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ABSTRACT. In a recent paper of Iksanov-Jurek-Schreiber in the Annals
of Probability 32, 2004, it was proved that in some cases (e.g. the for Lévy
stochastic area integrals) a convolution of a selfdecomposable measure with
its background driving probability measure leads to a new selfdecomposable
measures (so called factorization property. Here we have proved a comple-
menting result that each selfdecomposable measure can by factored as an-
other selfdecomposable measure and its background driving measure. To this
end we have introduced a calculus on Lévy exponents of infinitely divisible
probability measures, which maybe of an interest in itself.
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1. An introduction. The importance of the class of selfdecomposable
probability distributions, (denoted by L and also known as Lévy class L),
follows from the fact that it is a natural extension of the class of stable laws
(and in particular, the central limit theorem). Explicitly, these are weak limit
distributions in the following scheme

an(X1 + X2 + ... + Xn) + xn → Z, as n →∞, (1)

where random variables X1, X2, ... are independent and the summands {anXj :
j = 1, 2, .., n; n = 1, 2, ...} are uniformly infinitesimal; cf. Loeve (1963), Sec-
tion 23, p. 319. If one assumes that in (1) laws of Xj are in class L then we
say that laws of Z is 2-times selfdecomposable or that they belong to the class
L2, and so on by an induction; cf. Jurek (1983) and references therein; or
Nguyen van Thu (1986); or for a similar concept see in Maejima and Rosiński
(2001). The class L is quite large and it includes many well known distri-
butions in probability and mathematical statistics: Student t-distributions,
log t, Fisher F, log-normal, gamma, log-gamma and many others; cf. also
Shanbhag and Sreehari (1977); Jurek (2001) and Jurek and Yor (2004).
Equivalently, if µ is a probability distribution of Z from (1) and P stands
for the convolution semigroup of all probability measures on E (a Banach
space), then we have the following characterization of the class L:

µ ∈ L iff ∀(t > 0)∃(νt ∈ P) µ = Te−tµ ? νt, (2)

where Tcµ(A) := µ(c−1A) for all Borel sets A; cf. Loéve (1963), Section
23, p. 319, Jurek and Mason (1993), Section 3.9, p. 177 or Sato (1999),
Section 15, p. 90. In fact, the factorization property (2) holds also for t = 0
and t = ∞ with ν∞ = µ, ν0 = δ0. Furthermore, the convolution equation
(2) also justifies the term selfdecomposability. Of course, well known and
extensively studied stable laws ( i.e., limit laws in the above scheme for
identically distributed X ′

is) satisfy the convolution equation (2). In fact, for
there exists 0 < p ≤ 2 (called an exponent) such that for all a, b > 0 there
exists x such that Taµ∗Tbµ = T(ap+bp)1/pµ∗ δx; cf. Samorodnitsky and Taqqu
(1994) for the theory of stable processes and measures.

As in Jurek (1985) and in Iksanov-Jurek-Schrieber (2004) we will work in
a generality of a real separable Banach space E with the norm ||.|| and the
conjugate Banach space E ′, i.e., in (1) random variables Xj are E-valued and
measures µ’s in (2) are Borel probability measures on E with their Fourier
transforms µ̂(y) and y ∈ E ′. However, as in the two previous papers our
results are new for distributions on the real line as well.
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All selfdecomposable probability measures µ and their convolution factors
νt in (2) are infinitely divisible (a such class will be denoted below by ID).
Hence their Fourier transforms (the Lévy-Khintchine formula) can be written
as follows

µ̂(y) = eΦ(y), ν̂t(y) = eΦt(y) and the exponents are of the form

Φ(y) = i < y, a > −2−1 < y,Ry > +∫

E\{0}
[ei<y,x> − 1− i < y, x > 1B(x)]M(dx), (3)

where E is a Banach or a Euclidean space, < ., . > is an appropriate bilin-
ear form between E ′ and E, a is a shift vector, S is a covariance operator
corresponding to the Gaussian part of µ and M is a Lévy spectral measure.
There is one to one corresponds between µ ∈ ID and the triples [a,R, M ] in
its Lévy-Khintchine formula (2); cf. Araujo-Giné (1980), Chapter 3, Section
6, p. 136.

The function Φ(y) from (3) is called the Lévy exponent of µ. If E is a
Hilbert space then Lévy spectral measures M are completely characterized by
the integrability condition

∫
E
(1∧||x||2)M(dx) < ∞ and Gaussian covariance

operators S coincide with the class of trace operators ; cf. Parthasarathy
(1967), Chapter VI, Theorem 4.10. Consequently, formula (2) gives the fol-
lowing description

µ̂(y) = eΦ(y) ∈ L iff Φt(y) := Φ(y)− Φ(e−ty), y ∈ E ′

is a Lévy exponent for all t > 0. (4)

Of course, Φ∞(y) = Φ(y) and Φ0(y) = 0. Recall that in a case when E is
an Euclidean space then Lévy exponents are characterized as a continuous
negative-definite functions; cf. Cuppens (1975) and Schoenberg’s Theorem
on p. 80.

Finally, let us recall also that a Lévy process Y (t), t ≥ 0, is a process
with stationary and independent increments and Y (0) = 0. Without loss
of generality we may and do assume that it has paths in Skorochod space
DE[0,∞) of E-valued cadlag functions (i.e., right continuous with left hand
limits.) There is one to one correspondence between the class ID and the
class of Lévy processes. Namely, for ν ∈ ID there is unique, in distribution,
Lévy process Yν(t) such that L(Yν(1)) = ν. Conversely, the distribution of
Lévy process is uniquely determined by L(Y (1)) from the class ID.
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The cadlag paths of a process Y allows us to define random integrals of
the form

∫
(a,b]

h(s)Y (r(ds)) via the formal formula of integration by parts.

Namely,

∫

(a,b]

h(s)Y (r(ds)) :=

h(b)Y (r(b))− h(a)Y (r(a))−
∫

(a,b]

Y (r(s))dh(s), (5)

where h is a real valued function of bounded variation and r(.) is a monotone
and right-continuous function. Cf. Jurek& Mason (1993), Section 3.6, p. 116,
or Jurek-Vervaat (1983).
Furthermore, using Riemann-Stieltjes approximating sums for (5) we have
the following formula for the characteristic function of the above integrals:

̂
L

( ∫

(a,b]

h(s)Y (r(ds))
)
(y) = exp

∫

(a,b]

log L̂(Y (1))(h(s)y)dr(s), (6)

where L(.) denotes the probability distribution and µ̂(.) denotes the Fourier
transform of a measure µ; cf. Jurek-Vervaat (1983) or Jurek (1985) or Jurek-
Mason (1993). The usefulness of the random integral representations can be
seen in the following:

µ ∈ L iff µ = L(

∫

(0,∞)

e−sY (ds)), (7)

for a unique (in distribution) Lévy process Y such that E[log(1+ ||Y (1)||)] <
∞; we refer to (7) as the random integral representation of distributions
from the class L. (Integrals over half-line are defined as a limit in probability
(almost surly, or in distribution) of integrals (6) as b → ∞.) The above let
us introduce a random integral mapping

I : IDlog 3 L(Y (1)) → L(

∫

(0,∞)

e−sY (ds)) ∈ L.

In terms of Lévy exponents, characterization (7) means that if Φ and Ψ are
Lévy exponents of µ and Y (1), respectively, then

Φ ∈ L iff Φ(y) =

∫ ∞

0

Ψ(e−sy)ds =

∫ 1

0

Ψ(sy)
ds

s
, for all y ∈ E ′,
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which follows from (6) with appropriately chosen parameters and integration
over positive half-line. Above and in what follows, a phrase ”Φ ∈ L” or ”M ∈
L” will mean that a characteristic function exp[Φ(y)], y ∈ E ′ corresponds to
a class L probability measure. And similarly in the second instance we mean
that [a,R, M ] is a class L probability measure.

To L(Y (1)) we refer to as the background driving probability distribution
for µ; in short: BDPD. Similarly to Y (t), t ≥ 0, we refer as the background
driving Lévy process ; in short: BDLP . Since Y (1) has a characteristic func-
tion exp Ψ(y), y ∈ E ′, we call it the background driving characteristic function
of a class L characteristic function exp Φ(y); in short BDCF .

Similarly to the formula (7) we introduce a class U as follows:

µ ∈ U iff µ = L(

∫

(0,1)

s Y (ds)), (8)

and the following random integral mapping

J : ID 3 L(Y (1)) → L(

∫

(0,1)

s Y (ds)) ∈ U ,

where Y is an arbitrary Lévy process. Measures from the class U are called
s-selfdecomposable and they were orignally introduced using some non-linear
shrinking transforms, in short: s-operations; cf. Jurek (1985) and references
therein and Iksanov-Jurek-Schreiber (2004).

2. A calculus on Lévy exponents. Let Exp denotes the totality of all
functions Φ : E ′ → C appearing as the exponent in the Lévy-Khintchine
formula (2). Hence we have that

Exp + Exp ⊂ Exp, λ · Exp ⊂ Exp, for all postive λ, (9)

which means that Exp forms a cone in the space of all complex valued func-
tions defined in E ′. These follows from the fact that infinite divisibility is
preserved under convolution and under convolution powers to positive real
numbers.
Here we consider two integral operators acting on Exp. Namely,

J : Exp → Exp, (JΦ)(y) :=

∫ 1

0

Φ(sy)ds, y ∈ E ′;

I : Explog → Exp, (IΦ)(y) :=

∫ 1

0

Φ(sy)s−1ds, y ∈ E ′.

(10)
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Indeed, J is well defined on whole Exp and JΦ is the Lévy exponent of
the integral (8). However, I is only defined on Explog which corresponds to
infinitely divisible measures with finite logarithmic moments. In fact, IΦ
and JΦ are the Lévy exponents corresponding to the random integrals (8)
and (7), respectively.

Here are the main properties of J and I mappings.

LEMMA 1. The operators I and J acting on Lévy exponents and defined
by (10) have the following basic properties:

(a) I,J are additive and positive homogeneous operators on Exp;

(b) I,J commute under the composition and J (I(Φ)) = (I − J )Φ;

(c) J (I + I) = I;

(d) I(I − J ) = J ;

(e) (I − J )(I + I) = I.

Proof. Part (a) follows from the fact that Exp forms a cone. For part (b)
note that

(J (I(Φ)))(y) =

∫ 1

0

(I(Φ))(ty) dt =

∫ 1

0

∫ 1

0

Φ(sty)s−1dsdt =

∫ 1

0

∫ t

0

Φ(ry)r−1drdt =

∫ 1

0

∫ 1

r

Φ(ry)dt r−1dr =

∫ 1

0

Φ(ry)r−1dr −
∫ 1

0

Φ(ry)dr = IΦ(y)− JΦ(y) = (I − J )Φ(y),

which proves equality in (b). Note that from the above (first line) we also
infer that that operators I and J commute. All the remaining parts are
straightforward consequences of the equality in (b).

LEMMA 2. The operators I and J , defined by (10), have the following
additional properties:

(a) J : Explog → Explog and I : Exp(log)2 → Explog

(b) If (I − J )Φ ∈ Exp then the corresponding infinitely divisible

measure µ̃ with the Lévy exponent (I − J )Φ(y), y ∈ E ′, has finite

logarithmic moment.

(c) (I−J )Φ+I(I−J )Φ = (I−J )Φ+JΦ = Φ for all Φ ∈ Exp.
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Proof. (a) Since the function E 3 x → log(1 + ||x||) is subadditive therefore
for an infinitely divisible probability measure µ = [a,R, M ] we have

∫

E

log(1 + ||x||)µ(dx) < ∞ iff

∫

{||x||>1}
log(1 + ||x||)M(dx) < ∞

iff

∫

{||x||>1}
log ||x||M(dx) < ∞; (11)

cf. Jurek and Mason (1993), Proposition 1.8.13 and references therein. Fur-
thermore, if M is the spectral Lévy measure appearing in the Lévy exponent
Φ then JΦ has a Lévy spectral measure JM , where

(JM)(A) :=

∫

(0,1)

M(t−1A)dt =

∫

(0,1)

∫

E

1A(tx)M(dx)dt, (12)

for all Borel subsets A of E \ {0}. Hence

∫

||x||>1

log ||x||(JM)(dx) =

∫

(0,1)

∫

E

1{||x||>1}(tx) log(t||x||)M(dx)dt

=

∫

(0,1)

∫

{||x||>t−1}
log(t||x||)M(dx)dt =

∫

{||x||>1}

∫ 1

||x||−1

log(t||x||)dtM(dx)

=

∫

{||x||>1}
||x||−1

∫ ||x||

1

log wdwM(dx)

=

∫

{||x||>1}
||x||−1[||x|| log ||x|| − ||x||+ 1]M(dx)

=

∫

{||x||>1}
log ||x||M(dx)−

∫

{||x||>1}
[1− ||x||−1]M(dx).

Since the last integral is always finite as we integrate a bounded function
with respect to a finite measure, we get the first part of (a). For the second
one, let us note that

∫

||x||>1

log ||x||(IM)(dx) = 1/2

∫

||x||>1

log2 ||x||M(dx),

where IM is the Lévy spectral measure corresponding to the Lévy exponent
IΦ.
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For the part (b), note that the assumption made there implies that the
measure

M̃(A) := M(A)−
∫

(0,1)

M(t−1A)dt ≥ 0, for all Borel sets A ⊂ E\{0}, (13)

is the Lévy spectral measure of µ̃. [Note that there is no restriction on

Gaussian part.] In fact, if M̃ is nonnegative measure then it is necessarily

Lévy spectral measure because 0 ≤ M̃ ≤ M and M is Lévy spectral measure;
comp. Arujo-Giné (1980), Chapter 3, Theorem 4.7 , p. 119.
To establish the logarithmic moment of µ̃ we argue as follows. Observe that
for any constant k > 1 we have

∫

(1<||x||≤k)

log ||x||M̃(dx) =

∫

(1<||x||≤k)

log ||x||M(dx)−
∫

(0,1)

∫

(1<||x||≤k)

log ||x||M(t−1dx)dt =

∫

(1<||x||≤k)

log ||x||M(dx)−
∫

(0,1)

∫

{t−1<||x||≤kt−1}
log(t||x||)dM(dx)dt =

∫

(1<||x||≤k)

log ||x||M(dx)−
∫

(1<||x||≤k)

∫ 1

||x||−1

log(t||x||)dtM(dx)

−
∫

(k<||x||)

∫ k||x||−1

||x||−1

log(t||x||)dtM(dx) =

∫

(1<||x||≤k)

log ||x||M(dx)−
∫

(1<||x||≤k)

||x||−1

∫ ||x||

1

log(w)dwM(dx)

−
∫

(k<||x||)
||x||−1

∫ k

1

log(w)dwM(dx) =

∫

(1<||x||≤k)

log ||x||M(dx)−
∫

(1<||x||≤k)

||x||−1(||x|| log ||x|| − ||x||+ 1)M(dx)

− (k log k − k + 1)

∫

(||x||>k)

||x||−1M(dx) =

∫

(1<||x||≤k)

(1− ||x||−1)M(dx)− (k log k − k + 1)

∫

(||x||>k)

||x||−1M(dx)

≤ M(||x|| > 1) < ∞,
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and consequently
∫
(||x||>1)

log ||x||M̃(dx < ∞. This with property (11), com-

pletes the proof of the part (b).
Finally, since (I − J )Φ is in a domain of definition of the operator I

thus part (c) is a consequence of Lemma 1(e) and (d). Thus the proof is
complete.

3. New factorizations of selfdecomposable distributions. Here we
will apply the operators I and J to Lévy exponents of selfdecomposable
probability measures.

LEMMA 3. If µ is a selfdecomposable probability measure on a Banach
space E with a characteristic function µ̂(y) = exp Φ(y), y ∈ E ′ then

Φ̃(y) := Φ(y)−
∫

(0,1)

Φ(sy)ds = (I − J )Φ(y), y ∈ E ′,

is a Lévy exponent corresponding to an infinitely divisible probability measure
with finite logarithmic moment.

Equivalently, if M is a Lévy spectral measure of a selfdecomposable µ then
the measure M̃ given by

M̃(A) := M(A)−
∫ 1

0

M(t−1A)dt, A ⊂ E \ {0},

is also a Lévy spectral measure on E, that additionally integrates logarithmic
function on any complement of a neighborhood of zero.

Proof. If µ = [a,R, M ] is selfdecomposable, i.e., it satisfies the condition (2),
for probability measures, that in turn is equivalent to the claim (4), for Lévy
exponents. Hence we infer that the following inequalities

M(A)−M(etA) ≥ 0, for all t > 0 and Borell A ⊂ E \ {0},
hold true and that there is no restriction on the remaining two parameters
(a shift vector and a Gaussian covariance operator) in the Lévy-Khintchine
formula (3). Multiplying both sides by e−t and then integrating over positive

half-line we conclude that M̃ is non-negative Borel measure. Since M̃ ≤ M
and M is a Lévy spectral measure then so is M̃ ; comp. Theorem 4.7 in
Chapter 3 of Araujo-Giné (1980). Finally, Lemma 2b) gives the finiteness of
the logarithmic moment. Thus the proof is complete.
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THEOREM 1. For each selfdecomposable probability measure µ, on a Ba-
nach space E, there exists a unique s-selfdecomposable probability measure µ̃
with finite logarithmic moment such that

µ = µ̃ ∗ I(µ̃) and J (µ) = I(µ̃) (14)

In fact, if µ̂(y) = exp Φ(y) then (µ̃)̂(y) = exp[Φ(y)− ∫
(0,1)

Φ(ty)dt], y ∈ E ′.
In other words, if Φ is a Lévy exponent of a selfdecomposable probability

measure then (I − J )Φ is a Lévy exponent of a s-selfdecomposable measure
with a finite logarithmic moment and

Φ = (I − J )Φ + I(I − J )Φ = (I − J )Φ + JΦ. (15)

Proof. Let µ̂(y) = exp Φ(y) ∈ L. From (4), Φt(y) := Φ(y)−Φ(e−ty) are Lévy
exponents. Hence,

Φ̃(y) :=

∫

(0,∞)

Φt(ty)e−tdt = Φ(y)−
∫

(0,∞)

Φ(e−ty)e−tdt = ((I − J )Φ)(y)

is a Lévy exponent as well, because of Lemma 3. Again by Lemma 3 (or
Lemma 2 b)), a probability measure µ̃ defined by the Fourier transform
(µ̃)̂(y) = exp(I − J )Φ(y) has logarithmic moment. Consequently, I(µ̃) is
well defined probability measure whose Lévy exponent is equal to I(I−J )Φ.
Finally, Lemmas 1(d) and 2(c) give the factorization (15).
Since I(µ̃) ∈ L has the property that µ̃ ∗ I(µ̃) is again in L, therefore
Theorem 1 from Iksanov-Jurek-Schreiber(2004) gives that µ̃ ∈ U , i.e., it is a
s-selfdecomposable probability distribution.
To see the second equality in (14) one should observe that it is equivalent to
equality JΦ = I(I − J )Φ that indeed holds true in view of Lemma 1(d).
Suppose there exists another factorization of the form µ = ρ ∗ I(ρ) and let
Ξ(y) be the Lévy exponent of ρ. Then we get that Φ(y) = Ξ(y)+ (I Ξ)(y) =
(I + I) Ξ(y). Hence, applying to both sides I − J we conclude that

(I − J )Φ = ((I − J )(I + I)) Ξ = Ξ,

where the last equality is from Lemma 1(e). This proves the uniqueness in
representation (14) and thus the proof of Theorem 1 is complete.

REMARK 1. In a case of Euclidean space Rd, using Schoenberg’s Theorem,
one gets immediately that Φ̃ is a Lévy exponent; cf. Cuppens (1975), pp.
80-82.
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Following Iksanov, Jurek and Schreiber (2004),p. 1360, we will say that
a selfdecomposable probability measure µ has the factorization property if
µ ∗ I−1(µ) is selfdecomposable as well. In other words, a class L probability
measure convoluted with its background driving probability distribution is
again class L distribution. As in Iksanov-Jurek-Schreiber (2004), Proposition
1, if Lf denotes the set of all class L distribution with factorization property
then

Lf = I(J (IDlog)) = J (I(IDlog)) = J (L) and Lf ⊂ L ⊂ U , (16)

REMARK 2. All the three sets of probability measures form closed topo-
logical subsemigroups of the semigroup ID of infinitely divisible probability
measures.

COROLLARY 1. Each selfdecomposable µ admits factorization µ = ν1∗ν2,
where ν1 is an s-selfdecomposable measure (i.e., ν1 ∈ U) and ν2 is a selfde-
composable one with the factorization property (i.e., ν2 ∈ Lf). Moreover, we
have inclusions Lf ⊂ L ⊂ U and L ⊂ Lf ∗ U .

Proof. Because of (14) we infer that ν1 := µ̃ is s-selfdecomposable measure.
In view of (14) and (16), ν2 := I(µ̃) has the factorization property, i.e.,
ν2 ∈ Lf , which completes the proof.

EXAMPLES. 1) Let Σp be a symmetric stable distribution on a Banach
space E, with the exponent p. Then its Lévy exponent, Φp, is equal Φp(y) =
− ∫

S
| < y, x > |p m(dx), where m is a finite Borel measure on the unit sphere

S of E; cf. Samorodnitsky and Taqqu (1994). Hence (I −J )Φp(y) = p/(p +
1)Φp(y), which means that in Corollary 1, both ν1 and ν2 are stable with
the exponent p and measures m1 := (p/(p + 1))m and m2 := (1/(p + 1))m,
respectively.

2) Let η denotes the Laplace (double exponential) distribution on real
line R. Then its Lévy exponent Φη is equal Φη(t) := − log(1 + t2), t ∈ R.
Consequently, (I −J )Φη(t) = 2(arctan t− t)t−1 is the Lévy exponent of the
class U probability measure ν1 from Corollary 1, and (2t−arctan t−t log(1+
t2))t−1 is the Lévy exponent of the class Lf measure ν2 from Corollary 1.

Before we formulate next result we need to recall that, by (8), the class
U is defined here as U = J (ID). (For other description cf. Jurek (1985) and
references therein.) Consequently, by an iterative argument we can define

U<1> := U , U<k+1> := J (U<k>) = J k+1(ID), k = 1, 2, ...; (17)
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cf. Jurek (2004) for other characterization of classes U<k>. Elements from
semigropus U<k> are called k-times s-selfdecomposable probability measures.

THEOREM 2. Let n be any natural number and µ be a selfdecopmosable
probability measure. Then there exist k-times s-selfdecomposable probability
measures µ̃k, k = 1, 2, ..., n, such that

µ = µ̃1 ∗ µ̃2 ∗ ... ∗ µ̃n ∗ I(µ̃n), J k(µ) = I(µ̃k), k = 1, 2, ..., n. (18)

In fact, if Φ is the exponent of µ then µ̃k has the exponent Ik−1(I −J )kΦ =
(I − J )J k−1Φ and

Φ = (I−J )Φ+(I−J )JΦ+ ...+(I−J )J k−1Φ+ ...+(I−J )J n−1Φ+J nΦ

= (I − J n)Φ + J nΦ. (19)

Proof. For n = 1 the factorization (18) and the formula (19) are true by
Theorem 1, with µ̃1 := µ̃. Suppose our claim (18) is true for n. Since
ρ := I(µ̃n) is selfdecomposable, therefore applying to it Theorem 1, we have
that ρ = ρ̃∗I(ρ̃), where ρ̃ has the Lévy exponent (I−J )J nΦ = J n(I−J )Φ
and thus it corresponds to n+1-times s-selfdecomposable probability because,
by Theorem 1, (I − J )Φ is already s-selfdecomposable and then we apply
n-times the operator J ; compare the definition (17). Thus the factorization
(18) holds for n+1, which completes the proof of the first part of the theorem.
Similarly, applying inductively decomposition (15), from Theorem 1, and part
(d) of Lemma 1 we will get the formula (19). Thus the proof is complete.

REFERENCES

[1] A. Araujo and E. Gine (1980). The central limit theorem for real and
Banach valued random variables. John Wiley & Sons, New York.
[2] R. Cuppens (1975). Decomposition of multivariate probabilities. Aca-
demic Press, New York.
[3] A. M. Iksanov, Z. J. Jurek, and B. M. Schreiber (2004). A new factor-
ization property of the selfdecomposable probability measures, Ann. Probab.
vol. 32, No. 2, pp. 1356-1369.
[4] Z. J. Jurek (1983). The classes Lm(Q) of probability measures on Banach
spaces. Bull. Acad. Pol. Sci. 31, pp. 51-62.

12



[5] Z. J. Jurek (1985). Relations between the s-selfdecomposable and selfde-
composable measures. Ann. Probab. vol.13, No. 2, pp. 592-608.
[6] Z. J. Jurek (2001). Remarks on the selfdecomposability and new examples.
Demonstratio Mathematica XXXIV no. 2, pp.241-250.
[7] Z. J. Jurek (2004). The random integral representation hypothesis re-
visited: new classes of s-selfdecomposable laws. In: Abstract and Applied
Analysis; Proc. International Conf. ICAAA , Hanoi, August 2002, p. 495-
514. World Scientific, Hongkong.
[8] Z. J. Jurek and J. D. Mason (1993). Operator-limit distributions in prob-
ability theory. John Wiley &Sons, New York.
[9] Z. J. Jurek and W. Vervaat (1983). An integral representation for selfde-
composable Banach space valued random variables, Z. Wahrscheinlichkeits-
theorie verw. Gebiete, 62, pp. 247-262.
[10] Z. J. Jurek and M. Yor (2004). Selfdecomposable laws associated with
hyperbolic functions, Probab. Math. Stat. 24, no.1, pp. 180-190.
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