Problem List 2 (Homology)

TDA, SUMMER SEMESTER 2022/23, IM UWR

1. For each of the following sequences of vector spaces (with the rightmost vector space being C_{-1}) and maps between them (represented by the given matrices) below, decide if the sequence is a chain complex, and give a reason why (or why not).

(a)
$$\cdots \to 0 \to 0 \to \mathbb{R} \xrightarrow{\begin{pmatrix} 3 \\ 2 \end{pmatrix}} \mathbb{R}^2 \xrightarrow{\begin{pmatrix} -2 & 3 \end{pmatrix}} \mathbb{R} \to 0 \to 0;$$

(b)
$$\cdots \to 0 \to 0 \to \mathbb{R} \xrightarrow{\begin{pmatrix} 0 \\ 1 \end{pmatrix}} \mathbb{R}^2 \xrightarrow{\begin{pmatrix} 0 & 1 \end{pmatrix}} \mathbb{R} \to 0 \to 0;$$

(c)
$$\cdots \to 0 \to 0 \to \mathbb{R} \xrightarrow{\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}} \mathbb{R}^3 \xrightarrow{\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}} \mathbb{R}^2 \xrightarrow{\begin{pmatrix} 1 & 1 \\ 1 \end{pmatrix}} \mathbb{R} \to 0;$$

$$(d) \cdots \to 0 \to 0 \to \mathbb{Z}/2\mathbb{Z} \xrightarrow{\begin{pmatrix} 1\\1\\0 \end{pmatrix}} (\mathbb{Z}/2\mathbb{Z})^3 \xrightarrow{\begin{pmatrix} 1 & 1 & 0\\1 & 1 & 0 \end{pmatrix}} (\mathbb{Z}/2\mathbb{Z})^2 \xrightarrow{\begin{pmatrix} 1 & 1\\1 & 1 \end{pmatrix}} \mathbb{Z}/2\mathbb{Z} \to 0;$$

(e)
$$\cdots \to 0 \to 0 \to \mathbb{R} \xrightarrow{\begin{pmatrix} 2 \\ -1 \end{pmatrix}} \mathbb{R}^2 \xrightarrow{\begin{pmatrix} 1 & 2 \\ 2 & 4 \\ 3 & 6 \end{pmatrix}} \mathbb{R}^3 \xrightarrow{\begin{pmatrix} 1 & 1 & -1 \end{pmatrix}} \mathbb{R} \to 0.$$

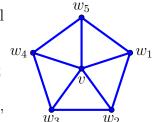
$$(f) \cdots \to 0 \to 0 \to \mathbb{R} \xrightarrow{\begin{pmatrix} 0 \\ 0 \end{pmatrix}} \mathbb{R}^2 \xrightarrow{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}} \mathbb{R}^3 \xrightarrow{\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}} \mathbb{R} \to 0.$$

2. For each of the sequences in the previous question that is a chain complex, compute the homology groups of that chain complex.

1

- 3. Let K be a square, i.e. the simplicial complex $K = \{a, b, c, d, ab, bc, cd, ad\}$.
 - (a) Write down the chain complex $(C_{\bullet}(K;\mathbb{R}), \partial_{\bullet})$.
 - (b) Compute the homology groups $H_n(K; \mathbb{R})$.
 - (c) Let $K' = K \setminus \{ad\}$. Compute the homology groups $H_n(K'; \mathbb{R})$.
 - (d) Let $K'' = K \cup \{ac\}$. Compute the homology groups $H_n(K''; \mathbb{R})$.

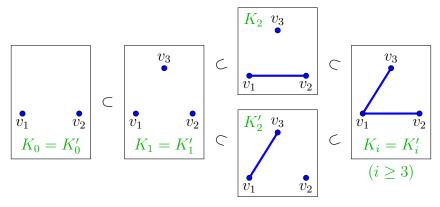
- 4. Let K be a simplicial complex, and let $v \in V(K)$. Define the simplicial complex $K' = K \cup \{u, uv\}$, where u is a "new" vertex (i.e. $u \notin V(K)$). Let \mathbb{F} be a field, and denote by $(C_{\bullet}(K; \mathbb{F}), \partial_{\bullet}^{K})$ and $(C_{\bullet}(K'; \mathbb{F}), \partial_{\bullet}^{K'})$ the corresponding chain complexes.
 - (a) Express the dimensions $\dim_{\mathbb{F}} C_n(K'; \mathbb{F})$ in terms of $\dim_{\mathbb{F}} C_n(K'; \mathbb{F})$.
 - (b) Write down the maps $\partial_n^{K'}$ in terms of ∂_n^K (using the matrices representing those maps).
 - (c) Show that $\dim_{\mathbb{F}} \ker(\partial_n^K) = \dim_{\mathbb{F}} \ker(\partial_n^{K'})$ and $\dim_{\mathbb{F}} \operatorname{im}(\partial_{n+1}^K) = \dim_{\mathbb{F}} \operatorname{im}(\partial_{n+1}^{K'})$ for every $n \geq 1$. Deduce that $H_n(K; \mathbb{F}) \cong H_n(K'; \mathbb{F})$ for all $n \geq 1$.
 - (d) Show that $\dim_{\mathbb{F}} \ker(\partial_0^K) = \dim_{\mathbb{F}} \ker(\partial_0^{K'}) 1$ and $\dim_{\mathbb{F}} \operatorname{im}(\partial_1^K) = \dim_{\mathbb{F}} \operatorname{im}(\partial_1^{K'}) 1$, and deduce that $H_0(K; \mathbb{F}) \cong H_0(K'; \mathbb{F})$.
- 5. Let $m \geq 3$, and let K_m be an m-wheel, defined as the simplicial complex



 $K_m = \{v, w_1, \dots, w_m, vw_1, \dots, vw_m, w_1w_2, \dots, w_{m-1}w_m, w_1w_m\};$

see the picture on the right for the case m = 5. Let \mathbb{F} be a field, and let $(C_{\bullet}(K_m; \mathbb{F}), \partial_{\bullet})$ be the corresponding chain complex.

- (a) Show that $\operatorname{im}(\partial_1)$ consists precisely of expressions of the form $\alpha e_v + \sum_{i=1}^m \beta_i e_{w_i}$, where $\alpha, \beta_1, \dots, \beta_m \in \mathbb{F}$ satisfy $\alpha + \sum_{i=1}^m \beta_i = 0$. Use this to compute $H_0(K_m; \mathbb{F})$.
- (b) Compute $H_n(K_m; \mathbb{F})$ for all $n \geq 2$.
- (c) Use the Euler characteristic of K_m to compute $H_1(K_m; \mathbb{F})$.
- 6. Consider the following two filtrations of simplicial complexes, denoted by $(\{K_i\}, \{f_i\})$ and $(\{K'_i\}, \{f'_i\})$, where $f_i : K_i \to K_{i+1}$ and $f'_i : K'_i \to K'_{i+1}$ are the inclusions.



- (a) Compute the homology groups $H_0(K_i; \mathbb{R})$ and $H_0(K_i'; \mathbb{R})$ for all $i \in \mathbb{N}$, explicitly writing down their bases (as \mathbb{R} -vector spaces).
- (b) Write down matrices representing the maps $(f_i)_*: H_0(K_i; \mathbb{R}) \to H_0(K_{i+1}; \mathbb{R})$ and $(f'_i)_*: H_0(K'_i; \mathbb{R}) \to H_0(K'_{i+1}; \mathbb{R})$ induced in homology (with respect to the bases you chose in the previous part).
- (c) Show that $(f_1)_* \circ (f_0)_*$ is an isomorphism, but $(f_1)_* \circ (f_0)_*$ is not.