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Metoda momentów

Definicja.

Estymatorem punktowym nazywamy dowolną funkcję, która
zależy jedynie od próby losowej X1,X2, ...,Xn.

Uwaga 1.

Przy tak przyjętej definicji każda statystyka jest estymatorem.
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Uwaga 2.

Należy odróżnić estymator od wartości estymatora.

Jeśli X1,X2, ...,Xn jest próba losowa, a x1, x2, ..., xn jest realizacja
próby losowej to W (X1,X2, ...,Xn) jest estymatorem, a
W (x1, x2, ..., xn) jest wartością estymatora.
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Metody wyznaczania estymatorów.

Przegląd metod wyznaczania estymatorów zaczniemy od metody
momentów. Przy konstrukcji estymatorów możemy skorzystać z
dobrze znanych estymatorów. Jednym z nich jest średnia próbkowa

1
n

n∑
i=1

Xi ,

która jest dobrym estymatorem wartości oczekiwanej EX1 zmiennej
losowej X1.

Podobnie
1
n

n∑
i=1

X 2i ,

jest dobrym estymatorem momentu rzędu dwa, EX 21 , zmiennej
losowej X1.

Krzysztof Topolski Estymacja parametrów



Metody wyznaczania estymatorów.

Przegląd metod wyznaczania estymatorów zaczniemy od metody
momentów. Przy konstrukcji estymatorów możemy skorzystać z
dobrze znanych estymatorów. Jednym z nich jest średnia próbkowa

1
n

n∑
i=1

Xi ,

która jest dobrym estymatorem wartości oczekiwanej EX1 zmiennej
losowej X1.

Podobnie
1
n

n∑
i=1

X 2i ,

jest dobrym estymatorem momentu rzędu dwa, EX 21 , zmiennej
losowej X1.

Krzysztof Topolski Estymacja parametrów



Metody wyznaczania estymatorów.

Ogólnie dla dowolnego k = 1, 2, ...

1
n

n∑
i=1

X ki ,

jest dobrym estymatorem momentu rzędu k, EX k1 , zmiennej
losowej X1.

Ta obserwacja jest punktem wyjścia następującej konstrukcji.
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Metoda momentów wyznaczania estymatorów.

Niech X1,X2, ...,Xn będzie próbą losową z populacji o rozkładzie z
gęstością f (x |θ1, θ2, ..., θk).

Moment Estymator momentu

µ1 = EX1 m1 = 1
n

∑n
i=1 Xi

µ2 = EX 21 m2 = 1
n

∑n
i=1 X

2
i

...
...

µk = EX k1 mk = 1
n

∑n
i=1 X

k
i
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Metoda momentów

Zwykle momenty µj są funkcjami parametrów θ1, ..., θk i wtedy

µj = gj(θ1, ..., θk).

Estymator (θ̂1, ..., θ̂k) wektora parametrów (θ1, ..., θk) wyznaczony
metodą momentów powstaje jako rozwiązanie układu równań

m1 = g1(θ1, ..., θk) ≡ µ1
m2 = g2(θ1, ..., θk) ≡ µ2

...
...

...

mk = gk(θ1, ..., θk) ≡ µk

względem θ1, ..., θk .
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Przykład 1. (Rozkład normalny)

Rozpatrzmy próbę losową (X1, X2, ...,Xn) z rozkładu normalnego
N(µ, σ2) o nieznanej wartości oczekiwanej µ i nieznanej wariancji
σ2. W przyjętej notacji szukamy estymatora wektora parametrów
modelu (θ1, θ2) = (µ, σ2).

Układ równań

µ1 = g1(θ1, θ2) = g1(µ, σ2) = µ

µ2 = g2(θ1, θ2) = g2(µ, σ2) = µ2 + σ2
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Przykład 1, cd.

Stąd otrzymujemy równości

1
n

n∑
i=1

Xi = µ

1
n

n∑
i=1

X 2i = µ2 + σ2
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Przykład 1, cd.

Rozwiązując ten układ ze względu na µ i σ2, otrzymujemy µ̂
estymator wartości oczekiwanej µ oraz σ̂2 estymator wariancji σ2,
wyznaczone metodą momentów.

µ̂ =
1
n

n∑
i=1

Xi

σ̂2 =
1
n

n∑
i=1

X 2i −

[
1
n

n∑
i=1

Xi

]2
lub w zwartej postaci

σ̂2 =
1
n

n∑
i=1

X 2i − (X̄ )2 ≡ 1
n

n∑
i=1

(Xi − X̄ )2
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Przykład 2.

Rozpatrzmy próbę losową (X1, X2, ...,Xn) z rozkładu bernoulliego
b(k, p) o gęstości postaci

P(X1 = i | k , p) =

(
k
i

)
pi (1− p)k−i , i = 0, 1, ..., k.

Zakładamy, że zarówno k jak i p są nieznane.

W przyjętej w opisie metody momentów notacji szukamy
estymatora wektora parametrów modelu (θ1, θ2) = (k, p).

W tym przypadku odpowiedni układ równań ma postć:

µ1 = g1(θ1, θ2) = g1(k, p) = kp

µ2 = g2(θ1, θ2) = g2(k, p) = kp(1− p) + k2 p2
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Przykład 2 cd.

Otrzymujemy stąd równości

1
n

n∑
i=1

Xi = kp

1
n

n∑
i=1

X 2i = kp(1− p) + k2 p2

Rozwiązując ten układ ze względu na k i p otrzymujemy k̂ ,
estymator k , oraz p̂, estymator p, wyznaczone metodą momentów.

k̂ =

(
1
n

∑n
i=1 Xi

)2
1
n

∑n
i=1 Xi −

1
n

∑n
i=1

(
Xi − 1n

∑n
i=1 Xi

)2
p̂ =

1
n

∑n
i=1 Xi
k̂
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Przykład 2 cd.

Korzystajac z oznaczenia 1n
∑n
i=1 Xi ≡ X̄ można zapisać

otrzymane estymatory bardziej zwartej postaci

k̂ =
(X̄ )2

X̄ − 1n
∑n
i=1

(
Xi − X̄

)2

p̂ =
X̄

k̂

Zdecydowanie nie są to najlepsze estymatory gdyż na ich podstawie
możemy otrzymać ujemne wartości jako oszacowanie k i p co jest
niemożliwe gdyż z definicji oba te parametry są liczbami dodatnimi.
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Metoda podstawiania częstości

Za oszacowanie nieznanych prawdopodobieństw pojawiania się
zdarzeń przyjmujemy czestości ich wystąpienia w próbie losowej.

Przykład 3.

Załóżmy, że n obiektów wybranych w sposób niezależny
klasyfikujemy (ze względu na wybraną cechę) do k rozłącznych
klas. Niech

Ni , oznacza liczbę obiektów w i-tej klasie,

pi , oznacza prawdopodobieństwo należenia do i−tej klasy.
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Przykład 3, cd.

Wektor obserwacji (N1,N2, ...,Nk) ma rozkład wielomianowy
M(x | n, p1, p2, ..., pk) o gęstości

P (N1 = n1,N2 = n2, ...,Nk = nk) =
n !∏k
i=1 ni !

k∏
i=1

pnii ,

gdzie
∑k
i=1 ni = n, oraz

∑k
i=1 pi = 1.
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Przykład 3 cd.

W tej sytuacji naturalnym oszacowaniem wektora nieznanych
prawdopodobieństw

(p1, p2, ..., pk)

jest zastąpienie ich przez obserwowane częstości

(p̂1, p̂2, ..., p̂k) =

(
N1
n
,
N2
n
, ...,
Nk
n

)
.
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