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s-SELF-DECOMPOSABLE PROBABILITY MEASURES AS PROBABILITY
DISTRIBUTIONS OF SOME RANDOM INTEGRALS

.

Z. J. JUREK

ABSTRACT. The class of the s-self-decomposable
measures on a Hilbert space coincides with limit distribu-
tions of sequences of random variables deformed by some
non-linear transformations. In this note the s-self-de-
composable measures are characterized as the probability
distributions of some random integrals with respect to

processes with stationary independent increments.

1. NOTATIONS AND PRELIMINARIES. Let H be a real
J

product (+,+) . For arbitrary positive real number =r ,

and the scalar

separable Hilbert space with the norm

. + . ;
i.e. rér , we define transformations Tr and Ur from

H 1into # Dby means of the formulas:
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(1.1) T x = TrXx j
and

{1:2) v x = max (0,] x||-z)x/| x| , v, 0=0.

The set {Ur: rEﬂ(+} forms one-parameter semi-group of
non-linear mappings of H called the shrinking operations
(for short: s -operation). By P(H) and Ip(H) we de-
note the semi-groups of all probability measures on H
and all infinitely divisible ones, respectively. It is
well-known that W€ p (#) if and only if its character-

istic fanctien ﬁ is of the form

(1..3) ﬁ(y)==exP{i{y,2)-%(R9:9) o

+ [ [exp i(g,x)—l-1(g,x}/(1+ﬁxh:)]m(dx}} .
m~{0}
where =z 1is a fixed vector from # , R is an s-operator
and M is a Lévy measure, cf. [5], Chapter VI, Theorem
4,10. Since the representation (1.3) is unique we shall
write u=|[z,R,M] if ﬂ is of the form (l.3). ZThe Lévy
spectral function, Ly v associated with a Lévy measure

M we define by the formula

(1.4) LM(A,r):=-M({x€H\{O}: x/|x|€a, |x]>c}),

= 6518 —



where réerT and a is a Borel subset of the unit sphere

s in H . Note that L, uniquely determines M . For

W= [z,RM] € Ip (7)) and t€ﬂ(+ by u“t we mean the in-

finitely divisible measure [tz,tR,tM] . Finally, for a
Borel measure m on H and a Borel mapping f from H

into H , fm is a Borel measure given by the formula
(1.5) (£m) (a)e=m (£ (a))

for all Borel subsets & of H , and by L(x) we denote
the probability distribution of K =-valued random variable

X

Let DH[a,b] denote the set of # -valued functions
that are right continuous on [a,b) and have left-hand
limits on (a,b] . For stochastic processes vY(t,w) with
sample paths in DH[a,b] and real valued functions f
with bounded variation on [a,b] we define the random in-
tegral as follows

(L.6) [ £(t)dv(t):= £(b)v(b) -fla)y(a)- [ v(e,w)df(t) ,
(arb] (a:b]

where the integral on the right-hand side is meant as a
Riemann-Stieltjes integral for fixed w . Its existence
is ensured by Lemma 14.1 in [l]. For our purposes we also

can assume LUKACS-PREKOPA's definition, cf. [4], Chapter
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VI. Namely, for H -valued stochastic process vy with
independent increments and continuous real-valued func-
tion f on [a,b] we put

(1.7) (afb}fdy v= lim g eie D irte d=utt, g1

where the limit is taken in probability as the width of

the partition {tnk} of (a,b] tends to zero and

& In order to extend the results of [4],

nk-1 <tnk stnk
Chapter VI to the infinite dimensional space, especially

Lemma 6.2.1, we can apply the following inequality

>t

I~3

:

n
P Hk£1 a, &l >t} £ 2p[mzx|ak| : i

)
k
valid for symmetric independent random variables &1,
&2,...,£n and real numbers Ar8orenei@ et FBl
Theorem 1l.2. From both definitions if vy 1is a DH[a,b] -
valued random variable with stationary independent in-
crements and f 1is continuocus with bounded variation on
[a,b] then

(1.8) Ll 1 fle)av(e) | (y) =
(a rb]

= exp [/ log L(v(1l))(£(t)y)dt , y€H ,
(a pb}

= 620 =



and for 56m+

(1.9) L[ g f(t)dy(t)]""s=L( f E@)yarise)]
(arb] (al’b]

Finally, if O<a<b<c<*® and vy has independent increments
then the random variables

S ECE)dY(E) & J f(t)dy(t)
(a.vb] (b,C]

are independent as well.

2. s-SELF-DECOMPOSABLE PROBABILITY MEASURES. Let
XyrXore .. be a sequence of independent H -valued random
variables which are not essentially uniformly bounded.
Let T rTopes- be a non-decreasing sequence of positive

real numbers and b a sequence of vectors from

1,b2,...
H . The limit distributions of sums

n
(a1} ) U_X. +b_,
F=1 rn g n
where the random variables v, xj (=L 25w enm & B=1;
n
2,...) form an infinitesimal triangular array, will be

called the s-self-decomposable probability measures. The
s—operations i are defined by (1.2) and U(H) de-

n
notes the class of all s-self-decomposable measures on

H . After-mentioned theorem collects all known descrip-

tions of the class U (#)
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(1)

(2)

(3)

(4)

(5)

(6)

(7}

(8)

THEOREM 2.l1. The following statements are equivalent:

u€eEU(H) .

+
= lz,8,M] and For all tER , M BUEM on H~{0} .
W= [z, ,R,¥] and 1ts L&vy sSpectral function L. , for

M

each Borel subset A of S , has right and left de-
rivatives with respect to r such that dLM(A,r)/dr

. . : A
18 non-=increasing on R .

ﬂ(y) = GXP{i(yrZO)—%(Ry,y) o+

; [a{p iy, =1 _ 1 _ iy, log (x| ®) 14 ® (dx)}
1y 2 r
PN Tk "

where zOEH , R 1s an S-operator and m 1is a
finite Borel measure on H~{0} .

~ 1 ~

U(y) =exp [/ log v(ty)dt for some VvV EID(H) .

0

u=1L F  Bdyit) , where Y is D _[0,1] -valued
H
(0,11

random variable with stationary independent incre-

ments and Y (0)=0 a.s.

U € ID (H) and for every 0<c<l there exists

o,
ID (H = %
ucﬁ (H) such that | TCu Mo

U belongs to the smallest closed subsemigroup of

ID(H) «containing all measures of the form [z,R,0]
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and [Z'O'Na,m] where

lB (tx)dtm (dx)

r

oL

N (8) = J
o,m

s
with &EJRT and finite Borel measure m on S

PROOF. (l)=(2)«(4) is proved in [2], Theorem 5.1
and Corollary 7.1 respectively. (3)«(2)«(8) is given in
[3] as Proposition 3.1 and Theorem 3.1 respectively.
(5)«(6) in view of the formula (1.8).

(4)=(5). Let us note that
1

J [exp i(y,x)t—l—i(g,x}t/(l-’rt?“xnz)]dt =
0

exp i(y,x)-1 _ 1 _ i(g,x)log(l+ﬂxﬂ2)
iy 2] %1 ”

and there exists szEH such that for all y€H

(y;zl)

N S e X
[(l+t Hx” ) -(l+1]x" ) :l(y,x)tdt m:ar%g—wp(dx) ‘

where p 1is a finite Borel measure on #~{0} related

5 Sesib

=
g~1{0}

to the measure m by the formula

p(a) = I (xl-arctglxl) (x| *) /x| *miax) .
A
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Applying Fubini's Theorem we get
A 1 ?
ul(y) = exp S {2it(9rzo+zl) - t°/2(3Ry,y) +
0
+ J lexp it(yfx)—l—it(y:X)/(l+”X||2)]||XH/(||XH-arctng|[)p(d)c)} gt

g~ {0}

which implies (5) with v= [2(zO+zl),3R,M] where

M(a) := [ |x|/(]x]-arctg|x|)p(ax) .
A

(6)=(7). Of course u==L[ i tdY(t)JEID(H) and
0 1]

(1.9) implies for O0<ec<l

0= L[ I tdY(t)]* L{ i tdY(t)] —
(0;e (sl

= L{c ¥ tdY(t)]*c*L[ I oedviel| =2 T wy
(0,11 (c,1] J . -

where W, o= L{ JE tdY(t)] which completes the proof.
(e,1]

(7)=(3). At first note, in view of Theorem 4.10,
Chapter VI in [5] that if M and M, are Lévy measures

of up and M respectively, then
V(0<c<l) M =M -c(T M) >0
c @

Hence for fixed Borel subset a2 of s we obtain
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L,(a,r;) -1 (2,r,;) zc(LM(A,rQ/c)-LM(A,rl/c))

for 411 O=xr, £=x

1 2 and all 0<e<l . Taking ¢ = ri/rz

we have

LM(A,r:/) > rl/(r1+r2)LM(A,r§_/r1}+r2/(r1+12)LM(A,r1) ;

; ; 52 ;
i.e., for each & the function R 3r—>LM(A,r) s con=
cave. So, it has non-increasing left and right deriva-

tives, which completes the proof of Theorem 1.

Let VvVEID(H) and Yy be a DH[O’l] -valued random
variable with stationary independent increments such that

L(¥(1l)) =v . We have established the mapping

(2+2) Je o) 3L 0r(1)) =L I tdy(t)] € U(n)
(0,13

that we want to investigate further. Let us note that

if v=|[=z;R,M] and Jv=[=z',R",M"] then
(2.3) R' = % R,
i
(2.4) MV (ay=J (r M) (a)dt for Borel subsets a of g~{0}
0
(2.5) 2" =2 2+ J x/ (L) x| %) (" (ax) ~Fm(ax)) .
g 0E
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Using the above notations we have the following theorem:

THEOREM 2.2. The mapping J 1is an isomorphism be-
tween the semi-groups ID (H) and U(H) with the con-
volution operation. Moreover we have

fa) T = AT e LW

(b) J(rnp) = 7(Ju) for bounded linear operator T on H.

PROOF. Theorem 2.1 ((l)e(6)) implies that J is
mapping onto U(#) . The formulas J{u *v) = (Jn) *(Jv)
and (a) follow from (2.3)-(2.5). The equality

r{Ju) = 7l J tdY(t)]= L[ I td(TY(t)J = J i)
(0,11 {010

where u=L(v¥(l)) , implies (b). It remains to show that
J is one-to-one. To see this it is enough to prove that
the Lévy spectral function Lyt unigquely determines

LM . From (2.4) we have

oo

2
LM,{A,r) =r [ LM(A,S)/S a5
¥
and hence

LM(A,r) = LM,(A,I) - rdLM,{A,r)/dr

for almost all rEﬂ(F 3 e Lot determines LM uniquely,
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which completes the proof.
Remark 2.3. The fact that J is one-to-one mapping
one can prove by the formula (1.8). Putting for fixed

yEH

g (s) :=log L| [ tdv(t)|lsy) , s€ER,
. (8, 1]

we obtain

S P
gy(s) = 5'1 I log L(x¥{l)})) (zy)dxr ;

and hence

log L(v(1)) (sy) = g,(s) +sdg (s)/ds) .
Consequently,
[(r(1))(y) = exp g (1) exp(dg (s)/ds|__;) -

Remark 2.4. The formula (2.3) implies that the class
of all Gaussian measures is invariant under the mapping
J . Further, the class of finite convolutions of the
measures of the form [z,O,céx] ; cEH{F and x € 5~{0}
{Sx denotes the probability measure concentrated at x)
forms a dense subset of 1Ip(H) , cf. [5], Theorems 4.7

and 4.10 in Chapter VI. From (2.5) we get

- HYT ~



B
(c6 ) ' (B) = o/l x| é lB(tx/”xH)dt =
= f”)jul (tz)dt (e/] x| (dz)
P S Lt d e P L

for Borel subsets B of &#~{0} , i.e. J([z,O,céx]]

{CEE{F, x € i~{0}) with Gaussian measures generate the

class

[1]

[2]

[3]

[4]

[5]

(6]

U¢g) , cf. Theorem 2.1 ((1l)e(8)).
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