result of the paper.

THEOREM L. Assume that a matrix b(n, m, k) and a sequence of positive
numbers w, satisfv the conditions (6), (7), (9), and (10). Assume also there
is no nonzero sequence a=l{a,} _, in /*(N, w,), such that

Z b(n,m, k)a, =0, Jorevery n, keN, (18)

k=0

Then there exist a locally compact topological space ¥ and a Radon
measure p on ¥ such that supp u=4, and a system of functions t,(x) in
L, du) satisfying the following conditions.

(1) 1,(x) is continuous and vanishing at infinity.

(1) The linear span of t,,(x), n=0, 1,2, ..., is dense in Co(X).
(iii) The t,(x) form a complete orthogonal system in L*(Z, du).
(v) 1, (), (xX)=3/7_obn,m k)t (x), n,meN.

(v) |, (x)<sl,xed, neN.

The space X and the system {1,(x)}7_, are uniquely determined in the
Jfollowing sense. If there exist another locally compact space %, a Radon
measure v on it such that supp v="%, and a system of functions q,(y)
satisfying (1), (i), (iii), and (iv) (with X, u,t, replaced by %, v, gq,
respectively), then there is a homeomorphic mapping h: X — % such that

g4, (h{x)) =1,(x).

Proof. Let .o/ be the norm closed algebra of operators acting on the
Hilbert space /%(N, w,) generated by the operators T, ne N, defined by
the formula (11) or (14). Since the T, are selfadjoint on (XN, w,) and
commuting with each other ./ is a commutative C*-algebra. Let /'
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denote the C*-algebra obtained from .o/ by adjoining the identity operator
I In case [ is already in .o/ we have .o/ =.o/"'. In general we have &/ # .o/,
like in the example from the Introduction. We discuss this issue again at
the end of the paper.

By the Gelfand-Naimark theorem [3, Theorem 7, p.876] there is a
locally compact space # such that .o/ is isometrically isomorphic to Cy(:4')
while .o/ is isometrically isomorphic to C,(¥), the set of all complex
functions continuous on # and having limit at infinity. We use lowercase
letters for elements in the function spaces Cy(#) and C,(4), and capital
letters for their corresponding operators in the algebras .o/ and .o/':

Ci(X)valx)—Ae.d,.

Consider the linear functional on C,(%’) given by

a(.¥)H<A5ksgl>/2lml' (lg)

Then by Riesz’s representation theorem there exists a signed (when k =/
nonnegative) Borel measure y, , with bounded variation and a real number
d(d,, 9,), such that

CASL 8, = L a(x) dig ,(x) + d(5,, §) lim a(x). (20)

¥~ n

Let ¢z,(x) be the function corresponding to the operator 7,. Since the
algebra .o/ is generated by the operators T, the sequence of functions
to. 1,5 15, ., 18 linearly dense in the function space Cy(Z ). This shows (i)
and (ii). By Lemma | the operators T, are contractions on /*(N, w,), so
the functions ¢, (x) are bounded by 1. This gives (v). By {15) we get (iv).

Now we construct a measure du(x) and show (iii). Let us substitute
A= BT,T, into (20). Then

"

(BT, T80, 8 in= [ Dx) 1,(5) 1 (6) ditg (), (21)

as the 7, (x) belong to Co(Z).
Qn the oiher hand since all appearing operators commute, 7,* = T, and
T,5,,=T,06, (see (13)), we get

<BTn Tmsk’ S"I>/2(m)

= (BT T8, 8,0 = | B 6(0) 105V dpty(x). (22)

Ea
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As b(x) 1s an arbitrary function from C,(Z'), the formulas (21) and (22)
imply

[n (x) tm (\') duk‘l(x) = tk (x) [I(x) d.un.m (X) (23 )

Similarly, substituting 4 = B7,, to (20) we get
1,(X) dpy o (x) = 1, (x) dp,, 1 (x). (24)

Let E, be the set of zeros of the function 1, (x). Then by (24) we have
[ ) dwn =] 06 dgulx) =0,
E; Ey

for every n. Since the r,(x), n=0,1, 2, ..., form a linearly dense subset of
Co(Z), we can conclude that

ek (Er)=0,

for every natural k. We remind the reader that du, (x) is an ordinary, ie.,
nonnegative measure on . Moreover by the linear density of ¢,(x), ne N,
the intersection of all sets E, is empty. Set n=m and k =/ in (23). Then

1AX) dpty y (X) = 13(5) dpty i (). (25)

Let us define a nonnegative measure du(x) on % in the following way.
Let £ be a Borel subset of 2 such that £En E, = ¢, for some index . In
this case let

WE) = i E) = | 172 (0) ditg () (26)

Clearly the formula (26) defines a nonnegative Radon measure u, on the
complement Ef of the set E,. We show that u, coincides with yx, on the
intersection E; N Ej. Indeed, let E be a Borel set in % such that
EnE, =g and En E,= . Then by (25)

02 (3) dp ()= 12 (x) dpty (%), x€E,

s0 u,(E)=u,(E). Hence the family of measures (£%, p,) is compatible on
Ur_o E;. =% Since the intersection of the £,’s is empty, the formula (26)
defines a Radon measure g on 7.

The formula (26) and the fact that du, (x) vanishes on E, imply

dpt i (x)= 13 (x) du(x). 27
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This gives that the 7, (x) are square-integrable on 4 with respect to u, and
by (20) applied to 4 =17 we have

(L)" ! = <5"’ S'n>/1(m) =j fi(x) dﬂ(x) + d(gn, S'n)'
&

LEMMA 3. dp, (x)=1,(x) t;(x) du(x).

Proof. The formula can be shown by the polar identity and an
extension of (27). However, we have chosen a different explanation.

Observe first that du, ,(x) is absolutely continuous with respect to the
measure du, ,(x)+du,,(x). Indeed, let a(x) be an arbitrary nonnegative
function from Cy(Z'). Then the corresonding operator A4 in &/ is positive
definite and

= |<Agka 51>/21m|| < \/<A5ka 5k>/2((ui A% <A5,, gl>/3|m;
1,2 12
= (j a(x) duk_k(x)) ( [ ato du,.,(x))
& A

<] ale)due () + duy ().

J, alx) dy ()

Let now a(x) be a real function from Cy(Z), and let a(x)=a, (x)—a_(x)
be its Hahn decomposition as a difference of two nonnegative functions.
Then a, (x)e Co(X') and

[, atx) dug ()

<|[ @ o) st

+U a (x)du (%)
ka
<[ O duip () +dug (x))

Az

+] @ N () + g ()

= | 160 (At (6) + s 6))
Therefore p, ;< py . + ., This implies in particular that
dy, (x)=0, xeE,nE,
By (24) and (27) we have

1,0x) dptg (X)) =t dpy (x) = 1,(x) 1] (x) du(x).
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Similarly we get

1 () duyg (x) = 1, dug (X)) = 1,(x) 17 (x) du(x).
These formulas yield

dug (X)) =1t,(x) 1,(x) dulx), x¢E.NnE,

Since both appearing measures vanish on £, n E, the lemma follows.

Let us get back to the proof of Theorem I. Using (20) with 4 =17
w, "0, = (5, S,>,:,(,,.=j dug () +d(5,, 5))
K2

= [ L) du(x) +d3,, 8 (28)

Let # genote the subspace of #2(w,) consisting of finite linear combina-
tions of 3,,ne N. Let us also extend linearly the function d(d,, d,) to a
hermitian form on # x #. If F, Ge %, then by Lemma 3 and by (20) we
have

CF.GD =] S &) du(x) + d(F, G), (29)

d(F, F) is nonnegative and we also have
(F,F),,2d(F, F)20.

Thus d(F, G) is a bounded positive definite quadratic form on #*(w, ). As
such it can be represented by a positive definite linear operator D, bounded
on /*(w,), as

d(F,G)={DF,G) - (30)

As 1,(x) tends to zero at infinity we have

(T,F, G2, = L‘ 1,(x) f(x) g(x) du(x) + d(F, G) lim 1,(x)

X =

=] )00 200 dut) (31)
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On the other hand by (13), (14), and (iv) we have

<Tno)nb >/ (“) Z h(ﬂ k m)<6ma6 >

n =0

= X blnkom) [ ,(x) 1(x) dx)

m=0

+ Z h(n, k, m)d( s )

m=0

= L0 00 de0+dTELE) 32

Actually we have to make sure that the change of the order of integration
and infinite summation in the above calculations is justified. It suffices to
show that the series

S b ks m) 1, (x)

m==0

is convergent in L? mean. To this end substitute F=G into (29) to get
CFF> =] 1SCOI dut) +d(F, F)

> | SOOI dutx) (33)

Now since the series

3

2 b(n, k,m) 4,

is convergent in /*(w,), by (33) the series ¥
convergent in L*(Z, du).
The fact that we could perform infinite summation under the d-sign
follows from the boundedness of the hermitian form d(F, G) on /*(w,).
By linearity (32) implies

b(n, k, m)t,,(x) is

m=0

(TAF.G) iy = [ 1) (x) ER dtlx) + d(T,F.G). (34)

Combining (31) and (34) gives
dT,F,G)=0, n=012, ..,
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for all F, Ge(*(w,). Using (30) we get

(DT,F,G>,, ,=0, n=0,1,2,.., (35)

(ewn)

for all F, Ge¢*(w,). Thus DT,=0. Since both T, and D are selfadjoint
we get T7,D =0, for every natural number n. By assumptions (18) the
intersection of the kernels of the operators T, is trivial. Therefore D=0.
Hence by (28) we obtain

o= ) 1) dut), (36)

This shows (iv).

As for completeness, let .# be the closed subspace of the Hilbert space
L*(Z, du(x)) spanned by the functions ¢,(x). Since t,(x)¢,(x)=
S b{n, m, k) 1,(x) the series being convergent in L*Z, du(x)) (see the
comments following (33)), the product ¢,(x),,(x) belongs to .#. As any
function from C,(#') can be uniformly approximated by linear combina-
tions of the functions 1, {x), we get 1, (x) Co(Z) < .#. Consequently as .#
is spanned by ¢,(x), n€ N, we obtain that .# is invariant for multiplication
with functions from Cy (%), ie.,

Co(X) M M.

We are going to show that .# = L*(Z, du(x)). Let f(x) be a square-
integrable function orthogonal to .#. Fix a compact set ¥ <= Z, and a real
continuous function g(x) vanishing outside . Since g.# = .#, the function
f(x)g(x) is orthogonal to .#. For the purpose of this proof let the sub-
script ¥~ denote the restriction of considered objects to the subset . Thus
f(x) g(x) is orthogonal to 1, ,(x), in the Hilbert space L*(X", du,, (x)).
But since the measure dp, (x) is finite, f(x)g(x) is orthogonal to the
closure of the linear span of £, . (x) with respect to uniform convergence
topology. As the 1, (x) form a linearly dense subset of Cy(2'), the functions
{, x(x) do so of C(X"). Hence f(x) g(x) is orthogonal to C(5"). But again
the fact that du . (x) is finite implies that C(") is dense in L(A", du , (x)).
Thus f(x)g(x)=0. Since g(x) was an arbitrary function with compact
support we can conclude that f(x)=0. This shows the completeness of the
orthogonal system {z,(x)}>_,.

The only thing left to be proved is the uniqueness. Assume that there is
a locally compact space %, a Radon measure dv(y) on % whose support
is equal to %, and a complete orthogonal system of continuous and
vanishing at infinity functions ¢, (y) satisfying

o

4n(¥) g, (¥)= Z (n,m, k) q,(»). (37)
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LEMMA 4. Let real-valued functions q,(y) be orthogonal in L*(¥, dv).
Let (6) and (7) be satisfied and

(D) g (¥)="3 b(n,m k) q.(») (38)
k=0

(the equality should be understood as equality in the Hilbert space
LX(#, dv)). Then for every n

lg.(M <, ae. in¥.

Proof. Let % be a linear transformation from the space /3N, w) into
the function space L*(%, dv), defined by the rule

G: 5, q,(»). (39)

Observe that % is a constant multiple of an isometry. In view of
orthogonality relations it suffices to show that ¥ preserves the length of o,

H%’gklliz=j i (¥) dv(p),
&
I gk H32=(kal~
We show that

o dmai=o,
¥

for some positive constant ¢. Multiplying (38) by ¢,{(») and integrating
with respect to dv(y) yields the quantity

b, m, k) [ g3 (v) dv(y)
¥
is symmetric. By assumption (10) the quantity b(n, m, k)w, ' is also

symmetric. Playing around a little bit with this property we can show that
in fact we have

| gam=o
o

with a positive coefficient ¢, Actually we can set ¢=1, by changing the
measure dv(y). So adjusting dv(y) if necessary we can get

[ gmam=o,,
&

SRO:1131-3
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which means % is an isometry. By (13) and (38) we have

%(0,9,)=4.(¥) 4. (»)-
Again by (13) we get
4T,a=%(5,-a)=q,(y) % a). (40)
Using the fact that T, is a contraction on /*(N, ®,) we obtain

lg. ()G al 2=1%T,al,2<lal 2,

Put a=(5,) . Then %a=gq,(»)", and
” qn(y)N+ : “ L= ” qn(y) {g(gn) N ” 12 g “ qn(.y)N “ 12

This implies the integrals

[ @™ )

are uniformly bounded. Therefore the functions g,(y) are bounded by 1
almost everywhere on the support of dv(y). This completes the proof of the
lemma.

Let M, denote the linear operator acting on L*(%, dv) by multiplication
with the function ¢, (y). By (40) we have

4T, =M, % (41)

Since ¥ is an isometry and the functions ¢,(y) form a linearly dense subset
of C,(#), the correspondence

T,—q.(y)

extends linearly to an isometric isomorphism from the algebra of operators
o/, generated by T, n=0, 1, 2, ..., to the algebra C,(%#). As the functions
t,(x) share the properties of ¢,( ) we have that the mapping

T}I = tﬂ ('x)

also extends to an isometric isomorphism from ./ onto Cy(Z'). Finally we
can conclude that the correspondence

4.(y)—1,(x)

induces isometric isomorphism between Cy(#) and C,(Z). By [3,
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Theorem 26, p.278] there is a homeomorphic mapping h: 2 — %, such
that

g, (h(x))=1,(x), xed. (42)

By (42) the functions ¢,(x) are orthogonal on Z also with respect to the
measure dv(h(x}). Hence if the measures v and u are finite (which is not
always the case) then dv(h(x))=du(x). In general we don’t have this
property due for instance to nonuniqueness of solutions of the moment
problem.

The proof of Theorem 1 is complete.

Remark 1. 1t is worthwhile observing that the condition that there is

A0

no nonzero sequence a = {a,}>_, in /3N, w,), such that

Fa

Y b(n,m,k)a,=0, forevery n,meN, (43)

k=0
is also necessary for the existence of an orthogonal system satisfying the
conclusions (iii) and (iv) of Theorem 1.

Indeed, assume that there is a sequence of orthogonal to each other
functions ¢, (y) in a Hilbert space L*(#, du) such that

q.(¥)g.(y)= Z b(n, m, k) q, ().

k=0

Let us adopt the notations and the results of the last part of the proof of
Theorem 1. Let 4 be the transform from /3(N, w,) to L*(#, du) given by

G: 5, q,().

Then % is an isometry (up to a constant multiple, cf. the last part of the
proof of Theorem !). Assume also that there is a sequence a= {a,}_, in
3N, w,) such that (43) is satisfied. This implies that

T,a=0 forevery n=0,1,2,...
Thus by (40) we have
0=%(T,a)=q,(y)%a).

This means that %(a) is orthogonal to all the functions ¢,(y). But since

+
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we have
+ =

Y(a)= Z a,q,(v).

n=0
Hence a, =0 for every n=0, 1,2, .., ie, a=0.

Remark 2. Cubic matrices b(n, m, k) satisfying (6), (7), (9), and (10)
were studied by Haar [4] (see also [5, pp.467-471]). However, he
assumed that the identity operator / on #?(N, w,) can be represented as

Z annTn:]’ Z l('n‘:wn<<x:" (44)

n=10 n=20

Based on the theorem of von Neumann on a family of commuting
selfadjoint operators [6, pp. 401-404], Haar was able to construct a finite
measure du(x) on [—1, 1], and a sequence of orthogonal with respect
to du(x) bounded measurable functions ¢,(x) satisfying ¢,(x) 1,,(x)=
2o bln,m k)t (x).

The condition (44) was meant to replace the existence of the identity
operator among the operators T,. In examples arising in the theory of
orthogonal polynomials we always have T,=1 see [7] Roughly the
condition (44) means that the identity operator is in the closure of the
linear span of T, with respect to the weak operator topology. It also implies
that the function constantly 1 can be represented as 1 =3 7_, ¢, @,¢,(x),
which in turn yields that 1 is square integrable with respect to du(x), i.e.,
the measure du(x) is finite. In view of the example from the Introduction
we cannot afford the condition {44) in general.

Our condition (18) is much weaker than (44). Indeed, assume that (44)
is satisfied and there is a sequence a e ¢?(w,) such that (18) holds. There-
fore T,a=0, for every n. Let ¢= {¢,} _,. Then by (44), ce /*(w,) and by
(17), ccae ™. Moreover by (14)

caaz( Y C,,w,,g,,>oa= Z c,w,T,a=0.
n=0 n=0
However, by (44)

c‘oa:( Y c,,w,,T,,>a=Ia=a.

=0

Hence a=0.

Concerning the example from the Introduction, our assumption (18) is
clearly satisfied, since the kernel of each T, is trivial. For example, the
operator T, corresponds via (31) to multiplication by ¢ " in the Hilbert
space L*(R, x%e™ dx).
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