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Abstract

Spectral properties of unbounded symmetric Jacobi matrices are studied.
Under mild assumptions on the coefficients absolute continuity of spectral
measure is proved. Only operator theoretic proofs are provided. Some open
problems of Ifantis are solved.

1 Introduction

Let J be a Jacobi matrix of the form

J =



β0 λ1 0 0 · · ·
λ1 β1 λ2 0 · · ·
0 λ2 β2 λ3

. . .

0 0 λ3 β3
. . .

...
...

. . . . . . . . .

 , (1)

where λn > 0, for n ≥ 1, and βn ∈ R, for n ≥ 0. The matrix J gives rise
to a symmetric operator on the Hilbert space `2(N) of square summable complex
sequences a = {an}∞n=0, with the domain D(J) consisting of sequences with finitely
many nonzero terms. This operator acts by the rule

(Ja)n = λn+1an+1 + βnan + λnan−1,

for n ≥ 0, with the convention that a−1 = λ0 = 0. It is well known that this
operator admits selfadjoint extensions (see [1]). In case the extension is unique the
operator is called essentially selfadjoint. Then there exists a unique probability
measure µ on R, with finite moments, such that

(Jnδ0, δ0)`2(N) =
∫
R

xndµ(x),
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where δ0 = (1, 0, 0, . . .). This measure is called the spectral measure of the operator
J, because it can be shown that the operator J is unitarily equivalent to the
operator Mx acting on L2(R, µ) by the rule

Mxf(x) = xf(x).

This unitary equivalence is defined as follows. Let pn(x) be a system of polynomials
orthonormal with respect to the inner product in L2(R, µ). Then the operator
Uδn = pn extends to an isometry from `2(N) onto L2(R, µ), where δn denotes the
sequence whose nth term is equal to 1, and all other terms are equal to 0. Since

Jδn = λn+1δn+1 + βnδn + λn−1δn−1,

we have
xpn = λn+1pn+1 + βnpn + λn−1pn−1.

In this paper we will be dealing with special unbounded Jacobi matrices such
that λn → +∞ and

λ2
n

βnβn−1

n→ α.

It is known that if J is essentially selfadjoint and α < 1
4 the measure µ is discrete

(see [2]). In [5] Ifantis stated a problem of studying the spectra of operators for
which α > 1

4 . In this note we are going to show that the spectra of such operators
cover the whole real line and, under some mild conditions on the coefficients,
the spectral measure is absolutely continuous. We will also provide an operator
theoretic proof for the case α < 1

4 , which was also one of the problems stated by
Ifantis.

2 Main results

Our considerations will rely heavily on the following generalization of a result of
Maté and Nevai. We will state it in a form which will be useful for our considera-
tions. We will also provide a proof different from the one in [8], and based on ideas
from [4].

Theorem 2.1 (Maté, Nevai) Let Λn(x) be a positive valued sequence whose
terms depend continuously on x ∈ [a, b]. Let an(x) be a real valued sequence of
continuous functions satisfying

Λn+1(x)an+1(x) + Ban(x) + Λn(x)an−1(x) = 0,

for n ≥ N. Assume the sequence Λn(x) has bounded variation and Λn(x) → 1
2 for

x ∈ [a, b]. Let |B| < 1. Then there is a positive function f(x) continuous on [a, b]
such that

a2
n(x)− an−1(x)an+1(x) n→ f(x)
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uniformly for x ∈ [a, b]. Moreover there is a constant c such that

|an(x)| ≤ c

for n ≥ 0 and x ∈ [a, b].

Proof. Let
∆n(x) = a2

n(x)− an−1(x)an+1(x),

for n ≥ N. By using the recurrence relation one can show that

∆n+1−∆n =
(

1− Λn

Λn−1

)
a2

n+1 +
(

1− Λn

Λn+1

)
a2

n + B

(
1

Λn+1
− 1

Λn−1

)
anan+1.

Hence

|∆n+1 −∆n| ≤ c(|Λn−1 − Λn|+ |Λn − Λn+1|)(a2
n + a2

n+1). (2)

On the other hand

∆n = a2
n +

Λn

Λn−1
a2

n+1 +
B

Λn−1
anan+1

=
(

an +
B

2Λn−1

)2

+
(

Λn

Λn−1
− B2

4Λ2
n−1

)
a2

n+1

=
Λn

Λn−1

(
an+1 +

B

2Λn

)2

+
(

1− B2

4Λn−1Λn

)
a2

n.

Since Λn
n→ 1

2 , uniformly for x ∈ [a, b], and |B| < 1 we have

a2
n + a2

n+1 ≤ 2c′∆n, where (c′)−1 =
1
2
− B2

2
, (3)

for n sufficiently large. Combining this with (2) gives

|∆n+1 −∆n| ≤ 2cc′(|Λn−1 − Λn|+ |Λn − Λn+1|)∆n.

Let
εn = 2cc′(|Λn−1 − Λn|+ |Λn − Λn+1|).

Then
(1− εn)∆n ≤ ∆n+1 ≤ (1 + εn)∆n,

for n sufficiently large. Thus the sequence ∆n is convergent uniformly to a positive
function f(x) for x ∈ [a, b]. Moreover by (3) we obtain the second part of the
statement.
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The main result of this note is following.

Theorem 2.2 Assume the sequences λn and βn satisfy λn → +∞, |βn|
n→ +∞,

βn/βn−1
n→ 1 and

λ2
n

βn−1βn

n→ 1
4B2

>
1
4
.

Let the sequences
λ2

n

βn−1βn
,

βn−1 + βn

λ2
n

,
1
λ2

n

have bounded variation. Then the corresponding Jacobi matrix J is essentially
selfadjoint if and only if

∑
λ−1

n = ∞. In that case the spectrum of J coincides
with the whole real line and the spectral measure is absolutely continuous.

Proof. We may assume that βn
n→ +∞. Assume that J is essentially selfadjoint.

Let µ denote the spectral measure of J. Fix a real number x. Consider the difference
equation

xyn = λn+1yn+1 + βnyn + λn−1yn−1, (4)

for n ≥ 1. By [7] the measure µ is absolutely continuous on the set of those x for
which the ratio

n∑
k=1

|uk|2

n∑
k=1

|vk|2
(5)

remains bounded above for any n, for any fixed solutions un and vn of (4). We are
going to show that this ratio is always bounded. Let an satisfy (4). Let N be large
enough so that βn > x for n ≥ N. Set

an(x) = yn

√
βn − x, for n ≥ N. (6)

The equation (4) can be transformed into the following.

Λn+1(x)an+1(x) + Ban(x) + Λnan−1(x) = 0, (7)

for n ≥ N, where

Λn(x) = B
λn

(βn−1 − x)(βn − x)
. (8)

By assumptions we have Λn
n→ 1

2 and |B| < 1. Moreover Λn(x) has bounded
variation if and only if Λ−2

n (x) has bounded variation. But

Λ−2
n (x) =

βn−1βn

λ2
n

− βn−1 + βn

λ2
n

x +
1
λ2

n

x2.
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Theorem 2.1 implies

a2
n(x)− an−1(x)an+1(x) n→ C > 0

and an(x) is a bounded sequence. Using (6), the boundedness of an(x) and the
assumptions on βn we obtain that

βn(y2
n − yn−1yn+1) n→ C

and βny2
n is bounded. Therefore there exist positive constants c and M such that

βny2
n ≤ c

βn(y2
n − yn−1yn+1) ≥ c−1

for n ≥ M. If J is essentially selfadjoint there exists a solution yn of (4) which is
not square summable. Thus

∑
β−1

n = +∞. Hence
∑

λ−1
n = +∞.

We have

c ≤ βn(y2
n − yn−1yn+1) ≤ βn(y2

n−1 + y2
n + y2

n+1) ≤ c′.

for n ≥ M. Now if un and vn are arbitrary nonzero solutions of (4) we have

u2
n−1 + u2

n + u2
n+1

v2
n−1 + v2

n + v2
n+1

≤ c′

c
.

This implies the ratio in (5) is bounded.

Remark 2.3 Let pn be the polynomials satisfying

xpn = λn+1pn+1 + βnpn + λnpn−1.

By the proof of Theorem 2.2 we get that

βn[p2
n(x)− pn−1(x)pn+1(x)] n→ f(x) > 0,

uniformly on any bounded interval. and

βnp2
n(x) ≤ c

on any bounded interval. In the case of bounded λn and βn Maté and Nevai
showed that the limit f(x) = limn[p2

n(x)− pn−1(x)pn+1(x)] is closely related with
the density of the spectral measure of J, which coincides with the orthogonality
measure for the polynomials pn. Namely they showed that if λn

n→ 1/2 and βn
n→ 0

then the orthogonality measure µ is absolutely continuous in the interval (−1, 1)
and its density is given by

2
√

1− x2

πf(x)
, −1 < x < 1.
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Remark 2.4 Similar result has been obtained recently by Janas and Moszyski [6]
under stronger assumptions that the sequences

λn−1

λn
,

1
λn

,
βn−1

λn

have all bounded variation. It can be verified easily that these assumptions imply
the assumptions of Theorem 2.2. Moreover there are examples showing that our
assumptions are actually weaker. Indeed, let

βn = n + 1 + (−1)n, λn =
√

βn−1βn.

One can verify that βn/λn does not have bounded variation while the assumptions
of Theorem 2.2 are satisfied.

Example 2.5 Let λn = nκ and βn = βnκ, where |β| < 1 and 0 < κ ≤ 1 (see
[5])). By the Carleman criterion the corresponding Jacobi matrix is essentially
selfadjoint. Moreover all the assumptions of Theorem 2.2 are satisfied. Hence the
spectrum of J cover the whole real line and the spectral measure is absolutely
continuous. Also we have that the corresponding orthonormal polynomials satisfy

nκ
[
p2

n(x)− pn−1(x)pn+1(x)
]
→ f(x) > 0,

nκ|pn(x)| ≤ c,

uniformly with respect to x from any bounded interval [a, b].

The next theorem is known (see [3]). We give an operator theoretic proof.
Finding such a proof was one of the open problems stated in [5].

Theorem 2.6 (Chihara) Let J be a Jacobi matrix given by (1) and satisfying

λ2
n

βn−1βn
→ 1

4B2
<

1
4
.

Let λn → +∞ and βn → ∞. Assume J is essentially selfadjoint. Then the spec-
trum of J is discrete and consists of a sequence of points convergent to +∞.

Proof. It suffices to show that for every real number M there are only finitely
many points in the spectrum σ(J) which are less than M. Fix M. By assumptions
there is N such that βn+N−1 > M and

λ2
n+N

(βn+N−1 −M)(βn+N −M)
≤ 1

4
, (9)

for n ≥ 0. Let JN be the Jacobi matrix defined as

JN =



βN−1 λN 0 0 · · ·
λN βN λN+1 0 · · ·
0 λN+1 βN+1 λN+2

. . .

0 0 λN+2 βN+2
. . .

...
...

. . . . . . . . .

 .
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We will show that σ(JN ) ⊆ [M, +∞) by estimating the quadratic form (JNx, x)`2(N)

from below by M(x, x)`2(N). Let x be a real valued sequence. Set β′n = βn+N−1−M
and λ′n = λn+N . Then by (9) we have

(JNx, x)`2(N) −M(x, x)`2(N) =
∞∑

n=0

β′nx2
n + 2

∞∑
n=0

λ′nxnxn+1

≥
∞∑

n=0

β′nx2
n − 2

∞∑
n=0

λ′n|xn||xn+1|

≥
∞∑

n=0

β′nx2
n −

∞∑
n=0

√
β′n

√
β′n+1|xn||xn+1|

≥
∞∑

n=0

β′nx2
n −

1
2

∞∑
n=0

β′nx2
n −

1
2

∞∑
n=1

β′nx2
n

=
1
2
β′0x

2
0 ≥ 0.

Hence
(JNx, x)`2(N) ≥ M(x, x)`2(N),

and consequently σ(JN ) ⊆ [M, +∞). Let 0N denote the N × N matrix with all
entries equal to zero. Observe that the Jacobi matrix J can be written in the form

J = J0 + (0N ⊕ JN ),

where J0 is a finite dimensional Jacobi matrix. We have

σ(0N ⊕ JN ) = {0} ∪ σ(JN ).

By the Weyl perturbation theorem the spectra of J and 0N ⊕ JN may differ by
at most N points. Hence σ(J) can have at most N + 1 points to the left of M.
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