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S-SELFDECOMPOSABLE LAWS
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Abstract: For 0 < a < oo, new subclasses U<*> of the class U, of s-
selfdecomposable probability measures, are studied. They are described by random
integrals, by their characteristic functions and their Lévy spectral measures. Also
their relations with the classical Lévy class L of selfdecomnposable distributions are
investigated.

Key words: s-selfdecomposable distributions; the class U background driving
Lévy process; class L; Lévy spectral measure; Lévy exponent; random integrals.

Limit distribution theory belongs to the core of probability and math-
ematical statistics. Often limit laws are described by enalytical tools such
as Fourier or Laplace transforms, but a more stochastic approach (e.g.,
like stochastic integration, stopping times, random functionals etc.), seems
more natural for probability questions. Some illustrations of this paradigm
are given in the last paragraph of this note. In a similar spirit, in Jurek
(1985) on page 607 (and later repeated in Jurek (1988) on page 474), the
following hypothesis was formulated:

Fach class of limit dist:r*a'bxltr.z'ons, derived from seguences of independent
random variables, is the image of some subset of ID (the infinitely divisible
probability measures) by some mapping defined as a random integral.

Random integral representations, when they can be established, would
provide descriptions of limiting laws via stochastic methods, i.e., as the

“This work was completed while the author was a Visiting Professor at. Wayne State
University, Detroit, USA.
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probability distributions of the random integrals of form

RCECOR hrHs)) v (s), M

(r(a),r{)]

where i and r are deterministic functions, & : (a,b] — R, 7 : {a,b] — (0,00)
and Y (s),0 < s < 0, is a stochastic process with independent and station-
ary increments and cadlag (right continuous with left hand limits) paths:
in short, we refer to Y as a Lévy process. In this note we provide new ex-
amples of classes of limit distributions for which the above hypothesis holds
true. The main results here are Propositions 3, 4 and 5, and Corollaries 5,
6 and 7.

1. Introduction and notation.

Let E denotes a real separable Banach space, E' its conjugate space,
< -, > the usual pairing between £ and E’, aud ||.|| the norm on E. The
o-field of all Borel subsets of F is denoted by B, while By denotes Borel
subsets of £\ {0}. By P(E) we denote the {topological) semigroup of
all Borel probability measures on F, with convolution “+” and the weak
topology, in which convergence is denoted by “=”. Similarly, by ID(E)
we denote the topological convolution semigroup of all infinitely divisible
probability measures, i.e.,

pelD(E) if Y(natural k >2) I(ux € P(E)) p=pup*.

Recall also here that [D(E) is a closed topological subsemigroup of P(E).
Finally on a Banach space E we define the transforms T., for r >0, as
follows: Tz := vz, x € E, and define £(£) as the probability distribution
of an E-valued random variable £.

A probability measure p € P(E) is said to be s-selfdecomposable on E,
nl]:d we will write u € U(E), if there exists a sequence p, € ID(E) such
that

vn =T1(p1 % p2 % ... *pa) " 2, 88 n—s o0, (2)

Since we begin' with infinitely divisible measures Pn we do not include the
shiffs 8., in (1), and do not assume that the triangle system {T', pfun :
1 < j < mn > 1} is uniformly infinitesimal, as is usually done i;x the
general limiting distribution theory.

Also let us note that our definition (2) is, in fact, the result of Theorem 2.5
in Jurek (1985). There s-selfdccomposability was defined in many different
but equivalent forms. Finally, s-selfdecomposable distributions appeared
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in the context of an approximation of processes by their discretization; cf.
Jacod, Jakubowski and Mémin (2001).

Originally the s-selfdecomposable distributions were introduced as limit
distributions for sums of shrunken random variables in Jurek (1981). The
's' stands here for shrinking operation defined as follows:

Ur(z) := maz(||z|| -7, 0)z/||z||, for r>0 and =€ E\{0}.

Also see the announcement in Jurek (1977). On the real line similar distri-
butions, but not related to s-operation, were studied in O'Connor (1979).

In the present paper we will repeat the scheme (2) successively and will
assume that py are chosen from a previously obtained class of limit laws.
Such an approach, for another scheme of limiting procedure was introduced
by K. Urbanik (1973) and then continued by K. Sato, A. Kumar and B. M.
Schreiber, N, Thu, with the most general setting, up to now, described in
Jurek (1983), where there is also a list of related references.

For easy reference we collect below some of the known characterizations
of the class U(E) of s-selfdecomposable probability measures and indicate
only the main steps in the corresponding proofs.

Proposition 1. The following statements are equivalent:

(i) u € U(E).
(3i) Y(0 < e < 1) (e € ID(E)) p = Tept™ * pie.
(i) there exists o unique Lévy process Y such that ju = L( [, 1, tdY (t))

Sketch of proofs. Characterizations (i) and (ii) are equivalent by Theorem
2.5 and Corollary 2.3 in Jurek (1985). Equivalence of (ii) and (iii} follows
from Theorem 1.1 and Theorem 1.2(a} in Jurek (1988}, where one needs to
take the constat 3 = 1 and the linear operator ¢ = I.

For our purposes we define random integrals by the formal formula of
integration by parts:

/kwww:mwwwmwmfymmm
(a,b) (a,b]

where the later integral is defined as a limit of the appropriate Rieman-
Stieltjes partial sums. This "limited” approach to integration is sufficient
for our purposes; ¢f. Jurek and Vervaat (1983) or Jurek and Mascn (1993),
Section 3.6. On the other hand, since Lévy processes are semi-iartingales,
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the integrals (1) or the above, can be defined as the stochastic integrals ag
well.

Corollary 1. The class U4 of s-selfdecomposable probability measures is
closed topological convelution subsemigroup of 1D, Moreover, it also i
closed under the convolution powers (e, for t > 0 and i we have that
K € U if and only if 4** € U) and the dilations Ty fordeR (e, pey
if and only if Tyu € Up.

Proof. Both algebraic properties follow from (ii) in Proposition 1 and the
following identities (Ty( « P = Ty « Typ™ for t > 0,d € R, and
v, p € ID. To show that If is closed in weak convergence topology we use
again the factorization (ii) together with Theorem 1.7.1 in Jurek an Mason
(1993) or cf. Chapter 2 in Parthasarathy (1967).

In view of the property (iii}, in Proposition 1, we define the following
integral mapping

T ID(E) ~U(E) givenby J(p):=L([ sdv,(s)), (3)
{

0,1)
where ¥,(-) is a Lévy process {i.e., a process with independent and sta-
tionary increments, starting from zero and with cadlag paths) such that
L(Y, (1)) = p. We refer to Y{:) as the background driving Lévy process
(in short, the BDLP) for the s-gel fdecomposable measure 7 {p).

REMARK 1. The random invegral mapping 7 is an isomorphism between
the closed topological semigroups JD(E} and U(E); ef. Jurek (1 985), The-
orem 2.6,

Finally, let
Ay) = / VT dT), ye E,
E

be the characteristic function (the Fourier transform) of a measure y. Then
for random integrals (1) we infer tha

(c( fwl h(r’:}d"}(r{f)))) () = exp f(n'b] log A(h{t)y)dr(), ()

when f is a deterministic function, r is an increasing (or monotone) time
change in (0,00) and Y.(.}) a Lévy process; cf. Lemma 1.2 iy Jurek and
Vervaot (1983) or Lemma 1.1 in Jurek (1985) or simply approximate the
tight-hand integral by Rieman-Stieltjes partial sums.
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Our results are given in the generality of a Banach space E, however,
below in many formulas we will skip the dependence on £.

2. m-times s-selfdecomposable probability measures.

Let us put <!> := Y(E) and for m > 2, let /<™ denctes the class
of limiting measures in (2), when py € U<™ 1> for k = 1,2,.. . As
a convention we assume that <% := [D. Our first characterization is
proved along the lines of the proofs of Theorem 1.1 and 1.2 in Jurek (1988),
however one needs not to confuse the classes Uy introduced there, with those
of U<™> investigated here. Needed changes in arguments are explained as
they are deemed.

Proposition 2. Form =1,2,..., the following are equivalent descriptions
of m-times s-selfdecomposable probability measures:

i) peldsm>,
(i) V(0 <c<1) Ip. EUS™1>) p=Top S« p,.
(i1) There ezists a unique (in distribution) Lévy process Y, such that
1= L( fig.1ytAY,(0)), where L{Y,(1)) = p e y<m-1>,

Mereover, in (ii) we have p, = E( f[c,l) tdY,,(t]), for0<e<1.

Proof. For m = 1, the above is just the Proposition 1. Now suppose that
the proposition is proved for m. If i1 € U<™*1> then, by the definition
(formula (1)), px € U™, for k = 1,2,... . For given 0 < ¢ < 1, let us
choose natural numbers m,, such that 1 < m, < n and Mpj/n — e, as
n > 0o. From (2) we have

Vn = Tmn/nl":nn,:"/n * T3 pn (P41 * . pﬂ)'lf"’l. (5)

By Theorems 1.2 and 2.1 in Parthasarathy (1967), the second convolution
factor in (5) converges, say to jz., which must be in #/<™> by Corollary 1.
Thus we get the factorization (i) for m +1, i.e., (i) implies (ii).

If (i) bolds we have a family C := {:: 0 < e <1} C U™, where
= g and o = p, from which we construct sequence (px) as follows

L=l and Pr = T"#E’t‘l)fk for k ?_ 2,

Using the factorization (ii) for ¢ = (k — 1)/k, then applying to both sides
the dilation T} and then raising to the (comvolution) power , gives the
equality T;,-,z.','k = T putte=1) 4 Pk, or in terms of Fourier transforms

Arly) = [aky)[* (k= 1)y)*2, for k> 2.
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Hence
PL¥Pa* .k ppn =Tou™" e, pe um+ls

which compietes the proof that (i) implies (i).
Since we have

=1 dY,(t)) = - 4
= L( j{‘m)t p(t)) L(/(‘M tdY,(t)) L(/kll)udyﬂ(a))
=4l r *C
T L /‘:m) td¥,(t))) E(f i tdY,(t)),

fe,
we infer that (iii) implies (ii). To prove the converse that (i) implies (iii) we
proceed as in Jurek (1988), page 482 (formula (3.1)) till page 484, taking
A = 1and Q = I (identity operator). Thus we construct process Z(t)
with independent increments and cadlag paths such that £{Z(t}) =y, €
U=">_ Because of Corollary 1 we conclude that ‘

¥(t) = / sdZ(s), for t >0,

ke
~ has increments with probability distributions in Z/<™>. All in all we have
proved (iii).

Corollary 2. (¢) The classes U<™>, m = 1,2,..., of the m-times s-
selfdecomposable probability measures are closed convolution subsemigropus
, closed under convolution powers and the dilations Ty.

(L) U = F(T(-(TAD)Y)), (m-times composition),
L1 CUS™HI> CYU<™> C ID, for m=0,1,2, ..., (6)

where Ly, k= 1,2, ..., are the convolution semigroups of k-times selfdecom-
posable probability distributions.

Proof. Part (a) follows from the characterization (ii) in Proposition 2. To
prove that (/<™ are closed we use Theorem 1.7.1 in Jursk and Mason
(1943) or cf. Chapter 2 in Parthasarathy (1967).

Part(b). Since U < ID, therefore applying successively the random
integral mapping 7 to both sides gives the inclusion Y<m+1> ¢ py<m>
For the second inclusion Ly C U<*>| note that it is true for k = 1, ef,
Corollary 4.1 in Jurek (1985). Assume it is true n, i.e., L, C U< a.nci let,
1€ Lnt1 C L. Then for any 0 < ¢ < 1 there exits v, € L, such that

p=Tpxv, =T " % p, with p.:=Topn* V4. eI, C U,

T
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because, by the induction assumption, v and p are in Ly, Consequently,
by (ii), in Proposition 2, p € U<n+1> and this completes the proof.

Our next aim is to describe m-times s-selfdecomposability in terms pa-
rameters of infinitely divisible laws. Recall that each 1D distribution p is
uniquely determined by a triple: a shift vector @ € E, a Gaussian covariance
operator R, and a Lévy spectral measure M; we will write p = [a, B, M].
These are the parameters in the Lévy-Khintchine representation of the char-

acteristic function f, namely

pe ID iff jly) = exp(P(y)), where
dy):=i<y,a>+1/2<Ry,y>+

/E\{D}fé*(“'“> 1—1 <y, >.1[|z“.51(I)]M(d3:), ye E; (7

$ is called the Léuy exponent of p (cf. Araujo and Giné (1980), Section
3.6). Furthermore, by the Lévy spectral funetion of p we mean the function

Luy(D.r) = —-M{zc E: |z >rand z|jz]| " € D}),

where D is a Borel subset of unit sphere S := {z : }jz|]| = 1} and r > 0.
Note that Ly uniquely determines M.

Since the Lévy processes have infinitely divisible increments (from the
class ID) and ID is a fopologically closed convolution semigroup, and also
closed under dilations 7}, (a multiplication of random variable by a scalar a),
therefore the random integrals f(u‘b] R(t) dY (r(t)) have probability distrib-
utions in ID as well . If |an ,, Bp -, My ] denotes the triple corresponding
to the probability distribution of the integral in question, and [a, R, M] de-
notes the one corresponding to the law of Y (1) then (4) and (7) give the

following equation:

Ry /{ . R2(t)dr(t)) R, (8)
M (A) = f{ , M@ A)irt) for A B, )

and finally for the shift vector we have
r
=1 j R(t)dr(t)) a
(a,b]

+ [ o hO[s(he)z) - 1a(@)dr(OM(dz). (10)
E\{O} (n.b]
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SDeci.B,liziflg?; the above for the functions h{£) =r(t)=t, 0 <t <1, and, f
the sinplicity of notations, putting p = la, R, M] and o’ ?2‘ K{’I,_ J. or
we get from (8)-(10) the following relations S = Je),

R =1/3R, (1)
MY4) = | Mg
) - (t'A)dt, for A€ B, (12)
a = -l—a-+f t/ eM (dz)dt = -l—[a+ =4
2 Jony Jicpaize 2 f{”z“}]}z“z” el
(13)

In order to pet the second equality in (13) one needs to observe that
L)<y (@) = l{n<i<|zii-13 (t) or to change the order of integration. Thus

tf M {dz)dt -
/;0-1) Srcimpees "0 = oy Sy NS MM )

i
= / I-/O tdtM (dz) = 1/2

"~ Jlleli>1) }-"HTiI"zM{dx}.

{Hl=li>1

s Now we may E:naract;erize *he m-times s-selfdecomposable distributions
in terms of the triples in their [évy-Khintchine formula.

iI'-‘ropc:sit.ion 3. Form=1,2,.., let p=o, R, M] and
aﬁ’"?R"""‘.Iﬂ‘:m) i Jm. b _# : .
e ] {p) be m-times s-selfdecomposable probability

R(m.‘r b (]/:5)HAR, (14)

M <™>(4) = ((m — 1))~ fm o MU A=ty for Ac By,
(15)

' P m—1 E"
as<m> _ (]/lg)m(ﬂ‘%' [ J-‘”.’Ei =g W (211‘1”:’:5;)] \ 2

[ Il %6 i M(dx).  (16)
Proof. For m = 1 the above are just the formulae (11)-{13).
A?:imli :‘,ha.t : {14)-(16) holds form m. Sin
frj T R< mi—l.z"_,w{?'nﬂﬂ - j([ﬂ!.{m) R<m> M<"‘>ﬂ th =
R ot ” " ), therefore, by

<mil> __ ¢ ">
R = (/3R> (17)

TR

i
5
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M<m+1>(A) o B 1)M<m>{t_lﬁ}dt, for A€ Bg, (18)
1
g <ML - [a<™> 4 [ :c||:r:|'|"2ﬂ.4(m>(ﬁ:)]. (19)
J{|x]l>1}

Obviously, by the induction assumption, we infer that (14) holds for m—+ 1.
Similarly from (8) and (11), and from the change of the order of integration,

we get
M<m+1>(A) - ((m - 1}[)—1 j-
(0.1 /{a.1)
= ((m—1))7? [ M(u'lA)gy’(-— Int)™di
(0,1) J(0,2) t

M{t s A)(— Int)™ ' dtds

=~ 10 [m.n M(u"A)[/(-u’l) %(-— In ¢)™ Y dt)du |

= (m!}~ /(0.1) M(u T A) (- Tnw)"du,

which proves (15).
In order to prove the formula for the shift, first note that by (11) and

by change of order of integration, we have

T [ xlz|["2M <" (da)
{ll=l>1}

‘/;; 1{{”I||>1}}(tz)zi|z|]_2£"l(- klf)m—!dt M(I)

i

= ((m-1)H™* j;a i

= (-1~ [

il
{l1=l1>1} 2]l
Gy [ sl on )" M)
{ilzli>1}

£V (= Int)™ " dit] M (dz)

for m = 1,2,... . Note that for m =0 the above formula gives the second
summand in (13). In terms of wm, (19) gives the recurrence relation

a<m> = 1,/2(a,<"’”1> + Wyp—-1), for m=12,.,

where a<%> := a. Thus, if the formula for the shifts (16) holds for m, then
the above gives that it also holds for m -+ 1, which completes the proof the

proposition.
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Let us recali that the functions
((’1 .I,') = / *ﬁfﬂﬁld
1 = t,
I =4 >0 a> 0, (20)

7 / mcomplete @amam unclions 'Bl :
are called ¢ LE Ty npie g LTI, f 7 » SH]]]J]E (¢ Clllatl()l]s bh{)WS h £
tha

1,( : m—1
%) = - g s
(m—1)le 27, for m=1,9,.. . (21)

<,

s

5 3=0
Cousequently, the formula | 16) may be written as

a<™> = (1 /2)™ -
1/2)" [a+ () ./{“:“M} zT'(m, 21n ||z{|) M{dz)]. (22)

Let us introduce resealesoftime in the interval (0, 1) as foll
A ; ows

T, e ) ] 1
A {t) ._P—@/n(ﬂnu)“* du, O<t<l. (23)

Note that 7, i . ’
dom vajiag;; l: e Lllm(il lative probability distribution function of the

4 (: o 1= & ln‘ Where G i.S Lhe i ran-
Y s : =4 m E o iy,
the probability density (D(a))~? zo—1g-= fﬁ ma random variable ‘with
Hence ! T >0, and zero elsewhere.

Talt) = Plga < i}, and

51
Elgt) = (D)) [ #(-nt)=1de = (5 4 1),

L]

_/(; Pl d‘ra(z) = (,g 1 1)—0 L(E’L::i:?_—t_]&ﬂ)

Ta) —  or ¢>0,0<e<1, (29)

and (15) can rewritten ag

N <m> = —~1
i {A) »V/(:)'n Mt~ A)drn (t) = E[M{g;:' 4)). (25)

Now we can establish
the random inte
. gral repre ;
classes U<™> of s-selfdecomposable probability fm:s:mwn R
proba ; i

Propesition 4. (a) Th

b y e clags f<m> of i

bélst I A m-times s-selfdecom

imﬁgyrz:ﬂ;ﬂﬁht;r;r;:uifg ;mthhme class of probability distribut:'opaz‘:aa!:ﬁiaﬁzjg;

(o) 1Y (7 (0)), where ¥ () 15 an arbit
{6} The class of Fouri arbitrory Lévy process.
: S er transforms of m,

with the clas 5 easures from U<™> coinci

ol &i'w ;:ia.ss of fnnc.tzons exp BV (g9}, y € £, where © is an m?-ﬂdes

wzria;zp e”i of an infinitely divisible probability measure and tfaear d:z”
Gm = exp(~Gn), with G,, being the standard gamma ;::;m

om
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variable. In foct, the ezponent W is that of the random variable Y (1) from

(a)-

Proof. Let [bm, Sm, Nm] and {a, R, M]
ability distribution of the integral f(D.I) tdY (T
Then from (8)-(10) and (24) we have

are the triples describing the prob-
{t)) and Y (1), respectively.

£(= Inty™1dt) R = »35"; R =R,

S
Sm = (((m—1)1) ]m
Nm(A) = ((m — 1)!)—1 M(t_lA)(A In t)m*l dt = MS™= (A),
(0,1)

b = (((m — = i{—Int)™ tdt)a
(9,1}

_ -1 T Y— In m—1
+ ({m—1}Y) f(O.l)t/k!I:HSr‘l M(dz)(—Int)™ " dt

=M 1 4 ~1Y =1 . 1n_1d1
2 “-f{uzumﬁ{((m 1 f(o.nxnﬂ;t( Int)™dt] M(dz)

=47 Cat 2_'“/ z|((m -1 T(m, 2In [\ M (dz) = a=",
{liztI>1}

which completes the proof of the part (a).

For the part (b) we need to combine the formulae (4
7m (£)) and (14)-(16), and use (24).
E' — C is a Fourier transform of an m-times
d only if there exist unigue shift
spectral measure M

) (for h(t) = t,7(t) =

Clorollary 3. A function ¢ :
s-selfdecomposable probability measure if an
a € B, a Gaussian covariance operator It and a Léuvy

such that
dly) =exp{i < y,a > +2- ' < Ry.y>+
f (B (< 1.7 >) - 1= 2™ <3,z > 1a() M (da)},
B\f0)

where gm = e~Cm and Gy, is the gamma random vaeriable.

Proof. Use Proposition 4 together with the formula (4). Note that there
are not restrictions on a shi ft vector and a Gaussian covariance operator R.
Finally, for m=1 this is Theorem 2.9 in Jurek (1985).
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SMARK 2. Using the
and (24) we get

E{ga](ﬂ = § ‘J(g%, tER.

Since the previ “har izati - s
brevious characterization, of m-times s-selfdecomposabilit k
¥, has

only ‘a.rest.riction on the Lévy spectral measure
acterization of {<™> in terms of Lévy spectral ‘functio
) ns.

c "
orollary 4. An infinitely divisible [a, B, M] probability measure i
Te 15 m.

times s-selfdecomposable if and only
rneasure G such that

s B

Y 1)!)*1rf (Inw —In )™= Lg(D, 1) 2

4 ) T
for all sets D and ail + > 0, or equivalently )
[& 4]
L_M(D 7.)=rf =1 /on =1 00
) — wea =2
! 2 - x5 -/m w LoD, w)dw dx, ATy g,
« for all sets D and all v > 0.

P, : .
: :zof. In ;-:lw of the Proposition 3 we have that M = GimE 4
Avy spec i bt o i
o :’ lpt.c. I, meatsure G, and (15) gives the first part of the coroll g ““fq““
elation (18), in terms Lévy spectral functions, reads s
= 1

LM<f> |""DI ) f - L : ==
(yr)=r j 1 1 ol r W) =
M<i >(D, 3’,‘_,_1) 3 . ' >0, with p<0> i G,

] =1, B theref 1 24 P 1¢) Lk
for 1 ore the 1T dll('.t]\’e argument proves the ]]([
BeCH part of

Corollary 5. In ord
- er that ¢ Lévy spectral
4 ! WY spectrel measure G to be a Lé -
it :amredof an .m-tzmes s-selfdecomposable probability meas = é'pe(
m-t;m rﬂ an suﬁczent that its Leévy speetral functions v -+ L (fge,. e
es differentiable, except ai countable many points » and t!.? ke
7 is r, e

L(D,r) = (A™(Lg(D, ) és e Lévy spectral function,

The OPCH)I’O:' .A is the m-irtme po. T Of 5 T d1ffere -
2 2 s the m-time compositio lin o7
: ' f . of the ! Ea .ﬁ, ential ope

(A () == zh'(z) — h(z),

for once differentioble real-valued funetions b defined on () o)
L o | ¥

function

serles representation of the exponential functi
cLlon

therefore we have a char-

if there exists o unique Lévy spectra]
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Proof. Tf measures M” and M are related as in (12) then their corresponding
gpectral functions (tails) Ly and La satisfy equality

T / Lag(D,r/t)dt = 1—] w2 L (D, w)dw.
(0,1) r

Hence Ly is at least once differentiable {except on & countable set) and

_LM(D,T)V = T‘%LM'(D. 1) — Ly (D7) = (ALa (D, D). (26)

Moreover, by Theorem 1.3 in Jurek (1985), we have the left-hand side is
» Lévy spectral measure (on Banach space) if and only if so is & measure
on the right-hand side. Because of the recurrence equation (18) we have

proved the corollary.

REMARK 3. The random integral mapping J is defined on infinitely di-
visible measures p = [2, B, M]. If one assume that the formula (12) defines
the mapping J on the measure M or its spectral function Ly, then A may

be viewed as iis inverse mapping.

Before the next characterization, of the class U<™> distributions, let us
recall that a Lévy exponent is just the Jogarithm of an infinitely divisible
Fourier transform; cf. formula (7). Let us note that, if ¥ is the Lévy
exponent of p and @ is that of J(p), then (3) and (4) give the following

D(ty) = f U(sty)ds = : f ¥lavlan
) t oy

and consequently

V(y) = B(y) + d(2(ty))/dt}e=1-
With these equalities and the recursive relation between classes A< we
have
Corollary 6. A function ® : E' - Cisa Lévy exponent of an m-times
s-seifdecomposable probability measure if and only if there exists o unigue
Léuvy exponent W such that the funciion

E's3y— D™V¥)(y) isa Lévy exponent.

The operator D™ s the m-time composition of the following linear differ-
entiol operator

(Dg)w) := g(y) + dg(ty))/dtle=1,

where g« B! = C is once differenticble in each direction y € E' andt € R.
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Note that in a particular case
=il articular case one has (Dg)(y) := g(y) +yd
¥ € E' =R and it differs from A in Corollary 5 onlg,?{')y : ;li(i'))/dy, o

. € es 7 on L.évy exponents by‘ 4 t
" i vioxg A l (:] then the Operator
Banach space. ' . ‘ !

Proposition 5. 4 23

. A probability measure y = :
SG'Ifd@omp?smble, e, € Yoo o nf::f‘u<m£a;ﬁ;$ ]m:; f;:r}‘fezd?n“ s-
a unigue bi-measure o, ) on 8 x (0, 2) such that Y1 re exists

M(A-D)= —(z
( ) -/(0.2)-/;3.//; w1l dw o(du, dz)

= wEED
fm.z; /.4 Se (Dl (27)

where A-D :— = E:z/)

,,(;3 - S;I ;E czflizll € D, ||z)| € A} and for each Borel D c §

mbs;t i inite .’Jrel measure on the interval {0, 2) and for each Bﬁ ,l
i C (&,00) for some e > 0, o(:, A) is a finite Borel m s

unit sphere §. Moreover, we have that e

i 1
2 .
-/(G,Z)f5l<y)n> I 2_—2 a(ﬂlu,dz) <00,
for ally e B'.

P?‘OD}: If = | ] i = Y =
Gt L= @y A 15 completely s~selfd COM

‘ ; @, R M £ posable then by I ropao:
%7Jt10n 3o Cui‘()llﬂ,ry 4, for each m t TE exist; uni G y

o T Tt he exists a 1iique LQV measure G

M{A) = ((m - 1)H~1 -1 .
» 0,1) G A)-Imt)"'dt, for Ae By.
orforall Dandr >0

La(D r)::,-fl z! / ——I/
' =1 @ u,l“zl
4 L 1 5 c(D, w)dw dx, o T

Hence, for each set D, the functi

! ; net 1 ™

m-tires differentiable and B e O T
(-1)"d™f(z)/de™ = —¢=* Lo(D, e%) > 0,

In other words, f is
, completely monoton- and by B i
= : : \ er 4
there exists a unique finite Borel measure e™~(D ~)yon {O"Z:?)IZS Eltlleomm‘
y y uch that

flx) :—_/0 e 0™ (D, dz), ie., Ly(D, )= —/ —Iﬁa' (D, dz)
o rz-1 ¥ 3
(28)
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Since Lévy spectral functions vanish at oo and ¢~ (D, ) are finite measures,
therefore they must be concentrated on half-line (1, o). Consequently, from

(28) we get
Mir, D) = LD ~En (D) = | ey [ "L o~ (D,ds),

for all 0 < r < s < oo and all Borel sets D C S. Since for y € £,
(my M)(C) := M({z € E <y, >€ CY), for Borel subsets C in R, are
Iévy measure on real line therefore

[ i<ua> P s [
{il=il<1} {z€E: |[<y,z>| <1}

= t? (my M)(dt) < 00 .
{let<1}

| <y,z > |2M(dz)

On the other hand, using (28) the integral

j |<y,$>i2M(d$):f |<y,u>|gt2M(du-dt)
{o<|i=l|<1} ©,1]-5
1 0 5.1
= / j | <yu>? t2/ —t—:-a"(du,dz)dt
sJo 1

0o 1
_/f \<y,u>[?‘(z---})[/ 1=t ) o™ (du, d2),
§J1 0

~(D,-) are finite measures. Changing the

is finite only if 2z < 3, because ¢
2, we obtain the

variable and putting o (D, dz) := zo™(D,dz+ 1), D<gz<

formula (27) together with the integrability condition. Thus the necessity

part of the proposition is proved.
Tor the converse, let p = [e, R, M| with the

form in (27). Hence, by (12), J(p) has spectral measure

1
M'(A-D =] f [ —— dwa(D,dz}ds
( ) on Jo2 Jerawt ( )

1
=j(02)j:‘ﬁdmo,(n,dz),

= (z + 1)~ 'a(D,dz) is another finite measure on the
e J(p) has the Lévy spectral measure of the form
p € U<™> for all m, and thus the sufficiency of

spectral measure M of the

where o1(D,dz} :
interval (0, 2) and thercfor
(27) again. Consequently,

(27) is completed.
Let put :
Y= {p=[a, R, M,] : My is of the form {27)}, [
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i.,e., ¥ is the more explicit description of Lf<%>. Further, let us recall that

/Elog(1+!|a:sl)p(d:.r:) <oo iff /

{llxfi>1}
By the formula (27), the last integral is equal

log|lzl| M, (dz) < oo,

o0 00
—,/1 logzdLM,{S,z):[ Lag, (St)t™t dt
1

= 21 g - =
]1 /(0.2) (5, dz) dt /m)z o(S,dz) < oo.

Sjjmilar integrability formulas hold for functions g, (z):= logk(l +{|z|]) and
Lévy measures M. Recall that the integrability condition of gk appears in
the random integral representation for the class L.

Corollary 7. The class of completely s-selfdecomposable probability mea-
. i .
Jg:}rjrf;ai.cs with the class of completely selfdecomposable ones, i.e.,

Proof. If p = [u‘, R, M| and I(p) = 1:( f;’ae "a‘};,(t)) = [4°, R",MO], ot

log ||=||M (dz) < 0(4) = i 2
o oEAME) < 0 anc ba0(4) = [ ety
for all sets A € Bp cf. Jurek (1985)
, p.603 or Jurek and M.
p-120. Simple calealation show that b

[& ]
(Ma)"(A-D:/f /_L
) 0 J(0,2) Jerg Wt dwo(D,dz)dt

OO0
o [ [ [ conarpage | ] 2
-/(D,'.!)—/A Jo R, = (02) A;,:wa’z(ﬂ‘dz),

where 03(D,dz) := 2" '0(D, dz) is another finite measure on (0 2) because
of the logarithmic moment assumption. This shows that ) ,C pH 'Since
Lie = I((..(Z(IDyppe )}, (k-times composition of T and ID, .+ denotes the
class of infinitely divisible measures with finite logk-moment;;, we inferﬂtﬁ' t
T < Ly, for k = 1,2.... Consequently, & C Lo, 1= % Ly (- L{<00> — ;
which completes the proof. et s

HEMA»RK 5. Measures M, are mixtures of Lévy measures of stable jaws
The mixture is done with respect to the exponents p € (0,2). Since Fourie;
transforms of p-stable measures are known explicitly we can have analo ou-s
formulas for completely s-selfdecomposable measnres; of. a similar rfsult

T TR M (T PO A 0TS R N T M
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(on the real line) for Lo, in Urbanik (1973), or Thu (1986}, or Sato (1980)
or Jurek (1983}, Theorem 7.2.

3. Concluding remarks and two examples.
A). The classes 1{<™> were introduced by an inductive procedure and thus

we have the natural index m. For a positive non-integer @ one may proceeds
as in Thu (1986) using the fractional caleulus. However, we may utilize our
random integra! approach and define

U = {L(j tdY,(ra(t))) 1 p€ 1D}, (29)
(0.1)
where Y,,(-) is a Lévy process with £(¥,(1)) = p. Equivalently, we have

[ﬂ'<a>,R<a>‘M<a>] :Ja(#) == E(/

tdY,(ralt))),
©.1)

where
R<o> —z-ap  M<e>(A)= [ M('A)dra(t), A€ B,
(0,1)
4<0> = 979 (g 4 - 2 D( 21n [Jol]) M(dz)], (30)

T(a) Jijiaii>1}

cf. (14), (15} and for the shift vector (16) with (21),(22) and (24).
Furthermore, for any continuous and bounded f on (0, oo) and gamma
random variables G, and G we have

jm / " @+ OGN )G d) = [ FEECasp)ld),
0 1] Q

i.e., gamms distributions form an one-parameter convolution semigroup of
measures on (0,0c) with the addition . Consequently, for any continuous
bounded h on interval (0,1)

f h(st)dra(t)dTa(s) = f h(w)drasp(u),
(0,1) 4(0,1) (0,1)

thus 7, form one parameter semigroup of messures on (0,1) with the mul-
tiplication. Hence we infer that

Corollary 8. For any positive a and 8 we have

(i) Tt = (2P,
(b) if a < F thenU<P> C US>,
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B). In this subsection we 71 i

I i rex;i xrjen :(Jﬂslder only R-valued random variables or
Because of the inciusion L C U each selfdecomposable distribution is

faxample of s-selfdecomposable one. On the other hand by Pro osit'lh e
in I}‘(samw, Jurek and Schreiber (2002), se]fdecomposal;le distrigutiomn »
}"amc—)zn variables of the form X = ):z‘;l apfk, where m’s are inde enI:i3 4
1ientzcally distributed Laplace (double exponential) random varia‘r[JJles o
2.x0f < oo, have the background driving probability measures v cand
Furthermore, by Proposition 3 in Jurek (2007) we havé that E

M) = exptdy (1) /dx(t)], teR (31)

fn Jurek.{lﬁillﬁ) it was noticed that ¢z(t) = t/(sivht) ("S” stands for the
:zypfzrbfhc sine’) and ¢e(t) 1= 1/(cosht) ( "C” stands for the hyperbolic
cogne_) are the characteristic functions of random variables of tlhc abo

series form X, Using (31) we conclude i

Ps(t) == exp(1 — teotht), we(t) := exp(—itanh t) are class U char, f.

Thus both are characteristic functi i
nctions of integrals (3). Furtl i
Corollary 8 wa hava that & e

Dlogys{t)) = 1~ 2eothit +¢*/(sinh®t) and
D(logec(t)) = =2t vaukt - 2/ (cosh®t) are Lévy exponents. (32)

It might be worthy to mention here that ¢5(i) - 1r5(t) is a characteristic
i‘-:-ncucm of a conditional Léuy’s random arca integral; cf. Lévy (IQE)I) u;
;— Efggz)fmd Jurek (2001). Similarly, (@e(t) -4 (t))/2 is a characteristic
i ; : :
= :i s :y;]e ]r: (;gﬂz;;t,e:m; ({z?’zctwnul of Brownian motion; cf. Wenocur (1986)
Be.ucnﬂy in Jurek and Yor (2002) the probability distributions corr
spf‘mdmg to both s and 1 were expressed in terms of squa"eri ];es ei
hru‘iges. Also both functions viewed as the Laplace transform ix; /2 :e
oe mf.erp_reﬁaed as the hitting time of | by the Bessel process startin fr’an
zero; cf. Yor (1997), p. 132. At present we are not aware of a‘n stofh T’n
representation for the analytic expressions in (32). Finaliy. il.yseen'e{:;l:
the cperators A™ may be related to some Markov prnces:::e;. S
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