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Abstract

A Markov chain is used to model day to day changes in the
Fire Weather Index (FWI) component of the Canadian Forest
Fire Weather Index System. The results of statistical analy-
ses of 26 years (1963 through 1988) of fire weather data
recorded at 15 fire weather stations located across the
province of Ontario suggest that it is reasonable to partition
the fire season into three subseasons and model day to day
changes in the Fire Weather Index class within each subsea-
son as a Markov chain of order 1.
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Introduction

Weather has a very significant impact on the occurrence,
behaviour, and impact of fires on forest ecosystems. Fire
danger rating systems like the Canadian Forest Fire Weather
Index System (CFFWIS) transform daily weather observa-
tions into relatively simple indices that can be used to predict
fire occurrence, behaviour, and impact (Stocks et al. 1989).
They are used for many purposes including planning for the
daily deployment of fire suppression resources and the eval-
uation of fire management strategies. They can also be incor-
porated in ecosystem models to assess the long-term
implications of specified fire management policies and fire
regimes.

Since forest fires have the potential to burn for many days,
fire management system models must address the important
fact that what happens during a particular day can be influ-
enced significantly by what has taken place on the preceding
days. Consider, for example, deployment models that are
used to evaluate fire suppression resource strategies over
2-3-day planning horizons. Each day a small proportion of
the fires that are reported may escape initial attack and
become extended attack fires that demand large amounts of
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suppression resources for several days. The fraction of fires
that escape each day will depend upon many factors includ-
ing the fire danger rating indices that are based upon current
and past weather, and the number and quality of initial attack
crews available that day. Fire managers often refer to the
occurrence of several consecutive days of elevated fire
danger during which many fires happen as a ‘fire flap’. The
probability that a fire will escape will usually increase as the
duration of the fire flap increases, fire crews and other sup-
pression resources become less readily available, and crews
that are available become fatigued. Fire management plan-
ning models that treat days independently will not capture
the build-up and subsequent increased fire escape probabil-
ity associated with fire flaps, and their use could lead to
under-estimates of fire suppression resource needs and area
burned.

The ability to model day to day changes in fire weather is
also emerging as an important issue as more effort is devoted
to the development of models designed to investigate the
impact of fire and fire management regimes on forest ecosys-
tems at the landscape level. Consider, for example, forest
simulation models with fire growth models that are used to
predict the spatial and temporal impacts of fire on boreal
forest ecosystems. Since topography and vegetation do not
vary throughout the potential life of a fire, the validity of
such models depends in part upon the accuracy with which
day to day changes in fire weather are modelled.

Although they should account for the fact that the current
fire danger depends in part on what has transpired in the past,
fire management planners do not always do so. Markov
chains are mathematical models that can be used to model
sequential dependencies that influence the behaviour of
probabilistic dynamic systems, and the mathematical proper-
ties of Markovian models can be exploited to develop rela-
tively simple tractable models of such systems. They also
make possible the development of Markov decision process
models that can be used to develop strategic planning models
that can be used to evaluate policies for managing
Markovian systems. If Markov models can be used to model
day to day changes in fire danger rating indices, the proper-
ties of Markov chains and the rich Markov decision process
literature can be exploited to develop fire management plan-
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Figure 1. The province of Ontario, showing the 15

weather stations where the data were collected.

ning systems that account for the day to day dependence that
is so important when dealing with fire danger.*
Meteorologists have used Markov chains to model
sequences of wet and dry days (see for example, Gabriel and
Neumann (1962), Gates and Tong (1976), and Stern and Coe
(1984)). Markov chains have also been used to model day to
day changes in fire danger rating indices for fire manage-
ment planning purposes. Kourtz (1970) used historical
weather data for a forested area in Idaho and Montana to
model thunderstorm day occurrence as a first order Markov
chain, and day to day changes in a spread index class variable
as a second order Markov chain, but he did not report the
results of statistical tests of the validity of either model.
Martell (1971) used a first-order Markov chain to model day
to day changes in the average burning index across Ontario’s
Northwestern Region but did not carry out statistical tests of
validity of his model. Greulich (1976) used likelihood ratio
statistical test results to justify his use of a first order Markov
chain to model day to day changes in the brush burning index
class at two fire weather stations located in the California
Division of Forestry’s District 1. Boychuk and Martell
(1988) assumed that day to day changes in a fireload index
based in part, on the FWI, could be modelled as a Markov
chain, and incorporated that model in a larger Markov model
that was used to evaluate annual fire fighter hiring decisions.
Despite the potential value of and demonstrated interest in
Markovian fire weather models, only Greulich (1976) who
analysed 9 years of data observed at two weather stations in
California and Martell (1989), who analysed 26 years of data
observed at three weather stations in Ontario, have presented
the results of formal statistical analyses of their models.
Those small scale studies support the use of Markov chain

models of fire danger rating indices but much closer scrutiny
is required to justify the ongoing use of the Markovian
assumption to develop fire management planning models.
The purpose of this paper is to present the results of a com-
prehensive statistical analysis of the validity of Markov fire
danger rating system models based on 26 year sequences of
historical fire weather data observed at the 15 widely sepa-
rated Ontario fire weather stations depicted in Figure 1.

Markov Chains and Fire Weather

Fire danger rating indices are designed to track one or more
important aspects of the fire environment such as forest fuel
moisture, with functions that relate the current day’s indices to
the previous day’s indices and selected weather variables such
as the total rainfall observed during the intervening time period.
They are usually measured on continuous scales but they are
often classified into discrete categories (e.g. nil, low, moderate,
high, or extreme fire danger rating classes) for planning pur-
poses. It is therefore reasonable to model day to day changes in
the fire danger rating index class as a Markov chain.}

Suppose each day of a fire season can be classified with
respect to some fire danger rating index, and X, =i indicates
that the system is in class i/ on day n. A Markov chain of order
0 is one for which tomorrow’s state is independent of today’s
state and all previous states. A Markov chain of order 1 has
the property that the conditional probability distribution of
X+ (i.e. the state of the system on day n+l) given X,
Xo,...,X, depends only on X,,. In simple terms, the probability
that the Fire Weather Index on a particular day will be in a
specified class depends only on its class the previous day,
and the earlier days can be ignored. This Markov property
can be expressed mathematically as

P{X,.1=]| Xi=i1, Xo=ha,....,X,=1} = P{X,1=j| X,=i}

for n = 1,2,... and every sequence i,i,...,i,J.

A Markov chain of order 1 with m states can be characterized
by its state transition probability matrix P, and Py, the
element in the ith row and jth column of the m x m matrix P
is the probability that the system (e.g. the fire danger rating
class) will be in state j tomorrow, given that it is in state i
today. A Markov chain of order 2 is one for which the condi-
tional probability distribution of the state of the system
tomorrow depends on the state of the system today and yes-
terday. A Markov chain of order 7 is one for which the con-
ditional probability distribution of the state of the system
tomorrow depends on the state of the system during the past
r days.

* Markov decision process models constitute a very rich and powerful body of knowledge that can be applied to fire management planning and the
development of fire impact assessment models. Most operations research texts such as Winston (1994) contain brief introductions to Markov deci-
sion processes. Puterman (1994) presents a comprehensive treatment of the subject and describes applications in ecology, economics and other areas.

T For an introduction to Markov chain theory see for example, Bhat (1984) or Ross (1989).
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A Markov Chain Model of the Canadian
Forest Fire Weather Index

Canadian forest fire management agencies use the Canadian
Forest Fire Weather Index System (CFFWIS) for fire danger
rating purposes. The Fire Weather Index (FWI) is one of six
components of the CFFWIS which is described in detail by
Van Wagner (1987). The CFFWIS has three basic moisture
codes that are numerical ratings of the moisture content of
three different components of a model forest fuel complex:
the Fine Fuel Moisture Code (FFMC), the Duff Moisture
Code (DMC), and the Drought Code (DC). Each day’s
FFMC is based on the previous day’s FFMC and noon obser-
vations of temperature, relative humidity, wind speed, and
the 24 h rainfall. The FFMC thus provides a running ‘inven-
tory’ of the moisture content of the fine fuels and is designed
such that the current day’s FFMC is closely related to the
previous day’s FFMC. The DMC and DC are designed to
reflect the moisture content of other components of the
model fuel complex and are partially based on the previous
day’s DMC and DC respectively. It is therefore reasonable to
assume day to day changes in the FFMC, DMC and DC can
be modelled as Markov processes.

The Initial Spread Index (ISI), which is designed to be a
numerical rating of the spread rate of a fire, is a function of
current day’s FFMC and the noon hour wind speed. The
Buildup Index (BUI) is a relative measure of the amount of
fuel available for combustion and is a function of the current
day’s DMC and DC. They in turn, are used to compute the
FWI each day. The Ontario Ministry of Natural Resources
(OMNR) uses the classification scheme described in Table 1
to classify each day’s FWI as nil, low, moderate, high, or
extreme. These relationships and the fact that daily precipi-
tation can be modelled as a Markov process suggest it may
be reasonable to model day to day changes in the FWI class
as a Markov chain.

Statistical Tests for a Markov Chain Model for
the FWI Class
In order to model day to day changes in the FWI class it is nec-

essary to decide upon the order of the Markov chain and esti-
mate the state transition probabilities. Since the FWI is based

Table 1. Fire Weather Index classification
scheme used in Ontario.

Range FWI Class
FWI=0 Nil
0<FWI<4 Low

4 <FWI<11 Moderate
11 <FWI<23 High

23 <FWI Extreme
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on weather and, to a minor extent, the calendar date, it is rea-
sonable to assume that the elements of the probability matrix
P vary over the course of the season. The fire season was
therefore partitioned into a small number of subseasons within
which it is reasonable to assume that P is homogeneous with
respect to time. Although this approach does not capture all the
non-homogeneous behaviour of the FWI, it is analogous to
using a step function to represent a continuous function and
simplifies the statistical analysis of what is assumed to be a
homogeneous Markov chain within each subseason.

To use this approach it was necessary to subjectively iden-
tify periods within which P appeared to be relatively homo-
geneous. Twenty-six years of historical fire weather data from
15 OMNR fire weather stations were used to determine an
average FWI for each weather station for each week of the
fire season beginning on 15 April (the first day of week 1) and
ending on 6 October (the last day of week 25). The average
FWI for a specific weather station for a particular week (e.g.
week 1; April 15 through April 21 inclusive) is the arithmetic
average of all the FWI values observed at that station during
that week over the 26 year period. In most cases (unless there
were missing observations) there were in total 182 observa-
tions for each week. The average FWI was plotted as a func-
tion of the week and an attempt was made to subjectively
delineate periods during which the average FWI increased,
decreased, or remained relatively stable. Each fire weather
station was analysed independently, and spatial correlation
between the widely separated stations was not investigated.

Figure 2 is the graph of the weekly average FWI for the
Kenora weather station, the most westerly fire weather
station that was studied. Figure 3 is a similar graph of the
weekly average FWI observed at Shebandowan which is
located in west central Ontario. Figure 4 is a graph of the
weekly average FWI for Kirkland Lake which is located in
north-eastern Ontario. There were some missing observa-
tions, particularly at the beginning and the end of the fire
season. Furthermore, the precise ‘start’ (the time at which the
winter snowpack has melted and the forest vegetation has
become dry enough to support combustion) and ‘end’ of the
fire season varies from year to year and place to place in
response to large scale atmospheric circulation patterns. The
first two weeks (15 April 28 through April) and last three
weeks (16 September through 6 October) of the fire season
were therefore excluded from further analysis. The graphs in
Figures 2, 3 and 4 were subjectively assessed and it appeared
to be reasonable to partition the 26 April through 15
September portion of the fire season into the three subsea-
sons described in Table 2, which were used in an earlier fire
occurrence prediction study in Ontario (Martell et al. 1987).

The following procedure, which is based on the likelihood
ratio tests described in Bhat (1984, pp. 136—144) was then
used to determine an appropriate Markov chain order for
each subseason and fire weather station. The first step was to
consider the hypotheses Hy and H
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Figure 2. Average FWI in Kenora District, 1963—1988.
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Figure 3. Average FWI in Shebandowan District,
1963-1988.

Hy : Markov chain is of order 0 or P;; = P;
H, : Markov chain is of order 1.
The likelihood ratio test statistic Sp; is
So1 =2 Zny | InP;—1InP]

and has a 2 distribution with (m—1)* — d degrees of freedom,
where

m = number of FWI classes,
n;; = number of transitions from state i to state j,
n; -number of times state j was observed,

n = total number of observations,
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Figure 4. Average FWI in Kirkland District, 1963—1988.

Table 2. Classification scheme that was used to partition
the fire season into three subseasons.

Subseason Weeks Dates
Spring 3-8 29 April- 9 June
Early summer 9-15 10 June—28 July
Summer 1622 29 July—15 Sept.
B j=nijl 2 ng;
’ S

Igj =n;/n, and

d = number of £ values that equal zero and only F; values
corresponding to non-zero P values are used.

If Sy, is greater than %, with (m—1)- d degrees of freedom,
then Hy is rejected at significance level o and the process
continues. If Hy is not rejected it is reasonable to use a
Markov chain of order 0 (i.e. to assume tomorrow’s FWI
class is independent of today’s FWI class) and terminate the
procedure. The test was conducted for ao=0.01 and o. = 0.05.
The second step considered the hypotheses Hp and Hjy.

Hy : Markov chain is of order 1 or P;;, = Pj

H, : Markov chain is of order 2.

The likelihood ratio test statistic S ; is

S12=2 izjk nijx [ In By —In By]

and has a y2 distribution with m(m—1)* -d degrees of
freedom, where

n; ;= number of transitions from state i to state j and then
state %,
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Table 3. Results of the likelihood ratio statistical tests concerning the rank of Markov chain models for day to day changes
in the FWI class, based on fire weather data for the 1963 through 1988 fire seasons.

Likelihood ratio statistics and Suggested Markov

degrees of freedom chain order given o

Weather station Subseason Sample size So.1 df Si2 df Sh3 df o =0.05 o =0.01
Red Lake Spring 983 6298 16 1041 79 2158 364 2 1
Early Summer 1274 5653 16 96.3 80 310.6 375 1 1
Summer 1274 711.0 16 86.5 79 194.6 361 1 1
Sioux Lookout  Spring 1006 680.8 16 95.8 80  237.6 368 1 1
Early Summer 1274 669.3 16 672 79 2664 371 1 1
Summer 1273 741.7 16 73.7 78 2183 360 1 1
Kenora Spring 1034 643.0 16 90.0 79 2689 370 1 1
Early Summer 1274 673.1 16 822 79 2653 379 1 1
Summer 1250 730.5 16 1194 79 2553 368 2 2
Shebandowan Spring 1056 7132 16 86.0 78 173.3 349 1 1
Early Summer 1274 678.6 16 80.3 79 189.5 360 1 1
Summer 1261 7254 16 69.6 76 156.3 343 1 1
Armstrong Spring 985 669.9 16 97.8 79 214.8 358 1 1
Early Summer 1274 661.5 16 104.8 78 213.1 359 1 1
Spring 1268 778.8 16 942 78 200.2 352 1 1
Geraldton Spring 963 574.6 16 829 79 165.5 358 1 1
Early Summer 1274 533.8 16 872 78 220.1 358 1 1
Summer 1274 627.7 16 100.1 78 173.0 351 2 1
Chapleau Spring 960 5643 16 80.0 79 2122 363 1 1
Early Summer 1257 575.7 16 973 79  243.0 370 1 1
Summer 1198 701.1 16 1167 79  218.0 358 2 2
Timmins Spring 932 5358 16 60.7 78 2149 365 1 1
Early Summer 1273 673.1 16 562 77 188.6 357 1 1
Summer 1226 551.0 16 68.6 74 128.0 335 1 1
Kirkland Lake Spring 990 646.4 16 97.6 80 171.4 357 1 1
Early Summer 1267 683.5 16 729 79  200.8 362 1 1
Summer 1207 666.9 16 72.7 76 1259 344 1 1
Sault Ste. Marie  Spring 1056 7203 16 49.7 73 1252 331 1 1
Early Summer 1274 8444 16 69.5 77 140.6 345 1 1
Summer 1262 6519 16 52.0 72 124.5 330 1 1
Peshu Lake Spring 893 4877 16 69.0 79 187.9 357 1 1
Early Summer 1274 869.4 16 879 78 229.2 359 1 1
Summer 1186 693.5 16 90.2 78 142.5 345 1 1
Espanola Spring 1016 681.7 16 62.0 75 141.7 341 1 1
Early Summer 1274 7849 16 65.1 78 200.6 359 1 1
Summer 1268 838.4 16 7719 74 151.5 338 1 1
Parry Sound Spring 1085 697.5 16 64.8 75 151.1 343 1 1
Early Summer 1274 730.1 16 123.1 78 2312 365 2 2
Summer 1274 6059 16 933 78 204.6 356 1 1
Whitney Spring 1072 701.4 16 67.8 77 2083 355 1 1
Early Summer 1274 7822 16 97.1 79 1747 359 1 1
Summer 1273 687.6 16 59.5 77 168.0 339 1 1
Bancroft Spring 1081 7282 16 68.9 78 2149 355 1 1
Early Summer 1274 904.6 16 91.0 78 226.0 359 1 1
Summer 1274 7229 16 78.3 78 211.6 357 1 1
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Figure 5. Daily observations of the FWI at the Kenora fire
weather station during the period 13 April to 27 September
1988.
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Figure 6. Daily observations of the FWI at the Kirkland
Lake fire weather station during the period 13 April to 27
September 1988.
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d = number of }} « values that equal zero.

If S| , is greater then ¥, with m(m—1)>-d degrees of freedom,
Hy is rejected and the third step is taken. If H is not rejected
it is reasonable to use a Markov chain of order 1 (i.e. to
assume that tomorrow’s FWI class depends only on today’s
FWI class) and terminate the procedure.

The third step considered the hypotheses Hp and Hx

Ho : Markov chain is of order 2 or P; ;4= Pjy;

H, : Markov chain is of order 3.
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Figure 7. Daily observations of the FWI at the
Shebandowan fire weather station during the period 13
April to 27 September 1988.

The likelihood ratio test statistic S, 5 is

52,3:2ij2k1”ijk1[lnPijkl—lnijl]
and has a x? distribution with m?(m—1)>~d degrees of
freedom where

n;; 1= number of transitions from state 7 to state j to state
k and then to state /;

B/kl nz/kl/znz/kl

Br= njkﬂ? n;jrr; and
d = number of P, values that equal zero.

If S,; is greater then ¥, with m?(m-1)>-d degrees of
freedom, Hy is rejected and it is concluded that the Markov
chain is of order 3 or more. That did not happen with the fire
weather data that were tested.

Results

The results of the analysis of 26 years (1963-88) of fire
weather data observed at 15 fire weather stations across the
province of Ontario are presented in Table 3. The first and
second columns contain the names of the fire weather sta-
tions and the subseasons under investigation. The third
column indicates how many 2-day transitions were included
in each historical data set that was analysed. The next six
columns contain the likelihood ratio test statistics and their
corresponding degrees of freedom, for testing hypothesis
concerning the order of the Markov chain. The null hypoth-
esis that the Markov chain is of order » — 1 is rejected if the
test statistic (S, ;,) is greater than the critical value (the %2
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Table 4. The maximum likelihood estimates of the first order Markov chain transition probabilities for the spring, early
summer and summer subseasons at Kenora.

Today’s FWI Class Tomorrow’s FWI Class

Nil Low Moderate High Extreme
Spring
Nil 0.595 0.123 0.153 0.101 0.028
Low 0.489 0.289 0.105 0.095 0.021
Moderate 0.135 0.286 0.385 0.175 0.020
High 0.013 0.086 0.332 0.448 0.121
Extreme 0.000 0.011 0.144 0.367 0.478
Early Summer
Nil 0.575 0.118 0.172 0.109 0.026
Low 0.453 0.243 0.148 0.123 0.033
Moderate 0.104 0.343 0.367 0.167 0.018
High 0.015 0.066 0.318 0.505 0.096
Extreme 0.000 0.060 0.149 0.567 0.224
Summer
Nil 0.626 0.146 0.141 0.074 0.013
Low 0.357 0.361 0.206 0.051 0.025
Moderate 0.111 0.307 0.364 0.193 0.024
High 0.004 0.072 0.378 0.454 0.092
Extreme 0.000 0.016 0.111 0.524 0.349

Table 5. The maximum likelihood estimates of the first order Markov chain transition probabilities for the spring, early
summer and summer subseasons at Shebandowan.

Today’s FWI Class Tomorrow’s FWI Class

Nil Low Moderate High Extreme
Spring
Nil 0.726 0.222 0.047 0.004 0.000
Low 0.255 0.300 0.395 0.050 0.000
Moderate 0.214 0.085 0.487 0.210 0.004
High 0.121 0.064 0.210 0.503 0.102
Extreme 0.167 0.111 0.056 0.611 0.056
Early Summer
Nil 0.646 0.275 0.075 0.002 0.002
Low 0.256 0.292 0.411 0.040 0.000
Moderate 0.191 0.112 0.462 0.227 0.008
High 0.138 0.115 0.264 0.391 0.092
Extreme 0.154 0.077 0.077 0.462 0.231
Summer
Nil 0.704 0.277 0.019 0.000 0.000
Low 0.288 0.385 0.297 0.029 0.000
Moderate 0.221 0.158 0.481 0.137 0.004
High 0.147 0.073 0.257 0.477 0.046
Extreme 0.125 0.125 0.000 0.500 0.250
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Table 6. The maximum likelihood estimates of the first order Markov chain transition probabilities for the spring, early

summer and summer subseasons at Kirkland Lake

Today’s FWI Class

Tomorrow’s FWI Class

Nil Low Moderate High Extreme
Spring
Nil 0.658 0.305 0.032 0.003 0.003
Low 0.200 0.414 0.340 0.039 0.007
Moderate 0.214 0.162 0.428 0.183 0.013
High 0.135 0.095 0.159 0.492 0.119
Extreme 0.088 0.147 0.029 0.324 0.412
Early Summer
Nil 0.594 0.350 0.048 0.008 0.000
Low 0.214 0.423 0.314 0.046 0.003
Moderate 0.146 0.152 0.464 0.226 0.012
High 0.141 0.131 0.180 0.510 0.039
Extreme 0.095 0.095 0.238 0.333 0.238
Summer
Nil 0.705 0.274 0.021 0.000 0.000
Low 0.261 0.442 0.272 0.025 0.000
Moderate 0.192 0.184 0.500 0.117 0.008
High 0.150 0.100 0.275 0.438 0.038
Extreme 0.111 0.000 0.222 0.333 0.333

value for oo = 0.05 or 0.01 and the corresponding degrees of
freedom). The last two columns show the Markov chain rank
that it is reasonable to use for each weather station and sub-
season given the statistical test results, for the o =0.05 and
a.=0.01 levels of significance. The statistical test results pre-
sented in Table 3 can be summarized as follows.

1. Spring: The o = 0.01 test results indicate that it is reason-
able to use a Markov chain of order 1 at all 15 weather sta-
tions. The o = 0.05 test results suggest a Markov chain of
order 1 for 14 of the 15 stations, and one of order 2 for Red
Lake.

. Early Summer: The oo = 0.01 test results indicate it is rea-
sonable to use a Markov chain of order 1 at 14 of the 15
weather stations, and one of order 2 for Parry Sound. The
a = 0.05 test results also suggest a Markov chain of order
1 for 14 of the 15 stations and one of order 2 for Parry
Sound.

. Summer: The oo = 0.01 test results indicate it is reasonable
to use a Markov chain of order 1 at 13 of the 15 weather
stations, and Markov chains of order 2 for Chapleau and
Kenora. The o= 0.05 test results suggest a Markov chain
of order 1 for 12 of the 15 stations, and Markov chains of
order 2 for Chapleau, Geraldton, and Kenora.

Note however, that the likelihood ratio test is an asymptotic
test and the sample size is very low given the number of
parameters to be estimated for a Markov chain of order 3.
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It is difficult to visualize the Markovian properties of the
FWI by studying a time series graph of 26 years of data with
153 observations each year. We therefore plotted the raw FWI
observed at Kenora, Shebandowan, and Kirkland Lake for a
single year. We arbitrarily chose 1988, the last year included
in the sample. The results are presented in Figures 5, 6, and 7.
The corresponding maximum likelihood estimates of the first
order Markov chains for the spring, early summer and
summer subseasons are presented in Tables 4, 5, and 6.

Discussion

A Markov chain of order 1 and 5 FWI classes leads to a
Markov transition matrix with 25 elements to be estimated.
The number of elements to be estimated coupled with the sta-
tistical test results and the mathematical structure of the
CFFWIS suggest that it is reasonable to limit modelling of
the day to day changes in the FWI class in Ontario to Markov
chains of order 1. That is consistent with the results presented
by Greulich (1976) who opted to use a first order Markov
chain to model day to day changes in a brush burning index
despite the fact that his likelihood ratio test results suggested
a second order model might have been more appropriate for
one of two fire weather stations located in the California
Division of Forestry’s District 1.

There are several issues that should be addressed in future
studies. First, since fire management system models are by no
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means limited to the use of the FWI, the applicability of
Markov models for the other CFFWIS indices and even basic
fire weather observations such as precipitation should also be
investigated. Second, the question of time homogeneity
should be more carefully investigated with a view to develop-
ing simple procedures to cope with non-homogeneous transi-
tion probabilities, particularly during the summer subseason.

The Fire Weather Index itself is a continuous variable.
Fujioka and Tsou (1985) reported preliminary results con-
cerning their application of time series techniques to day to
day changes in a fire danger rating index based on more than
3000 weather observations recorded at four weather stations
in California. Their preliminary results suggested a second
order autoregressive process model might be appropriate.
Further effort should be devoted to investigations of the
extent to which time series analysis methods (see for
example Box and Jenkins 1976 and Chatfield 1989) can be
used to model day to day variations in fire weather and com-
paring such approaches with the use of Markov chains. Time
series analysis might also provide additional insight that
could be used to help decide how to partition the fire season
into subseasons and the order of the Markov chain within
each subseason.
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