
7. Funkcje - ci¡g dalszy.

Szanowni Pa«stwo. Poni»ej znajduj¡ si¦ dalsze informacje dotycz¡ce funkcji.

1. Wªasno±¢ Darboux. Zacznijmy od de�nicji

De�nicja. Mówimy, »e funkcja f z dziedzin¡ Df ma wªasno±¢ Darboux je±li dla ka»dego

przedziaªu [a, b] ⊂ Df i dla ka»dego d le»¡cego mi¦dzy f(a) i f(b) istnieje c ∈ [a, b] takie, »e
f(c) = d.

Chodzi wi¦c o to, »e funkcja przyjmuje wszystkie po±rednie warto±ci mi¦dzy f(a) i f(b).
Wa»ny jest nast¦puj¡cy

Fakt. Je±li funkcja jest ci¡gªa, to ma wªasno±¢ Darboux.

W skrócie my±limy wi¦c nast¦puj¡co. Niech f b¦dzie funkcj¡ ci¡gª¡. Bierzemy a, b ∈
Df takie, »e [a, b] ⊂ Df . Nast¦pnie bierzemy dowoln¡ liczb¦ d le»¡c¡ mi¦dzy f(a) i f(b).
Wówczas, korzystaj¡c z wªasno±ci Darboux, jestesmy pewni, »e gdzie± w przedziale [a, b] le»y
liczba c taka, »e f(c) = d. Czyli wiemy, »e po±rednia warto±¢ d musi by¢ przyj¦ta przez nasz¡
funkcj¦ w punkcie c.

W praktyce wygl¡da to na przykªad tak, »e je±li [a, b] ⊂ Df oraz wiemy, »e

f(a) < 0, f(b) > 0,

to dostajemy, »e f(c) = 0 dla pewnego c ∈ [a, b]. Alternatywnie, je±li

f(a) > 0, f(b) < 0,

to znów dostajemy, »e f(c) = 0 dla pewnego c ∈ [a, b].
Prosz¦ zauwa»y¢, »e intuicyjnie jest to bardzo jasne. Je±li f(a) jest po jednej stronie osi

OX, a f(b) jest po drugiej stronie tej osi, to wykres funkcji f musi przeci¡¢ t¡ o± przechodz¡c
od f(a) do f(b).

T¡ wªasno±¢ wykorzystujemy do pokazywania, »e dane równanie ma rozwi¡zanie le»¡ce
w pewnym przedziale.

Przykªad. Rozwa»my równanie (dla e = 2, 71 . . . )

(∗) ex = −x.
Aby stwierdzi¢, »e to równanie ma rozwi¡zanie mo»emy naszkicowa¢ wykresy y = ex oraz
y = −x i zbada¢, gdzie si¦ przecinaj¡. Z takiego szkicu wynika, »e rozwi¡zanie tego równania
mo»e si¦ znajdowa¢ w przedziale [−1, 0].

Aby si¦ upewni¢, »e tak jest, przenosimy wszystkie wyrazy równania (∗) na jedn¡ stron¦

ex + x = 0

i traktujemy to równanie jako
f(x) = 0,

gdzie
f(x) = ex + x.

Stwierdzamy, »e funkcja f jest ci¡gªa. A nast¦pnie badamy jaki ma znak (dodatni, czy
ujemny) w punktach x = −1 oraz x = 0 (czyli w ko«cach naszego przedziaªu [−1, 0]):

f(−1) = e−1 − 1 < 0,

bo 1
e < 1, bo 1 < e oraz

f(0) = e0 + 0 = 1 > 0.

Skoro wyszªy nam znaki przeciwne (f(−1) < 0, f(0) > 0), to mo»emy ju» sko«czy¢ zadanie
pisz¡c m¡drze: Korzystaj¡c z wªasno±ci Darboux funkcji ci¡gªej f równanie (∗) ma rozwi¡zanie
w przedziale [−1, 0].
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2. Liczba e. Podobnie jak π = 3, 14 . . . liczba e = 2, 71 . . . jest bardzo wa»n¡ liczb¡
niewymiern¡, która de�niowana jest jako granica ci¡gu

en =

(
1 +

1

n

)n
.

Mo»na wykaza¢, »e ten ci¡g jest rosn¡cy i ograniczony. Zgodnie z faktem z poprzednich
wykªadów oznacza to, »e ten ci¡g jest zbie»ny do granicy, któr¡ oznaczamy jako e. Tak wi¦c

e = lim
n→∞

(
1 +

1

n

)n
.

Warto pami¦ta¢, »e skoro ci¡g (en) jest rosn¡cy, to dla n ∈ N uzyskujemy te» nierówno±¢(
1 +

1

n

)n
< e.

Wa»ne jest to, »e zmienn¡ dyskretn¡ n mo»emy zast¡pi¢ zmienn¡ ci¡gª¡ x i otrzyma¢ t¡
sam¡ granic¦, czyli

lim
x→∞

(
1 +

1

x

)x
= e.

Ponadto, warto te» pogª¦bi¢ poj¦cie granicy. W takiej granicy jak powy»ej wa»ne jest
tylko to, »e x d¡»y do ∞, a wcale nie jest wa»ne jak ten x wygl¡da. Mo»emy wi¦c za x
wstawi¢ dowoln¡ funkcj¦ d¡»¡c¡ wraz z x do ∞ i granica si¦ nie zmieni. Tak wi¦c

lim
x→∞

(
1 +

1

f(x)

)f(x)
= e,

dla dowolnej funkcji f takiej, »e limx→∞ f(x) =∞.
Przykªadowo

lim
x→∞

(
1 +

1

x2

)x2

= e

oraz

lim
x→∞

(
1 +

1√
x

)√x
= e.

Dzi¦ki temu mo»emy doj±¢ do nast¦pujacej ciekawej konkluzji

lim
x→−∞

(
1 +

1

x

)x
= e.

Aby to zobaczy¢ zastosujemy przydatn¡ technik¦ do obliczania granic. Polega ona na
zast¡pieniu x czym± wygodniejszym. W tym wypadku we¹miemy x = −t. Skoro x → −∞,
to t→∞ i nasza granica zmieni si¦ w granic¦ w +∞

lim
x→−∞

(
1 +

1

x

)x
= lim
−t→−∞

(
1 +

1

−t

)−t
= lim
t→+∞

(
1− 1

t

)−t
=

lim
t→∞

(
t− 1

t

)−t
= lim
t→∞

(
t

t− 1

)t
= lim
t→∞

(
t− 1 + 1

t− 1

)t
=

lim
t→∞

(
1 +

1

t− 1

)t
= lim
t→∞

(
1 +

1

t− 1

)t−1
·
(

1 +
1

t− 1

)
= e · 1 = e.

U�, no dzi¦ki :)
Powy»sza granica jest o tyle istotna, »e pozwala na uzyskanie nast¦pujacej formuªy

lim
x→∞

(
1 +

a

x

)x
= ea,
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która zachodzi dla wszystkich a ∈ R.
Wynika to z tego, »e

lim
x→∞

(
1 +

a

x

)x
= lim
x→∞

((
1 +

1
x
a

) x
a

)a
= ea,

co dziaªa zarówno dla a > 0, jak i dla a < 0 (dla a = 0 ªatwo sprawdzi¢, »e formuªa jest OK).
Ponadto, jak ªatwo si¦ domy±li¢, nic nie zmienia si¦ w −∞ i mamy, »e

lim
x→−∞

(
1 +

a

x

)x
= ea.

Ostatni przydatny wzór, to

lim
x→±∞

(
x+ a

x+ b

)x
= ea−b,

dla wszystkich a, b ∈ R.
Mo»na go zobaczy¢ tak

lim
x→±∞

(
x+ a

x+ b

)x
= lim
x→±∞

(
x+ a

x

)x(
x

x+ b

)x
= lim
x→±∞

(
1 +

a

x

)x 1(
1 + b

x

)x =
ea

eb
= ea−b.

Podsumowuj¡c, warto zapami¦ta¢ nast¦pujace granice:

lim
n→∞

(
1 +

1

n

)n
= e,

lim
x→±∞

(
1 +

1

x

)x
= e,

lim
x→±∞

(
1 +

a

x

)x
= ea,

lim
x→±∞

(
x+ a

x+ b

)x
= ea−b.

3. Asymptoty. Rozró»niamy dwa rodzaje asymptot: asymptoty pionowe i asymptoty
uko±ne. Ponadto czasem asymptota uko±na mo»e by¢ asymptot¡ poziom¡.

a) Asymptoty pionowe. Asymptota pionowa funkcji f to prosta o równaniu x = a.
Wyst¦puje ona wtedy, gdy funkcja f ma niesko«czon¡ granic¦ jedno- lub obu- stronn¡ w
punkcie x = a. Czyli

lim
x→a+

f(x) = ±∞ lub lim
x→a−

f(x) = ±∞.

Na przykªad prosta x = 0 jest asymptot¡ pionow¡ funkcji f(x) = 1
x , bo limx→0+

1
x = +∞

(oczywi±cie mamy te», »e limx→0−
1
x = −∞).

Prosta x = 0 jest te» asymptot¡ pionow¡ funkcji f(x) = e
1
x , bo

lim
x→0+

e
1
x =

[
e+∞

]
= +∞,

chocia»
lim
x→0−

e
1
x =

[
e−∞

]
= 0.

Sprawa wi¦c jest dosy¢ prosta. Aby znale¹¢ asymptoty pionowe szukamy tych punktów,
w których funkcja ma (z której± strony) niesko«czon¡ granic¦.

Takich asymptot mo»e by¢ niesko«czenie wiele (jak np. dla funkcji tangens).
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b) Asymptoty uko±ne. Asymptoty uko±ne opisuj¡ zachowanie funkcji w niesko«czono±ci.
Chodzi wi¦c o to, aby zbada¢ jak funkcja zachowuje si¦ przy x d¡»¡cym do +∞ i przy x
d¡»¡cym do −∞.

Szczególnym przypadkiem asymptot uko±nych s¡ asymptoty poziome. Prosta o równaniu
y = b jest asymptot¡ poziom¡ je±li

lim
x→+∞

f(x) = b lub lim
x→−∞

f(x) = b.

Ogólnie, asymptota uko±na to prosta o równaniu y = ax+ b. Taka prosta jest asymptot¡
uko±n¡ je±li

lim
x→+∞

(f(x)− (ax+ b)) = 0 lub lim
x→−∞

(f(x)− (ax+ b)) = 0.

Wida¢ wi¦c, »e takich asymptot mo»e by¢ co najwy»ej dwie. Jedna w +∞, a druga w −∞.
W celu znalezienia asymptot uko±nych funkcji f post¦pujemy nast¦puj¡co.
Najpierw mo»emy zbada¢ co si¦ dzieje z nasz¡ funkcj¡ w +∞.
Je±li limx→+∞ f(x) = b, to od razu stwierdzamy, »e: Asymptota w +∞ to y = b.
Je±li granica limx→+∞ f(x) nie istnieje, to od razu stwierdzamy, »e: Funkcja nie ma

asymptoty w +∞.
Najtrudniej jest wtedy, gdy limx→+∞ f(x) = ±∞. Wówczas próbujemy znale¹¢ parame-

try a, b ∈ R, które daj¡ nam asymptot¦ y = ax+b. W pierwszym kroku szukamy a obliczaj¡c
granic¦

lim
x→+∞

f(x)

x
= a.

Je±li udaªo si¦ znale¹¢ takie a ∈ R, to w drugim kroku szukamy b obliczaj¡c granic¦

lim
x→+∞

(f(x)− ax) = b.

Je±li udaªo si¦ znale¹¢ takie b ∈ R, to stwierdzamy, »e: Asymptota w +∞ to y = ax+ b.

To ko«czy badanie funkcji w +∞. Pozostaje nam wi¦c �tylko� zbadanie dokªadnie w
ten sam sposób jak zachowuje si¦ nasza funkcja w −∞. Powtarzamy wi¦c poprzednie kroki
zamieniaj¡c +∞ na −∞:

Je±li limx→−∞ f(x) = b, to od razu stwierdzamy, »e: Asymptota w −∞ to y = b.
Je±li granica limx→−∞ f(x) nie istnieje, to od razu stwierdzamy, »e: Funkcja nie ma

asymptoty w −∞.
Je±li limx→−∞ f(x) = ±∞, to próbujemy znale¹¢ parametry a, b ∈ R, które daj¡ nam

asymptot¦ y = ax+ b. W pierwszym kroku szukamy a obliczaj¡c granic¦

lim
x→−∞

f(x)

x
= a.

Je±li udaªo si¦ znale¹¢ takie a ∈ R, to w drugim kroku szukamy b obliczaj¡c granic¦

lim
x→−∞

(f(x)− ax) = b.

Je±li udaªo si¦ znale¹¢ takie b ∈ R, to stwierdzamy, »e: Asymptota w −∞ to y = ax+ b.

c) Uwaga. Jak wida¢ asymptota uko±na y = ax+ b staje si¦ pozioma, gdy a = 0. Mo»na
by wi¦c rozgraniczy¢ te dwa poj¦cia uzgadniaj¡c, »e asymptota uko±na y = ax+ b wyst¦puje
tylko dla a 6= 0 (wtedy naprawd¦ jest uko±na :), natomiast gdy a = 0, to asymptota nie jest
uko±na, lecz pozioma.

Wówczas mieliby±my trzy ró»ne typy asymptot: pionowe, poziome i uko±ne.
Osobi±cie uwa»am, »e warto mowi¢ o dwóch ró»nych typach asymptot: asymptoty pio-

nowe i asymptoty w niesko«czono±ci. Asymptoty pionowe opisuj¡ zachowanie funkcji w
szczególnych punktach a ∈ R, natomiast asymptoty w niesko«czono±ci opisuj¡ zachowanie
funkcji w +∞ i w −∞.
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Zróbmy jeszcze dwa przykªady.

Przykªad. Szukamy asymptot funkcji f(x) = ln(x). Najpierw przypominamy sobie,
»e ln(x) to tzw. logarytm naturalny, czyli loge(x), z liczb¡ e podan¡ w poprzedniej cz¦±ci
wykªadu. Dziedzin¡ tej funkcji s¡ x > 0 i okazuje si¦, »e

lim
x→0+

f(x) = lim
x→0+

ln(x) = −∞.

To oznacza, »e mamy jedyn¡ asymptot¦ pionow¡ x = 0.
Przechodzimy do asymptot w niesko«czono±ci. Ze wzgl¦du na dziedzin¦ mo»emy zbada¢

zachowanie funkcji tylko w +∞. Skoro

lim
x→+∞

f(x) = lim
x→+∞

ln(x) =∞,

to musimy walczy¢ dalej i szuka¢ asymptoty y = ax+ b.
Obliczamy, »e

lim
x→+∞

f(x)

x
= lim
x→+∞

ln(x)

x
= 0,

co oznacza, »e naszym a mo»e by¢ 0.
Niestety

lim
x→+∞

(f(x)− ax) = lim
x→+∞

(ln(x)− 0 · x) = lim
x→+∞

ln(x) =∞

i wida¢, »e nie znale¹li±my odpowiedniego b ∈ R.
Dlatego mo»emy stwierdzi¢, »e: Funkcja nie ma asymptoty w +∞.

Przykªad. Szukamy asymptot funkcji f(x) =
√
x2 − 2x.

Dziedzina tej funkcji to x 6∈ (0, 2) i wida¢, »e w »adnym punkcie funkcja nie �eksploduje�
do niesko«czono±ci. Czyli nie ma asymptot pionowych.

Odno±nie zachowania funkcji w niesko«czono±ci mo»na stwierdzi¢, »e√
x2 − 2x ∼

√
x2 − 0 = |x|,

co sugeruje, »e asymptoty uko±ne mog¡ mie¢ posta¢ y = x w +∞ i y = −x w −∞.
Niestety, to przybli»enie jest zbyt zgrubne i dlatego zgubne. Okazuje si¦, »e musimy by¢

bardziej delikatni√
x2 − 2x =

√
x2 − 2x+ 1− 1 =

√
(x− 1)2 − 1 ∼

√
(x− 1)2 − 0 = |x− 1|,

co sugeruje, »e asymptoty uko±ne mog¡ mie¢ posta¢ y = x− 1 w +∞ i y = −x+ 1 w −∞.
Aby si¦ przekona¢, »e tak jest, wykonujemy odpowiednie obliczenia. Szukamy asymptoty

postaci y = ax+ b w +∞.

lim
x→+∞

f(x)

x
= lim
x→+∞

√
x2 − 2x

x
= 1 = a,

lim
x→+∞

(f(x)− ax) = lim
x→+∞

(
√
x2 − 2x− x) = lim

x→+∞

−2x√
x2 − 2x+ x

= −1 = b.

Wida¢ wi¦c, »e w istocie mamy asymptot¦ y = x − 1 w +∞. (Podobnie, tyle »e troch¦
trudniej, mo»na sprawdzi¢ asymptot¦ w −∞).

4. Szacowanie funkcji. Zagadnienie szacowania funkcji jest bardzo gª¦bokie. Ogólnie,
chodzi o to, aby dla danej funkcji f znale¹¢ takie staªe (czyli liczby) C,D, »e

C ≤ f(x) ≤ D,
dla x ∈ Df (Df to dziedzina funkcji f).

W wersji bardziej zgrubnej mo»emy my±le¢, »e szukamy jednej staªej M takiej, »e

−M ≤ f(x) ≤M,
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czyli
|f(x)| ≤M,

dla x ∈ Df .
Caªa trudno±¢ takiego szacowania polega na poziomie skomplikowania funkcji, któr¡

chcemy oszacowa¢.
Zacznijmy od standardowego szacowania funkcji wymiernych, co w poªowie jest podobne

do znanego nam szacowania ci¡gów.

a) Najlepiej wyja±ni¢ to na przykªadzie. We¹my

f(x) =
2x4 − x2 + 2x− 3

4x4 + 3x2 + 1
.

Dziedzina tej funkcji to R, bo mianownik nigdy si¦ nie zeruje (jest dodatni).
Szukamy M takiego, »e

|f(x)| ≤M,

dla x ∈ R.
Przykªadamy moduª

|f(x)| =
∣∣∣∣2x4 − x2 + 2x− 3

4x4 + 3x2 + 1

∣∣∣∣ =
|2x4 − x2 + 2x− 3|
|4x4 + 3x2 + 1|

i patrzymy co si¦ dzieje.
W mianowniku mo»emy opu±ci¢ moduª, bo 4x4 + 3x2 + 1 > 0. Natomiast w liczniku

mo»emy zastosowa¢ nierówno±¢ trójk¡ta. Dzi¦ki temu

|f(x)| = |2x
4 − x2 + 2x− 3|
|4x4 + 3x2 + 1|

≤ |2x
4|+ |x2|+ |2x|+ |3|

4x4 + 3x2 + 1
=

2x4 + x2 + 2|x|+ 3

4x4 + 3x2 + 1
.

Teraz jest bardzo wa»na rzecz. Musimy rozwa»y¢ dwa przypadki: |x| ≥ 1 oraz |x| < 1.
Przypadek |x| ≥ 1 dziaªa tak samo jak przy szacowaniu ci¡gów. Napiszmy to wyra¹nie

Dla du»ych x (tzn. |x| ≥ 1) dominuj¡ du»e pot¦gi,

tzn. |x|α < |x|β dla α < β.

A dla maªych x (tzn. |x| < 1) dominuj¡ maªe pot¦gi,

tzn. |x|α > |x|β dla α < β.

Czyli przypadek |x| < 1 b¦dziemy robi¢ �odwrotnie� ni» przy szacowaniu ci¡gów.

Zakªadamy wi¦c najpierw, »e |x| ≥ 1 i szacujemy nasze wyra»enie (jak przy ci¡gach)
korzystaj¡c z dominuj¡cych (du»ych) pot¦g.

|f(x)| = 2x4 + x2 + 2|x|+ 3

4x4 + 3x2 + 1
≤ 2x4 + x4 + 2x4 + 3x4

4x4 + 0 + 0
= 2 = M1.

A nast¦pnie zakªadamy, »e |x| < 1 i szacujemy nasze wyra»enie (odwrotnie ni» przy
ci¡gach) korzystaj¡c z dominuj¡cych (maªych) pot¦g.

|f(x)| = 2x4 + x2 + 2|x|+ 3

4x4 + 3x2 + 1
≤ 2 + 1 + 2 + 3

0 + 0 + 1
= 8 = M2.

W powy»szym oszacowaniu 3 z licznika to 3 ·x0, a 1 z mianownika to 1 ·x0, wi¦c dominujac¡
pot¦g¡ w tym wypadku jest x0 = 1.

Ko«czymy nasze oszacowanie bior¡c za M wi¦ksz¡ z liczb uzyskanych w obu przypad-
kach. Tak wi¦c

M = max{M1,M2} = max{2, 8} = 8.
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Dzi¦ki temu uzyskujemy, »e
|f(x)| ≤ 8,

dla x ∈ R.
b) Rozwa»my teraz inn¡ funkcj¦

f(x) =
x3 + 1

x3 + x+ 1
.

Czy mo»na j¡ oszacowa¢ jak w poprzednim przykªadzie? Okazuje si¦, »e nie, a przyczyna ku
temu jest nast¦puj¡ca.

Najpierw szukamy dziedziny tej funkcji. W mianowniku jest wielomian trzeciego stopnia
x3 + x+ 1. I teraz wa»na rzecz. Z wªasno±ci Darboux wynika nast¦puj¡cy

Fakt. Ka»dy wielomian nieparzystego stopnia ma pierwiastek.

Dzieje si¦ tak, bo dla takiego wielomianu w po obliczeniu granic limx→+∞ w(x) oraz
limx→−∞ w(x) okazuje si¦, »e jedna z nich to +∞, a druga to −∞. To znaczy, »e w przyjmuje
warto±ci dodatnie i ujemne, wi¦c z wªasno±ci Darboux musi si¦ gdzie± zerowa¢.

Wniosek jest taki, »e nasz wielomian x3 +x+ 1 ma gdzie± przynajmniej jeden pierwiastek
c, w którym si¦ zeruje.

Aby stwierdzi¢, »e tej funkcji nie mo»na oszacowa¢ na jej (maksymalnej) dziedzinie nale»y
jeszcze sprawdzi¢, czy przez przypadek nasz licznik nie zeruje si¦ w c.

Wida¢ jednak, »e licznik zeruje si¦ tylko dla x = −1, no a c 6= −1, bo takie c nie zeruje
mianownika: (−1)3 + (−1) + 1 6= 0.

Dlatego mo»emy by¢ pewni, »e

lim
x→c
|f(x)| = lim

x→c

|x3 + 1|
|x3 + x+ 1|

=

[
|c+ 1|

0+

]
=∞.

Wi¦c nasza funkcja jest nieograniczona i nie znajdziemy M ∈ R takiego, »e

|f(x)| ≤M,

bez zmniejszenia dziedziny funkcji f .

c) Popatrzmy na jeszcze jeden przykªad z tej serii.

f(x) =
1

x2 + x+ 1
.

Obliczaj¡c dla mianownika wyró»nik, czyli ∆ widzimy, »e jest ona ujemna. To oznacza,
»e nasz mianownik nie ma pierwiastków (i jest dodatni). Dzi¦ki temu wida¢, »e dziedzin¡
naszej funkcji jest zbiór R.

Gdyby±my zastosowali metod¦ z punktu a), to mieliby±my dwa przypadki.
Dla |x| ≥ 1 mogliby±my stwierdzi¢, »e

|f(x)| = 1

x2 + x+ 1
≤ 1

x2 + 0 + 0
≤ 1, bo x2 ≥ 1.

Niestety, to oszacowanie jest póªprawdziwe.
Dla |x| < 1 mogliby±my stwierdzi¢, »e

|f(x)| = 1

x2 + x+ 1
≤ 1

0 + 0 + 1
≤ 1

uzyskuj¡c oszacowanie, które jest nieprawdziwe.

Problem bierze si¦ st¡d, »e w wyra»eniu x2 + x+ 1 ±rodkowy wyraz mo»e by¢ ujemny.

Przypatrzmy si¦ wi¦c bli»ej tym oszacowaniom, aby zrozumie¢ ten fenomen.
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To pierwsze oszacowanie magicznie dziaªa, bo w istocie dla |x| ≥ 1 zachodzi

1

x2 + x+ 1
≤ 1.

Wynika to z tego, »e
x2 + x+ 1 ≥ 1,

bo
x2 + x ≥ 0

dla |x| ≥ 1, bo x2 + x = x(x+ 1) < 0 dla x ∈ (−1, 0) (nierówno±¢ kwadratowa).

Bª¡d w tym szacowaniu wyst¦puje jednak w pierwszym kroku. Nierówno±¢

1

x2 + x+ 1
≤ 1

x2

nie jest prawdziwa dla |x| ≥ 1, bo nierówno±¢ 0 ≤ x+ 1 jest faªszywa np. dla x = −2.

Drugie oszacowanie jest pora»k¡, albowiem dla |x| < 1 nierówno±¢

1

x2 + x+ 1
≤ 1

oznaczaªaby, »e
1 ≤ x2 + x+ 1,

czyli
0 ≤ x2 + x,

a przed chwil¡ zauwa»yli±my, »e jest kompletnie na odwrót dla x ∈ (−1, 0), bo wtedy x2 + x
jest ujemne.

No ±wietnie, to jak zrobi¢ poprawnie takie oszacowanie?

Metoda jest taka, »e patrzymy jak blisko mianownik mo»e podej±¢ do zera. Wiadomo, »e
jest dodatni i mo»e dzi¦ki temu mie¢ jak¡± najmniejsz¡ warto±¢ wi¦ksz¡ od zera.

Poniewa» mianownik jest funkcj¡ kwadratow¡, to mo»emy przypomnie¢ sobie ze szkoªy,
»e parabola y = ax2 + bx+ c ma wierzchoªek w punkcie x = − b

2a .
U nas wierzchoªek wychodzi w punkcie− 1

2 . Dzi¦ki temu widzimy, »e mianownik przyjmuje
sw¡ najmniejsz¡ warto±¢ wªa±nie w tym punkcie.

Dostajemy wi¦c nast¦puj¡ce poprawne oszacowanie

|f(x)| = 1

x2 + x+ 1
≤ 1

(− 1
2 )2 + (− 1

2 ) + 1
=

1
3
4

=
4

3

dla x ∈ R.
d) U�f. Ostatnie uwagi s¡ nast¦pujace. W ogólnym przypadku (szacowanie funkcji

niekoniecznie wymiernych) warto przynajmniej zna¢ podstawowe nierówno±ci wynikaj¡ce z
de�nicji danej funkcji:

| sin(x)| ≤ 1,

| cos(x)| ≤ 1,

|arctg(x)| ≤ π

2
.

Ponadto, przykªadowe banalne zadanie, które sprawiªo du»y kªopot na egzaminie, to
oszacowanie funkcji f(x) = e−x

2

. Mimo, »e rozwi¡zanie jest proste:∣∣∣e−x2
∣∣∣ = e−x

2

≤ e0 = 1,
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to jednak wiele osób nie zrobiªo tego zadania.
By¢ mo»e dlatego, »e w tym rozwi¡zaniu korzystamy z nast¦puj¡cych faktów:

i) ex > 0 dla x ∈ R,
ii) −x2 ≤ 0 dla x ∈ R,
iii) funkcja g(x) = ex jest rosn¡ca,

wi¦c mo»e nie jest to a» tak ªatwo zªo»y¢ w caªo±¢ (na egzaminie).
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