Transformacja Boxa-Coxa

To keep the mathematics uncluttered, the theory will be
described in the context of the simple regression model, where we are choosing between:
Y = 31 —+ ;f}—))gX -+ U

and:

logY = 51 + 5. X + u.
It generalises with no substantive changes to the multiple regression model.
The two models are actually special cases of the more general model:
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with A = 1 vielding the linear model (with an unimportant adjustment to the intercept)
and A = 0 vielding the logarithmic specification at the limit as A tends to zero.
Assuming that w is iid (independently and identically distributed) N(0, o2), the density
function for wu; is:
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and hence the density function for Yy; is:
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From this we obtain the density function for Y;:
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Hence the likelihood function for the parameters is:
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%’ is the Jacobian for relating the density function of Yy, to that of ¥;.




and the log-likelihood 1s:
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From the first-order condition dlog L/do = 0, we have:
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Substituting into the log-likelihood function, we obtain the concentrated log-likelihood:
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log L(f. i, A) = — 5 log 2 — _ log ;‘(YM — B — B Xi)? — = + —1) Z log Y,
The expression can be simplified (Zarembka, 1968) by working with Y;* rather than Y,
where Y;" 1s Y; divided by Yy, the geometric mean of the Y; in the sample, for:
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With this simplification, the log-likelihood 1s:
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and 1t will be maximised when 3y, F» and A are chosen so as to minimise
n
STV — 51 — 52X;)?, the residual sum of squares from a least squares regression of the
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scaled, transformed Y on X. One simple procedure is to perform a grid search, scaling

and transforming the data on Y for a range of values of A and choosing the value that
leads to the smallest residual sum of squares (Spitzer, 1982).

A null hypothesis A = Ay can be tested using a likelihood ratio test in the usual way.
Under the null hypothesis, the test statistic 2(log Ly — log Lg) will have a chi-squared
distribution with one degree of freedom, where log L, 1s the unconstrained log-likelihood
and Lg 1s the constrained one. Note that, in view of the preceding equation:

2(log Ly —log Lg) = n(log RSSy — log RSS))



where RSSy and RSS) are the residual sums of squares from the constrained and
unconstrained regressions with Y*.

The most obvious tests are A = 0 for the logarithmic specification and A\ = 1 for the
linear one. Note that it 1s not possible to test the two hypotheses directly against each
other. As with all tests, one can only test whether a hypothesis is incompatible with the
sample result. In this case we are testing whether the log-likelihood under the
restriction 1s significantly smaller than the unrestricted log-likelihood. Thus, while it 1s
possible that we may reject the linear but not the logarithmic, or vice versa, it 1s also
possible that we may reject both or fail to reject both.



