
Inna notacja:

,

,

.

Wśród wielomianów
stopnia  jedynie 
spełnia owe warunki.

Pochodne wyższych rzędów

Drugą pochodną funkcji  w punkcie  nazywamy granicę     (o ile ta granica istnieje).

Czyli druga pochodna jest pochodną pochodnej danej funkcji. Podobnie określa się następne pochodne: 

Przykład.

Dla  mamy:

i  dla 
Dla  mamy:

i widać, że dalej się powtarza (co 4).

Dzięki wzorom trygonometrycznym można to ująć zgrabną formułą: 

Dla  mamy:

Uwaga.

Określenie      dopuszcza wstawianie za  dowolnej liczby rzeczywistej.

Dla naturalnego ,  jest to zgodne z tym, co znasz z kombinatoryki; Newton tak o tym myślał.
Matematycy zazwyczaj (patrz wyżej) przedstawiają pochodne jako pewną "żonglerkę znaczkami".
Trzeba pamiętać, że Newton je wymyślił po to, by prosto nimi opisywać realny świat fizyczny.
(Nie tylko po to, by zapisać , gdzie  to druga pochodna przemiaszczenia po czasie.)

Wzór Taylora

Przykład.
Powiedzmy, że mamy pewną informację o funkcji , że

w ustalonym punkcie  jest: 

Wielomian 

ma też te własności, czyli: 

  
W innych punktach  i  mogą się różnić; o tym mówi poniższe twierdzenie.

Twierdzenie. (Wzór Taylora)
Niech  będzie funkcją -krotnie różniczkowalną w każdym punkcie przedziału o końcach  i . Wtedy istnieje takie 
pomiędzy  i , że

Uwaga. Zauważ, że  występuje tylko jako argument -tej pochodnej w ostatnim składniku po prawej - zwanym resztą .
Poza  pochodne są obliczane w (zazwyczaj to jest 'ładny' punkt).
Przy ustalonym  suma po prawej stronie równości, BEZ reszty , jest wielomianem zmiennej  stopnia .

Uwaga. Dla  jest to dokładnie tw. Lagrange'a (przenieś  na lewą stronę i podziel stronami przez ).

Przykład.

Niech ,  i . Mamy: , .

Wstawiając  mamy:

              

Równanie  jest równaniem stycznej do  w .

Dla  można napisać: ; oszacowanie  pozwoli ocenić
błąd tego przybliżenia:

Można poprawić dokładność stosując wzór Taylora z ; mianowicie:

              

Wielomian  lepiej niż styczna  przybliża  w pobliżu :

Dla  mamy: ; z błędem nie większym niż 0,032, bo

f x0 f ′′(x0)
def.
= lim

x→x0

f ′(x)−f ′(x0)
x−x0

f ′′′, f (4), f (5), … .

f(x) = 7x4 + πx3 − 2x + √2
f ′(x) = 28x3 + 3πx2 − 2, f ′′(x) = 84x2 + 6πx, f (3)(x) = 168x + 6π, f (4)(x) = 168 f (k)(x) = 0 k ≥ 5.

f(x) = sin x

f ′(x) = cos x, f ′′(x) = − sin x, f (3)(x) = − cos x, f (4)(x) = sin x

f (k)(x) = sin(x + k ).π

2
f(x) = (1+x)a

f ′(x) = a(1+x)a−1, f ′′(x) = a(a−1)(1+x)a−2, f (k)(x) = a(a−1)(a−2) … (a−k+1)(1+x)a−k = k!( )(1+x)a−k.a
k

f ′(x) =
d f(x)

d x

f ′′(x) =
d2f(x)

d x2

f (k)(x) = dkf(x)
d xk

( ) def.
=a

k

a(a−1)(a−2)…(a−k+1)
k! a

a a ≥ k,

F = ma a

f

x0 f(x0) = 7, f ′(x0) = π, f ′′(x0) = √2, f ′′′(x0) = √3.

≤ 3 w
w(x) = 7 + π ⋅ (x − x0) + ⋅ √2 ⋅ (x − x0)21

2 + ⋅ √3 ⋅ (x − x0)31
6

f(x0) = 7 = w(x0), f ′(x0) = π = w′(x0), f ′′(x0) = √2 = w′′(x0), f ′′′(x0) = √3 = w′′′(x0).
f(x) w(x)

f n x0 x x̄
x0 x

f(x) = f(x0) + f ′(x0) ⋅ (x − x0) + f ′′(x0) ⋅ (x − x0)2 + … + f (n−1)(x0) ⋅ (x − x0)n−1 + f (n)(x̄)⋅(x − x0)n.1
2

1
(n−1)!

1
n!

x̄ n Rn

Rn x0
x0 Rn x ≤ (n − 1)

n = 1 f(x0) (x − x0)

f(x) = √x x0 = 1 n = 2 f ′(x) = 1
2√x

f ′′(x) = −1

4√x3

x0 = 1
√x = 1 + ⋅ (x − 1)

w1(x)

+ ⋅ ⋅ (x − 1)2


R2

.1
2

1
2

−1

4√x̄3

y = w1(x) f x0

x = 1,8 √1, 8 ≈ w1(1, 8) = 1,4 R2

|f(x) − w1(x)| = |√1,8 − 1,4| = |R2| = ∣
∣ ⋅ (1,8 − 1)2∣

∣ ≤ ⋅ 0,82 = 0,08.−1

8√x̄3

1

8√13

n = 3

√x = 1 + ⋅ (x − 1) + ⋅ ⋅ (x − 1)2
w2(x)

+ ⋅ ⋅ (x − 1)3


R3

.1
2

1
2

1
4

1
6

3

8√x̄5

w2 w1 f x0

x = 1,8 √1, 8 ≈ w2(1, 8) = 1,48

|f(x)−w2(x)| = |√1,8−1,48| = |R3| = ∣
∣ ⋅ (1,8−1)3∣

∣ ≤ ⋅ 0,83 = 0,032.1
16√x̄5

1

16√15
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Ćwiczenie.  Jak na wykresach zobaczyć wielkości  i ?

Przykład.
Niech ,  i . Łatwo dostajemy  i  skąd

   

Dla każdego  mamy 

czyli  przybliża  na przedziale  z błędem nie większym od 5/1000.

Napis     czy też     nazywamy szeregiem Taylora funkcji  w 

Dla , mamy:  i  skąd

szereg Taylora dla  w  jest równy    .

Szereg Taylora jest w pewnym sensie "nieskończonym wielomianem", przykładem obiektu, którego sens trzeba
doprecyzować; "nieskończone dodawanie" można rozumieć opatrznie. Szczegółowo będzie to omawiane w drugim semestrze.

Zauważmy tylko, że w ostatnim przykładzie , mamy  co ma się nijak do napisu ,

zatem nie jest tak, by szereg Taylora był równy funkcji (czasami tak jest).

Ze wzoru Taylora i z tw. Lagrange'a (jego szczególnej wersji: ), można odczytać dowody wielu twierdzeń. Na przykład:

Twierdzenie. 
Niech  ma ciągłą pierwszą i drugą pochodną w przedziale  i niech . Wtedy:

  a )  Jeśli , to istnieją ,  takie, że  jest rosnąca na .

  a )  Jeśli , to istnieją ,  takie, że  jest malejąca na .

  b )  Jeśli  i , to istnieją ,  takie, że   (czyli  osiąga minimum lokalne w ).

  b )  Jeśli  i , to istnieją ,  takie, że   (czyli  osiąga maximum lokalne w ).

Dowód b ).
Z ciągłości  wynika istnienie przedziału ,  takiego, że  jest na nim dodatnia. Dla , , mamy:

 dla pewnego , skąd - uwzględniając 

 - mamy:  Stąd  dla  co należało dowieść.

Uwaga.
Dowody pozostałych podpunktów są podobne.

Uwaga.
Jeśli  i , to zachowanie  w pobliżu  nie jest zdeterminowane, jak pokazują następujące przykłady:

    jest rosnąca i  i ,

    ma minimum w  i  i ,

    ma maksimum w  i  i .

( Zbadanie znaku pochodnej na przedziałach ,  pozwala okrelić monotoniczność na nich i dowieść własności w 0.)

Wypukłość funkcji

Rozgrzewka.  Napis , rachunkowo oczywisty, przy grze w

podchody (tak, podchody) oznacza, że by z  dojść do celu , można najpierw dojść do , a potem przejść  drogi z  do 

Innymi słowy  leży na odcinku  w  jego długości od  Dlatego napis ,  wskazuje na

wszystkie punkty odcinka  (i to niezależnie od tego, czy rzecz się 'dzieje' w , w , czy w ). (Zrób rysunki!) W

podobny sposób na AL sprawdzano, że  leży we wnętrzu trójkąta .

Wypukłość/wklęsłość funkcji na przedziale.  Siadamy okrakiem na wykresie funkcji i poruszamy się od  'bardzo
ujemnych' do 'bardzo dodatnich'. Naogół zakręcamy, 'raz w lewo, raz w prawo'.

Zakręt  nad przedziałem  na osi  oznacza, że w każdym momencie strzałka wzdłuż stycznej leży  wykre-

sem funkcji; mówimy wtedy, że  jest  na (innymi słowy: ścinając zakręt wzdłuż odcinka siecznej, cały skrót leży  wykresem

R2 R3

f(x) = ex x0 = 0 n = 6 f (k)(x) = ex f (k)(0) = e0 = 1,

ex = 1+(x−0)+ (x−0)2+ (x−0)3+ (x−0)4+ (x−0)5
w5(x)

+ ex̄(x−0)6
R6

= 1+x+ + + + +ex̄ .1
2!

1
3!

1
4!

1
5!

1
6!

x2

2
x3

6
x4

24
x5

120
x6

720

x ∈ [0, 1] |ex − (1+x+ + + + )| ≤ e1 ≤ 3 = = 0, 0041666 … ,x2

2
x3

6
x4

24
x5

120
x6

720
16

720
1

240
w5(x) ex [0, 1]

1+x+ + + + + …x2

2!
x3

3!
x4

4!
x5

5!

∞
∑
k=0

xk

k! ex x0 = 0.

f(x) = 1
1−x

x0 = 0 f (k)(x) = k! ⋅ (1 − x)−(k+1) f (k)(0) = k!,

f(x) = 1
1−x

x0 = 0 1 + x + x2 + x3 + x4 + x5 + …

f(x) = 1
1−x

f(2) = −1 1 + 2 + 22 + 23 + …

n = 1

f (a, b) x0 ∈ (a, b)
′+ f ′(x0) > 0 p, q p<x0 <q f [p, q]
′− f ′(x0) < 0 p, q p<x0 <q f [p, q]
′′+ f ′(x0) = 0 f ′′(x0) > 0 p, q p<x0 <q f(x0) = inf

[p,q]
f f x0

′′− f ′(x0) = 0 f ′′(x0) < 0 p, q p<x0 <q f(x0) = sup
[p,q]

f f x0

′′+

f ′′ [p, q] x0 ∈ (p, q) f ′′ x ∈ [p, q] n = 2
f(x) = f(x0) + f ′(x0) ⋅ (x − x0) + f ′′(x̄) ⋅ (x − x0)21

2 x̄ ∈ (p, q) f ′(x0) = 0,
f ′′(x̄) > 0 f(x) − f(x0) = f ′′(x̄) ⋅ (x − x0)2 ≥ 0.1

2 f(x) ≥ f(x0) x ∈ [p, q],

f ′(x0) = 0 f ′′(x0) = 0 f x0

f1(x) = x3 f ′
1(0) = 0 f ′′

1 (0) = 0
f2(x) = x4 0 f ′

2(0) = 0 f ′′
2 (0) = 0

f3(x) = −x4 0 f ′
3(0) = 0 f ′′

3 (0) = 0
(−∞, 0) (0, +∞)

⟶
OC =

⟶
OA +

⟶
OB =

⟶
OA + (

⟶
OB −

⟶
OA) =

⟶
OA +

⟶
AB3

4
1
4

1
4

1
4

O C A 1
4 A B.

C AB 1
4 A. (1 − t)

⟶
OA + t

⟶
OB t ∈ [0, 1]

AB R2 R R3

⟶
OA +

⟶
OB +

⟶
OC1

3
1
3

1
3 ABC

x

'w lewo'
'w prawo' [a,b] OX

pod
nad

f
wypukła
wklęsła [a,b] nad

pod

f).
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Zakręcanie  to niemal to samo co  współczynnika kierunkowego stycznej, czyli  pochodnej.

Owa własność skrótów wzdłuż siecznych jest niżej określona 'znaczkami':
   jest wypukła na przedziale , gdy   

   jest wklęsła na przedziale , gdy   

Na szczęście dla ciągłych  można to wyrazić nieco prościej (sprawdzając, gdzie leży obraz środka odcinka ):

   jest wypukła na przedziale , gdy   

   jest wklęsła na przedziale , gdy   

Gdy  na  jest wypukła[wklęsła] i na  jest wklęsła[wypukła], to punkt  nazywamy punktem przegięcia.

Na szczęście tę własność geometryczną (wypukłość/wklęsłość) łatwo sprawdza druga pochodna:

Twierdzenie.  Niech  ma drugą pochodną w każdym punkcie przedziału .

    Jeśli  dla każdego , to  jest wypukła na przedziale .

    Jeśli  dla każdego , to  jest wklęsła na przedziale .

    Jeśli  i  na  i  na , to  ma punkt przegięcia w ;

    jeśli  i  na  i  na , to  ma punkt przegięcia w .

Przykład.  Niech 

Mamy , zatem:

     jest wklęsła na ,
     jest wypukła na ,
     ma punkt przegięcia w .

Przykład.  Niech 

Mamy , zatem  dla  zatem  jest wypukła na .

Zatem   ,     ,     .

Wypukłość/wklęsłość funkcji jest 'fabryką' nierówności:

Przykład.  Niech 

Mamy , zatem  jest wklęsła .

Stąd mamy (łatwe)   , co jest równoważne z .

Również , co jest równoważne z  (co też jest łatwe).

Również , co jest równoważne z  (co już takie łatwe nie jest).

Również , co jest równoważne z .

Przykład.  Niech 

Mamy , zatem  jest wypukła na .

Stąd mamy (łatwe)   , co jest równoważne z .

Również , co jest równoważne z , dla 

'w lewo'
'w prawo'

zwiększanie
zmniejszanie

zwiększanie
zmniejszanie

f [a, b] ∀
p≠q∈[a,b]

∀
t∈(0,1)

f ((1 − t)p + tq) < (1 − t)f(p) + tf(q);

f [a, b] ∀
p≠q∈[a,b]

∀
t∈(0,1)

f ((1 − t)p + tq) > (1 − t)f(p) + tf(q).

f [p, q]

f [a, b] ∀
p≠q∈[a,b]

f ( ) < ;p+q

2
f(p)+f(q)

2

f [a, b] ∀
p≠q∈[a,b]

f ( ) > .p+q

2
f(p)+f(q)

2

f [a, x0] [x0, b] x0

f [a, b]
f ′′(x) > 0 x ∈ (a, b) f [a, b]
f ′′(x) < 0 x ∈ (a, b) f [a, b]
f ′′(x0) = 0 f ′′ > 0 (a, x0) f ′′ < 0 (x0, b) f x0

f ′′(x0) = 0 f ′′ < 0 (a, x0) f ′′ > 0 (x0, b) f x0

f(x) = arctan(x).
f ′′(x) = −x

(1+x2)2

f (0, +∞)
f (−∞, 0)
f x = 0

f(x) = xx, x > 0.
f ′′(x) = xx( + (ln x + 1)2)1

x f ′′(x) > 0 x > 0 f (0, +∞)

33 < 22+44

2 2ee < (e − 1)e−1 + (e + 1)e+1 44 < ⋅ 22 + ⋅ 551
3

2
3

f(x) = ln x, x > 0.
f ′′(x) = − < 01

x2 f (0, +∞)

ln 3 > ln 2+ln 4
2 3 = > √2 ⋅ 42+4

2

ln >2+4+6
3

ln 2+ln 4+ln 6
3 4 = > 3√2 ⋅ 4 ⋅ 62+4+6

3

ln ≥a+b+c

3
ln a+ln b+ln c

3 ≥ 3√a ⋅ b ⋅ c
a+b+c

3

ln ≥a1+a2+…+an

n

ln a1+ln a2+…+ln an

n ≥ n√a1 ⋅ a2 ⋅ … ⋅ an
a1+a2+…+an

n

f(x) = x3, x > 0.
f ′′(x) = 6x f (0, +∞)

( )3
<2+4

2
23+43

2 3 = < 3√2+4
2

23+43

2

( )3
≤a1+a2+…+an

n

a3
1+a3

2+…+a3
n

n ≤ 3√a1+a2+…+an

n

a3
1+a3

2+…+a3
n

n a1, … , an ≥ 0.
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