

JUREK COORDINATES

This mathematical term appeared in some papers and recently in the monograph *STOCHASTIC MODELS FOR FRACTIONAL CALCULUS* by Mark M. Meerschaert and Alla Sikorskii, de Gruyter Studies in Mathematics 43, 2012, page 185.

There, it is a particular case of so called *polar coordinates* in Banach spaces; cf.[1]. Namely,

PROPOSITION 1. *For an one-parameter multiplicative group $(T_t, t > 0)$, of bounded linear operators (on a Banach space X), satisfying the condition $\lim_{t \rightarrow 0} T_t x = 0, x \in X$, there exists an equivalent norm $||| \cdot |||$ and a Borel set $S \subset X \setminus \{0\}$ such that*

- (i) *the mapping $(0, \infty) \times S \ni (t, s) \rightarrow T_t s \in X \setminus \{0\}$ is one-to-one, onto, continuous and its inverse is Borel measurable;*
- (ii) *mappings $t \rightarrow |||T_t x|||$ are strictly increasing for $x \in X \setminus \{0\}$.*

In a case of uniformly continuous one-parameter groups one has more:

PROPOSITION 2. *Let $T_t = t^B, t > 0$ (B is a bounded linear operator) be such that $\lim_{t \rightarrow 0} t^B = 0$. Then $\|x\|_B := \int_0^1 \|t^B x\| t^{-1} dt$ is an equivalent norm and as the set S (in Proposition 1) one takes $S_B := \{x : \|x\|_B = 1\}$.*

Those polar coordinates are useful when one has to solve measure inequalities such as $M(\cdot) \geq (T_t M)(\cdot)$ or measure equations as $t M(\cdot) = (t^B M)(\cdot)$. The solutions to the last equation has to have form $M(dx) = r^{-2} dr m(ds)$ when $x = r^B s$; cf. [4], p. 196. Also cf. [1], [2] and [3].

- [1] Z. J. Jurek (1984), On polar coordinates in Banach spaces. *Bull. Pol. Acad.: Math.* vol. 32, pp. 61-66. (Note the open problems in Remarks.)
- [2] Z. J. Jurek (1984), How to solve the inequality: $U_t m < m$ for every $0 < t < 1$? *Prob. Math. Stat.* vol. 4, pp. 171-183.
- [3] Z. J. Jurek (1983) Limit distributions and one-parameter groups of linear operators on Banach spaces. *J. Multivar. Anal.* vol. 13, pp. 578-604.
- [4] Z. J. Jurek (1993), *Operator-limit distributions in probability theory*, J. Wiley and Sons (1993); (co-author J. D. Mason).