s-SELF-DECOMPOSABLE PROBABILITY MEASURES AS PROBABILITY DISTRIBUTIONS OF SOME RANDOM INTEGRALS

Z. J. JUREK

ABSTRACT. The class of the s-self-decomposable measures on a Hilbert space coincides with limit distributions of sequences of random variables deformed by some non-linear transformations. In this note the s-self-decomposable measures are characterized as the probability distributions of some random integrals with respect to processes with stationary independent increments.

1. NOTATIONS AND PRELIMINARIES. Let H be a real separable Hilbert space with the norm $\| \cdot \|$ and the scalar product (\cdot, \cdot). For arbitrary positive real number r, i.e. $r \in \mathbb{R}^+$, we define transformations T_r and U_r from H into H by means of the formulas:
(1.1) \[T_I x := r x, \]

and

(1.2) \[U_I x := \max(0, \|x\| - r)x/\|x\|, \quad U_I 0 = 0. \]

The set \(\{ U_I : r \in \mathbb{R}^+ \} \) forms one-parameter semi-group of non-linear mappings of \(H \) called the shrinking operations (for short: \(s \)-operation). By \(P(H) \) and \(ID(H) \) we denote the semi-groups of all probability measures on \(H \) and all infinitely divisible ones, respectively. It is well-known that \(\mu \in ID(H) \) if and only if its characteristic function \(\hat{\mu} \) is of the form

(1.3) \[\hat{\mu}(y) = \exp \left\{ i(y, z) - \frac{1}{2} (Ry, y) + \right. \]

\[+ \int_{H \setminus \{0\}} [\exp i(y, x) - 1 - i(y, x)/(1 + \|x\|^2)] M(dx) \right\}, \]

where \(z \) is a fixed vector from \(H \), \(R \) is an \(s \)-operator and \(M \) is a Lévy measure, cf. [5], Chapter VI, Theorem 4.10. Since the representation (1.3) is unique we shall write \(\mu = [z, R, M] \) if \(\hat{\mu} \) is of the form (1.3). The Lévy spectral function, \(L_M \), associated with a Lévy measure \(M \) we define by the formula

(1.4) \[L_M(\lambda, r) := -M(\{x \in H \setminus \{0\} : x/\|x\| \in \lambda, \|x\| > r\}), \]
where \(r \in \mathbb{R}^+ \) and \(A \) is a Borel subset of the unit sphere \(S \) in \(H \). Note that \(L_m \) uniquely determines \(M \). For \(\mu = [z, R, M] \in ID(H) \) and \(t \in \mathbb{R}^+ \) by \(\mu^t \) we mean the infinitely divisible measure \([\varepsilon z, tR, tM]\). Finally, for a Borel measure \(m \) on \(H \) and a Borel mapping \(f \) from \(H \) into \(H \), \(fm \) is a Borel measure given by the formula

\[
(fm)(A) = m(f^{-1}(A))
\]

for all Borel subsets \(A \) of \(H \), and by \(L(x) \) we denote the probability distribution of \(H \)-valued random variable \(x \).

Let \(D_H[a, b] \) denote the set of \(H \)-valued functions that are right continuous on \([a, b]\) and have left-hand limits on \((a, b)\). For stochastic processes \(Y(t, \omega) \) with sample paths in \(D_H[a, b] \) and real valued functions \(f \) with bounded variation on \([a, b]\) we define the random integral as follows

\[
\int_{[a, b]} f(t) dY(t) := f(b)Y(b) - f(a)Y(a) - \int_{[a, b]} Y(t, \omega) df(t),
\]

where the integral on the right-hand side is meant as a Riemann-Stieltjes integral for fixed \(\omega \). Its existence is ensured by Lemma 14.1 in [1]. For our purposes we also can assume LUKÁCS-PRÉKOPA's definition, cf. [4], Chapter
VI. Namely, for \(H \)-valued stochastic process \(Y \) with independent increments and continuous real-valued function \(f \) on \([a, b]\) we put

\[
\int f \, dY := \lim_{k} \sum_{n} f(t_{nk}^{*}) (Y(t_{nk}) - Y(t_{nk-1})) , \quad (a, b)
\]

where the limit is taken in probability as the width of the partition \(\{t_{nk}\} \) of \((a, b)\) tends to zero and \(t_{nk-1} < t_{nk} < t_{nk+1} \). In order to extend the results of [4], Chapter VI to the infinite dimensional space, especially Lemma 6.2.1, we can apply the following inequality

\[
P\left(\left\| \sum_{k=1}^{n} a_{k} \xi_{k} \right\| > t \right) \leq 2P\left(\max_{k} a_{k} \left\| \sum_{k=1}^{n} \xi_{k} \right\| > t \right)
\]

valid for symmetric independent random variables \(\xi_{1}, \xi_{2}, \ldots, \xi_{n} \) and real numbers \(a_{1}, a_{2}, \ldots, a_{n} \), cf. [6], Theorem 1.2. From both definitions if \(Y \) is a \(D_{H} [a, b] \) -valued random variable with stationary independent increments and \(f \) is continuous with bounded variation on \([a, b]\) then

\[
\hat{L} \left(\int f(t) dY(t) \right)(y) =
\]

\[
= \exp \int_{(a, b)} \log \hat{L}(Y(t))(f(t)y) \, dt , \quad y \in H ,
\]
and for $s \in \mathbb{R}^+$

\[
L\left(\int_{(a,b]} f(t) \, dY(t) \right)^{\ast s} = L\left(\int_{(a,b]} f(t) \, dY(st) \right).
\]

Finally, if $0 < a < b < c < \infty$ and Y has independent increments then the random variables

\[
\int_{(a,b]} f(t) \, dY(t), \quad \int_{(b,c]} f(t) \, dY(t)
\]

are independent as well.

2. s-SELF-DECOMPOSABLE PROBABILITY MEASURES. Let x_1, x_2, \ldots be a sequence of independent H-valued random variables which are not essentially uniformly bounded.

Let r_1, r_2, \ldots be a non-decreasing sequence of positive real numbers and b_1, b_2, \ldots a sequence of vectors from H. The limit distributions of sums

\[
\sum_{j=1}^{n} U_{r_n} x_j + b_n,
\]

where the random variables $U_{r_n} x_j$ ($j=1, 2, \ldots, n$; $n=1, 2, \ldots$) form an infinitesimal triangular array, will be called the s-self-decomposable probability measures. The s-operations U_{r_n} are defined by (1.2) and $U(H)$ denotes the class of all s-self-decomposable measures on H. After-mentioned theorem collects all known descriptions of the class $U(H)$.

- 621 -
THEOREM 2.1. The following statements are equivalent:

1. \(\mu \in U(H) \).

2. \(\mu = [z, R, M] \) and for all \(t \in \mathbb{R}^+ \), \(M \geq \mathbb{E}_L \) on \(H \setminus \{0\} \).

3. \(\mu = [z, R, M] \) and its Lévy spectral function \(L_M \), for each Borel subset \(A \) of \(S \), has right and left derivatives with respect to \(r \) such that \(dL_M(A, r)/dr \) is non-increasing on \(\mathbb{R}^+ \).

4. \(\hat{\mu}(y) = \exp \left\{ \frac{1}{2} i(y, z_0)^{-1} (Ry, y) + \int_{H \setminus \{0\}} \left[\frac{\exp i(y, x) - 1}{i(y, x)} - 1 - \frac{i(y, x) \log (1 + \|x\|^2)}{2\|x\|^2} \right] \frac{1}{\|x\|^2} m(dx) \right\} \),

where \(z_0 \in H \), \(R \) is an \(S \)-operator and \(m \) is a finite Borel measure on \(H \setminus \{0\} \).

5. \(\hat{\mu}(y) = \exp \int_0^1 \log \hat{\nu}(ty) \, dt \) for some \(\nu \in ID(H) \).

6. \(\mu = L \left(\int_0^1 t \nu(\tau) \, d\tau \right) \), where \(\nu \) is \(D_H [0, 1] \) -valued random variable with stationary independent increments and \(\nu(0) = 0 \) a.s.

7. \(\mu \in ID(H) \) and for every \(0 < c < 1 \) there exists \(\mu_c \in ID(H) \) such that \(\mu = T_c^{\alpha_c} \mu_c \).

8. \(\mu \) belongs to the smallest closed subsemigroup of \(ID(H) \) containing all measures of the form \([z, R, 0]\).
and \([z, 0, N_{\alpha, m}]\) where

\[
N_{\alpha, m}(B) = \int \int_{S \times 0} \alpha_{B(tx)} d\mu(dx)
\]

with \(\alpha \in \mathbb{R}^+\) and finite Borel measure \(m\) on \(S\).

PROOF. (1) \(\Rightarrow\) (2) \(\Rightarrow\) (4) is proved in [2], Theorem 5.1 and Corollary 7.1 respectively. (3) \(\Rightarrow\) (2) \(\Rightarrow\) (8) is given in [3] as Proposition 3.1 and Theorem 3.1 respectively. (5) \(\Rightarrow\) (6) in view of the formula (1.8).

(4) \(\Rightarrow\) (5). Let us note that

\[
\int_{0}^{1} \left[\exp(i(y, x)t) - 1 - i(y, x)t/(1 + t^2 \|x\|^2) \right] dt = 0
\]

\[
= \exp(i(y, x)) - 1 - \frac{i(y, x) \log(1 + \|x\|^2)}{2 \|x\|^2}
\]

and there exists \(z_1 \in H\) such that for all \(y \in H\)

\[
(y, z_1) =
\]

\[
= \int_{H \setminus \{0\}} \int_{0}^{1} \left[(1 + t^2 \|x\|^2)^{-1} - (1 + \|x\|^2)^{-1} \right] (y, x) t dt \|x\|^{-\arctg \|x\|} \ p(dx)
\]

where \(p\) is a finite Borel measure on \(H \setminus \{0\}\) related to the measure \(m\) by the formula

\[
p(A) = \int_{A} \left(\|x\|^{-\arctg \|x\|} \right) (1 + \|x\|^2)/\|x\|^3 \ m(dx)
\]

- 623 -
Applying Fubini's Theorem we get

\[\hat{\mu}(y) = \exp \int_{0}^{1} \left\{ 2it(y, z_0 + z_1) - t^2/2(3R, y) + \right. \\
+ \left. \int_{H \sim \{0\}} \left\{ \exp it(y, x) - 1 - \frac{it(y, x)}{1 + \|x\|^2} \right\} \|x\|/(\|x\| - \arctg\|x\|) p(dx) \right\} dt, \]

which implies (5) with \(\nu = [2(z_0 + z_1), 3R, M] \) where

\[M(a) := \int_{A} \|x\|/(\|x\| - \arctg\|x\|) p(dx). \]

(6) \(\Rightarrow \) (7). Of course \(\mu = L \left(\int_{(0, 1]} t \, dY(t) \right) \in ID(H) \) and (1.9) implies for \(0 < c < 1 \)

\[\mu = L \left(\int_{(0, c]} t \, dY(t) \right) * L \left(\int_{(c, 1]} t \, dY(t) \right) = \]

\[= L \left(\int_{(0, 1]} c \, t \, dY(t) \right) * L \left(\int_{(c, 1]} t \, dY(t) \right) = T_c \mu_c * \mu_c \]

where \(\mu_c := L \left(\int_{(c, 1]} t \, dY(t) \right) \) which completes the proof.

(7) \(\Rightarrow \) (3). At first note, in view of Theorem 4.10, Chapter VI in [5] that if \(M \) and \(M_c \) are Lévy measures of \(\mu \) and \(\mu_c \) respectively, then

\[\forall (0 < c < 1) \quad M_c = M - c(T_c M) \geq 0. \]

Hence for fixed Borel subset \(A \) of \(S \) we obtain
\[L_M(A, r_2) - L_M(A, r_1) \geq c(L_M(A, r_2/c) - L_M(A, r_1/c)) \]

for all \(0 < r_1 < r_2 \) and all \(0 < c < 1 \). Taking \(c := r_1/r_2 \) we have

\[L_M(A, r_2) \geq r_1/(r_1 + r_2) L_M(A, r_2^2/r_1) + r_2/(r_1 + r_2) L_M(A, r_1), \]

i.e., for each \(A \) the function \(R^+ \ni r \rightarrow L_M(A, r) \) is concave. So, it has non-increasing left and right derivatives, which completes the proof of Theorem 1.

Let \(\nu \in ID(H) \) and \(\gamma \) be a \(D_H[0,1] \)-valued random variable with stationary independent increments such that \(L(\gamma(1)) = \nu \). We have established the mapping

\[J: ID(H) \ni L(\gamma(1)) \rightarrow L \left(\int_0^1 t \circ \gamma(t) \right) \in U(H) \]

that we want to investigate further. Let us note that if \(\nu = [z, R, M] \) and \(J\nu = [z', R', M'] \) then

\[R' = \frac{1}{3} R, \]

\[M'(A) = \int_0^1 T_{t'} M(A) \, dt \text{ for Borel subsets } A \text{ of } H \setminus \{0\}, \]

\[z' = \frac{1}{2} z + \int_{H \setminus \{0\}} x/(1 + \|x\|^2) (M'(dx) - \frac{1}{2} M(dx)). \]
Using the above notations we have the following theorem:

THEOREM 2.2. The mapping J is an isomorphism between the semi-groups $\mathcal{ID}(H)$ and $\mathcal{U}(H)$ with the convolution operation. Moreover we have

(a) $J(\mu \overset{\text{\#}}{\ast} t) = (J\mu) \overset{\text{\#}}{\ast} t$ for $t \in \mathbb{R}^+$

(b) $J(T\mu) = T(J\mu)$ for bounded linear operator T on H.

PROOF. Theorem 2.1 ((1)\iff (6)) implies that J is mapping onto $\mathcal{U}(H)$. The formulas $J(\mu \overset{\text{\#}}{\ast} \nu) = (J\mu) \overset{\text{\#}}{\ast} (J\nu)$ and (a) follow from (2.3)-(2.5). The equality

$$T(J\mu) = TL \left[\int_{(0,1]} t dY(t) \right] = L \left[\int_{(0,1]} t d(TY(t)) \right] = J(T\mu),$$

where $\mu = L(Y(1))$, implies (b). It remains to show that J is one-to-one. To see this it is enough to prove that the Lévy spectral function L_M' uniquely determines L_M. From (2.4) we have

$$L_M'(A,r) = r \int_{r}^{\infty} L_M(A,s)/s^2 ds,$$

and hence

$$L_M(A,r) = L_M'(A,r) - rdL_M'(A,r)/dr$$

for almost all $r \in \mathbb{R}^+$ i.e., L_M' determines L_M uniquely.
which completes the proof.

Remark 2.3. The fact that \(J \) is one-to-one mapping one can prove by the formula (1.8). Putting for fixed

\[y \in H \]

\[g_y(s) := \log \int_{(0,1]} (sy) (t) \]

we obtain

\[g_y(s) = s^{-1} \int_0^s \log \hat{y}(y(r))(y) dr , \]

and hence

\[\log \hat{y}(y(r)) = g_y(s) + s \frac{d g_y(s)}{ds} . \]

Consequently,

\[\hat{y}(y(r))(y) = \exp g_y(1) \exp \left(\frac{d g_y(s)}{ds} \bigg|_{s=1} \right) . \]

Remark 2.4. The formula (2.3) implies that the class of all Gaussian measures is invariant under the mapping \(J \). Further, the class of finite convolutions of the measures of the form \([z,0,c \delta_x] , c \in \mathbb{R}_+ \) and \(x \in H \setminus \{0\} \) \((\delta_x \) denotes the probability measure concentrated at \(x) \) forms a dense subset of \(ID(H) \), cf. [5], Theorems 4.7 and 4.10 in Chapter VI. From (2.5) we get
\[(c \delta_x)'(B) = c/\|x\| \int_0^1 B(tx/\|x\|) dt = \]
\[
\int \int_S 1_B(tz) \frac{dt}{\|x\|} \delta_x(\frac{x}{\|x\|}(dz)) ,
\]

for Borel subsets \(B \) of \(H \setminus \{0\} \), i.e. \(J([z,0,c \delta_x]) \)
\((c \in \mathbb{R}^+, \ x \in H \setminus \{0\})\) with Gaussian measures generate the class \(\mathcal{U}(H) \), cf. Theorem 2.1 ((1)→(8)).

REFERENCES

Zbigniew J. Jurek
Institute of Mathematics,
Wrocław University,
Pl. Grunwaldzki 2/4,
50-384 WROCŁAW,
Poland