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ABSTRACT. The analytic property of the selfdecomposability of charac-
teristic functions is presented from stochastic processes point of view. This
provides new examples or proofs, as well as a link between the stochastic
analysis and the theory of charactersitic functions. A new interpretation of

the famous Lévy’s stochastic area formula is given.
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1. Introduction and notations. The class of selfdecomposable proba-
bility distributions, denoted as S D, (known also as the class L or Lévy class L
distributions), appears in the theory of limiting distributions as laws of nor-
malized partial sums of independent random variables but not necessarily
tdentically distributed. However, the additional assumption of the infinites-
imality of the summands guarantees their infinite divisibility; cf. Jurek &
Mason (1993), Section 3.3.9.

All our random variables or stochastic processes are defined on a fixed
probability space (£2, F,P). For a given random variable X (for short: rv) or
its probability distribution 4 = £(X) or its probability density f, provided
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it exits (i.e.,du(x) = f(x)dx), we define its characteristic function ( in short:
char.f.) ¢x(t) = ¢(t) as follows

o) = ox(t) = Ble™) = | P = [ dp(a), te R
Q R
We will say that a charactersitic function ¢ has the selfdecomposability prop-
erty if

V(0 < ¢ < 1)3(charf. v )V(t € B) 6(t) = d(ct)u(t). (1)

In terms of a random variable X the above means that for any 0 < ¢ < 1
there exits a rv X, such that

X g cX + X., with independent rv X, X;

where d means equality in distribution.

The class of all selfdecomposable char.f. (or probability distributions or
rv.) we denote here by SD, although, it is often denoted by L and called the
Lévy class L. 1t is known that all elements ¢ € SD are infinitely divisible,
ie.,

Y(n > 1)3(char.t. ¢,)¥(t € R) (t) = (¢u(t))™.

The class of all infinitely divisible char.f. (or rv’s or probability distributions)
is denoted by ID. The classical Lévy-Khintchine Theorem says that

a function ¢ : R — C is an ID characteristic iff ¢(t) = e®®), (2)
1 4 1tx

h (1) = ita — ~t*0? / wr_1-— dM 3

where ®(t) = ita S0+ R_{O}[e 1+x2] (x), (3)

where @ € R,0? > 0 and M is called Lévy spectral measure , i.e., M is finite
measure ouside every neighbourhood of 0 and integrats 2 in all neighbour-
hoods of 0. The triple [a, 02, M] is uniquely determined by a char.f. ¢ from
ID. Conversely, each triple gives an ID char.f. by (3); cf. Jurek & Mason
(1993), Section 1.1.8. The function ® is called the Lévy exponent of the
infinitely divisible char.f. ¢.

A stochastic processes Y (t,w), t > 0, with stationary and idependent
increments, starting from zero is called a Lévy process. Usually we may
choose a version with cadlag paths. The law of Y(.) is determined by the
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law of Y (1) which is ID. Moreover, each infinitely divisible distribution p
can be inserted into a Lévy process Y such that £(Y (1)) = pu. The Lévy
spectral measure M (A), in (3), is the expected number of jumps of Y (¢), for
0 <t <1, whose sizes are in a set A.

We say that a process X has the scaling or rescaling property if for each
0 < ¢ < 1 there exists a constant h(c) such that

X(ct) £ h(e)X(2) (4)

Some of self-similar processes have the scaling property . In general case one
needs to add a deterministic function, depending on ¢, in (4).

For a Lévy process Y, it is easy to see that Y (¢t + s) — Y (s), (s is fixed)
t > 0, is another Lévy process with the same distribution, on the Skorochod
space of cadlag functions, as the process Y (t). Moreover, the second process
is independent of o-field o({Y (u) : u < s}). More importantly, for any rv
T > 0 we have

Y(t+T)-Y(T) and Y (t),t > 0, have the same probability distributions
whenever Y(.) and T" are stochasticly independent. (5)

This is so called the strong Markov property and it holds also for Markov
stopping times 7 with respect to the natural filtration associated with Y.
Basic examples are the Brownian motion B(t), and the stable process n,(t),
where 0 < p < 2 is the exponent of stability. The case p = 2 corresponds to
Brownian motion.

1. Selfdecomposability and the strong Markov property. The fol-
lowing is a minor generalization of the observation in Bondesson (1992), p.19.
For future references we state it as follows :

PROPOSITION 1. Let X be a process with independent increments, hav-
ing the scaling and the strong Markow properties and let T' > 0 be an inde-
pendent of it selfdecomposable rv. If the scaling function is a homeomorphism
of the unit interval, then for all 0 < ¢ <1 we have

X(T) < cX(T)+ X.(T) with the two summnads
being independent, i.e., X (T') is a selfdecomposable rv. (6)



Proof. Note that X (T') = X (cT) + [X(T) = X (cT)] £ h(c)X(T) + X.(T),
where X (T') := X(T') — X (¢T) is independent of X (T"); use conditioning on
T. Putting for ¢ values h™'(c) we get the selfdecomposability of X (7).

Here are examples of SD rv which are obtained from Proposition 1 or via
arguments as those in the proof of it.

EXAMPLE 1.

(a) For nonnegative T' € SD that is independent of standard normal rv
N and Brownian motion (B;), we have that Nv/T L By €SD.

(b) For a Brownian motion B, let T, be the exit time from the interval
[—a,a], i.e., T, = inf{t : |B(t)| = a}, and let gr, be its last zero before
time T,, i.e., gr, = sup{t < T, : B(t) = 0}. Then for a > 0 we have that
gr, € SD. Furthermore, N,/gr, < By, is in SD, and its characteristic
function is tanh(at)/at,t € R.

(c) For Brownian motion B(t) in R? | d > 3 (the transience property
holds) let R(t) := ||B(t)|| denotes the Bessel process (the distance from
zero). Then

L, :=sup{t: R(t) <r}, and logL, arebothin SD.

In fact, the law of L, is equal to the law of 1/(27%,7"2), where v, is the
gamma rv.

(d) For a normal rv Z and indepependent of it 1v 7,5, the ratio Z/, /a.x <
B(1/7a.2) is SD rv. In particular, any Student t-distribution is in SD.

(e) Let n,(t),t > 0, be a symmetric stable process with the exponent
0 < p < 2 and 7, be independent of it rv. Then rv 7,(74,1) is in SD with
the charactistic function (1 + ¢,|t[?)~*.

(f) For Brownian motion B; on R, b > 0, a # 0, random variables

/ exp(aB(t) — bt)dt and log(/ exp(aB(t) — bt)dt) are both in SD.
0 0

Proofs: Notice that NvT < B(T), which proves (a). For (b) first observe
that The = inf{t : [c'B()| = a} £ inf{t : |B(t/?)| = a} = *T,. For
0 <a <1, random variables gr,, g, — gr, are idependent and thus we have

d d
91 = 91, + 91, — 91, = a9, + (97, — 912



which shows that gp, and thus gr, are in SD. Further, Proposition 1 gives
that By, € SD and use Yor (1997), Section 18.6, p.133.

(c) Note the scaling property L. 2 c?L; and increments independence of
Lt > 0; cf. Getoor (1979). This and Proposition 1 shows that L, is SD.
Getoor (1979) also identified the law of L; as the law of appropriate inverse
of gamma rv. Furthermore, log-gamma is SD | cf. Jurek (1997), Example
(c).

(d) From (c) we know that rv 1/v,, is in SD. Taking independent of
it BM (B;) and stopping it at 1/, we obtain SD distribution. Since t-
distribution is defined as the ratio of a normal rv and square root of Y2,
which belongs to gamma family, we conclude the selfedecomposability of ¢-
distributions. Comp. the original proof of Grosswald (1976).

(e) Symmetric stable Lévy process admits the scaling property (with
h(c) = c'/?) as well as the strong Markov property. Therefore the Proposi-
tion 1 gives the selfdecomposability. The remainder is a consequence of the
equation

d 1
o(Yar) = mp(1) - 727,

where the two factors are independent. Note that the selfdecomposability of
the characteristic functions in question, is also easy to obtain by checking
the property (1) when a = 1 (for all p > 1 Polya criterion implies that it is
char.f.) and then using properties of the class SD.

(f) Dufresne (1990) (cf. also Yor (1992) and Urbanik (1992), Example
3.3, p-309) proved that the integral has probability distribution of an inverse
of a gamma rv. Thus (c) gives that both rv are inSD.

3. Selfdecomposability and BDLPs. In this section we are focussing
on the so called BDLPs or BDRVs. The following is the random integral
representation

X has SD distribution iff there exists a unique, in distribution, Lévy

process Y such that
Ellog(1+ [Y(1)])] < oo and X i/ e=*dY (s). (7)
0

The process Y is refered to as the background driving Levy process or, in
short, BDLP for X. Similarly, Y'(1) is called the background driving ran-
dom variable for X. Cf. Jurek and Mason (1993), Theorem 3.9.3. and the

bibliografical comments there.



Here is a new method of finding the law of Y'(1) in (7).
PROPOSITION 2. If X, := [} e~*dY (s), for t >0, then

LX)V = L£(Y (1), as t— 0. (8)
Proof Note that Lemma 1.1 in Jurek (1985) gives

LX) L / t e~*dY (s/t)

_ /0 e tuqy (u) = £ /0 dy (u) = L(Y (1)), (9)

as t — 0, which completes the proof.

REMARK 1. . The above process X; allows the identification of the law of
Y (1) (as t — 0) as well it gives the random integral representation of SD rv
(as t — 00); cf. Jurek and Mason (1993), Theorem 3.6.8 and 3.9.3.

For future references we need the following new description of the selfde-
composability property.

PROPOSITION 3. If ¢ is a class SD characteristic function then it is
differentiable at t # 0 , and

¥(t) = expltd'(t)/d(t)] for t # 0 and (0) := 1 is a characteristic function
from the class 1D,,. (10)

Conversely, if 1 satisfies the above then ¢ is in the class SD.

[ ¢ or Y(1) is referred to as the background driving random variable of
SD char. f. ¢; in short: BDRV.

In mathematical economy the expression t¢/(t)/¢(t) is called the elasticity
of a function ¢ at a point t. It represents the relative change in ¢ over relative
change in argument t. Usually one is interested in the demand and supply
functions.]

Proof. In terms of charcteristic functions the random integral represen-
tation says that

peSD iff log¢(t):/ologw(u)d7u,

where the characteristic function ¢ corresponds to the distribution of Y (1);
cf. Jurek and Mason (1993), Remark 3.6.9(4), p.128. Hence we conclude the
claim in the Proposition 3.



COROLLARY 1. A Lévy exponent ® corresponds to a class SD charac-
teristic function iff it is differentiable (in R — {0}), lim,_ot® (t) = 0 and
td' (t) is a Lévy exponent of a characteristic function in 1D,,.

As we have seen the selfdecomposability is sometimes preserved by taking
logarithm of a positive SD rv. Here we have a criterion for a such phenomena

and at the same time we have a method of "producing” char. f. from a given
SD charf. .

COROLLARY 2. Let X > 0 be an SD rv. Then log X is in SD iff the
function

E[X"logX]

S = eonlt g togBLX)|

t expiit
— exp{ p

exists and 1s an infinitely divisible char.f. with a finite logarithmic moment.

Proof. Write the char. f. for logX and use Proposition 3 for char. f. of
X from the class SD.

REMARK 2. Using the property from Proposition 3 one can also get the
criterion when SD rv X is such that exp(X) is again in SD. But as in the
above Corollary 2 these are not easily applicable methods. On the other
hand, if one knows that X > 0 and log(X) are in SD then the Corollary 2
"produces” and 1D, char. f.

Example 2. Let T%, for a real v > 0, denotes the Student t-distribution
with 2v degress of freedom. It has the probability density function

v +1/2) 9‘5_2 =172 for
flx) = —\/%I‘(y) (1+ 21/) b € R.

Hence its char. f. is equal to

2171/
['(v)

o7 (1) = = (V20 t))" K, (V2vlt)),

where K, is the Bessel function; cf. Grosswald(1976) or use Gradshteyn &
Ryzhik (1994) formulae: 3.771(2) with 8.334(2).



From the Example (e) above we have that T" are selfdecomposable and
therefore Proposition 3 and the property 8.486(12), in Gradshteyn & Ryzhik
(1994), of Bessel funtions K, imply that

[tIV2v K (V2ult])
_ Ky 1 (V2vlt])
—63729[—’75\\/5 Ku(\/5|t|) ]7 t7é0> (11)

is the BDRV for t-distribution. In particular, it is char. f. from 1.D,,. Be-
cause of properties of characteristic functions we have the following properties
of Bessel functions at zero.

COROLLARY 3. For Bessel functions K,, we have

N L () R Y A (=)
(Z) lim,_o K,,(’Zl = . ( )’IZHO KV(‘ZD

e (t) = explv +

= 0. (12)

4. Two ”curious” formulae. It is natural to define two "integral
mappings”: Z from the class I D, onto SD by

I(v) = E(/Ooo e *dY(s)), (13)

and similarly, J from /D onto U by

J(v) = E(/O sdY (s)), (14)

where in both cases Y is a Lévy process such that Y (1) = v. More about
the class U one can find in Jurek (1985). [ Let us add here that Z and J are
isomorphisms between the corresponding topological convolution semigroups;
Theorems 2.6 and 3.6 in Jurek (1985).] Moreover, probability measures of
the form

J(w*ZI(v)) € SD, whenever v € 1D,,. (15)

Cf. Jurek (1985),Theorem 4.5. The argument of J above, v % Z(v), which is
the convolution of SD distribution Z(v) and its background driving distribu-
tion v, appears in some known formulae . Here are two occurences of such
convolution products.



A. Let By = (Zy, Z) be R2-Brownian motion and let
A, = / Z.dZs — Z,dZs,u > 0,
0

be the Lévy’s stochastic area integral. P. Lévy (1951) (see also Yor (1992a),
p-19) has proved that

2

ea:p[—%(tu cothtu —1)], t € R, (16)

tu

E it Ay Bu — —
S ) sinh tu
where a € R? and u > 0 are fixed. The family of characteristic functions
L (b € R is a fixed parameter), is in SD and its BDRV/BDLP are of the
form exp[—2(bt cothbt — 1)]; cf. Jurek(1996), Corollary 3 and p. 182. Thus
in (16) we have SD characteristic function and its BDRV/BDLP modulo a

constant factor 2|a|?/u.

REMARK 3. From the formula (16) we infer that, conditionally, the stochas-
tic area integral is infinitely divisible. In fact, the area integral A, has char.f.
1/ coshut, [cf. Lévy (1951), formula (1.3.5) or Yor (1992a), pp. 16-19 taking
there in the formula (2.1): § = 2,a = 0 and = 0]. Thus the area integral
itself has SD distribution and, in particular, it is infinitely divisible. (see the
example B below for its BDLP/BDRV.)

B. Let B;,0 <t <1 be a Brownian motion and let N be an independent
of it standard normal rv. From Wenocur (1986) (see also Yor (1992a), p.19)
we infer that

1 2
)I/Qexp[—x— tanh ¢].

Ele~z Jo (Brtse)ds _ [tV (fy (Besds)*] — (
cosht 2t
(17)

However, 1/ cosht is SD characteristic function and its BDRV/BDLP is of
the form exp[—ttanht]. Cf. Jurek (1996), Corollary 4 and an appropriate

formula on p. 182 . Thus again in (17) we see a product of SD distribution
and its BDRV/BDLP.
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