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Wykªad 04 w dniu 22.X.08r

Jeszcze raz Zadanie 4 z Wykªadu 03, gdzie obliczane byªy warto±ci wielomianu

wn(x) = a0x
n + a1x

n−1 + . . . + an−1x
1 + a0

dla szczególnego przypadku n = 3. Rozpatrzmy Algorytm 1 oraz Algorytm 2 realizuj¡ce
nasze zadanie.

Dane: n, a0, a1, . . . , an, x
Wynik: w = a0x

n + a1x
n−1 + . . . + an−1x

1 + an

w ← a0;1

for i← 1 to n do2

w ← ai + x · w;3

end4

Algorytm 1: Schemat Hornera obliczania warto±ci wielomianu.

�ródªo w pliku w4a.c:

1 #include <s td i o . h>
2

3 const int N=100;
4

5 int main ( )
6 {
7 double a [N] , x ,w;
8 FILE ∗ fIN ;
9 int i , n ;

10

11 /∗ wczytanie z p l i k u w4Dane . dat wspolczynnikow wielomianu ∗/
12 fIN = fopen ( "w4Dane . dat" , " r " ) ;
13 i f ( fIN==NULL )
14 {
15 p r i n t f ( "ERROR:  n i e  udalo  s i e  otwarc i e  p l i ku  ! ?\ n" ) ;
16 return −1;
17 }
18 f s c a n f ( fIN , "%i " ,&n ) ;
19 for ( i=0 ; i<=n ; i=i +1)
20 {
21 f s c a n f ( fIN , "%l f " ,&a [ i ] ) ;
22 }
23 f c l o s e ( fIN ) ;
24 /∗ Sprawdzenie co z o s t a l o wczytane : ∗/
25 p r i n t f ( "n :  %i \n" ,n ) ;
26 for ( i=0 ; i<=n ; i=i +1)
27 {
28 p r i n t f ( "%10.2 l f \n" , a [ i ] ) ;
29 }
30 /∗ wczytanie z k l aw ia tu ry x ∗/
31 p r i n t f ( "\nx :  " ) ;
32 s can f ( "%l f " ,&x ) ;
33 /∗ o b l i c z e n i e war to sc i wielomianu ∗/
34 w = a [ 0 ] ;
35 for ( i=1 ; i<=n ; i=i +1)
36 {
37 w = a [ i ]+x∗w;
38 }
39 /∗ wysw i e t l en i e o b l i c z o n e j war to sc i w ∗/
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40 p r i n t f ( "w:  %10.2 l f \n" ,w) ;
41 return 0 ;
42 }

Dane: n, a0, a1, . . . , an, x
Wynik: w = a0x

n + a1x
n−1 + . . . + an−1x

1 + an

w ← an;1

for i← 1 to n do2

p← 1;3

for j ← 1 to i do4

// tu obliczamy xi

p← x · p;5

end6

w ← w + an−i · p;7

end8

Algorytm 2: Jak nie nale�¹y oblicza¢ warto±ci wielomianu !

�ródªo w pliku w4b.c:

1 #include <s td i o . h>
2

3 const int N=100;
4

5 int main ( )
6 {
7 double a [N] , x ,w, p ;
8 FILE ∗ fIN ;
9 int i , j , n ;

10

11 /∗ wczytanie z p l i k u w4Dane . dat wspolczynnikow wielomianu ∗/
12 fIN = fopen ( "w4Dane . dat" , " r " ) ;
13 i f ( fIN==NULL )
14 {
15 p r i n t f ( "ERROR:  n i e  udalo  s i e  otwarc i e  p l i ku  ! ?\ n" ) ;
16 return −1;
17 }
18 f s c a n f ( fIN , "%i " ,&n ) ;
19 for ( i=0 ; i<=n ; i=i +1)
20 {
21 f s c a n f ( fIN , "%l f " ,&a [ i ] ) ;
22 }
23 f c l o s e ( fIN ) ;
24 /∗ Sprawdzenie co z o s t a l o wczytane : ∗/
25 p r i n t f ( "n :  %i \n" ,n ) ;
26 for ( i=0 ; i<=n ; i=i +1)
27 {
28 p r i n t f ( "%10.2 l f \n" , a [ i ] ) ;
29 }
30 /∗ wczytanie z k l aw ia tu ry x ∗/
31 p r i n t f ( "\nx :  " ) ;
32 s can f ( "%l f " ,&x ) ;
33 /∗ o b l i c z e n i e war to sc i wielomianu ∗/
34 w = a [ n ] ;
35 for ( i=1 ; i<=n ; i=i +1)
36 {
37 p = 1 . 0 ;
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38 /∗ o b l i c z e n i e x^ i ∗/
39 for ( j=1 ; j<=i ; j=j+1)
40 {
41 p = x∗p ;
42 }
43 w = w+p∗a [ n−i ] ;
44 }
45 /∗ wysw i e t l en i e o b l i c z o n e j war to sc i w ∗/
46 p r i n t f ( "w:  %10.2 l f \n" ,w) ;
47 return 0 ;
48 }

Testowanie: Dziaªanie obu programów zostaªo sprawdzone dla danych zapisanych w pliku
tekstowym w4Dane.dat (program i plik z danymi maj¡ si¦ znajdowa¢ w tym samym katalogu):

3

0.5

-3.0

5.5

-3.0

Wynik: ten sam dla obu programów

n: 3

0.50

-3.00

5.50

-3.00

x: 1.1

w: 0.09

Mamy wi¦c dwa algorytmy Algorytm 1 oraz Algorytm 2 realizuj¡ce to samo zadanie, który
z nich zasªuguje na tytuª �Mister Algorytmów Wykªadu 04�? Policzmy ile trzeba wykona¢
mno»e« (jest to tzw. operacja dominuj¡ca) liczb rzeczywistych typy double. Obliczamy, »e
nale»y odpowiednio wykona¢

f1(n) = n dla Algorytmu 1

f2(n) = n + n(n+1)
2

dla Algorytmu 2

mno»e« liczb typu double aby otrzyma¢ ten sam wynik! Tak wi¦c z uwagi na mniejsz¡ liczb¦
operacji mno»enia �Mister Algorytmów Wykªadu 05� zostaª Algorytm 1.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Zªo»ono±¢ obliczeniowa (computational complexity) � nieustanny konkurs �Mister Algorytmów�.

Poj¦cie zªo»ono±ci obliczeniowej wprowadziª Hartmanis, J. & Stearns, R.E. w artykule [2] z
1965r. Byª to pocz¡tek wspóªczenej teoretycznej informatyki (za Fortnow, L. & Homer, S. [1]).

Na potrzeby wykªadu b¦dziemy oceniali zªo»ono±¢ obliczeniow¡ algorytmu wedªug liczby wykona«
wskazanej operacji dominuj¡cej. W rozwa»anych algorytmach obliczaj¡cych warto±¢ wielo-
mianu jest to ilo±¢ mno»e« liczb typu double.

De�nicja 1. (Notacja �Wielkie O�)
Niech f, g : N→ N. Mówimy, »e f jest co najwy»ej rz¦du g, gdy

∃c>0∃n0∈N∀n>n0cf(n) ≤ g(n).
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Co zapisujemy:
f(n) = O(g(n)).

Dla Algorytm 1 mamy f1(n) = O(n) a dla Algorytmu 2 f2(n) = O(n2).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Zadanie 5: Dla n, m ∈ N wyznaczy¢ NWD(n, m).

Rozwi¡zanie: (Algorytm Euklidesa) Niech n > m. Okre±lamy ci¡gi liczb naturalnych:

n0 = n
m0 = m

oraz dla i = 0, 1, 2, . . .
ni = mi ki + ri

ni+1 = mi

mi+1 = ri

Z wªasno±ci ri > ri+1 mamy, »e istnieje io dla którego rio+1 = 0 oraz rio 6= 0. Dowodzi si¦, »e
NWD(n, m) = rio .

Pseudokod:

Dane: m, n
Wynik: p← NWD(m, n)
while 0 < m do1

p← m;2

// obliczamy reszt¦ z dzielenia n przez m i podstawiamy do m

m← n mod m;3

n← p;4

end5

Algorytm 3: Wyznaczenie NWD(m, n)

Schemat blokowy:�� �
start p← NWD(m, n)

m←
n←

�
��QQQ

�
��Q

QQ
n

t

0 < m

p← m
m← n%m
n← p

�
��QQQ

�
��Q

QQ
t

n

0 < m

�� �
return

�ródªo w pliku nwd.c:
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1 /∗ NWD(m, n) ∗/
2 #include <s td i o . h>
3

4 int main ( int argc , char ∗argv [ ] )
5 {
6 int p , n ,m;
7

8 i f ( argc !=3 )
9 {

10 puts ( "ERROR:  z l a  i l o s c  danych ! ? " ) ;
11 for (n=0 ; n<argc ; n=n+1)
12 {
13 puts ( argv [ n ] ) ;
14 }
15 return −1;
16 }
17 s s c an f ( argv [ 1 ] , "%i " ,&m) ;
18 s s c an f ( argv [ 2 ] , "%i " ,&n ) ;
19 i f ( m<1 | | n<1)
20 {
21 puts ( "ERROR:  z l e  l i c z b y  ! ? " ) ;
22 puts ( argv [ 1 ] ) ;
23 puts ( argv [ 2 ] ) ;
24 return −2;
25 }
26 p r i n t f ( "NWD(%i ,% i )=" ,m, n ) ;
27 while(0<m)
28 {
29 p = m;
30 m = n%m;
31 n = p ;
32 }
33 p r i n t f ( "%i \n" ,p ) ;
34 return 0 ;
35 }

Sprawdzenie dziaªania:

05:28:56 chaos:~/OUT$ gcc -Wall nwd.c -o nwd

05:29:14 chaos:~/OUT$ ./nwd 48 90

NWD(48,90)=6

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Zadanie 6: (techniczne) Z danego pliku dyskowego wczyta¢ liczby naturalne, po czym
• usun¡c liczby parzyste;
• wyznaczy¢ z pozostaªych min, max;
• wy±wietli¢ na ekranie w odwrotnym porz¡dku od wczytanego.
Rozwi¡zanie nie b¦dzie optymalne.

1 #include <s t d l i b . h>
2 #include <s td i o . h>
3

4 const int N=1000;
5

6 int main ( int argc , char ∗argv [ ] )
7 {
8 int p , q , i , n , L [N] ,Min ,Max ;
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9 FILE ∗ fIN ;
10

11 i f ( argc !=2)
12 {
13 puts ( "ERROR:  Zla  i l o s c  argumetow ! ? " ) ;
14 return −1;
15 }
16 fIN = fopen ( argv [ 1 ] , " r " ) ;
17 i f ( fIN==NULL)
18 {
19 p r i n t f ( "ERROR:  \"%s \" upss . . . ! ? " , argv [ 1 ] ) ;
20 return −2;
21 }
22 /∗ wczytujemy dane ∗/
23 f s c a n f ( fIN , "%i " ,&n ) ;
24 for ( i=0 ; i<n ; i=i +1)
25 {
26 f s c a n f ( fIN , "%i " ,&L [ i ] ) ;
27 }
28 f c l o s e ( fIN ) ;
29 /∗ wiadomo − sprawdzenie ∗/
30 puts ( "Wczytano : " ) ;
31 for ( i=0 ; i<n ; i=i +1)
32 {
33 p r i n t f ( "%6i \n" ,L [ i ] ) ;
34 }
35 /∗ zerujemy l i c z b y pa r z y s t e i na w s z e l k i wypadek ujemne ∗/
36 for ( i=0 ; i<n ; i=i +1)
37 {
38 i f (L [ i ]%2==0 | | L [ i ]<0)
39 {
40 L [ i ] = 0 ;
41 }
42 }
43 /∗ kompresja t a b l i c y ∗/
44 p = 0 ;
45 for ( i=0 ; i<n ; i=i +1)
46 {
47 i f (L [ i ]==0)
48 continue ;
49 i f (p<n)
50 {
51 L [ p ] = L [ i ] ;
52 }
53 p = p+1;
54 }
55 i f ( p==0 )
56 {
57 puts ( "ERROR:  Upss . . . ! ? " ) ;
58 return −2;
59 }
60 n = p ;
61 /∗ zmieniamy ko l e j n o s c ∗/
62 p = n/2 ;
63 for ( i=0 ; i<p ; i=i +1)
64 {
65 q = L [ i ] ;
66 L [ i ] = L [ n−i −1] ;
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67 L [ n−i −1] = q ;
68 }
69 /∗ wynik op e r a c j i ∗/
70 puts ( "\nWynik d z i a l a n i a : " ) ;
71 for ( i=0 ; i<n ; i=i +1)
72 {
73 p r i n t f ( "%6i \n" ,L [ i ] ) ;
74 }
75 /∗ wyznaczenie min , max ∗/
76 Max = Min = L [ 0 ] ;
77 for ( i=1 ; i<n ; i=i +1)
78 {
79 i f (L [ i ]<Min)
80 {
81 Min = L [ i ] ;
82 }
83 i f (Max<L [ i ] )
84 {
85 Max = L [ i ] ;
86 }
87 }
88 /∗ wiadomo ∗/
89 p r i n t f ( "\nMin :  %6i \nMax :  %6i \n\n" ,Min ,Max) ;
90 return 0 ;
91 }

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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