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In this paper we discuss the limit laws arising from normed sums of inde-
pendent random variables satisfying some stability conditions. These are,
roughly speaking, sequences for which the limit properties of suitably normed
sums are similar to those for sequences of identically distributed random
variables. The result we obtain is an analogue of the Lévy-Khinchin repre-
sentation of infinitely divisible laws. The present investigation arose from a
study of self-decomposable probability measures.

Throughout this paper we denote by P the set of all probability measures on
the real line. With the topology of weak convergence and multiplication
defined by the convolution, P becomes a topological semigroup. We denote
the convolution of two measures A and u by A * u. Moreover, by é, we denote
the probability measure concentrated at the point a. Further, for any real
number a (a # 0) and any measure y from P we denote by au the measure
defined by the formula au(E) = u(a™'E) for all Borel subsets E of the real
line. The characteristic function /i of a measure u € P is defined by the formula

i) = [ e*ua)

— oo

It is easy to check the equation 2171(0 = [i(at).
By a triangular array we shall understand a system
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226 K. URBANIK
of random variables such that Xi,, Xa,, ..., X,, are independent and for
every ¢ >0

lim max P(|x,| >cn)=0.

n—ow 1<k<n
Further, we say that a triangular array { X} is generated by a sequence {X,}
of random variables if X}, = Xi (=21 2 e e 1 OBk

A probability measure is said to be a limit distribution of the triangular
array { X, if it is the weak limit of the sequence of probability distributions
of normed sums (1/n) Yi—y Xin — @y for suitably chosen constants a,. It is
obvious that the limit distribution of {X, .} is defined uniquely up to a shift
transformation. Moreover, this limit distribution is infinitely divisible (see [2],
p. 309). Further, we call two triangular arrays equivalent if they have the
same limit distribution. In particular,{X, ) is equivalent to an array generated
by a sequence {X,} if and only if for suitably chosen a, and b, the sequences
of normed sums

Yoo Ti®
-y X,,—a, and -y X, - b,
Hik=1 N k=1
have the same limit distribution.

We define classes S,, (m=0,1,...) of sequences {X,} of independent
random variables recursively. Let S, be the class of all sequences {X,}
generating convergent triangular arrays, i.e., the class of all sequences for
which the sequence (1/n) Y k=1 Xi — @, with suitably chosen constants @, has
a limit distribution. Further, {X,} € S,, (m = 1) whenever {X,} € So and the
following stability condition is fulfilled: for every positive number ¢ the tri-
angular array Xy, = Xienj+k k=1,2,....,n;n=12, ...) is equivalent to
an array generated by a sequence from S,,_,. The square brackets here denote
the integral part of the real number. It is clear that the classes S,, form a
contracting sequence. Put S, = ﬂ;‘,L, S,,. The sequences belonging to S,
will be called slowly varying. For instance, each sequence of independent
identically distributed random variables generating a convergent triangular
array belongs to all classes S,, and, consequently, is slowly varying. We get
a less trivial example of slowly varying sequences from results of Koroljuk and
Zolotarev [1] (see also [5]), namely, each sequence of independent random
variables generating a convergent triangular array and such that there are no
more than two different distribution laws among the laws of the random
variables X, X, , ... is slowly varying.

Let L, (m=0,1,...,0) be the set of all possible limit distributions of
normed sums (1/n) Y 5=y Xy — @, where {X,} € S,, and a, are constants. The
problem of a description of probability measures from Lo was solved by Lévy,
who obtained an explicit representation of the characteristic function of those
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measures [2, p. 324]. Another characterization of the set L, was given [3].
The aim of the present paper is to give a characterization of all sets L
(=015 25 S0 e0)); :

It is easy to see that the set L,, is invariant under the shift transformations
W o 5.6 and under the transformations u — au. Moreover, it is closed under
convolution. We characterize L,, by a decomposability property, and then
we characterize the corresponding characteristic functions.

Pr(?position 1. A probability measure p belongs to L,, (m =0, 1, ...) if and
only if for every number a € (0, 1) there exists a measure u, € L,,_, such that
W =au* p,. L_, denotes here the set P of all probability measures.

P.roof. We shall prove Proposition 1 by induction with respect to m.
Owing to Lévy’s results, it is true for m =0 [2, p. 323]. Suppose that m > 1
and for indices less than m the statement is true. Consider a measure u fr;m
L,,. Suppose that it is a limit distribution of normed sums (1/n) > i, X, — q,
where {X,} € S,,. Given a € (0, 1), we put Feiini

2 5} [an] [an] 1 A [an
Yn—nkzlxk— o tan> Zn:;lk=[§]+lxk+7]a[an]_an'
It i§ evident that Y,, Z, are independent, and that u and au are limit distri-
but10n§ of {Y, + Z,} and {Y,}, respectively. Further, taking into account that
q,u, being infinitely divisible, has a nonvanishing characteristic function, we
infer that the sequence {Z,} also has a limit distribution, say, y,. Of cou’rse
i = au * p,. By the assumption the triangular array X, = Xp+x (K =1, 2,
...,n;n=1,2,..) is equivalent to an array generated by a sequence fron;
S SRSihee

1 rn
Z, :; Z Xkr,,_ Cn>s

=
where r, = n — [an] and ¢, are constants, we infer that its limit distribution y
belongs to L,,_;, which completes the proof of the necessity of the condition‘.z
Suppose now that p is a probability distribution satisfying, for every
a € (0, 1), the condition u = au * p, where p, € L,,_,. We have to prove that
wel,. It is clear that u e L, and consequently, being infinitely divisible
has a nonvanishing characteristic function. Setting v; = u, v, = nu :
(n=2,3,...), we have the formula X U280

A ﬁ’(nt)
Vi) SRS
A(n = 1)
whence the relation
: t
lim max |V —) -1 =
n—»ow 1<k<n k(n : (1)
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follows. Let {X,} be a sequence of independent random variables with prob-
ability distributions vy, v, .... By (1) we have the convergence
lim max P(|X;| >cn)=0
n+o 1<k<n
for every positive number c. Thus {X,} generates a triangular array. Given a
positive number ¢, we put X, = Xpenj+x (= 1,2,).., 08 =1,2,...). L&t
A, be the probability distribution of the sum (1/n) Y k=; Xi,- Then
30 - R end £ m)
2 fin™ ' [en]?)
which yields the relation

o A1 + o))
T S

Now taking into account the equation A((1 + o)) = A fie)1 + (1 + ©)1), we
infer that the probability measure (1 + €)tc/(1 +c) is a limit distribution of the
array {Xj,}. This probability measure, being an element of L, _;, is, by the
induction assumption, a limit distribution of an array generated by a sequence
from S,,_;. Thus {X;,} is equivalent to an array generated by a sequence from
S,,—; and, consequently, {X,} € S, Since u is the probability distribution of
the normed sums (1/n) Yi_; X, (n=1,2,...), we have p € L, which com-
pletes the proof.
As a direct consequence of Proposition 1 we get the following

Corollary. A probability measure i belongs to L., if and only if every num-
ber a € (0, 1) there exists a probability measure i, € L, such that p = ap * [, .

Our next aim is to give a representation of the characteristic functions of
probability measures from L,,. The following representation formula was
established in [3]: a measure p is self-decomposable, i.e., belongs to L, , if and
only if its characteristic function is of the form

Q(du)

J-"‘ exp(iv) — 1
log(1 + u?)

0 v

e

) = exp{iqt o+ f ( dv — it arctan u)
-0

where ¢ is a real constant, Q is a finite Borel measure on the real line, and the
integrand is defined as its limiting value — 472 when u = 0. Moreover, the
measure p determines the couple ¢, O uniquely. We shall call Q the spectral
measure for p. It is evident that the convolution of measures there corre-
sponds to the sum of spectral measures of factors. Further, it is easy to
check that if Q is the spectral measure for p, then

log(1 + u?)

0= [ iogt + wpar 27 v

is the spectral measure for a.
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By L,,* (m=0,1,..., ) we shall denote the subset of L, consisting of
probability measures with vanishing constant ¢ in (2) and whose spectral
measure is concentrated on the open right half-line (0, o0). If v € L,,*, then
o‘f course, (—1)v € L,, and its spectral measure is concentrated on "'l[h;: half-’
line (— oo, 0). Let us introduce the operation u— u*, which associates with
cv+ery measure p from L, having the spectral measure Q a probability measure
p* from L,* with the spectral measure Q*(E) = Q(E n (0, o)). It is easy
to verify the equation (au)* = au® * §, for a > 0 where ,

Q(du)

(= f (arctan u — arctan au) ———— - .
0 log(1 + u?)

F.urther, it is clear that (u* A)* = u* = A*. Thus the relation p=au * p
yields the follow.mg oneu* =au™ * (u,)* * 8,. Hence, by a simple induction,
we get the relation u* € L,, whenever u * L,,. Suppose that, u € L,, and @ is

given by (2). Denoting by u° the Gaussian probability measure with the
characteristic function

A°(1) = exp(igt — 1 Q({0)1?),
we have the equation

p=p0 % pt x (D=t

[t is evident that Gaussian measures belong to L, . Consequently, formula (4)
reduces the investigation of L, to that of L,*. Moreover, \:ve have the
following criterion: A € L,,* if and only if for every a € (0, 1), A =al % y, % &
where ¢ is a constant and A, e L;_, (n=1, 2, ..., o). ™

With every probability measure A from L," we associate a function F.
defined on the real line by means of the formula :

® _ Q(du)

Figl= e log(l + 4% ©)

Here Q denotes the spectral measure for A. It is clear that this correspondence
is one-to-one and

- 2
Q(E) = ~ [ log(1 + x?) dFy(log x) (©)
for any Borel subset E of (0, c0). Moreover
Fl*v=F1+Fv (7)
and, by (3), fora >0
Foy(x) = Fy(x — log a). ®)

First we characterize L,,* in terms of the function F,.
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Proposition 2. Let m = 0,1,.... A function F is associated with a prob-
ability measure A from Lyt ey PaFaiamd only if
© (logy — x)"H(dy)

o logm+l(1 i y2/(m+1))’

where H is a finite Borel measure on (0, 0).

F(x) = )

Proof. We shall prove Proposition 2 by induction with respect to m. For
m = 0 it is a direct consequence of formula (5). Suppose now that m > 0 and
that for indices less than m the statement is true. Let A be a probability
measure from L, *. Since it belongs to L}_,, we have, by the induction
assumption,

0 i m—1
e er g D
ex og"(1 + y*™)

where H, is a finite Borel measure on (0, o). Moreover, for any a € (0, 1) we
have the equation A = al* 4, * 5, where 1, € L} _,. Consequently, by the
induction assumption,

Fla(x) =

(10)

» (logy — )" 'G,dy)
o log"(l +y*™

where G, are finite Borel measures on (0, ). On the other hand, by @, (8),
and (10),

log"(1 + y*'™)
log"(1 + (y/a)*™™)

L 3 A Ho(a™ d)).
e 1ogm(1 +y2/m) O(a y)

(atan -

Hence we get the equation

log"(1 + y*/™Ho(a” " dy)
log™(1 + (y/a)*™™)

for any Borel subset E of (0, o0). Consequently,

_Holdy [ HoaTdy)
J, oz 5y~ Jaiogt + G = o

G.(E) = Ho(E) — |

Put
Wi H(dy)
9% =] _fogmd + 22’ (1

By (11) for any a € (0, 1) and u < v we have the inequality
g(u) — g(v) — g(u —loga) + g(v —loga) 2 0,
which for u = v + log a yields
g(v) < 3(g(v — loga) + g(v + log a).
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Thus the function g is convex and, consequently, can be represented in the

I:nrm._q(x) = ¥ h(u) du, where h is a nonnegative monotone nonincreasing
function. Further, by (12) we have the formula

Hy(E) = f log™(1 + y*'™h(log y) 2,
L 4
Consequently,
P d
log™ 2/m =
|| 1og™ + y"h(og y) ” <. 13)
Moreover, by (10),
(14)

By (13) the limit inferior of the function h(logy) log™"*1(1 4+ y?/(m*1)at 0and
o is equal to 0. Consequently, integration of (14) by parts gives

Fy(x) = f (logy — x)"~'h(log ) 4
ex y

1 ©
Fyx)= = ok _L (log y — x)™ dh(log y).

(15)
Moreover, by (13),
—-— J.O logm+ 1(1 e yZ/(m+1)) dh(log y)
© 2/(m+1)
i Y o a d
=2 J‘o e yZ/(m+ 1) log™(1 + yZ/( “))h(log ¥) 7)) < 00.

Thus the measure H defined by means of the formula

1
HCE) = .~ EJ‘E log™* (1 + p*/™* V) dh(log y)

is fs'mite on (0, oo)}.l Setting it into (15), we get desired representation (9)
uppose now that the function F is given by formula (9). Wi :
can be written in the form 1 T

Fodead | Sogy — ¥ Gidy)
e log"(l + y*'™)

where the measure

G(E)=m L— log"(1 + y2/m)J" log™™~ (1 + x™* V)H(dx) fi_X
y
Y

is also finite on (0, oo).+Consequently, by the induction assumption, F = F,
for a measure A from L, _,. In order to prove that A € L,,*, consider for an;
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a €(0, 1) the decomposition A = al x 4, with 4, € L,,_,. Here L_; denotes

the set of all probability measures on the real line. By virtue of (8) we have
the formula

»(logy — x)" "' H,(dy)
Fi(x) — Fp(x) = Lx log"(1 + yz/m)

where the measure

y/a
H(E)=m fE log™(1 + y/™) f log™" (1 + xz/("‘+”)H(dx)d7y
y

is finite on (0, o0). Hence, by (7) and the induction assumption, we infer that
A, = A, %8, where A,* €L} _; and c is a constant. Thus 4, € L,,_,, which,
by virtue of Proposition 1, shows that 2 € L,,*. This completes the proof of
Proposition 2.

As an immediate consequence of formula (6) and Proposition 2 we get
the following characterization of L,,* in terms of the spectral measures.

Proposition 3. Let m=1,2,.... A measure Q defined on (0, ) is the
spectral measure for a probability distribution from L, if and only if it is of
the form

Q(E) = fE log(1 + x?) fw(log %)m_l log ™" Ml ka1 l))N(dy)d—xx (16)

where N is a finite Borel measure on (0, ).

Setting this representation of the spectral measure into (2), we obtain the
following result.

Propositiond. Let m = 1,2, .... A function ¢ is the characteristic function
of a probability measure from L, if and only if it is of the form

o) = exp [ eyt NG (17

where N is an arbitrary finite Borel measure on (0, o) and the kernel k,, is
defined by the formula

iu

i y [ otx =
k) fo (f i du — it arctan x)

(m—1)! ot

m=—4 d
% (lOgX) _xlog-—m—l(l +y2/(m+l))'
X X
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We note that the function ¢ determines the measure N in (17). Indeed, by
i simple calculation (17) can be transformed into formula (2), whence, by
the uniqueness of the spectral measure, Eq. (16) follows. Now it is obvious
that the spectral measure, and consequently the function ¢, determines the
measure N.

Integration by parts shows that

it ye! y m+1 1 )
k(1 )= llog = 1x — it arcta
sy ((m ! foe (og x) dx — it arctan y

x log ™™ 1(1 + y*/"* D) +itr,(y) (18)

where r,, is a bounded continuous function on the right half-line tending to 0
us y — 0. Moreover, it is easy to check that

2

I L 1 S, (19)
)il 2

We turn now to probability measures from L, (m=1,2,...). Given
jel,, we denote by N, and N_ the Borel measures corresponding by
Proposition 4 to u* and ((—1)u)*, respectively. Further, by d* we denote
the variance of the Gaussian component u, of u. Put for any Borel subset
I of the real line

M(E) = N,(E n (0, 0)) + N_((—E) n (0, «0)) + 2771 4° GulE)

where —E = {—x: x € E}. From decomposition formula (4) and Proposition
4 we get a characterization of L,, in terms of the measures M. Using relations
(18) and (19), we finally obtain the following theorem.

Theorem 1. Let m = 1,2, .... A function ¢ is the characteristic function of
a probability measure from L,, if and only if

o N 1 o X)
alr) = exp{lct + lt((———m T fo exp(tlx)(log 2

m+1

dx — arctan y)

>< M(dy) }
logm+1(l A ly|2/(m+l))

where ¢ is a constant, M is a finite Borel measure on the real line, and the
integrand is defined as its limiting value it/2"*2 when y = 0. Moreover, the
function ¢ determines ¢ and M uniquely.

We proceed now to a characterization of the set L. We begin with that
of L 18
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Proposition 5. A function F is associated with a probability measure A from
Ly " et Bi=F, sifiand onlyif

2
F() = | sinl(z/2)yleNdy), (20)
where N is a finite Borel measure on (0, 2).

Proof. Suppose that A e L, *. Then, by Proposition 2, for every m we
have the formula

» (logy — x)"H,(dy)
o logm+l(1 a5 y2/(m+1))

Fy(x) =

for some finite measures H,, on (0, o0). Hence it follows that F, is infinitely
differentiable and

7 Lslc g H,(dy)
F(A)(x) = (—1)"m! Lx log™ (1 +y2/(m+1))

R B

Thus the function F, is completely monotonic on the real line, and conse-
quently, by Bernstein’s theorem [4, p. 155], has a representation

Fyx) = f: ¢~ R(dy) @)

where R is a finite Borel measure on the right half-line. By (6) for the spectral
measure Q corresponding to 4 we have the equation

0. oy = [ (]

Since the integrand is equal to 7/(sin(r/2)y) in the interval (0, 2) and is infinite
outside it, we infer that the measure R is concentrated on (0, 2) and

0

log(l + x2)e™* dx) YR(dy).

fz R(dy)
o sin(m/2)y

is finite. Setting the measure

_( _R@y)
b L- sin(m/2)y

into (21), we get representation (20). The necessity of the condition is thus
proved.
Suppose now that the function F is given by formula (20). Note first that

o dx b ¢
1 .2/(m+1
fo e ))x1+y = ym+2 %

2—y
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for v e (0, 2), where b and ¢ are constants. Hence it follows that the measure
I, defined on (0, co) by means of the formula

B o n dx
[[” E) = m+ 1 sin = v lo m+ 1 | +x2/(m+1) il
(E) m!-[," - f,,: g" )xl+y (dy)
is finite. Consequently, by Proposition 2, the function

© (logy — x)"H,(dy)
Gm(x) byt J;x logm+ 1(1 + yz/(m+1))

is nssociated with a probability measure, say, 4,,, from L,*. By a simple
caleulation we get the formula

2 T
G0 = (=1 [y sin 5y exp(= x))N ()

which, by (20), yields the equation G\ = F™. Since both functions F and
G, approach 0 at infinity, the last equation implies G,, = F. Thus F=F; |
(m = 1,2,...). Since the correspondence between measures A and functions
I, is one-to-one, we have the equations 4, = 4, = -+ -, which show that F is
ussociated with a measure belonging to all sets L,* and, consequently, to
/.. '. The sufficiency of the condition is thus proved.

Proposition 5 and formula (6) yield the following characterization of L
in terms of the spectral measures.

Proposition 6. A measure Q defined on (0, o) is the spectral measure for a
probability distribution from L, " if and only if it is of the form

2
O(E) = f log(l + x?) f X~ 1y sin[(n/2)yIN(dy) dx
E 0
where N is a finite Borel measure on (0, 2).

Setting this expression into (2) we get the following result.

Proposition 7. A function ¢ is the characteristic function of a probability
measure from L, " if and only if

2
o) = exp [ k{1, IN@) 22)

where N is an arbitrary finite Borel measure on (0, 2) and the kernel k., is
defined by the formula

iu

Lo e iRt = 1 : dx
k. (t, y) = ysin - y fo (f du — it arctan x) e

0 u
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.ln the same way as in Proposition 4 we conclude that the function ¢ deter-
mines the measure N uniquely. Moreover, integrating by parts, we have

bt = in T [ 4 - J2 ) G
(t,y) 1112yf0 (e 1

1 4+ x2) xttv"

This integral occurs in the investigation of stable laws [2,0p::329]. For
y€(0, 1) u (1, 2) we have the formula

T T
ko(t, )= —it-tan—y
2 2 1 -y)

which by the continuity of the kernel yields

0S—y —i—sin

_F(Z—y)sin(n/2)y g rc t n
oP(c0sFy =i zsind )

ko(t, 1) = it(1 — C) — it log || _gm

where C is Euler’s constant. Further, by a simple calculation we get the
formula

cos7I Bt i
— y— l_ S === i} H
i ] m2 y) + lty] + itr(y)

e b ['(2 — y) sin(n/2)y {ltly(

y1 —y)
(23)

where r is a bounded continuous function on (0, 2) tending to —n/2 as y — 2.

For y =1 we take the limiting value of the kernel. It is also easy to verify
the formula

lim k_(t, y) = — n_tz (24)
y—=+2 4
We note that the function y ~'I'(2 — y) sin(m/2)y is bounded and has a positive
greatest lo“{er bound in the interval (0, 2). Consequently, we may replace the
measure N in representation formula (22) by the measure 7 defined as follows.

IE) = | y™'T@~y)sin 2 yN(dy).
E 2
Taking into account (23), we get an equivalent form of representation (22)

2
(1) =exp{ibt— fo []tly(cosgy - il—:lsingy) + ity] i(dTyi}} (25)

where I is an arbitrary finite Borel measure on (0, 2) and b a suitably chosen
constant.

Consider.a p.robability measure u from L . Let I, and 7_ be the measures
corresponding in representation (25) to u* and ((=Du)™, respectively. Sup-
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pose that the characteristic function of the Gaussian component pu° of u is
given by the formula

;:O\(t) = exp(iat —d*t?).
For any subset E of (—2,0) u (0, 2] we put
M(E)=I,(En(0,2)) + I_((—E) n (0, 2)) + d? 6,(E).

From decomposition formula (4) and representation (25) we get a charac-
terization of L, in terms of the measures M. Namely, we have the following
theorem.

Theorem 2. A function ¢ is the characteristic function of a probability
measure from L, if and only if

& T RN M(dy)
t) = expiict — t'y'(cos— —i—sin = )+it]———},
(1) p{ f_z[ll L i ke g
where c is a real constant, M is a finite Borel measure on (—2,0) v (0, 2], and
the integrand is defined as its limiting values (/2)|t| + it log|t| — it and
(n/2)|t] — it log|t| + it when y =1 and y = —1, respectively.

Corollary 1. The set L, is the smallest set containing all stable probability
measures and closed under convolutions and passages to the limit.

Corollary 2. Each sequence of independent random variables with stable
probability distributions (not necessarily with the same exponent) generating
a convergent triangular array is slowly varying.
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