7. Funkcje - ciag dalszy.

Szanowni Panistwo. Ponizej znajduja sie dalsze informacje dotyczace funkcji.

1. Wlasno$é Darboux. Zacznijmy od definicji

Definicja. Mowimy, ze funkcja f z dziedzing Dy ma wlasnodé Darboux jesli dla kazdego
przedziatu [a,b] C Dy i dla kazdego d lezgcego miedzy f(a) i f(b) istnieje ¢ € [a,b] takie, Ze
fe)=d.
Chodzi wiec o to, ze funkcja przyjmuje wszystkie posrednie wartosci miedzy f(a)i f(b).
Wazny jest nastepujacy

Fakt. Jesli funkcja jest ciggta, to ma wltasnosé Darbouz.

W skrocie myslimy wiec nastepujaco. Niech f bedzie funkcjg ciagla. Bierzemy a,b €
Dy takie, ze [a,b] C Dy. Nastepnie bierzemy dowolng liczbe d lezaca miedzy f(a) i f(b).
Wowczas, korzystajac 7z wlasnodci Darboux, jestesmy pewni, ze gdzie§ w przedziale [a, b] lezy
liczba ¢ taka, ze f(c) = d. Czyli wiemy, ze posrednia warto$¢ d musi by¢ przyjeta przez nasza
funkcje w punkcie c.

W praktyce wyglada to na przyktad tak, ze jesli [a,b] C Dy oraz wiemy, ze

fla) <0, f(b) >0,
to dostajemy, ze f(c) = 0 dla pewnego ¢ € [a,b]. Alternatywnie, jesli

fla)>0, f(b) <O,
to znow dostajemy, ze f(c) = 0 dla pewnego ¢ € [a, b].

Prosze zauwazy¢, ze intuicyjnie jest to bardzo jasne. Jesli f(a) jest po jednej stronie osi
OX, a f(b) jest po drugiej stronie tej osi, to wykres funkcji f musi przeciaé ta o$ przechodzac
od f(a) do f(b).

Ta wlasnosé wykorzystujemy do pokazywania, ze dane réwnanie ma rozwiazanie lezace
w pewnym przedziale.

Przyklad. Rozwazmy rownanie (dla e =2,71...)

(*) e’ = —x.
Aby stwierdzi¢, ze to rownanie ma rozwigzanie mozemy naszkicowa¢ wykresy y = e oraz
y = —x i zbadag, gdzie sie przecinaja. Z takiego szkicu wynika, ze rozwigzanie tego réwnania

moze sie znajdowa¢ w przedziale [—1, 0].
Aby sie upewnié, ze tak jest, przenosimy wszystkie wyrazy rownania (x) na jedna strone

e"+ax=0
i traktujemy to rownanie jako
f(z) =0,
gdzie
fl@)=¢€e"+uz.
Stwierdzamy, ze funkcja f jest ciagla. A nastepnie badamy jaki ma znak (dodatni, czy
ujemny) w punktach © = —1 oraz x = 0 (czyli w konicach naszego przedziatu [—1,0]):

f(=1)=et-1<0,
b0%<1,b01<eoraz
f0)=e+0=1>0.
Skoro wyszly nam znaki przeciwne (f(—1) < 0, f(0) > 0), to mozemy juz skonczy¢ zadanie

piszac madrze: Korzystajac z wasnosci Darboux funkcji ciaglej f rownanie (x) ma rozwiazanie
w przedziale [—1,0].



2. Liczba e. Podobnie jak 7 = 3,14... liczba e = 2,71... jest bardzo wazng liczba
niewymierng, ktéra definiowana jest jako granica ciggu
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Mozna wykazaé, ze ten ciag jest rosngcy i ograniczony. Zgodnie z faktem z poprzednich
wyktadéw oznacza to, ze ten ciag jest zbiezny do granicy, ktéra oznaczamy jako e. Tak wiec

1 n
e = lim (1 + > .
n—o00 n
Warto pamietaé, ze skoro ciag (e,) jest rosnacy, to dla n € N uzyskujemy tez nier6wnosé

1 n
<1+> < e.
n

Wazne jest to, ze zmienng dyskretna n mozemy zastapi¢ zmienng ciaglta x i otrzymac ta

sama granice, czyli
1 x
lim (1 + > =e.
T—00 €T

Ponadto, warto tez poglebi¢ pojecie granicy. W takiej granicy jak powyzej wazne jest
tylko to, ze x dazy do oo, a wcale nie jest wazne jak ten = wyglada. Mozemy wiec za x
wstawi¢ dowolng funkcje dazaca wraz z x do oo i granica sie nie zmieni. Tak wiec

lim (1+ > =e,
200 < f(x)

dla dowolnej funkcji f takiej, ze lim, o f(2) = 0.

Przyktadowo
1\
lim (1 + 2) = e
T—00 T

1 NG
xlgrolo (1 + \/5) =e.

Dzieki temu mozemy dojs¢ do nastepujacej ciekawej konkluzji

1 xT
lim (1 + > =e.
T——00 T

Aby to zobaczy¢ zastosujemy przydatng technike do obliczania granic. Polega ona na
zastapieniu x czym§ wygodniejszym. W tym wypadku wezmiemy x = —t. Skoro x — —oo0,
to t — oo 1 nasza granica zmieni sie¢ w granice w 400

xT —t —t
lim (1 + 1) = lim (1 + 1) — lim (1 _ 1) _
T——00 T —t——00 —t t—+o0 t
o (t—1\"" t N\ (t—14+1)
lim { —— =lm(—) =lim (———— | =
t—00 t t—oo \t — 1 t—00 t—1
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Uff, no dzieki )
Powyzsza granica jest o tyle istotna, ze pozwala na uzyskanie nastepujacej formuty

lim (1 n 9) s
X

T—0o0

oraz



ktora zachodzi dla wszystkich a € R.
Wynika to z tego, ze

x a
T 1\«
lim (1—}—3) = lim <<1—|—x> > =e?,
T—00 x T—00 a2
co dziala zaréwno dla a > 0, jak i dla a < 0 (dla a = 0 tatwo sprawdzié, ze formuta jest OK).
Ponadto, jak tatwo sie domy$li¢, nic nie zmienia sie w —oco i mamy, ze

lim (1+g> = e
T

T—r—00

: T+a ¢ a—b
lim =e77,
z—Foo \ T + b

Ostatni przydatny wzor, to

dla wszystkich a,b € R.
Mozna go zobaczy¢ tak

x xr xr
. r+a . r+a T . a\= 1 e aeb
lim = lim = lim <1+7> — = — ="
z—doo \ x + b z—+oo x r+b z—+oo x (1 + %) eb
Podsumowujac, warto zapamietaé nastepujace granice:
1 n
lim (1 + ) =e,
n— 00 n
1 x
lim (1 + ) =e,
x—+oo x

lim (1+E> =e“,
x

r—+oo
T
lim <:c + a) =270,
z—Foo \ x + b

3. Asymptoty. Rozrézniamy dwa rodzaje asymptot: asymptoty pionowe i asymptoty
uko$ne. Ponadto czasem asymptota uko$na moze byé¢ asymptota pozioma.

a) Asymptoty pionowe. Asymptota pionowa funkcji f to prosta o rownaniu x = a.
Wystepuje ona wtedy, gdy funkcja f ma nieskoniczong granice jedno- lub obu- stronng w
punkcie x = a. Czyli

lim f(x) =400 lub lim f(z) = +oo.

r—at T—a~
Na przyklad prosta = 0 jest asymptota pionowa funkeji f(z) = %, bo lim, g+ % = 400
(oczywiscie mamy tez, ze lim,_,q- % = —00).

Prosta = = 0 jest tez asymptota pionowa funkcji f(z) = ez, bo
lim e¥ = [et] = +o0,
z—0t1
chociaz )
lim e= = [6700] =0.
z—0~
Sprawa wiec jest dosy¢ prosta. Aby znalezé asymptoty pionowe szukamy tych punktow,
w ktorych funkcja ma (z ktorejs strony) nieskoriczong granice.
Takich asymptot moze by¢ nieskoriczenie wiele (jak np. dla funkcji tangens).



b) Asymptoty ukosne. Asymptoty ukosne opisuja zachowanie funkcji w nieskoriczonosci.
Chodzi wiec o to, aby zbada¢ jak funkcja zachowuje sie przy x dazacym do +oo i przy x
dazacym do —oc.

Szczegdlnym przypadkiem asymptot ukosnych sa asymptoty poziome. Prosta o réwnaniu
y = b jest asymptota pozioma jesli

’I'BI—‘,I}OO f(x)=0b 1lub xgr_noof(x) =b.
Ogolnie, asymptota ukosna to prosta o rownaniu y = ax + b. Taka prosta jest asymptota
ukosna jesli
lim (f(z)—(az+b))=0 lub lim (f(z)— (az+b)) =0.
r—+00 r——00
Wida¢ wiec, ze takich asymptot moze by¢ co najwyzej dwie. Jedna w 400, a druga w —oc.

W celu znalezienia asymptot uko$nych funkcji f postepujemy nastepujaco.

Najpierw mozemy zbadaé co sie dzieje z naszg funkcja w +oo.

Jesli lim,, o f(z) = b, to od razu stwierdzamy, ze: Asymptota w +0o to y = b.

Jesli granica lim, o f(z) nie istnieje, to od razu stwierdzamy, 7ze: Funkcja nie ma
asymptoty w +o00.

Najtrudniej jest wtedy, gdy lim, 4. f(2) = oo. Wowczas probujemy znalezé parame-
try a,b € R, ktore daja nam asymptote y = ax+b. W pierwszym kroku szukamy a obliczajac

granice
lim —f () =

T—r+00 xX
Jesli udalo sie znalezé takie a € R, to w drugim kroku szukamy b obliczajac granice
lim (f(z) - az) = .

Jesli udalo sie znalezé takie b € R, to stwierdzamy, ze: Asymptota w +o00 to y = azx + b.

To konczy badanie funkcji w +o0o. Pozostaje nam wiec “tylko” zbadanie doktadnie w
ten sam sposob jak zachowuje sie nasza funkcja w —oo. Powtarzamy wiec poprzednie kroki
zamieniajac +oo na —oo:

Jesli lim,_, o, f(x) = b, to od razu stwierdzamy, ze: Asymptota w —oo to y = b.

Jesli granica lim,_,_ f(z) nie istnieje, to od razu stwierdzamy, ze: Funkcja nie ma
asymptoty w —oo.

Jesli lim, o f(x) = £o00, to probujemy znalezé parametry a,b € R, ktére daja nam
asymptote y = ax + b. W pierwszym kroku szukamy a obliczajac granice

lim ij) =
T——00 X

Jesli udalo sie znalezé takie a € R, to w drugim kroku szukamy b obliczajac granice
im_(f(x) — az) =b.
Jesli udatlo sie znalezé takie b € R, to stwierdzamy, ze: Asymptota w —oo to y = azx + b.

c) Uwaga. Jak wida¢ asymptota ukosna y = ax + b staje sie pozioma, gdy a = 0. Mozna
by wiec rozgraniczy¢ te dwa pojecia uzgadniajac, ze asymptota uko$na y = ax + b wystepuje
tylko dla a # 0 (wtedy naprawde jest ukosna :), natomiast gdy a = 0, to asymptota nie jest
uko$na, lecz pozioma.

Woéwczas mieliby$my trzy rézne typy asymptot: pionowe, poziome i uko$ne.

Osobiscie uwazam, ze warto mowi¢ o dwoch réznych typach asymptot: asymptoty pio-
nowe i asymptoty w nieskoriczono$ci. Asymptoty pionowe opisuja zachowanie funkcji w
szczegblnych punktach a € R, natomiast asymptoty w nieskoriczonosci opisuja zachowanie
funkcji w +00 i w —o0.



Zrobmy jeszcze dwa przykiady.

Przyklad. Szukamy asymptot funkcji f(xz) = In(z). Najpierw przypominamy sobie,
ze In(z) to tzw. logarytm naturalny, czyli log,(z), z liczba e podana w poprzedniej czesci
wyktadu. Dziedzing tej funkcji sa > 0 i okazuje sie, ze

li = lim 1 = —o0.
iy ) = g, Inlw) = —ee

To oznacza, ze mamy jedyna asymptote pionowa x = 0.
Przechodzimy do asymptot w nieskoniczonosci. Ze wzgledu na dziedzine mozemy zbadad
zachowanie funkcji tylko w +oo. Skoro
AP = I, Inle) = o,

to musimy walczy¢ dalej i szukaé¢ asymptoty y = ax + b.

Obliczamy, ze
lim 1) lim 7ln(x)

:O7

Tr—r+o0 xX r—r+00 €T

co oznacza, ze naszym a moze by¢ 0.

Niestety

li - = i 1 —0-2)= lim 1 —
Jim (f(z) —az) = lim (In(z) -0-2)= lm In(z)=co

i widaé, ze nie znalezliSmy odpowiedniego b € R.

Dlatego mozemy stwierdzi¢, ze: Funkcja nie ma asymptoty w +oo.

Przyklad. Szukamy asymptot funkcji f(x) = va? — 2z.

Dziedzina tej funkcji to « & (0,2) i widaé, ze w zadnym punkcie funkcja nie “eksploduje”
do nieskoriczono$ci. Czyli nie ma asymptot pionowych.

Odnosnie zachowania funkcji w nieskonczonosci mozna stwierdzi¢, ze

Va2 =2z ~ 22— 0= |z,
co sugeruje, ze asymptoty uko$ne moga mieé¢ posta¢ y =z w 00 iy = —x w —o0.
Niestety, to przyblizenie jest zbyt zgrubne i dlatego zgubne. Okazuje sie, ze musimy by¢
bardziej delikatni

\/1:2—2:52\/9:2—23:4—1—1:\/(z—1)2—1~\/(a:—l)Q—Oz\x—H,

co sugeruje, ze asymptoty uko$ne moga mieé¢ posta¢ y =z —1w +ooiy=—-xr+1w —o0.
Aby sie przekonaé, ze tak jest, wykonujemy odpowiednie obliczenia. Szukamy asymptoty
postaci y = ax +b w +oo.

. f(x) . Va2 — 2z
Iim —f = lim —— =
r—4o0c0 I xr——+00 x

—2x
. . _ . 2 _ — 3 —_— = —] =
Jim (f@) —az) = lim (Va?—20-0) = lim —memm— = -1=b

Widaé¢ wiec, ze w istocie mamy asymptote y = ¢ — 1 w +o00. (Podobnie, tyle ze troche
trudniej, mozna sprawdzi¢ asymptote w —o0).

1=a,

4. Szacowanie funkcji. Zagadnienie szacowania funkcji jest bardzo glebokie. Ogdlnie,
chodzi o to, aby dla danej funkcji f znalezé takie state (czyli liczby) C, D, ze

C<flx) <D,

dla x € Dy (Dy to dziedzina funkcji f).
W wersji bardziej zgrubnej mozemy mysle¢, ze szukamy jednej statej M takiej, ze



czyli
|f(@)] < M,

dla z € Dy.

Cala trudno$é¢ takiego szacowania polega na poziomie skomplikowania funkcji, ktora
chcemy oszacowag.

Zacznijmy od standardowego szacowania funkcji wymiernych, co w potowie jest podobne
do znanego nam szacowania ciagow.

a) Najlepiej wyjasni¢ to na przykladzie. Wezmy
204 — 22 +22 -3
f(il’) = 4 2
4t 4+ 322 + 1
Dziedzina tej funkcji to R, bo mianownik nigdy sie nie zeruje (jest dodatni).
Szukamy M takiego, ze

|f(z)| < M,

dla z € R.
Przyktadamy modut

()] =

i patrzymy co sie dzieje.
W mianowniku mozemy opusci¢ modut, bo 4z* + 322 + 1 > 0. Natomiast w liczniku
mozemy zastosowa¢ nieréwnosé trojkata. Dzieki temu

()] = |22% — 22 + 22 — 3| < [224] + |22 + |2z] + |3 _ 224 + 22 + 22| + 3
[4x* + 322+ 1] — dat 4+ 322+ 1 4ot 4+ 322+ 1

Teraz jest bardzo wazna rzecz. Musimy rozwazy¢ dwa przypadki: |z| > 1 oraz |z| < 1.

Przypadek |z| > 1 dziala tak samo jak przy szacowaniu ciagéw. Napiszmy to wyrazZnie

20 — 2?4+ 22— 3| |2z — 2?4 22 — 3]
4t +3224+1 | |dat + 322 + 1|

Dla duzych z (tzn. |z| > 1) dominuja duze potegi,
tzn. |z <]z’ dla o < 8.

A dla matych z (tzn. |z| < 1) dominuja mate potegi,

tzn. |z > |z[®  dla o < 8.

Czyli przypadek |z| < 1 bedziemy robi¢ “odwrotnie” niz przy szacowaniu ciagow.

Zaktadamy wiec najpierw, ze |z| > 1 i szacujemy nasze wyrazenie (jak przy ciggach)
korzystajac z dominujacych (duzych) poteg.

@) 224 + 2% + 2|z| + 3 - 2z + z* + 22 + 32
€T =
4zt +322+1  — 4z +0+0

A nastepnie zakladamy, ze |x| < 1 i szacujemy nasze wyrazenie (odwrotnie niz przy
ciggach) korzystajac z dominujacych (matych) poteg.
(@) 2zt + 22 + 2|z| + 3 c2+1+42+3
€T =

4t +322+1 — 040+1

W powyzszym oszacowaniu 3 z licznika to 3 -z, a 1 z mianownika to 1-z°, wiec dominujaca
potega w tym wypadku jest 20 = 1.

Konczymy nasze oszacowanie biorac za M wieksza z liczb uzyskanych w obu przypad-
kach. Tak wiec

=2= M.

=8 =M.

M = max{M;, M>} = max{2,8} = 8.



Dzieki temu uzyskujemy, ze

[f(z)] <8,
dla x € R.
b) Rozwazmy teraz inng funkcje
3+ 1

Czy mozna ja oszacowad jak w poprzednim przyktadzie? Okazuje sie, Ze nie, a przyczyna ku
temu jest nastepujaca.

Najpierw szukamy dziedziny tej funkcji. W mianowniku jest wielomian trzeciego stopnia
2% 4+ 2 + 1. 1 teraz wazna rzecz. Z wlasnosci Darboux wynika nastepujacy

Fakt. Kazdy wielomian nieparzystego stopnia ma pierwiastek.

Dzieje sie tak, bo dla takiego wielomianu w po obliczeniu granic lim,_, . w(z) oraz
lim,_, o w(x) okazuje sie, ze jedna z nich to +o00, a druga to —oo. To znaczy, ze w przyjmuje
wartosci dodatnie i ujemne, wiec z wlasnosci Darboux musi sie gdzie$ zerowac.

Whiosek jest taki, ze nasz wielomian 2% 4+ x + 1 ma gdzie$ przynajmniej jeden pierwiastek
¢, w ktérym sie zeruje.

Aby stwierdzié, ze tej funkcji nie mozna oszacowac na jej (maksymalnej) dziedzinie nalezy
jeszcze sprawdzié, czy przez przypadek nasz licznik nie zeruje sie w c.

Wida¢ jednak, ze licznik zeruje sie tylko dla x = —1, no a ¢ # —1, bo takie ¢ nie zeruje
mianownika: (—1)% + (—=1) +1 # 0.

Dlatego mozemy by¢ pewni, ze

. . |2 +1]  Jle+1]]
glcl—>mc|f($)|_il—>m¢\x3+x+l|_ 0+ -
Wiec nasza funkcja jest nieograniczona i nie znajdziemy M € R takiego, ze
|f(2)] < M,

bez zmniejszenia dziedziny funkeji f.

c¢) Popatrzmy na jeszcze jeden przyklad z tej serii.
1
Obliczajac dla mianownika wyréznik, czyli A widzimy, ze jest ona ujemna. To oznacza,
7e nasz mianownik nie ma pierwiastkow (i jest dodatni). Dzieki temu wida¢, ze dziedzing
naszej funkcji jest zbior R.
Gdybys$my zastosowali metode z punktu a), to mieliby$my dwa przypadki.
Dla |z| > 1 moglibySmy stwierdzi¢, ze
1
@)l = el 21040
Niestety, to oszacowanie jest pélprawdziwe.
Dla |z| < 1 mogliby$my stwierdzi¢, ze
1 1
<

= <1
F@l= a1 S 001 S
uzyskujac oszacowanie, ktore jest nieprawdziwe.

1, boaz?>1.

Problem bierze sie stad, ze w wyrazeniu x? + z + 1 §rodkowy wyraz moze byé ujemny.

Przypatrzmy sie wiec blizej tym oszacowaniom, aby zrozumie¢ ten fenomen.



To pierwsze oszacowanie magicznie dziata, bo w istocie dla |z| > 1 zachodzi

1
— <1,
24+ x+1
Wrynika to z tego, ze
x2—|—x+121,
bo
x2+x20

dla || > 1,boz? +z=z(z +1) <0dlaz € (—1,0) (nieréwnos¢ kwadratowa).

Blad w tym szacowaniu wystepuje jednak w pierwszym kroku. Nieréwnosé

1 < 1
2+x+1 7 22
nie jest prawdziwa dla |z| > 1, bo nier6wnosé 0 < x + 1 jest falszywa np. dla x = —2.

Drugie oszacowanie jest porazka, albowiem dla |z| < 1 nieréwnosc¢

—— <1
2+x+1~
oznaczataby, ze
1<z?+z+1,
czyli
0<az?+u,

a przed chwila zauwazyliémy, ze jest kompletnie na odwrét dla z € (—1,0), bo wtedy 22 +
jest ujemne.

No $wietnie, to jak zrobi¢ poprawnie takie oszacowanie?

Metoda jest taka, ze patrzymy jak blisko mianownik moze podej$¢ do zera. Wiadomo, ze
jest dodatni i moze dzieki temu mie¢ jaka$ najmniejsza warto$¢ wieksza od zera.

Poniewaz mianownik jest funkcja kwadratowa, to mozemy przypomnieé sobie ze szkoty,
ze parabola y = ax? + bz + ¢ ma wierzcholek w punkcie z = —%.

U nas wierzchotek wychodzi w punkcie —%. Dzieki temu widzimy, ze mianownik przyjmuje
swa najmniejsza warto§¢ wlasnie w tym punkcie.

Dostajemy wiec nastepujace poprawne oszacowanie

1 1

|f<$)‘:x2+x+1 < (=32 + (-3 +1 -

It
L

dla x € R.
d) Ufff. Ostatnie uwagi sa nastepujace. W ogolnym przypadku (szacowanie funkcji

niekoniecznie wymiernych) warto przynajmniej zna¢ podstawowe nieréwnosci wynikajace z
definicji danej funkcji:
|sin(z)| <1,
|cos(x)| <1,
™
larctg(x)| < 3

Ponadto, przyktadowe banzglne zadanie, ktore sprawilo duzy klopot na egzaminie, to
oszacowanie funkeji f(x) = e™®". Mimo, 7e rozwiazanie jest proste:

.2 .2
N Se():l,

e



to jednak wiele 0s6b nie zrobito tego zadania.
By¢ moze dlatego, ze w tym rozwigzaniu korzystamy z nastepujacych faktow:

i) e > 0dla x € R,
ii) —22 < 0dlaz €R,
iii) funkcja g(x) = e® jest rosnaca,

wiec moze nie jest to az tak latwo zlozy¢ w calo$é (na egzaminie).



