
Let sn be indeterminate moment sequence and let µ be a solution of the
moment problem. The inequality

N
∑

n,m=0

sn+manam ­ c
N
∑

k=0

|ak|2

is equivalent to
∫

∣

∣

∣

∣

∣

N
∑

k=0

akx
k

∣

∣

∣

∣

∣

2

dµ(x) ­ c
N
∑

k=0

|ak|2.

Let
N
∑

k=0

akx
k =

N
∑

n=0

cnPn(x)

and

Pn(x) =
n
∑

k=0

bk,nx
k. (1)

Then
N
∑

n=0

|cn|2 ­ c
N
∑

k=0

∣

∣

∣

∣

∣

N
∑

n=k

bk,ncn

∣

∣

∣

∣

∣

2

Therefore c > 0 is equivalent to the fact that the upper triangular matrix

B = (bk,n), bk,n = 0, k > n.

corresponds to a bounded operator on `2. From (1) we have
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Consider r = 1. Then by Parseval identity we have
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Therefore the operator B is Hilbert-Schmidt. Hence both B∗B and BB∗ are
of trace class.
It is possible to show much stronger property of B. For example B is of

trace class. Indeed, by (2) and by Parseval identity we have
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For r > 1 we obtain
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which implies that B∗ is of trace class. This is because denoting by δk the
standard basis in `2 gives that

∞
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Hence also B is of trace class.
Inequality (3) implies that B∗ maps continuously `∞ into `2 while (4)

gives that B maps continuously `2 into `1. The latter follows also by duality
from (3). In this way BB∗ is a bounded map from `∞ into `1. This property
is much stronger than the trace class.


