
Indukcja matematyczna. Dwumian Newtona.

�wiczenia tydzie« 1: zad. 1-23 Kolokwium nr 1: materiaª z zad. 1-23

1. Dowie±¢, »e dla ka»dej liczby naturalnej n zachodzi równo±¢

1 + 4 + 9 + 16 + . . .+ n2 =
n(n+ 1)(2n+ 1)
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.

2. Dowie±¢, »e dla ka»dej liczby naturalnej n zachodzi równo±¢

13 + 23 + 33 + ...+ n3 = (1 + 2 + 3 + ...+ n)2 .

3. Dowie±¢, »e dla ka»dej liczby naturalnej n ≥ 2 zachodzi równo±¢
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4. Dowie±¢, »e 6n − 1 dzieli si¦ przez 5, dla ka»dej liczby naturalnej n.

5. Niech a1 = 1 oraz an+1 = 2an + 1 dla n naturalnych. Znajd¹ wzór na an i udowodnij
go indukcyjnie.

6. Dowie±¢, »e dla ka»dej liczby naturalnej n oraz dowolnej liczby a ≥ −1 zachodzi
nierówno±¢

(1 + a)n ≥ 1 + na.

7. Dowie±¢, »e dla ka»dej liczby naturalnej n zachodzi nierówno±¢ 10n < 2n + 25 .

8. Dowie±¢, »e dla ka»dej liczby naturalnej n zachodzi nierówno±¢

1 + 2 · 3 + 3 · 32 + 4 · 33 + 5 · 34 + ...+ n · 3n−1 ≥ 2n− 1

4
· 3n .

9. Dowie±¢, »e dla dowolnej liczby naturalnej n zachodzi

9 · (3n)! · n.............2 · (3n · n!)3 .

W miejsce kropek wstawi¢ jeden ze znaków: >, <, =, ≥, ≤.

Oznaczenia:
n∑

i=m

ai = am + am+1 + am+2 + am+3 + . . .+ an−1 + an

n∏
i=m

ai = am · am+1 · am+2 · am+3 · . . . · an−1 · an

Obliczy¢ warto±ci wyra»e«:
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15. Udowodnij, »e dla dowolnych liczb naturalnych k oraz N ≤M
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Zapami¦taj:

n! = 1 · 2 · 3 . . . · n ale 0! = 1
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16. Dowie±¢, »e dla ka»dej liczby naturalnej n ≥ 2 zachodzi nierówno±¢
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< 4n.

Wskazówka: (1 + 1)2n
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18. Wskaza¢ tak¡ liczb¦ x, »e dla dowolnych liczb naturalnych n i k ≤ n − 2 prawdziwa
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19. Uporz¡dkowa¢ rosn¡co nast¦puj¡ce liczby:(
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20. Dowie±¢, »e dla ka»dego n ≥ 2 zachodzi równo±¢(
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21. Dowie±¢, »e dla ka»dej liczby naturalnej n zachodzi nierówno±¢
(
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)
< 7n.

22. O zdaniu T (n) udowodniono, »e prawdziwe jest T (1), oraz »e dla dowolnego n ≥ 6
zachodzi implikacja T (n)⇒ T (n+ 2). Czy mo»na st¡d wnioskowa¢, »e

a) prawdziwe jest T (10),
b) prawdziwe jest T (11),
c) prawdziwa jest implikacja T (7)⇒ T (13),
d) prawdziwa jest implikacja T (3)⇒ T (1),
e) prawdziwa jest implikacja T (1)⇒ T (3).

23. O zdaniu T (n) udowodniono, »e prawdziwe s¡ T (1) i T (100), oraz »e dla dowolnego
n ≥ 10 zachodzi implikacja T (n)⇒ T (n− 1). Czy mo»na st¡d wnioskowa¢, »e

a) prawdziwe jest T (9),
b) prawdziwe jest T (8),
c) prawdziwa jest implikacja T (50)⇒ T (30),
d) prawdziwa jest implikacja T (300)⇒ T (200),
e) prawdziwa jest implikacja T (30)⇒ T (50),
f) prawdziwa jest implikacja T (200)⇒ T (300).
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