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1. Introduction. Fourier transforms are very well established tools in
analysis, differential equations or harmonic analysis. On the other hand,
Cauchy transforms are used in complex analysis, in the approximation prob-
lem or in the moment problem and, relatively more recently, in so-called free
probability. In Barndorff-Nielsen and Thorbjornsen (2002) and Jurek (2004)
it was shown that Voiculescu transforms of free-infinitely divisible measures
are closely related to Fourier transforms of some (classical) infinitely divisi-
ble measures expressed by random integrals (an integration with respect to
a Lévy process). That fact suggested that there might be an intrinsic re-
lation between those two transforms, Fourier’s and Cauchy’s. This is what
we present in this note. One may expect that these relations will shed more
light on the fact that there are so many parallel results in classical and free
probability theory.

1. The Cauchy transform as some functionals of the Fourier
transforms. For a finite Borel measure m on the real line R, let us recall
that its Cauchy transform Gm is defined by

Gm(z) :=

∫

R

1

z − x
m(dx), for z ∈ C \ R = {z ∈ C : =z 6= 0}. (1)

Since Gm(z) = Gm(z), we may consider Cauchy transforms on half-planes
either on C+ or on C−. This transform Gm(z), is the key notion in so-called
free-probability but in this note we restrict our investigations only to the
Cauchy transforms and some functionals of them. From Akhiezer (1965), p.
125 or Lang (1975), p. 380, we have that

m([a, b]) = − lim
y→0

1

π

∫ b

a

=Gm(x + iy)dx, provided m({a, b}) = 0.

Thus Gm uniquely determines m but for that one needs to know Cauchy
transform in strips {x + iy : x ∈ R, 0 < y < ε} for some ε > 0.

In some instances, as is the case here, we know (define) Gm only on the
imaginary axis. Then it will be denoted by gm and referred to as the restricted
Cauchy transform, i.e., gm(it) := Gm(it), t ∈ R \ {0}. Explicitly,

gm(it) = −i t

∫

R

1

t2 + x2
m(dx)−

∫

R

x

t2 + x2
m(dx) , for t 6= 0. (2)

Of course, we also have that gm(i t) = gm(−i t).
One of the main results here is
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THEOREM 1. The restricted Cauchy transform gm(it), t 6= 0, uniquely
determines the measure m.

Besides that we will relate restricted Cauchy transforms to some func-
tionals of the Fourier transforms, to laws of product of independent random
variables, to geometric infinite divisibility and some random integrals.

In the sequel, for a finite measure m its Fourier transform (or in proba-
bility theory called its characteristic function, in short: char. f.), denoted by
m̂, is given as follows

m̂(t) :=

∫

R
eitx m(dx), for t ∈ R. (3)

1.1. Mixtures of measures and the restricted Cauchy transform.

Let e denotes an exponential random variable or an exponential distribu-
tion, i.e., it has probability density function e−x1(0,∞). It’s Fourier transform
is equal eb(t) = (1− it)−1. Let

m<e>(A) :=

∫ ∞

0

m(s−1A)e−sds), for Borel subsets A ⊂ R , (4)

be the exponential mixture of a measure m. Note that if µ is the probability
distribution of a random variable X and independent of the exponential
random variable e then µ<e> is the probability distribution of e ·X.
(In Jurek (1990) were studied mixtures m<λ> for σ-finite measures m on a
Banach space and σ-finite measures λ on (0,∞).)

Proof of Theorem 1. Step 1.
Simple calculations gives that

(m<e>)b(t) =

∫

R

1

1− itx
m(dx) =

∫ ∞

0

m̂(st)e−sds, t ∈ R. (5)

Since from the last equality we can get a Laplace transform of the function
m̂(.), we conclude that

m<e>
1 = m<e>

2 implies m1 = m2 (6)

Step 2. Recall that e(m) := e−m(R)
∑∞

k=0
m∗ k

k!
is called compound Poisson

distribution (it corresponds to Poisson number of summands) and

(e(m))b(t) = exp(m̂(t)−m(R)) = exp

∫

R
(eitx − 1)m(dx), t ∈ R , (7)
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and, of course, e(m) uniquely defines m. Furthermore, from (5) we get

(e(m<e>))b(t) = exp

∫

R

( 1

1− itx
− 1

)
m(dx) . (8)

Step 3. Finally, let us introduce new functionals of measures

hm(t) :=
1

it
gm(

1

it
), t 6= 0, hm(0) := lim

t→0
hm(t), i.e.,

gm(is) = − i

s
hm(−1

s
), s 6= 0 . (9)

Thus using (1) we have explicitly that

hm(t) =

∫

R

1

1− itx
m(dx), hm(0) = m(R) . (10)

Combining (8) and (10) we have that

exp[hm(t)−m(R)] = (e(m<e>))b(t) (11)

Step 4. From the above and (6) we infer that hm uniquely determines the
measure m, which in turn by (9) means that gm(it), t 6= 0 uniquely identifies
the measure m. This completes the proof of Theorem 1.

Here are some consequences of the above proof, rather than of the the-
orem itself, that relate restricted Cauchy transform to some characteristic
functions.

COROLLARY 1. (a) The functions (m(R))−1hm(t), t ∈ R, are Fourier
transforms of random variables e · X, where e and X are independent ran-
dom variables with the exponential and m(·)/m(R) probability distributions,
respectively.

(b) Let e◦ be the symmetrization of the standard exponential random vari-
able e and independent of a random variable X whose probability distribution
is m(·)/m(R). Then

gm(it) = −i t−1 m(R) (L(e◦ ·X))b(t−1)−
∫

R

x

t2 + x2
m(dx), t 6= 0.
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Part (a) follows from (10) and the fact that for independent random
variables we have

(L(e ·X))b(t) = E[(L(e))b(tX)] = E
[ 1

1− itX

]
=

∫

R

1

1− itx

m(dx)

m(R)
,

where L(Z) denotes the probability distribution for a random variable Z.
Similarly we get part (b) using formula (2).

Finally we have the following algebraic relations between Cauchy and
some Fourier transforms that was suggested by a boolean convolution intro-
duced by Speicher and Woroudi (1997) and the mixtures given in (4).

THEOREM 2. For probability Borel measures µ1 and µ2 and their re-
stricted Cauchy transforms gm1 and gm2 there exists a unique probability
measure ρ such that its restricted Cauchy is given by

gρ(it) =
gµ(it) · gν(it)

gµ(it) + gν(it)− it gµ(it) · gν(it)
for t 6= 0. (12)

If e denotes the standard exponential probability measure then the above
means that

(µ<e>
1 )b(t).(µ<e>

2 )b(t)
(µ<e>

1 )b(t) + (µ<e>
2 )b(t)− (µ<e>

1 )b(t).(µ<e>
2 )b(t) = (ρ<e>)b(t), for t ∈ R.

Equivalently, we have that

[(µ<e>
1 )b+ (µ<e>

2 )b].(ρ<e>)b= (µ<e>
1 )b.(µ<e>

2 )b(1 + (ρ<e>)b)
or

(µ<e>
1 )b+ (µ<e>

2 )b
(µ<e>

1 )b.(µ<e>
2 )b = 1 +

1

(ρ<e>)b
Proof of Theorem 2. Step 1. For a measure µ and its Cauchy transform

Gµ let us define transform

Eµ(z) : = z − 1

Gµ(z)
(i.e. Gµ(z) =

1

z − Eµ(z)
) (13)

which is an analytic function that maps C+ to C− ∪ R and Eµ(z)/z → 0
as z → ∞ non-tangentially (i.e. such that the ratio <z/=z is bounded).
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Conversely, if E : C+ → C− ∪ R is an analytic function so that E(z)/z → 0
as z →∞ non-tangentially then there exists a measure µ such that E = Eµ.
That fact led Speicher and Woroudi (1997) to the following notion of so called
boolean convolution ⊕: for measures µ and ν there exist a unique measure
ρ ≡ µ⊕ ν such that

Eµ⊕ν(z) = Eµ(z) + Eν(z), for z ∈ C+. (14)

Step 2. Combining (13) and (14) we get that

Gρ(z) =
Gµ(z) ·Gν(z)

Gµ(z) + Gν(z)− zGµ(z) ·Gν(z)

from which we get equality (12). Using the characteristic functions hµ from
Corollary 1 , part (a), we arrive at

hρ(t) =
1

it
Gρ(

1

it
) =

hµ(t) · hν(t)

hµ(t) + hν(t)− hµ(t) · hν(t)
,

which concludes a proof of the second part, because hµ(t) = (µ<e>)b(t), by
Corollary 1.

1.1.1. Remark. The above proof is based on structural characterizations
of some analytic functions with a specific behavior at infinity. An open
question is to find a more direct, more probabilistic argument for the above
factorizations.

1.1.2. Remark. From (12) we note that for Dirac measures δa and δb,
(a, b ∈ R), we have δa ⊕ δb = δa+b.

1. 2. Random integrals and the restricted Cauchy transform.

In the past it was shown that many classes of probability distributions
can be identified as classes of distributions of some random integrals of the
form

∫

A

f(t)dYν(r(t)) , A ⊂ [0,∞) , Yν is a Lévy process and L(Yν(1)) = ν,

where f and r are deterministic functions; comp. for instance Jurek (1985),
(1988), (2004) or Jurek-Vervaat(1983) or Iksanov-Jurek-Schreiber (2004);
[see www.math.uni.wroc.pl/∼zjjurek/conjecture.]
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For purposes of this note let us introduce, after Jurek (2004), a random
integral and its corresponding random integral mapping K as follows

K(ν) := L(

∫ ∞

0

tdYν(1− e−t)) ∈ ID, (15)

where Yν is a Lévy process with cadlag paths, the integral is defined (as simple
as possible) by formal integration by parts and L(X) denotes the probability
distribution of a random variable X. In terms of Fourier transforms, (15)
means that

(K(ν))b(t) := exp[

∫ ∞

0

log(L(Yν(1))b(s t)e−sds)], t ∈ R. (16)

From (16), using the Laplace transform argument ( the same way as for
(6)), we infer that K it is one-to-one mapping; for details see Jurek (2004),
Proposition 3.

COROLLARY 2. (a) For a finite measure m and its restricted Cauchy
transform gm we have gm(it) = −i t−1(m(R) + log(K(e(m)))b(−t−1)), t 6= 0.

(b) For a finite measure m we have that

L(

∫ ∞

0

tdYe(m)(1− e−t)) ≡ K(e(m)) = e(m<e>).

This means that the random integration with respect to a compound Poisson
process Ye(m)(t), t ≥ 0, is the same as the exponential mixing of an exponent
measure m in a compound Poisson measure e(m).

Proof. Putting (e(m), for ν, into (16) and using (7) we get that

log(K(e(m))b(t) =

∫ ∞

0

∫

R
(eitsx− 1)m(dx)e−sds =

∫

R
(

1

1− itx
− 1)m(dx),

that is, log(K(e(m))b(t) = hm(t)−m(R) and (11) gives part (b). Finally (9)
implies equality in (a).

1.2.1. Remark. From part (b) we also infer the property (6) because K
is one-to-one mapping.

1. 3. Geometric infinite divisibility and the restricted Cauchy transform.
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After Klebanov, Manija and Melamed (1984), (cf. also Ramachandran
(1997)), we say that a random variable X has a geometric infinitely divisible
distribution, if

∀ (0 < p < 1) ∃ (rv’s Gp, X
(p)
1 , X

(p)
2 , X

(p)
3 , ...) X

d
=

Gp∑
j=1

X
(p)
j , (17)

where X
(p)
j , j = 1, 2, ..., are independent and identically distributed and Gp

is independent of them and has the geometric distibution with parameter p
– the moment of the first success in the Bernoulli trials, i.e., P (Gp = j) =
(1 − p)j−1p, j = 1, 2, 3 .... By GID we denote the class of all geometric
infinitely divisible distributions (random variables or characteristic functions.

From (17) one infers that for any c > 0 functions

R 3 t → 1

1 + c(1− φ(t))
∈ GID, provided φ is a char. f. (18)

Moreover, characteristic functions of the form (18) play the role of the com-
pound Poisson measures, e(m), for the class GID.

COROLLARY 3. For c > 0 and a finite measure m functions,

kc,m(t) := (1 + c(m(R)− hm(t)))−1, t ∈ R,

are Fourier transforms of geometrically infinite divisible distributions.
In other words, for c > 0 and the restricted Cauchy transform gm there

exists a geometric infinite divisible characteristic function kc,m such that

gm(is) = i
[ 1

cs kc,m(−s−1)
− m(R) + c−1

s

]
, s 6= 0.

Proof. Since kc,m is of the form (18) and, by Corollary 1 (a), (m(R))−1hm(.)
is a characteristic function, therefore kc,m ∈ GID. And from (9) we get the
second equality, i.e., the restricted Cauchy transform gm in terms of GID
Fourier transform.

1.4. Free-infinite divisibility and geometric infinite divisibility.

For a probability measure µ one defines Fµ(z) := 1/Gµ(z), where Gµ is the
Cauchy transform from (1). Furthermore, Voiculescu transform Vµ is defined
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as Vµ(z) := F−1
µ (z)− z, where one proves that the inverse function F−1

µ exist
in some Stolz angles; for more details cf. Bercovici and Voiculescu (1993),
Corollary 5.5. A measure µ is said to be free-infinitely divisible if for each n ≥
2 there exists probability measure µn such that Vµ(z) = Vµn(z) + ... + Vµn(z)
(n-times). From Barndorff-Nielsen and Thorbjornsen (2002), Proposition
5.2, we have the following free-probability analog of the Lévy-Khintchine
formula:

µ is free-infinitely divisible iff its Voiculescu transform Vµ is such that

z Vµ(
1

z
) = iaz−σ2z2 +

∫

R

[ 1

1− zx
−1−zx1(|x|≤1)(x)]M(dx), z ∈ C− ; (19)

with the three parameters a, σ2 and a measure M , the same as in the classical
Lévy-Khintchine formula.

COROLLARY 4. Suppose that c > 0 and Vµ is the Voiculescu transform
of a free-infinitely divisible probability measure µ. Then functions

wc,µ(t) := (1− c (it)Vµ((it)−1))−1 are GID char. f. (20)

More explicitly, it has the form

wc,µ(t) =
1

1− c[ iat− σ2 t2 +
∫
R\{0}

(
1

1−itx
− 1− itx 1{x:||x||≤1}(x)

)
M(dx) ]

(21)

Here a ∈ R, σ2 ≥ 0 and M is a σ-finite measure that integrates min(1, x2)
over the real line, and this triplet is uniquely associated with the measure µ.

Proof. This is so, because limt→0 wc,µ(t) = 1, by (19) (note the integra-
bility condition for M) and

exp
[
1− 1

wc,µ(t)

]
= exp[it Vµ((it)−1)] ∈ ID, (infinite divisible char. f.)

by Jurek (2004), Corollary 5 and 6. (More precisely these are characteristic
of integral (15); class E ⊂ ID). Consequently, by Ramachandran (1997)
we conclude wc,µ ∈ GID. The remaining part follows from Jurek (2004),
Corollary 6 or Barndorff-Nielsen and Thorbjornsen (2002), Proposition 5.2.
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2. Remarks on the function Fm . As we have seen in section 1.4., in
the free-probability theory besides the Cauchy transform Gm, an important
role is played by a companion function Fm(z) := 1/Gm(z). If one would
like to consider Voiculescu transform Vµ only on imaginary axis then the
invertibility of Fm(it) must be settled. Here are preliminary results in that
direction.

Let fm(it) := Fm(it), t 6= 0, be the companion function of the restricted
Cauchy transform.

PROPOSITION 1. (a) For each finite and non-zero Borel measure m on R
its restricted Cauchy transform gm(i ·) never vanishes on R\{0}, the function
t → t−1=gm(it) is one-to-one on the half-line (0,∞) and limt→+∞ (it) gm(it) =
m(R). Analogous result holds for the negative half-line.

(b) The imaginary part of the function R+ 3 t → fm(it) := 1/gm(it) ∈ C+

satisfies the inequality 0 < m(R) t ≤ = fm(it) and limt→+∞(it)−1fm(it) =
(m(R))−1. Furthermore, if m is a measure satisfying these conditions such
that <gm(it) = 0 then there exists a constant 0 ≤ dm < ∞ such that
i (dm,∞) ⊆ fm(iR+) ⊆ C+.

Proof of Proposition 1. Since, by (1) and (2),

= gm(it) = −t

∫

R

1

t2 + x2
m(dx), < gm(it) = −

∫

R

x

t2 + x2
m(dx), t 6= 0,

thus, for s ≥ t > 0, equality t−1 gm(it) = s−1 gm(is) implies that

t−1= gm(it) = s−1= gm(is) and thus

∫

R

s2 − t2

(t2 + x2)(s2 + x2)
m(dx) = 0.

Hence, for m 6= 0, the above implies that s = t. Consequently, the function
0 < t → t−1=gm(it) is one-to-one function. Which completes a proof of the
part (a).

For the part (b) let us introduce notations

at :=

∫

R

1

t2 + x2
m(dx) > 0, bt :=

∫

R

x

t2 + x2
m(dx) ∈ R, for t > 0.

Thus gm(it) = −i tat − bt and consequently

fm(it) =
1

gm(it)
= i t

at

t2 a2
t + b2

t

− bt

t2 a2
t + b2

t

∈ C+, whenever t > 0.
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Assuming that m is a probability measure then Schwarz inequality gives that
(tat)

2 + b2
t ≤ at and this with the above definition of fm give the inequality

for the imaginary part of fm(it). A similar argument holds for an arbitrary
finite measure m.
Finally, for s > 0, in order to have is = fm(it) for some t > 0 one needs

bt = 0 and s = 1/(t at), i.e., s−1 = t

∫

R

1

t2 + x2
m(dx)

But the function t → t at is continuous and limt→∞ t at = 0. Putting 1/dm :=
sup{t at : 0 < t < ∞} we get that the equation above holds for s > dm.

3. Examples. We will illustrate our results ana technics on some exam-
ples. For the computations below, from the definition (1), and the formula
(1a), one needs to keep in mind that

if =z > 0 then =(Gm(z)) < 0, and, if =z < 0 then =(Gm(z)) > 0.

Consequently, for the restricted Cauchy transform gm(it) we get that

=(gm(it)) < 0, for t > 0, and =(gm(it)) > 0, for t < 0.

3.1. Semi-circle law. From Voiculescu (1999), p. 299, let us consider a
probability measure µα, α > 0, such that its Cauchy transform is equal

Gµα(z) =
z +

√
z2 − α2

α2/2
, (22)

and assume we do not know the measure µα. Hence the restricted Cauchy
transform is equal to

gµα(it) = Gµα(it) = i 2α−2(t− sign(t)
√

t2 + α2), t 6= 0.

Thus, by (9) and Corollary 1 (a),

hµα(t) =
1

it
gµα(

1

it
) =

2

1 +
√

1 + α2t2
, t ∈ R, (23)

is a Fourier transform of the random variable e · Xα, where these two are
independent variables and µα is the probability distribution of Xα. Hence

E[eit e·Xα ] =

∫ ∞

0

µbα(ts)e−sds =
2

1 +
√

1 + α2t2
, t ∈ R. (24)
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Substituting 1/u for t, (u > 0), and changing variable one gets

∫ ∞

0

µbα(x)e−sxdx =
2

α

α

s +
√

s2 + α2
=

2

α

∫ ∞

0

J1(αx)

x
e−sxdx , s > 0, (25)

where J1 is the Bessel function of the first kind of order 1, and the last
equality is from Gradsteyn and Ryzhik (1994), Section 17.13, formula no.
103 on p. 1182. This, with Theorem 1 (iv) in Jurek (2003), gives

µbα(t) =
2

α

J1(α t)

t
=

1

B1(iα t)
=

∫

R
eitx 2

√
α2 − x2

π α2
1[−α,α](x) dx, (26)

where B1(t) is a Fourier transform of a selfdecomposable distribution (given
by series of independent Laplace random variables multiplied by zeros of a
Bessel function) and 1/B1(it) is again Fourier transform. This is an example
of a pair of Fourier transforms from the van Dantzig class D, (van Danzitg
property) ; cf. Jurek (2003), Theorem 1(i), (iv) and Section 4 on p. 218.
More importantly, in (26) we recognize that µα has the semicircle law. And
this is what we should get because, indeed (22) is the Cauchy transform of
the semicircle law; cf. Voiculescu (1999), p. 299.

Similarly, Corollary 1 (a) and (23) we get that

(K(e(µα)))b(t) = exp
[1−√1 + α2t2

1 +
√

1 + α2t2

]
= (e((µα)<e>))b(t) , t ∈ R, (27)

is a Fourier transform of a compound Poisson measures.
Furthermore, from Corollary 3 with (c = 1) we get that

1

2− hµα(t)
=

1 +
√

1 + α2t2

2
√

1 + α2t2
∈ GID, (28)

i.e., it is a Fourier transform and it corresponds to a symmetric geometric
infinitely divisible distribution.

3.2. Cauchy distribution. This time we know that γa is the Cauchy ran-
dom variable with the probability density a/(π(a2 + x2)), x ∈ R (a > 0 is
a parameter) and with the Fourier transform exp(−a|t|), t ∈ R. By (9) and
Corollary 1 (a), we conclude that

hγa(t) =
1

it
gγa(

1

it
) = E[eit e·γa ] =

∫ ∞

0

e−a|t|s e−sds =
1

1 + a|t| , (29)
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where again we got a selfdecomposable distribution. This with Corollary
2(a) gives

(K(e(γα)))b(t) = exp
[− a|t|

1 + a|t|
]

= (e((γα)<e>))b(t) , t ∈ R,

is a Fourier transform of a compound Poisson measures. And Corollary 3
allows us to conclude that

1

2− hµα(t)
=

1 + a|t|
1 + 2a|t| ∈ GID, (30)

i.e., it is a Fourier transform and it corresponds to a symmetric geometric
infinitely divisible distribution. Finally, from (29) and (9) we retrieve the
restricted Cauchy transform for the Cauchy distribution γa :

Gγa(is) =
sign(s)

i(|s|+ a)
, for s 6= 0.

(note that the formula on p. 302 in Voiculescu (1999) is valid only in a
half-plane).

3.3. Gaussian distribution. LetN denotes the standard normal distribu-
tion (variable) with the probability density function (2π)−1/2 exp(−x2/2), x ∈
R. From (9) and Corollary 1(a), we have that

hN (t) =
1

it
gN (

1

it
) = E[eit e·N ] =

∫ ∞

0

e−(ts)2/2 e−sds

= e1/(2t2)

∫ ∞

0

e−2−1(st+t−1)2ds = e1/(2t2) t−1

∫ sign(t)·∞

t−1

e−w2/2dw

= (2π)1/2 t−1 e1/(2t2) [Φ(sign(t) · ∞)− Φ(t−1)],

= (2π)1/2 |t|−1 e1/(2t2) Φ(−|t|−1), (31)

where Φ denotes the cumulative distribution function of the standard normal
distribution N , is a Fourier transform of e · N . Furthermore,

gN (iw) = −i
√

2π ew2/2 sign(w) Φ(−|w|), w 6= 0, (32)

is the restricted Cauchy transform of N .

4. Comments and remarks.
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REMARK 1. For the class GID, a Cauchy probability distribution (with
the probability density 2−1 exp[−|x|] and the Fourier transform (1 + t2)−1)
corresponds to standard normal distribution (Gaussian) in ID, cf. Klebanov,
Manija Melamed (1984), at the bottom of the page 758. In this context, let us
mention that in free-infinite divisibility, the semicircle distribution (Example
1 in previous section) plays the role of a standard normal distribution.

REMARK 2. For a finite measure m, let us define function um(t) by the
following equality:

um(t) := hm(t)−m(R) =

∫

R

( 1

1− itx
− 1

)
m(dx), t ∈ R, (33)

then on the right hand side we recognize a functional of the Voiculescu trans-
forms (via (19)) of free-infinite divisible measures. But, as in the case of the
classical ID, not all infinite divisible characteristic functions are of the form
(7), so not all functionals of free-infinitely divisible distributions have trans-
forms of the form (33). In fact, (7) ”encourages us to abandon the assumption
that m is finite” says Stroock (1994), p. 136 . In a similar spirit, if we assume
that a measure M integrates min(1, x2), then (33) naturally extends to

uM(t) :=

∫

R

( 1

1− itx
− 1− itx 1{u:|u|≤1}(x)

)
M(dx)

which coincides with ’Poissonian’ analog of free-infinite divisible distribution
and Lévy exponents of class E probability measures; comp. Barndorff-Nielsen
and Thorbjornsen (2002), Proposition 5.2 and Jurek (2004), Corollary 6.
Note that the integrand above is bounded by const·min(1, x2).

REMARK 3. Let m be a finite measure on Rd and let begin with the defi-
nition

hm(t) :=

∫

Rd

1

1− i < t, x >
m(dx), t ∈ Rd, (34)

where < ·, · > denotes the scalar product in Rd. Then many of presented
here results will hold true with some obvious modifications; note that in Jurek
(2004) or in Iksanov-Jurek-Schreiber (2004) random integrals are given for
Banach space valued Lévy processes. Cf. Araujo-Gine (1980), Chapter 3, for
the classical infinite divisibility on Banach spaces. Hence one may uses (34)
as the stepping stone for free-probability in finite (infinite) linear spaces.

Acknowledgements. We would like to thank the Reviewer whose com-
ments improved the organization of the paper.

14



REFERENCES

[1] N. I. Akhiezer (1965), The classical moment problem, Oliver & Boyd,
Edinburgh and London.
[2] A. Araujo and E. Gine (1980), The central limit theorem for real and
Banach valued random variables. John Wiley & Sons, New York.
[3] O. E. Barndorff-Nielsen and S. Thorbjornsen (2002), Lévy laws in free
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