
Krzysztof Tabisz WIP w IM UWr, 2008/09r

Wykªad 04 w dniu 22.X.08r

Jeszcze raz Zadanie 4 z Wykªadu 03, gdzie obliczane byªy warto±ci wielomianu

wn(x) = a0x
n + a1x

n−1 + . . . + an−1x
1 + a0

dla szczególnego przypadku n = 3. Rozpatrzmy Algorytm 1 oraz Algorytm 2 realizuj¡ce
nasze zadanie.

Dane: n, a0, a1, . . . , an, x
Wynik: w = a0x

n + a1x
n−1 + . . . + an−1x

1 + an

w ← a0;1

for i← 1 to n do2

w ← ai + x · w;3

end4

Algorytm 1: Schemat Hornera obliczania warto±ci wielomianu.

�ródªo w pliku w4a.c:

1 #include <s td i o . h>
2

3 const int N=100;
4

5 int main ()
6 {
7 double a [N] , x ,w;
8 FILE ∗ fIN ;
9 int i , n ;

10

11 /∗ wczytanie z p l i k u w4Dane . dat wspolczynnikow wielomianu ∗/
12 fIN = fopen ("w4Dane . dat" , " r ") ;
13 i f (fIN==NULL)
14 {
15 p r i n t f ("ERROR: n i e udalo s i e otwarc i e p l i ku ! ?\ n") ;
16 return −1;
17 }
18 f s c a n f (fIN , "%i " ,&n) ;
19 for (i=0 ; i<=n ; i=i +1)
20 {
21 f s c a n f (fIN , "%l f " ,&a [i]) ;
22 }
23 f c l o s e (fIN) ;
24 /∗ Sprawdzenie co z o s t a l o wczytane : ∗/
25 p r i n t f ("n : %i \n" ,n) ;
26 for (i=0 ; i<=n ; i=i +1)
27 {
28 p r i n t f ("%10.2 l f \n" , a [i]) ;
29 }
30 /∗ wczytanie z k l aw ia tu ry x ∗/
31 p r i n t f ("\nx : ") ;
32 s can f ("%l f " ,&x) ;
33 /∗ o b l i c z e n i e war to sc i wielomianu ∗/
34 w = a [0] ;
35 for (i=1 ; i<=n ; i=i +1)
36 {
37 w = a [i]+x∗w;
38 }
39 /∗ wysw i e t l en i e o b l i c z o n e j war to sc i w ∗/

w. 04(3h): 29/10/08, 10:28 1

Krzysztof Tabisz WIP w IM UWr, 2008/09r

40 p r i n t f ("w: %10.2 l f \n" ,w) ;
41 return 0 ;
42 }

Dane: n, a0, a1, . . . , an, x
Wynik: w = a0x

n + a1x
n−1 + . . . + an−1x

1 + an

w ← an;1

for i← 1 to n do2

p← 1;3

for j ← 1 to i do4

// tu obliczamy xi

p← x · p;5

end6

w ← w + an−i · p;7

end8

Algorytm 2: Jak nie nale�¹y oblicza¢ warto±ci wielomianu !

�ródªo w pliku w4b.c:

1 #include <s td i o . h>
2

3 const int N=100;
4

5 int main ()
6 {
7 double a [N] , x ,w, p ;
8 FILE ∗ fIN ;
9 int i , j , n ;

10

11 /∗ wczytanie z p l i k u w4Dane . dat wspolczynnikow wielomianu ∗/
12 fIN = fopen ("w4Dane . dat" , " r ") ;
13 i f (fIN==NULL)
14 {
15 p r i n t f ("ERROR: n i e udalo s i e otwarc i e p l i ku ! ?\ n") ;
16 return −1;
17 }
18 f s c a n f (fIN , "%i " ,&n) ;
19 for (i=0 ; i<=n ; i=i +1)
20 {
21 f s c a n f (fIN , "%l f " ,&a [i]) ;
22 }
23 f c l o s e (fIN) ;
24 /∗ Sprawdzenie co z o s t a l o wczytane : ∗/
25 p r i n t f ("n : %i \n" ,n) ;
26 for (i=0 ; i<=n ; i=i +1)
27 {
28 p r i n t f ("%10.2 l f \n" , a [i]) ;
29 }
30 /∗ wczytanie z k l aw ia tu ry x ∗/
31 p r i n t f ("\nx : ") ;
32 s can f ("%l f " ,&x) ;
33 /∗ o b l i c z e n i e war to sc i wielomianu ∗/
34 w = a [n] ;
35 for (i=1 ; i<=n ; i=i +1)
36 {
37 p = 1 . 0 ;

2 w. 04(3h): 29/10/08, 10:28

Krzysztof Tabisz WIP w IM UWr, 2008/09r

38 /∗ o b l i c z e n i e x^ i ∗/
39 for (j=1 ; j<=i ; j=j+1)
40 {
41 p = x∗p ;
42 }
43 w = w+p∗a [n−i] ;
44 }
45 /∗ wysw i e t l en i e o b l i c z o n e j war to sc i w ∗/
46 p r i n t f ("w: %10.2 l f \n" ,w) ;
47 return 0 ;
48 }

Testowanie: Dziaªanie obu programów zostaªo sprawdzone dla danych zapisanych w pliku
tekstowym w4Dane.dat (program i plik z danymi maj¡ si¦ znajdowa¢ w tym samym katalogu):

3

0.5

-3.0

5.5

-3.0

Wynik: ten sam dla obu programów

n: 3

0.50

-3.00

5.50

-3.00

x: 1.1

w: 0.09

Mamy wi¦c dwa algorytmy Algorytm 1 oraz Algorytm 2 realizuj¡ce to samo zadanie, który
z nich zasªuguje na tytuª �Mister Algorytmów Wykªadu 04�? Policzmy ile trzeba wykona¢
mno»e« (jest to tzw. operacja dominuj¡ca) liczb rzeczywistych typy double. Obliczamy, »e
nale»y odpowiednio wykona¢

f1(n) = n dla Algorytmu 1

f2(n) = n + n(n+1)
2

dla Algorytmu 2

mno»e« liczb typu double aby otrzyma¢ ten sam wynik! Tak wi¦c z uwagi na mniejsz¡ liczb¦
operacji mno»enia �Mister Algorytmów Wykªadu 05� zostaª Algorytm 1.
. .
Zªo»ono±¢ obliczeniowa (computational complexity) � nieustanny konkurs �Mister Algorytmów�.

Poj¦cie zªo»ono±ci obliczeniowej wprowadziª Hartmanis, J. & Stearns, R.E. w artykule [2] z
1965r. Byª to pocz¡tek wspóªczenej teoretycznej informatyki (za Fortnow, L. & Homer, S. [1]).

Na potrzeby wykªadu b¦dziemy oceniali zªo»ono±¢ obliczeniow¡ algorytmu wedªug liczby wykona«
wskazanej operacji dominuj¡cej. W rozwa»anych algorytmach obliczaj¡cych warto±¢ wielo-
mianu jest to ilo±¢ mno»e« liczb typu double.

De�nicja 1. (Notacja �Wielkie O�)
Niech f, g : N→ N. Mówimy, »e f jest co najwy»ej rz¦du g, gdy

∃c>0∃n0∈N∀n>n0cf(n) ≤ g(n).

w. 04(3h): 29/10/08, 10:28 3

Krzysztof Tabisz WIP w IM UWr, 2008/09r

Co zapisujemy:
f(n) = O(g(n)).

Dla Algorytm 1 mamy f1(n) = O(n) a dla Algorytmu 2 f2(n) = O(n2).
. .

Zadanie 5: Dla n, m ∈ N wyznaczy¢ NWD(n, m).

Rozwi¡zanie: (Algorytm Euklidesa) Niech n > m. Okre±lamy ci¡gi liczb naturalnych:

n0 = n
m0 = m

oraz dla i = 0, 1, 2, . . .
ni = mi ki + ri

ni+1 = mi

mi+1 = ri

Z wªasno±ci ri > ri+1 mamy, »e istnieje io dla którego rio+1 = 0 oraz rio 6= 0. Dowodzi si¦, »e
NWD(n, m) = rio .

Pseudokod:

Dane: m, n
Wynik: p← NWD(m, n)
while 0 < m do1

p← m;2

// obliczamy reszt¦ z dzielenia n przez m i podstawiamy do m

m← n mod m;3

n← p;4

end5

Algorytm 3: Wyznaczenie NWD(m, n)

Schemat blokowy:�� �
start p← NWD(m, n)

m←
n←

�
��QQQ

�
��Q

QQ
n

t

0 < m

p← m
m← n%m
n← p

�
��QQQ

�
��Q

QQ
t

n

0 < m

�� �
return

�ródªo w pliku nwd.c:

4 w. 04(3h): 29/10/08, 10:28

Krzysztof Tabisz WIP w IM UWr, 2008/09r

1 /∗ NWD(m, n) ∗/
2 #include <s td i o . h>
3

4 int main (int argc , char ∗argv [])
5 {
6 int p , n ,m;
7

8 i f (argc !=3)
9 {

10 puts ("ERROR: z l a i l o s c danych ! ? ") ;
11 for (n=0 ; n<argc ; n=n+1)
12 {
13 puts (argv [n]) ;
14 }
15 return −1;
16 }
17 s s c an f (argv [1] , "%i " ,&m) ;
18 s s c an f (argv [2] , "%i " ,&n) ;
19 i f (m<1 | | n<1)
20 {
21 puts ("ERROR: z l e l i c z b y ! ? ") ;
22 puts (argv [1]) ;
23 puts (argv [2]) ;
24 return −2;
25 }
26 p r i n t f ("NWD(%i ,% i)=" ,m, n) ;
27 while(0<m)
28 {
29 p = m;
30 m = n%m;
31 n = p ;
32 }
33 p r i n t f ("%i \n" ,p) ;
34 return 0 ;
35 }

Sprawdzenie dziaªania:

05:28:56 chaos:~/OUT$ gcc -Wall nwd.c -o nwd

05:29:14 chaos:~/OUT$./nwd 48 90

NWD(48,90)=6

. .

Zadanie 6: (techniczne) Z danego pliku dyskowego wczyta¢ liczby naturalne, po czym
• usun¡c liczby parzyste;
• wyznaczy¢ z pozostaªych min, max;
• wy±wietli¢ na ekranie w odwrotnym porz¡dku od wczytanego.
Rozwi¡zanie nie b¦dzie optymalne.

1 #include <s t d l i b . h>
2 #include <s td i o . h>
3

4 const int N=1000;
5

6 int main (int argc , char ∗argv [])
7 {
8 int p , q , i , n , L [N] ,Min ,Max ;

w. 04(3h): 29/10/08, 10:28 5

Krzysztof Tabisz WIP w IM UWr, 2008/09r

9 FILE ∗ fIN ;
10

11 i f (argc !=2)
12 {
13 puts ("ERROR: Zla i l o s c argumetow ! ? ") ;
14 return −1;
15 }
16 fIN = fopen (argv [1] , " r ") ;
17 i f (fIN==NULL)
18 {
19 p r i n t f ("ERROR: \"%s \" upss . . . ! ? " , argv [1]) ;
20 return −2;
21 }
22 /∗ wczytujemy dane ∗/
23 f s c a n f (fIN , "%i " ,&n) ;
24 for (i=0 ; i<n ; i=i +1)
25 {
26 f s c a n f (fIN , "%i " ,&L [i]) ;
27 }
28 f c l o s e (fIN) ;
29 /∗ wiadomo − sprawdzenie ∗/
30 puts ("Wczytano : ") ;
31 for (i=0 ; i<n ; i=i +1)
32 {
33 p r i n t f ("%6i \n" ,L [i]) ;
34 }
35 /∗ zerujemy l i c z b y pa r z y s t e i na w s z e l k i wypadek ujemne ∗/
36 for (i=0 ; i<n ; i=i +1)
37 {
38 i f (L [i]%2==0 | | L [i]<0)
39 {
40 L [i] = 0 ;
41 }
42 }
43 /∗ kompresja t a b l i c y ∗/
44 p = 0 ;
45 for (i=0 ; i<n ; i=i +1)
46 {
47 i f (L [i]==0)
48 continue ;
49 i f (p<n)
50 {
51 L [p] = L [i] ;
52 }
53 p = p+1;
54 }
55 i f (p==0)
56 {
57 puts ("ERROR: Upss . . . ! ? ") ;
58 return −2;
59 }
60 n = p ;
61 /∗ zmieniamy ko l e j n o s c ∗/
62 p = n/2 ;
63 for (i=0 ; i<p ; i=i +1)
64 {
65 q = L [i] ;
66 L [i] = L [n−i −1] ;

6 w. 04(3h): 29/10/08, 10:28

Krzysztof Tabisz WIP w IM UWr, 2008/09r

67 L [n−i −1] = q ;
68 }
69 /∗ wynik op e r a c j i ∗/
70 puts ("\nWynik d z i a l a n i a : ") ;
71 for (i=0 ; i<n ; i=i +1)
72 {
73 p r i n t f ("%6i \n" ,L [i]) ;
74 }
75 /∗ wyznaczenie min , max ∗/
76 Max = Min = L [0] ;
77 for (i=1 ; i<n ; i=i +1)
78 {
79 i f (L [i]<Min)
80 {
81 Min = L [i] ;
82 }
83 i f (Max<L [i])
84 {
85 Max = L [i] ;
86 }
87 }
88 /∗ wiadomo ∗/
89 p r i n t f ("\nMin : %6i \nMax : %6i \n\n" ,Min ,Max) ;
90 return 0 ;
91 }

. .

Literatura

[1] Fortnow, L. & Homer, S., A short history of computational complexity. In D. van Dalen, J. Daw-
son, and A. Kanamori, editors, The History of Mathematical Logic. North-Holland, Amsterdam,
2003. (K.T. praca dost¦pna na stronie autora http://people.cs.uchicago.edu/~fortnow/

papers/)
[2] Hartmanis, J. & Stearns, R.E. On the computational complexity of algorithms. Trans. Amer.

Math. Soc. 117, 1965, S. 285-306

Wrocªaw, dnia 29/10/2008

w. 04(3h): 29/10/08, 10:28 7

