Let s_{n} be indeterminate moment sequence and let μ be a solution of the moment problem. The inequality

$$
\sum_{n, m=0}^{N} s_{n+m} a_{n} \overline{a_{m}} \geqslant c \sum_{k=0}^{N}\left|a_{k}\right|^{2}
$$

is equivalent to

$$
\int\left|\sum_{k=0}^{N} a_{k} x^{k}\right|^{2} d \mu(x) \geqslant c \sum_{k=0}^{N}\left|a_{k}\right|^{2}
$$

Let

$$
\sum_{k=0}^{N} a_{k} x^{k}=\sum_{n=0}^{N} c_{n} P_{n}(x)
$$

and

$$
\begin{equation*}
P_{n}(x)=\sum_{k=0}^{n} b_{k, n} x^{k} \tag{1}
\end{equation*}
$$

Then

$$
\sum_{n=0}^{N}\left|c_{n}\right|^{2} \geqslant c \sum_{k=0}^{N}\left|\sum_{n=k}^{N} b_{k, n} c_{n}\right|^{2}
$$

Therefore $c>0$ is equivalent to the fact that the upper triangular matrix

$$
B=\left(b_{k, n}\right), \quad b_{k, n}=0, k>n
$$

corresponds to a bounded operator on ℓ^{2}. From (1) we have

$$
\begin{equation*}
b_{k, n}=\frac{1}{2 \pi i} \int_{|z|=r} P_{n}(z) z^{-(k+1)} d z=r^{-k} \frac{1}{2 \pi} \int_{0}^{2 \pi} P_{n}\left(r e^{i t}\right) e^{-i k t} d t \tag{2}
\end{equation*}
$$

Consider $r=1$. Then by Parseval identity we have

$$
\sum_{n=0}^{\infty} \sum_{k=0}^{n}\left|b_{k, n}\right|^{2}=\sum_{n=0}^{\infty} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P_{n}\left(e^{i t}\right)\right|^{2} d t
$$

Therefore the operator B is Hilbert-Schmidt. Hence both $B^{*} B$ and $B B^{*}$ are of trace class.

It is possible to show much stronger property of B. For example B is of trace class. Indeed, by (2) and by Parseval identity we have

$$
\sum_{n=0}^{\infty} \sum_{k=0}^{n} r^{2 k}\left|b_{k, n}\right|^{2}=\sum_{n=0}^{\infty} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P_{n}\left(r e^{i t}\right)\right|^{2} d t<\infty
$$

For $r>1$ we obtain

$$
\left(\sum_{k=0}^{n}\left|b_{k, n}\right|\right)^{2} \leqslant \sum_{k=0}^{n} r^{-2 k} \sum_{k=0}^{n} r^{2 k}\left|b_{k, n}\right|^{2} \leqslant \frac{r^{2}}{r^{2}-1} \sum_{k=0}^{n} r^{2 k}\left|b_{k, n}\right|^{2}
$$

Thus

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\left|b_{k, n}\right|\right)^{2} \leqslant \frac{r^{2}}{r^{2}-1} \sum_{n=0}^{\infty} \sum_{k=0}^{n} r^{2 k}\left|b_{k, n}\right|^{2}<\infty \tag{3}
\end{equation*}
$$

Moreover

$$
\sum_{n=0}^{\infty} \sum_{k=0}^{n} r^{2 k}\left|b_{k, n}\right|^{2}=\sum_{k=0}^{\infty} r^{2 k} \sum_{n=k}^{\infty}\left|b_{k, n}\right|^{2}
$$

Hence

$$
\begin{equation*}
\sum_{k=0}^{\infty} \sqrt{\sum_{n=k}^{\infty}\left|b_{k, n}\right|^{2}} \leqslant \frac{r}{\sqrt{r^{2}-1}} \sqrt{\sum_{k=0}^{\infty} r^{2 k} \sum_{n=k}^{\infty}\left|b_{k, n}\right|^{2}}<\infty \tag{4}
\end{equation*}
$$

which implies that B^{*} is of trace class. This is because denoting by δ_{k} the standard basis in ℓ^{2} gives that

$$
\sum_{k=0}^{\infty}\left\|B^{*} \delta_{k}\right\|_{2}<\infty
$$

Hence also B is of trace class.
Inequality (3) implies that B^{*} maps continuously ℓ^{∞} into ℓ^{2} while (4) gives that B maps continuously ℓ^{2} into ℓ^{1}. The latter follows also by duality from (3). In this way $B B^{*}$ is a bounded map from ℓ^{∞} into ℓ^{1}. This property is much stronger than the trace class.

