Let s, be indeterminate moment sequence and let p be a solution of the
moment problem. The inequality
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Therefore ¢ > 0 is equivalent to the fact that the upper triangular matrix
B = (bk‘,n)a bk,n =0, k> n.
corresponds to a bounded operator on ¢2. From (1) we have
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Consider » = 1. Then by Parseval identity we have
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Therefore the operator B is Hilbert-Schmidt. Hence both B*B and BB* are
of trace class.
It is possible to show much stronger property of B. For example B is of
trace class. Indeed, by (2) and by Parseval identity we have
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For r > 1 we obtain
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which implies that B* is of trace class. This is because denoting by d; the
standard basis in #? gives that
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Hence also B is of trace class.

Inequality (3) implies that B* maps continuously ¢* into ¢? while (4)
gives that B maps continuously ¢? into ¢*. The latter follows also by duality
from (3). In this way BB* is a bounded map from ¢* into ¢*. This property
is much stronger than the trace class.



