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Ebola virus infection is a severe infectious disease with the highest case fatality rate which become the
global public health treat now. What makes the disease the worst of all is no specific effective treatment
available, its dynamics is not much researched and understood. In this article a new mathematical model
incorporating both vaccination and quarantine to study the dynamics of Ebola epidemic has been devel-
oped and comprehensively analyzed. The existence as well as uniqueness of the solution to the model is
also verified and the basic reproduction number is calculated. Besides, stability conditions are also
checked and finally simulation is done using both Euler method and one of the top ten most influential
algorithm known as Markov Chain Monte Carlo (MCMC) method. Different rates of vaccination to predict
the effect of vaccination on the infected individual over time and that of quarantine are discussed. The
results show that quarantine and vaccination are very effective ways to control Ebola epidemic. From
our study it was also seen that there is less possibility of an individual for getting Ebola virus for the sec-
ond time if they survived his/her first infection. Last but not least real data has been fitted to the model,
showing that it can used to predict the dynamic of Ebola epidemic.

� 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Ebola is a lethal virus of humans. It is a severe and often deadly
illness killing between 50% and 90% of those infected with the virus
[9,19,24] named after a river in the Democratic Republic of Congo
(formerly Zaire) where it was first identified in 1976 with a high
case fatality rate. The disease first came into the lime light in
1976 in Zaire and Sudan [5]. It is a disease of humans and other pri-
mates caused by an Ebola virus. Symptoms start two days to three
weeks after contacting the virus with a fever, sore throat, muscle
pain and headaches [2,3,6,15,17]. Typically, vomiting, diarrhea
and rash flow, along with decreased functioning of the liver and
kidneys. Around this time, the affected people may begin to bleed
within the body and externally. The virus may be acquired upon
contact with blood or bodily fluids of an infected people or animal.
Spreading through the air has not been documented in the natural
environment. Fruit bats are believed to be a carrier and may spread
the virus without being affected [7,10,14,16,20,21,23]. Once
human infection occurs, the disease may spread between people,
as well. Male survivors may be able to transmit the disease via
semen for nearly two months. To make the diagnosis, typically
other diseases with similar symptoms such as malaria, cholera
and other viral hemorrhagic fevers are first excluded. To confirm
the diagnosis, blood samples are tested for viral antibodies, viral
RNA, or the virus itself. What makes the disease the worst of all
is, no specific effective treatment available. Efforts to help those
who are infected are supportive and include giving either oral
rehydration therapy (slightly sweet and salty water to drink) or
intravenous. As the effective measures for controlling Ebola
epidemic is still lack, it needs more attention by medical staffs, epi-
demiologists, mathematicians and other stake holders.

Mathematical modeling is one of the most important tools in
analyzing the epidemiological characteristics of infectious disease
and can provide some useful insights about the dynamics of the
disease. Various models has been used to study different aspects
of Ebola epidemic.

Chowella et al. constructed a mathematical model for Ebola
virus disease transmission (Congo 1995 and Uganda 2000) and
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fitted it to historical data in estimation of Ro [8]. Althaus presented
a SEIR mathematical model and fitted the model to the reported
data of infected cases and deaths for Ebola virus disease in Guinea,
Sierra Leone and Liberia [1]. The latest study by A. Rachah and D.F.
M Torres recommends inclusion of intervention factors like quar-
antine procedure in the mathematical model to treat the infected
individuals and investigate the effect of vaccination on Ebola virus
disease [11].

Besides, according to the World Health Organization (WHO)
report 2016, an experimental Ebola vaccine and quarantine was
highly protective against the deadly Ebola virus in a major trial
[25].

In this work, our goal is to develop a new mathematical model
to study the effect of both vaccination and quarantine on the
spread of Ebola virus as per the recommendation from World
Health organization(WHO). Our model differs from other mathe-
matical models that have been used to study the Ebola epidemics
[1,7,8,11,13] in that it incorporates both vaccination and quaran-
tine interventions. In addition, our work differs in that it uses
one of the top ten most influential algorithm known as Markov
Chain Monte Carlo algorithm to simulate the process as the spread
of Ebola virus is a random process. To the best of our knowledge,
this is the first integrated simulation method used beside the Euler
method for this kind of infectious disease of humans. In Euler
method the parameters are regarded constant which may not be
true in the practical case. To eliminate such defects we used Monte
Carlo method which enable to observe the reality in a better way
and see how the Ebola virus transmit in crowd more accurately.
In another word, as the states(susceptible, infected, recovered/
removed, death) at time t + 1 depends only on the state at time t
(that means our physical state is Markov process). Hence, Monte
carlo method is more sensible way to reflect the reality.

The text is organized as follows: In this section we have pro-
vided background information about Ebola disease; in Section ‘‘M
athematical model formulation and description”, we developed a
basic mathematical model to describe the dynamics of the Ebola
virus; in Section ‘‘Model parameters”, we find parameters with sta-
tistical data based on WHO; Section ‘‘Basic properties” is with the
basic properties of the model; in Section ‘‘Analysis of the model”
we showed the existence and uniqueness of the solution for the
model, derived the basic reproduction number and proved stability
conditions. The parameters in Section ‘‘Model parameters” were
used to simulate the basic model in Section ‘‘Numerical simula-
tion” using both Euler method and Monte carlo method. Finally,
a conclusion and future work is presented.
Fig. 1. Compartmental flow of a mathematical model for Ebola epidemics.

Table 1
Model parameters for simulation.

Parameter Average value

Total number of population (N) 10,000
Contact rate (b1) 230
Rate of quarantining (b) 0.3
Rate of loss of infection acquired immunity (c1) 0.25
Rate from S to R(Vaccination rate) (c) 0.15
Recovery rate, quarantined individual (a1) 0.4
Recovery rate, non quarantined individual (a2) 0.25
Death rate by Ebola, quarantined individual (d1) 0.3
Death rate by Ebola, non quarantined individual (d2) 0.75

(Source: World Health Organization, WHO, Ebola 2014).
Mathematical model formulation and description

A compartmental model with a constant population was used to
describe the natural history and epidemiology of Ebola. Briefly, the
population is divided into four compartments: Susceptible individ-
uals (S) may become infected (I) after contact with an Ebola
infected individuals who are capable of infecting others including
nurses, doctors etc at hospitals and with a chance of infecting
others before being recovered/removed from the disease (R) or
die of Ebola and then join (D).

The susceptible population is increased by the susceptibility of
individuals(rate of loss of infection acquired immunity) into the
Population at the rate c1. This population will be decreased if
acquires infection after contact with infected non quarantined
individual at the rate b1. As there is a proved possibility of treat-
ment of Ebola by vaccination [4,25,26], the susceptible individuals
are further decreased at the rate c because of vaccination.

The population of infected individuals is generated by the infec-
tion of susceptible individuals at the rate b1. This population is
decreased by recovering from Ebola disease at the rate of a1 and
a2 where a1 is recovery rate of infected quarantined individual
and a2 is recovery rate of infected non quarantined individuals.
This population is further decreased by death due to Ebola at a rate
d1 and d2 where d1 is death rate of infected quarantined individual
and d2 is death rate of infected non quarantined individuals due to
Ebola. Here it is assumed that a1 is greater than a2 and d1 is less
than d2 which is biologically reasonable.

The population of recovered infected individuals is generated
by those recovered from Ebola and those individual from suscepti-
ble because of vaccination at the rate of c and decreased by indi-
viduals that loss immunity and rejoin the susceptible group at
the rate of c1.

Finally, the population of individuals who deceased is generated
by individuals who are killed by Ebola. The system of ordinary dif-
ferential equations describing this model is given below and
parameters are defined in Section ‘‘Model parameters” (see Fig. 1).

dS
dt

¼ c1R� b1ð1� bÞSðIÞ
N

� cS ð2:1Þ
dI
dt

¼ b1ð1� bÞSðIÞ
N

� a1bI � a2ð1� bÞI � d1I � d2I ð2:2Þ
dR
dt

¼ a1bI þ a2ð1� bÞI þ cS� c1R ð2:3Þ
dD
dt

¼ d1I þ d2I ð2:4Þ
N ¼ Sþ I þ Rþ D ð2:5Þ
Model parameters
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Basic properties

Since the model monitors changes in the human population, all
the variables and parameters are assumed to be positive for all
t P 0.

The model is therefore be analyzed in a suitable feasible region:
D ¼ fSðtÞ; IðtÞ;RðtÞ;DðtÞ 2 R4

þg with initial conditions Sð0Þ P 0,
Ið0Þ P 0, Rð0Þ P 0 and Dð0Þ P 0 is positively invariant for the sys-
tem (2.1)–(2.4) above.

Analysis of the model

In order to retain the biological validity of the model, it is
important to show that the solutions to the initial value problems
exist and unique.

Existence and uniqueness theorems of first order differential equation

Theorem 5.1 (Existence Theorem). Given the general first order
ordinary differential equation:

y0 ¼ Fðx; yÞ; yð0Þ ¼ y0 ð5:1Þ
If F(x,y) is a continuous function defined in some region
R ¼ fðx; yÞ : x0 � d < x < x0 þ d; y0 � � < y < y0 þ �g containing the
point ðx0; y0Þ then there exists a number d1(possibly smaller than d)
so that a solution y ¼ f ðxÞ to (5.1) is defined for x0 � d < x < x0 þ d.
Theorem 5.2 (Uniqueness Theorem). Given the general first order
ordinary differential equation:

y0 ¼ Fðx; yÞ; yð0Þ ¼ y0 ð5:2Þ
If both F(x,y) and @Fðx;yÞ

@y are continuous function defined in some region

R ¼ fðx; yÞ : x0 � d < x < x0 þ d; y0 � � < y < y0 þ �g containing the
point ðx0; y0Þ containing the point ðx0; y0Þ then there exists a number
d2(possibly smaller than d1) so that a solution y ¼ f ðxÞ to (5.2) is
defined for x0 � d2 < x < x0 þ d2.
Theorem 5.3 (Cauchy-Lipschiz Theorem (Existence and Uniqueness
of the solution)). Given an initial value problem:

x0 ¼ f ðxðtÞ; tÞ; xð0Þ ¼ x0 ð5:3Þ

Let U 2 Rn be an open set and f : U � ½0; T� ! Rn be a continuous
function which satisfies the Lipschitz condition: jf ðx1; tÞ � f ðx2; tj 6
Mjx1 � x2j8ðx1; tÞ; ðx2; tÞ 2 U � ½0; T� where M is a given constant. If
x0 2 U then for some positive d there is a unique solution x:½0; d� ! U
of the initial value problem.
Theorem 5.4. The model from (2.1) to (2.4) above is continuous and
satisfies Cauchy-Lipschiz Theorem (5.3).
Proof. From model (2.1)–(2.4) we have:

dS
dt

¼ c1R� b1ð1� bÞSðIÞ
N

� cS

Let dS
dt ¼ Fðt; SÞ ¼ c1R� b1ð1�bÞSðIÞ

N � cS and @Fðt;SÞ
@S ¼ � b1ð1�bÞðIÞ

N � c.
Here both the function F(t,S) and its partial derivatives @Fðt;SÞ

@S are
defined and continuous at all points (t,S). Therefore by theorems
(5.1) and (5.2) above there exists a unique solution in some open
interval centered at t0 for this differential equation.

Similarly, consider the second differential equation in our
model (2.1)–(2.4) above.
dI
dt

¼ b1ð1� bÞSðIÞ
N

� a1bI � a2ð1� bÞI � d1I � d2I and:

Let Gðt; IÞ ¼ dI
dt ¼ b1ð1�bÞSðIÞ

N � a1bI � a2ð1� bÞI � d1I � d2I and
@Gðt;IÞ

@I ¼ b1ð1�bÞS
N � a1bI � a2ð1� bÞ � d1 � d2. Here both the function

G(t,I) and its partial derivatives @Gðt;IÞ
@I are defined and continuous

at all points (t,I). Therefore by theorems (5.1) and (5.2) above there
exists a unique solution in some open interval centered at t0 for
this differential equation.

By analogous style one can show that the remaining two
differential equations in the system also satisfy these conditions.

Next let us show if the Lipschitz condition is satisfied:
Consider the first order differential equation in our model:

dS
dt

¼ c1R� b1ð1� bÞSðIÞ
N

� cS

Let dS
dt ¼ FðS; tÞ ¼ c1R� b1ð1�bÞSðIÞ

N � cS then

jFðS1;tÞ�FðS2;tÞj ¼ ðc1R�
b1ð1�bÞS1ðIÞ

N
�cS1Þ�ðc1R�

b1ð1�bÞS2ðIÞ
N

�cS2Þ
����

����
jFðS1;tÞ�FðS2;tÞj ¼ c1R�

b1ð1�bÞS1ðIÞ
N

�c1Rþ
b1ð1�bÞS2ðIÞ

N
þcS2

����
����

jFðS1;tÞ�FðS2;tÞj ¼ ð�1Þ b1ð1�bÞ
N

þc
� �

s1� b1ð1�bÞ
N

þc
� �

s2

� �����
����

jFðS1;tÞ�FðS2;tÞj6 b1

N
þc

� �
jS1�S2j

jFðS1;tÞ�FðS2;tÞj6MjS1�S2jwhereM¼ b1

N
þc

� �

Therefore, jFðS1; tÞ � FðS2; tÞj ¼ MjS1 � S2j in the first differential
equation of our model. Once again consider the second differential
equation of the model:

dI
dt ¼ b1ð1�bÞSðIÞ

N � a1bI � a2ð1� bÞI � d1I � d2I and.

Let GðI; tÞ ¼ b1ð1�bÞSðIÞ
N � a1bI � a2ð1� bÞI � d1I � d2I then

jGðI1;tÞ�GðI2;tÞj ¼ b1ð1�bÞS
N

�a1b�a2ð1�bÞ�d1�d2

� �
ðI1� I2Þ

����
����

jGðI1;tÞ�GðI2;tÞj6 b1ð1�bÞS
N

�a1b�a2ð1�bÞ�d1�d2

� �
jðI1� I2Þj

jGðI1;tÞ�GðI2;tÞj6M�jI1� I2j;M� ¼ b1ð1�bÞS
N

�a1b�a2ð1�bÞ�d1�d2

� �����
����

Therefore, jGðI1; tÞ � GðI2; tÞj 6 M�jI1 � I2j in the second differen-
tial equation of our model. In a similar way it can be shown that
the remaining differential equations of the model satisfies the
Lipschitz condition. Therefore we conclude that there exists a
unique solutions SðtÞ; IðtÞ;RðtÞ;DðtÞ for all t > 0. h
Existence of the disease free equilibrium state, E0

At the disease free equilibrium state we have absence of infec-
tion. Thus, all the Ebola infected classes will be zero and the entire
population will comprise of only Ebola free, susceptible individu-
als. A disease free equilibrium state of the model above is unique
and exists at the point E0=(S

�; I�;R�;D�).
Equating the model to zero and solving we get:

E0 ¼ ðS�; I�;R�;D�Þ ¼ ðN � S0;0;0; S0Þ 8S0 2 R \ ½0;N�.

The basic reproduction number

The basic reproduction number, R0 of the system (2.1)–(2.4) can
be obtained by using the next generation matrix method formu-
lated in [18].

As our population is closed, let X ¼ ðI;RÞT then dX
dt ¼ f ðxÞ � vðxÞ

where:
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f ðxÞ ¼
b1ð1�bÞSI

N

a1bI þ a2ð1� bÞI þ cS

 !
ð5:4Þ

and

vðxÞ ¼ ða1bI þ a2ð1� bÞI þ d1I þ d2IÞ
c1R

� �
ð5:5Þ

The jacobian matrices of f(x) and v(x) evaluated at the disease
free equilibrium, E0 are:

Df ðE0Þ ¼ F ¼
b1ð1�bÞðN�S0Þ

N 0
a1bI þ a2ð1� bÞ 0

 !
ð5:6Þ

and

DvðE0Þ ¼ V ¼ a1bþ a2ð1� bÞ þ d1 þ d2 0
0 c1

� �
ð5:7Þ

The model reproduction number, denoted by R0 is thus given
by:

R0 ¼ b1ð1� bÞa1ðN � S0Þ
Nc1ða1bþ a2ð1� bÞ þ d1 þ d2Þ
Stability conditions

.

Theorem 5.5. The disease free equilibrium E0 is locally asymptoti-
cally stable for R0 < 1 and unstable otherwise.
Proof. To prove the local stability of the disease free equilibrium,
we used the jacobian stability method. If the Eigenvalues of (F-V)
has a negative real parts then the disease free equilibrium is locally
stable. Using F and V from Eqs. (5.6) and (5.7):

F � V ¼
b1ð1�bÞðN�S0Þ

N � a1b� a2ð1� bÞ � d1 � d2 0
a1bþ a2ð1� bÞ �c1

 !
ð5:8Þ

Using characteristic equation jðF � VÞ � kIj ¼ 0, the following
equation is obtained.

ðkþ c1Þðkþ a1bþ a2ð1� bÞ þ d1 þ d2 þ bðb� 1Þ ðN�S0Þ
N Þ ¼ 0where

k is the eigenvalues in this case. After solving this we see that both
the eigenvalues are negative for R0 < 1 . Besides, the product of the
coefficient of k2 and the coefficient of k is greater than the constant
term for R0 < 1. Therefore, for R0 < 1 the disease free equilibrium
is locally asymptotically stable. h
Theorem 5.6. For system (2.1) to (2.4), the disease free equilibrium is
globally asymptotically stable if R0 < 1
Fig. 2. Simulation result using Euler method.
Proof. First let us find jacobian matrices (of order 3) evaluated at
the disease free equilibrium (F 0) and (V 0). They are given below:

Df ðE0Þ ¼ F 0 ¼
b1ð1�bÞðN�S0Þ

N 0 0
a1bþ a2ð1� bÞ 0 0

0 0 0

0
B@

1
CA ð5:9Þ

and

DvðE0Þ ¼ V 0 ¼
a1bþ a2ð1� bÞ þ d1 þ d2 0 0

0 c1 0
�d1 � d2 0 0

0
B@

1
CA ð5:10Þ

To prove comparison theorem was used. The rate of change of
the variables (I;R;D) of the system above can be re-written as:
dI
dt
dR
dt
dD
dt

0
B@

1
CA¼ðF 0 �V 0Þ

I

R

D

0
B@

1
CA� 1� S

N�S0

� � b1ð1�bÞðN�S0Þ
N 0 0

a1bþa2ð1�bÞ 0 0
0 0 0

0
B@

1
CA

I

R

D

0
B@

1
CA

where (F 0) and (V 0) are jacobian matrices (of order 3) evaluated at
the disease free equilibrium. Clearly,

dI
dt
dR
dt
dD
dt

0
B@

1
CA 6 ðF 0 � V 0Þ

I

R

D

0
B@

1
CA ð5:11Þ

Since, the eigenvalues of the matrix ðF 0 � V 0Þ have negative real
parts (this comes from the stability results in Lemma 1 in [12,18]
then the system (2.1)–(2.4) is stable whenever R0 < 1. So
ðI;D;RÞ ! ð0;0;0Þ and S ! N � S0 as t ! 1. By the comparison
theorem [19,22] ðI;R;DÞ ! E0 as t ! 1. Therefore, E0 is globally
asymptotically stable. h
Numerical simulation

Numerical simulation using Euler method

Experiment 1
To approximate the solutions of the model built above, we give

some simulations using the parameters values of Table 1 in Sec-
tion ‘‘Model parameters” above using Euler method. The result is
given below.

From Fig. 2 (above) we see that the population of susceptible
individual immediately begins to drop because of the high degree
of how infectious the Ebola virus is. Consequently, the population
of the dead people starts rising.

Simulation using Monte Carlo method

Monte Carlo simulations are used to model the probability of
different outcomes in a process that cannot easily be predicted
due the intervention of random variables. As the spread of Ebola
virus is a random process the Monte carlo algorithm is used to sim-
ulate the Markov Chain process of which the transfer matrix
changes over time. In a Markov Chain process the physical state
at time t + 1 depends only on the state at time t. In other words,
for random variables fxtg; t ¼ 0;1;2;3 . . .



Fig. 4. Effect of rate of infected quarantine on infected population.

966 T.W. Tulu et al. / Results in Physics 7 (2017) 962–968
PðXt ¼ j=x0 ¼ i0; x1 ¼ i1; . . . ; xt�1 ¼ it�1Þ ¼ Pðxt ¼ j=xt�1 ¼ it�1Þ
ð6:1Þ

Define the state matrix as: XðtÞ ¼ ðSðtÞ; IðtÞ;RðtÞ;DðtÞÞ to repre-
sent the compartments in a population. Then, the initial state
matrix X(0) is obtained as:Xð0Þ ¼ ð1� I0; I0;0;0Þ. According to Mar-
kov Chain theory the transition matrix can be given as:
pðtÞ ¼ fPði; jÞg4x4 where P(i, j) is the transition probability from
state i to state j for i, j an element of {1, 2, 3, 4}.

PðtÞ ¼

Variables S I R D

S Pð1;1Þ Pð1;2Þ Pð1;3Þ Pð1;4Þ
I Pð2;1Þ Pð2;2Þ Pð2;3Þ Pð2;4Þ
R Pð3;1Þ Pð3;2Þ Pð3;3Þ Pð3;4Þ
D Pð4;1Þ Pð4;2Þ Pð4;3Þ Pð4;4Þ

0
BBBBBB@

1
CCCCCCA

ð6:2Þ

Besides, P(1,4)=P(2,1)=P(3,2)=P(3,4)=P(4,1)=P(4,2)=P(4,3)=0 as
there is no transition and P(1,1)+P(1,2)+P(1,3)=P(2,2)+P(2,3)+P(2,
4)=P(3,1)+P(3,3)=P(4,4)=1.

Finally, the state matrix is given by:

XðtÞ ¼ Xð0Þ
Y
t¼1

PðtÞ

In experiment 1 above we regard the constant parameters and
ignored the influence of latent period. To eliminate this defect
Monte Carlo method is used. Figure below shows the Monte carlo
simulation of the process under the conditions given above over
time.
Experiment 2
From Fig. 3 above we clearly see that the number of Ebola

infected individuals is increased and then come to decrease. At
the same time the population of those who die by Ebola rises
swiftly and reaches the peak showing the biological reality that
Ebola is fatal. The model is more realistic to show the situation.
Therefore, the medical, health departments and other stake holders
should focus on this moment. Moreover, the population of the sus-
ceptible also decrease at this time as more people get infected
showing that the spread of Ebola is high unless controlled.
Fig. 5. Markov Chain Monte Carlo simulation when vaccination rate, c ¼ 0 (without
vaccination).
Experiment 3
Here the experiment deals with the relation between quaran-

tine and the population of Ebola infected individuals.
Fig. 3. Simulation result using Monte Carlo method.
From Fig. 4 above we see the effect of rate of infected quaran-
tine on the Ebola infected population. It is clearly seen that when
the rate of infected quarantine increases, the population of Ebola
infected individuals decreases.

Experiment 4
when vaccination rate, c ¼ 0 (without vaccination) the result is

given below.

Experiment 5
(Simulation result when vaccination rate is increased to

c ¼ 0:3).

Experiment 6
In this experiment the vaccination rate is more increased than

the previous two experiments conducted.
Note: From Figs. 5–7(Experiment 4, 5 and 6) above, we see the

effect of rate of vaccination on the Ebola infected population for
c ¼ 0; c ¼ 0:3 and c ¼ 0:5. when the rate of vaccination increases,



Fig. 6. Markov Chain Monte Carlo simulation when vaccination rate, c ¼ 0:3.

Fig. 7. Markov Chain Monte Carlo simulation when vaccination rate, c ¼ 0:5.

Fig. 8. Ebola Infected I(t) versus the real data of confirmed cases for 2014 Ebola
outbreak occurred in Liberia.
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the number of Ebola infected individuals reduces from 888 to 778.
It is clearly seen that when the rate of vaccination increases, the
population of Ebola infected individuals decreases.
Experiment 7
(See Fig. 8).
Conclusion

In overall, the dynamical behavior of the formulated Ebola epi-
demic model is investigated which plays a vital role in controlling
the spread of Ebola virus. Our new model has the detail about all
compartments and we found it fits well the data of confirmed cases
provided by WHO for the Ebola outbreak in West Africa. The
parameter values used are all the latest values. To secure more
realistic approach we used two different simulations methods:
Euler and Monte carlo method. As the spread of Ebola virus is a
random process, Monte carlo algorithm is used to simulate the
Markov Chain process of which the transfer matrix changes over
time. From the point of view of our result of Markov Chain Monte
carlo simulation, we claim that there is less possibility of an indi-
vidual for getting Ebola virus for the second time if they survived
the first infection. None of the previous researchers discovered
weather a person can re catch Ebola or not if they survived the first
case. Moreover, from our experimental results we also see that
Ebola is really fatal and spreads swiftly Which means a regulation
that reflects the reality very well is obtained and the model works
better as well efficient for the Ebola outbreak in west Africa.

Once again, from our experimental results we see that though
Ebola spreads swiftly, it can be controlled upon increasing vaccina-
tion. Vaccination is a very efficient method in reducing the number
of Ebola infected individuals in a short period of time and increases
the number of recovered individuals. Increasing rate of infected
quarantine is also another efficient method to control Ebola epi-
demic as seen from our study. Hence, Vaccination and isolation
of the Ebola patient and providing great treatment are highly the
crucial measures to control the Ebola epidemics. Besides, as the
cost of vaccination might be high for Ebola infected countries, we
recommend an optimal control to reduce the cost and number of
infected individual. Moreover, in order to prevent Ebola epidemics,
through the analysis of the model the government must strictly
manage the policy on Ebola and carry it out. This in turn helps
for health campaigning and raising health literacy which plays a
role to control the quick spread of the disease. We finally strongly
believe that our study will play its own role in the current effort of
controlling the Ebola outbreak in West Africa.
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